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Abstract: Cancer stem cells (CSCs) are a small and elusive subpopulation of self-renewing cancer
cells with the remarkable ability to initiate, propagate, and spread malignant disease. In the past
years, several authors have focused on the possible role of CSCs in PCa development and progression.
PCa CSCs typically originate from a luminal prostate cell. Three main pathways are involved in the
CSC development, including the Wnt, Sonic Hedgehog, and Notch signaling pathways. Studies have
observed an important role for epithelial mesenchymal transition in this process as well as for some
specific miRNA. These studies led to the development of studies targeting these specific pathways to
improve the management of PCa development and progression. CSCs in prostate cancer represent an
actual and promising field of research.
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1. Introduction

Prostate cancer (PCa) represents the most common solid tumor among men in Western
countries and the fifth cause of cancer mortality worldwide [1]. According to the actual
statistics, the worldwide prostate cancer burden is expected to grow to almost 2 million new
cases and 700,000 deaths in the next 20 years [2]. Age, race, genetics, family history, and
lifestyle (e.g., obesity, smoking, etc.) represent risk factors for higher incidence of PCa [1].
Early detection of PCA is possible through routine checkups, with the determination of
prostate specific antigen (PSA), through digital rectal examination, mpMRI, and prostate
biopsy [3]. Several risk calculators/apps are available in order to estimate the risk of PCa
and significant PCa [4,5].

Several studies have investigated the etiology and pathophysiology of PCa, but the
exact mechanisms are still unknown [6]. Important roles are played by the genetic charac-
teristics of the patients as well as its immune system [7–9]. The heterogeneous biological
nature of the disease brings great challenges during treatment, highlighting the need for
better definition of the pathophysiology of PCa [10].

In the past years, several authors have focused on the possible role of stem cells in
prostate cancer. Stem cells have the ability to copiously proliferate (self-renewal) start-
ing from a single cell (clonal) and to differentiate into various kinds of cells and tissue
(potent) [10]. Self-renewal and potency characteristics are very similar to those of cancer
cells [10]. This led to the hypothesis that tumors may arise from the transformation of stem
cells and that cancer stem cells (CSC) found inside tumor tissues may be responsible for
tumorigenesis [11].

Prostate cancer stem cells (PCSCs) were discovered for the first time by Collins et al.
in 2005 in human prostate tumors, and the authors enhanced an increased ability of
proliferation in PCSCs, highlighting the idea that they may play an important role in the
pathogenesis of prostate cancer. PCSCs have been isolated in metastatic PCa cell lines [11].
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Since their discovery, PCSCs have been of great interest in the study of the PC. Today,
different and various antigens are known to be responsible for the carcinogenesis of PCa as
well as the formation of metastasis and the resistance to pharmacological treatment [12].

The CSC model hypothesis explains tumor heterogeneity, initiating ability, and thera-
peutic resistance [13]. In addition, a small number of CSCs are needed to recapitulate the
tumor and its initial heterogeneity [13]. Cancer cells are organized in hierarchical order
and CSCs stem on top of the pyramid, having stem-like characteristics such as self-renewal,
pluripotency, and plasticity, that evolve during the lifetime of a tumor [14]. CSCs may
be involved in PCa development and may solve the unmet needs in PCa prevention and
diagnosis [13]. Their possible role in PCa progression may also improve the current gaps in
PCa treatment, especially in the castration-resistant stages of the disease when androgen
sensitivity is compromised [15]. Although several treatments have been introduced in this
setting, there are still several unmet needs [16,17].

An overview of the most important evidence on this complex topic is essential, espe-
cially for clinical urologists. The aim of the present review is to summarize in a narrative
fashion the most relevant data on CSCs and PCa.

2. Evidence Synthesis
2.1. Prostate Cancer Stem Cells Origin and Phenotype

PCa is an heterogeneous disease where different grades may coexist [18,19]. Cell
heterogeneity, upon progression and treatment, tends to accentuate [18,19]. The best
example of this process is the expression of the androgen receptor (AR), where AR−PCa
cells gradually become, in high-grade untreated tumors, the predominant cell population
in castration-resistant PCa (CRPC) [18,19].

The first prospective studies aimed to identify PCSCs markers in patient-derived PCa
cell lines [11]. These PCa cells expressed surface markers such as CD44+/α2β1hi/CD133+
and the expression of transporter protein ATP-binding cassette subfamily G member 2
(ABCG2) was identified [18].

