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Abstract
In this paper we study the properties of the quenched pressure of a multi-layer spin-glass
model (a deep Boltzmann Machine in artificial intelligence jargon) whose pairwise interac-
tions are allowed between spins lying in adjacent layers and not inside the same layer nor
among layers at distance larger than one. We prove a theorem that bounds the quenched pres-
sure of such a K-layer machine in terms of K Sherrington–Kirkpatrick spin glasses and use
it to investigate its annealed region. The replica-symmetric approximation of the quenched
pressure is identified and its relation to the annealed one is considered. The paper also presents
some observation on the model’s architectural structure related to machine learning. Since
escaping the annealed region is mandatory for a meaningful training, by squeezing such
region we obtain thermodynamical constraints on the form factors. Remarkably, its optimal
escape is achieved by requiring the last layer to scale sub-linearly in the network size.

Keywords Spin glasses · Boltzmann machines · Machine learning · Thermodynamical
constraints

1 Introduction and Results

The rigorous approach to the study of the spin glass phase started with the celebrated result
by Aizenman et al. [2] of the annealed regime for the Sherrington and Kirkpatrick (SK)
model more than three decades ago. Using a cluster expansion technique it was proved that
the quenched free energy, theone describing the peculiar structure of the spin glass, and the
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annealed one coincide in the thermodynamic limit when the inverse temperature β is smaller
than one (high temperature regime). That paper, as a side result, proved also that on such
regime the thermodynamic limit exists as a consequence of the simple annealed computation
of the free energy.

In [7] a generalisation of the SK model was proposed and studied. The classical permuta-
tion group symmetry among the spin particles, a central feature of the mean field formulation
of the spin glass model, was replaced by a weaker condition where the symmetry holds
only between and within subsets of them. The total number of spins N is therefore split
into K homogeneous sets each containing N1, N2, . . . , NK particles with the constraints∑K

p=1 Np = N and Np/N → λp . For this model it was proved, using a suitable interpola-
tion scheme a la Guerra [17], that a Parisi-like bound holds for the free energy density under
suitable conditions on the interactions among the spins. The conditions means, essentially,
that the strength of the interaction within each homogenous set of particles has to dominate
the one between different sets, i.e. the interactions have to be elliptic which implies the posi-
tivity argument that Guerra’s interpolation comes endowedwith (see also [1]). The boundwas
later proved to be sharp, under the same conditions, in a beautiful paper by Panchenko [24].
When instead the interaction coefficients are on the hyperbolic regime the model is beyond
the classical techniques available to solve it. The case K = 2 is known in the litterature as
bipartite spin glass model and has been studied in [4,5].

In this paper we focus on a special and interesting case of the latter, a deep SK model, or
deep Boltzmann machine. The interest and the name come from the structure of the networks
used in a class of machine learning techniques. Namely, in deep Boltzmann machines, the
couplings among neurons (the spins in the physical jargon) are symmetric and this ensures the
detailed balance property: the long term relaxation of any (not-pathological) stochastic neural
dynamics converges to the Gibbs distribution of a related cost-function (the Hamiltonian)
[13]. All that has a twofold advantage: the first in machine learning, i.e. the possibility to
derive explicit learning rule, as e.g. the celebrated contrastive divergence when extremizing
the Kullback-Leibler cross-entropy; the second, in machine retrieval, is that we can import a
set ofmathematical techniques and ideas originally developed to treat the statisticalmechanics
of the spin glasses [3,11,14,20,22].

The paper is organised as follows. In Sect. 2 we introduce the notations and the definitions.
In Sect. 3, using the aforementioned techniques, we prove that the thermodynamic pressure
for the considered class of models is always larger than a suitable convex combination of SK
pressures each living on the p-th layer. In Sect. 4 by using the theorem from the previous
section we find a set of parameters where the quenched and annealed pressure coincide,
identifying therefore a sufficient condition for the annealed phase to hold and, as a side
result, a region where the thermodynamic limit exists. Since such region depends both on
the temperature and on the factors lambdas, the section ends with an extremal condition on
that