Since 2005, several markers have been isolated for PCSCs, such as CD44/CD133,
aldehyde dehydrogenase (ALDH), CD166, and CD44+/CD24−. PCa cells expressing these
markers can self-renew and generate heterogeneous cell subpopulations [20,21]. Further-
more, markers such as CD151, CD160, and podocalyxin TRA-60–1 are associated with
PCSCs that give birth to tumors with hierarchical organization cell organization [22]. Ex-
pression of SOX2, Notch, and Oct4 are associated with epithelium–mesenchymal transition,
which promotes PCa cell migrations [23,24].

PCSCs correlated markers are shown in Table 1.

Table 1. Current known PCSC antigens.

Antigen Function Role

ABCB1 Transporter Chemoresistance

ABCg2 Transporter Chemoresistance, CSC maintenance

ALDH Aldheyde dehydrogenase Radioresistance, self-renewal, tumorigenicity

AR-7 Transcriprion factor EMT, stemness

CD117 Signaling, proliferation, apoptosis,
differentiation, migration

CSC maintenance, sphere formation, proliferation,
migration, invasion

CD133 Currently unknown Thepetic resistance, self-renewal, tumorigenicity

CD44 Signaling, Adhesion Self-renewal, invasion

E-Cadherin Adhesion, epithelial morphogenesis Sphere formation

EpCAM Adhesion, epithelial morphogenesis CSC maintenance

TG2 Transferase EMT, chemoresistance
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The origin of PCSCs is debated. In a normal prostate, the stem cell population resides in
the proximal duct, originating from the basal cell layer of the epithelium [25]. Moad M. et al.
proved in a recent gene-tracing study that luminal cells have a stem cell population, though
less potent than the basal stem cell population [26]. PCSCs might derive from the basal cell
layer because p63 and other basal markers are expressed in tissue-derived tumor-initiating
cells in immunocompromised mice but did not express the AR or other markers of luminal
differentiation (PSA and PAP) [27]. PCSCs might originate from normal prostate stem cells
after epigenetic modifications created by the tumor microenvironment [28]. MYC activation
and PTEN loss of function added to mutations to DNA repair genes such as BRCA2 create
instability to the genome and cause tumor heterogeneity and progression [29,30]. It is well
known that common gene fusion in differentiated PCa is represented by TMPRSS2: ERG.
Recent studies by Polson and colleagues also showed that PCSCs had high-frequency of
TMPRSS2:ERG [31]. ERG is a transcription factor under the control of TMPRSS2. TMPRSS2
is an androgen-regulated, prostate-specific gene promoter, which is upregulated in CSCs.
The result of its activation is differentiation, self-renewal, and maintenance of SCs [32].
Another important marker of CSCs lies in the Homebox gene Nkx 3.1 during prostate
regeneration. More specifically, animal studies demonstrate that Nkx 3.1 is required for CSC
maintenance and that the deletion of PTEN in these cells results in a rapid transformation
in castration-resistant carcinoma [33,34].

2.2. PCSC Molecular Pathways and Metabolism

In order to better uncover new and improved therapeutic strategies, molecular path-
ways and PCSC metabolism have to be analyzed. The Wnt, Sonic Hedgehog, and Notch
signaling pathways have been found to be crucial for CSC development [35,36].

2.2.1. Wnt Pathway

The normal Wnt pathway affects cell survival; Wnt ligands bind to Frizzled and
low-density lipoprotein receptor-related protein (LRP) 5/6, activating the downstream of
the subsequent molecular targets, accumulating β-catenin and mediating its translocation
in the cell nucleus [34]. Wnt activates downstream effectors and activates targeted gene ex-
pression and cytoskeleton rearrangement, resulting in altered cell survival in noncanonical
pathways [34]. In PCA, not only elevated β-catenin expression is found in the cancer cell
nucleus [35], but Wnt signal promotes cell self-renewal in several cell models including
LNCaP, C42B, and PC3 cells in an AR-independent way, increasing expression of CD133
and CD44 [36]. The downregulated Wnt/β-catenin pathway significantly suppresses stem
cell-like properties instead [37]. Furthermore, Wnt3 has been shown to increase the ex-
pression of its downstream effectors and CSC markers, including CD133 and CD44, thus
playing an important role in CSC development in CRPC (Figure 1).

2.2.2. Sonic Hedgehog Pathway

The Sonic Hedgehog signaling pathway controls cell renewal and survival. The ligands
of this family are represented by Sonic, Desert, and Indian. These ligands, by binding to
membrane receptors, Patched (Ptch1 and 2) and Smoothered, activate and mediate the
nuclear translocation of glioma-associated oncogene homolog (Gli), expressing target genes
that regulate cell survival. An abnormal Hedgehog signaling pathway is present in PCa
and in CSC proliferation [38,39]. Gli-related genes, including CDKN2A/p16/INK4A, Myc,
and CDK2, by promoting androgen-independent tumor cell growth, lead to biochemical
and tumor recurrence and lead to tumor recurrence [40]. Furthermore, cell models have
shown that FOXA1 and BCL2 have a role both in CRPCa and therapeutic resistance [41].
Hedgehog signaling was also found to be increased. Hedgehog signaling was found with
PCSC CD44+, CD24− [21] (Figure 2).
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Figure 2. The stimulation of Ptch1/2 receptors by Sonic, Indian, and Desert ligands result in the
translocation of Gli into the nucleus, promoting CDKN2A/p16/INK4A, Myc, CDK2, and CD44
expression. This results in an androgen-independent tumor cell growth leading to biochemical and
tumor recurrence.

2.2.3. Notch Signaling Pathway

The Notch signaling pathway is mediated by the Notch1-4 receptors and from ligands,
such as DLL 1, DLL 3, DLL4, Jagged 1, and Jagged 2. In PCa Notch, the AR pathway
and the PI3K/Akt pathway interact. Importantly, Notch interacts with the AR pathway
and the phosphoinositide 3-kinase (PI3k)/Akt pathway, which are the two main signaling
pathways that regulate development and carcinogenesis [42,43]. Increased levels of Jagged
1-Notch is associated with PCa progression, metastasis, and EMT, and increased Notch3
expression is CRPCA [44]. PC tumor development in the beginning stages is dependent on
androgen signaling. Initially, most patients respond to ADT, but almost the totality of them
develop CRPC, hence the shift to androgen-independent tumors [45]. It has been found that
AR-variants (AR-V) present a truncation in the COOH terminal, thus lacking the ligand-
binding domain but maintaining transcriptional capability. These AR-Vs are associated
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with PCa growth and progression. In particular, AR-V7 has been found in CTCs and in PC
resistant to new antiandrogenic drugs such as enzalutamide and abiraterone [46] (Figure 3).
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ligands, resulting in the activation of the PI3k/AKT pathway and the androgen receptor pathway
that promotes survival and progression of PCa cells.

2.2.4. Metabolism of PCSC

The normal luminal cell compartment of the prostate gland produces and secretes
a large amount of citrate into the prostatic fluid to nourish and preserve sperm vitality.
Normally citric acid represents an important substrate in the tricarboxylic acid cycle, being
transported from the mitochondria, where it is produced, to the cell via transmembrane
transporters [47]. In luminal cells, mitochondrial aconitase has low activity because of
the expression of zinc transporter proteins, which keep elevated zinc levels, impeding
citrate oxidation. High production of citrate in the prostate gland is a consequence of the
low activity of mitochondrial aconitase (m-ACNT) and subsequent inhibition of citrate
oxidation [47].

On the other hand, PCa cells present low levels of zinc in the mitochondria, inacti-
vating the inhibitory effect on m-ACNT, thus enabling the use of citrate as a metabolic
substrate [48], oxidizing citrate, and permitting oxidative phosphorylation. Further evi-
dence has shown that the shift from oxidative phosphorylation to glycolysis is caused by
mutations in mtDNA of the oncogenic suppressors PTEN and p53 [49]. This shift is needed
due to the intrinsic properties of tumor cells, being fast-growing and metabolically active.
This phenomenon, also known as the Warburg effect, is especially evident in metastasized
CRPCA, where ROS produced and released by PCa cells cause oxidative stress in CAF,
consequently shifting to glycolysis and producing high levels of lactate, which fuels ATP
production [50] (Figure 4).

It is well known that tumor cells, particularly fast-growing PCa cells, utilize glutamine
as one of the main metabolic substrates. Tissues with enhanced expression of MYC onco-
gene, such as PCa, are particularly dependent on glutamine metabolism to sustain their
viability [51]. MYC is involved in glucose metabolism, regulating GLUT1, HK2, PFK1,
enolase 1, and LDHA [16]. In addition to its role in glucose metabolism, MYC regulates
the expression of GLS1, and genes such as SLC1A4 and SLC1A5 [52]. MYC involvement is
well established in PCa: for example, the upregulation of MYC mRNA is present in most
PCa; furthermore, its overexpression is present in about 30% of CRPC [53].
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2.3. Epithelial–Mesenchymal Transition and CSC Correlation

Epithelial–mesenchymal transition (EMT) is a cellular process in which normal ep-
ithelial cells lose their epithelial features, transitioning in pseudo-mesenchymal cells [54].
EMT normally occurs in the embryonic phase of development, from before implantation to
organogenesis. Tumor cells activate these processes once more, leading the cells to acquire
motility and invasiveness potential. During prostate cancer progression, the epithelial
cells can undergo EMT, characterized by morphological changes in their phenotype from
cuboidal to spindle-shaped. Malignant cells lose E-cadherine (E-cad), syndecans, and
tight-junction molecules while under the influence of SNAL1, SNAI2/Slug, and TWIST.
On the other side, the expression of mesenchymal cell markers Vimentine, N-cadherin, and
metalloproteinases are upregulated in malignant cells. Furthermore, the main causal factor
for PCa progression is the loss of E-cadherin. This process results in the formation of a cell
phenotype with increased migration and invasion potential as well as metastatization [55].

2.3.1. Loss of E-Cadherin Expression

Overall, the EMT process is a complex genetic program, involving numerous interac-
tions among several different EMT-transcription factors (EMT-TFs). Molecules related to
these pathways include TGFβ, FGFRs, and PDGF. The primary EMT-TF families that down-
regulate E-cad expression are Zeb (Zeb1/Zeb2); Snail (Snail/Slug), and Twist1 [56]. Androgens
are also involved in EMT. Mesenchymal phenotypes can be induced since androgens have
the ability to suppress E-cadherin in normal prostatic cells. Zhu et al. have proven that
elevated levels of DHT can facilitate EMT. DHT alone and in combination with TGFβ
induces the expression of Snail leading to the reduction in E-cadherin and β-cathenin levels.
In addition, Zhu et al. also evaluated AR levels, finding that AR levels influence EMT. In
the presence of a high concentration of AR, DHT exposure did not cause the reduction
in epithelial markers, while in cells with low AR concentration levels, the opposite effect
was found, not only DHT downregulated E-cadherin, but also increased the cells’ invasion
potential. AR loss is normally caused by androgen deprivation. To this date, ADT is the
main medical treatment for PCa, but it has been speculated that the treatment might fuel
EMT [57] (Figure 5).

2.3.2. Role of TGF-β

In normal circumstances, TGFβ’s role is that of tumor suppressor promoting apoptosis.
Cancer cells, either inactivating TGFβ’s receptors or repressing its downstream effectors, are
able to bypass its primary activity. As well, mutations in TGFβ receptors (TβRI and TβRII)
may lead to the EMT process. On the other hand, loss of TβRI and TβRII is associated with
poor prognosis and poor survival.
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metastatic potential of PCa cells through the EMT process.

TGFβ’s signaling can follow either canonical or noncanonical pathways. The canonical
signaling pathway proceeds after TGFβ binds with its receptors that activate the SMAD
proteins that form a complex in the cell nucleus, acting as a facilitator with DNA-binding
cofactors, thus activating the transcription process [58]. On the other hand, the noncanonical
pathways utilize several different effectors such as Erk/MAPK, JNK/p38MAPK, and PI3
K/Akt. Interestingly every one of these pathways has a role in EMT [59]. For example, Erk
regulates genes involved in cell motility, while overactivation of PI3K leads to cell junction
disturbance. Furthermore, loss of TβRI and TβRII are also associated with poor prognosis
and poor survival [56] (Figure 6).
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2.3.3. Role of CD44

Cancerous cells that undergo EMT present stem-like properties such as the elevated
expression of CD44 and their physical transformation in spheres [60]. Epigenetic mutations
might be the primer for CSC development [61]. In favor of this argument, we find YAP1
to be an EMT facilitator. YAP1 was found overexpressed in cells that underwent EMT in
normal differentiated cells that transitioned into CSCs [62]. This is just one example of many
that suggests that the expression of gene-related EMT is a facilitator for CSCs. Furthermore,
the TME in which CSCs live pullulates of cytokines and growth factors, favoring their
stemness [63]. Furthermore, the hypoxic niche favors the expression of markers such as
Nestin. The TME hypoxic state favors the upregulation of Nestin through the activation of
the TGFβ-SMAD4 pathway [64].

2.4. MicroRNA and CSC

In the past few years, a new and interesting research field has been pursued: the study
of microRNAs (miRNA) and their role in PCSC regulation. MicroRNAs seem to play a
primary role in the regulation of PCSCs; they seem implicated in regulating the promotion
or repression of metastasis. Evidence shows how miR-34a, let-7b, miR-106a, and miR-200
are found in PCa’s progenitor stem cell population [65]. miRNAs are small noncoding
RNA molecules that play a role not only in tumorigenesis, but also in cell proliferation,
differentiation, and apoptosis [66].

Hypermethylations of miR-34 have been observed in many malignancies with the p53
mutation. Inactivation of both p53 and miR-34a in mouse prostate epithelium causes the
PSC compartment, aiding the development of early invasive adenocarcinoma and acceler-
ating EMT-dependent growth, enhancing the self-renewal capability for EMT-dependent
growth [67]. In addition, miR-34a is a negative regulator of CD44. CSCs derived from
multiple malignant tumors have shown high expression of CD44. Other miRNAs downreg-
ulation has been described to have a role in the progression of PCA such as miR-320 and
miR-7. The downregulation of the former is associated with increased β-catenin, favoring
tumor sphere formation and chemoresistance [37]. Reduced levels of miR-7 correlate with
CD133+/CD44+ PCa, and present CSC-like features.

MicroRNAs regulate both CSCs and normal stem cells, but miRNAs dysregulate the
process of tumorigenesis. MiR-34a (a p53 target) acts as a key negative regulator of CD44+
in prostate cancer cells and establishes a strong therapeutic agent against prostate CSCs.
Furthermore, miR143 and miR-145 suppressed colony formation of PC-3 cells from prostate
cancer bone metastasis by inhibiting CSCs properties of PC-3 cancer.

2.5. MicroRNA and PCa

The direct role of microRNA in PCa has been widely investigated.
Walter et al. [68] and. Feng et al. [69] observed downregulation of both miR-148 and

miR-152 in high-grade PCa. More specifically, miR-148-3p was found to inhibit PCa cell
growth in vitro and in vivo, suggesting its possible role as a tumor suppressor. On the
other hand, miR-148b-3p was found to be correlated with PSA and PCA3 in PCa tissue
samples, suggesting a potential role as a PCa biomarker [70]. Another interesting study by
Ostadrahimi et al. observed a downregulation of miR-185 expression in PCa tissues and
cell lines with an upregulation of the antiapoptotic genes BCL2 and BCL2L1 [71].

Kristensen et al. evaluated the possible role of miRNAs as diagnostic and prognostic
tools in PCa. In their analysis, they developed a prognostic classifier for biochemical
recurrence after radical prostatectomy based on mi-R-185-5p, miR-221-3p, and miR-326 [72].
As well, Gurbuz et al. observed increased miR-185-5p expression in patients with elevated
PSA levels, especially in patients with PSA > 10 ng/mL. Their study further suggests the
potential of miRNAs as prognosis biomarkers.

Overall, microRNA represents an interesting field of research to improve PCa diag-
nosis, particularly to identify patients at high risk of metastasis and castration-resistant
phenotypes [73].
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MiRNAs involved with PCSCS and EMT are described in Table 2.

Table 2. MiRNAs involved with PCSCS and EMT.

MicroRNA Function on PCSC Function on
EMT Targeting EMT-TF Targeting EMT

Pathway
Targeting
EMT-CSC

miR-1 / Inhibition Slug, Twist1 / /

miR-18a Progression / / / /

miR-21 Invasiveness, CRPC Promotion / BTG2, TGFβ /

miR-23a-3p / Promotion E-cadherin / /

miR-23b / Inhibition / Src kinase, Akt /

miR-25 Progression / / / /

miR-29b / Inhibition / MMP2 /

miR-30 / Inhibition / ERG /

miR-32 Anti-apoptotic Promotion / BTG2 /

miR-34a / Inhibition / LEF1 /

miR-34b / Inhibition / Akt /

miR-100 / Inhibition / Aug-02 /

miR-106 Progression / / / /

miR-124 / Inhibition Slug / /

miR-125b Proliferation / / / /

miR-141 CRPC / / / /

miR-145 / Inhibition ZEB2, HEF1 / Zeb2

miR-154 / Inhibition / HMGA2, SMAD7 /

miR-186 / Inhibition Twist1 /

miR-195 / Inhibition / FGF2, HMGA1,
RPS6KB /

miR-200 / Inhibition Zeb1, Zeb2, Slug / Notch1

miR-203 / Inhibition
Zeb2, Bmi1, Survivin

CKAP2, LASP1, WASF1,
ASAP1 mRNAs

/ /

miR-205 / Inhibition Zeb2, Protein Kinase Cε / Zeb2, Protein
Kinase Cε

miR-221 Proliferation, invasion / / / /

miR-222 Proliferation, invasion / / / /

miR-223 / Inhibition / ITGA3, ITGB1 /

miR-301a / Promotion / p63 /

miR-331-3p / Promotion / NRP2, NACC1 /

miR-375 Diagnosis / / / /

miR-379 / Promotion / FOXF2 /

miR-573 / Inhibition / FGFR1 /

miR-4534 Tumorigenesis / / / /

2.6. CSC Treatment

PCSC treatments are mainly based on the abovementioned pathways by targeting the
microenvironment and immunotherapies.
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Specific inhibitors against the Hh pathway (Sonidegib, GANT-61, and GDC-0449),
the Wnt pathway (3289-8625, LGK974, Foxy-5, and OMP-54F28), the Notch pathway
(RO4929097), and the NFkB pathway (bortezomib, PS1145, BMS345541, Aspyrin, 17-
(allylamino)-17-demethoxygeldanamycin, and BKM120) are currently being tested in pre-
clinical and clinical trials [50]. As well, Liu et al. observed that the inhibition of NOTCH1
with shRNA leads to reduction in ABCC1 expression resulting in restored chemosensitivity.
Another transporter ABCG2 is also directly involved in the resistance to androgens, and
when blocked PCa cells differentiate into androgen-sensitive phenotypes [74].

The PI3K/AKT/mTOR pathway is associated with PCA progression and ADT resis-
tance [75]. Chang and colleagues by the use of the dual PI3K/mTOR inhibitor BEZ235 were
able to restore radiosensitivity and induce apoptosis in radioresistant PCSCs [76] PCa.

Some studies suggest the monoclonal antibody Bevacizumab may play a role in
modifying TME by reducing tumor neovasculature and disruption of CSC niches. Develop-
ment of Bevacizumab resistance may be avoided by targeting Rac1 inhibition or P-Rex1
downregulation. The chemosensitivity of PCa cells may also be restored by targeting the
CXCR4 receptor, which inhibits sphere formation. On the other side, the development of a
castration-resistant phenotype may be triggered by ABC transporters. The idea of targeted
differentiation by acting on TME is of great interest and should be confirmed in future
experimental studies [77,78]. Different pathways are listed in Table 3.

Table 3. Drugs and pathways targeting CSCs.

Pathway Drugs

Hh pathway • Sonidegib,
• GANT-61 • GDC-0449

Wnt pathway • 3289–8625,
• LGK974,

• Foxy-5,
• OMP-54F28

Notch pathway • RO4929097 • shRNA

NFkB pathway
• bortezomib,
• PS1145,
• BMS345541,

• Aspyrin,
• 17-A-17-DMOD
• BKM120

PI3K/mTOR • BEZ235

EMT
transformation

• Bevaciumab
• ABC
transporter

• Anti CXCR4

3. Conclusions

The present review highlights and summarizes the available evidence on prostate
cancer and stem cells. CSCs originate from luminal cells with epigenetic modifications
mainly driven by the TMPRSS2:ERG complex. CSC development is mainly driven by
three signaling pathways: the Wnt, Sonic Hedgehog, and Notch pathways. Overall CSC
metabolism is characterized by high levels of oxidated citrate and low levels of Zn. In the
development of CSCs, a pivotal role is played by the epithelial mesenchymal transition
process which can be activated in a canonical and noncanonical way. As well, several
miRNA are involved in this complex process. As previously highlighted, these different
pathways and molecules can act as targets for new drugs, opening new strategies in the
management and prevention of prostate cancer genesis and progression. CSCs represent a
fertile and growing area of research, and ongoing and future studies in the coming years
will help the understanding of PCa development and progression.
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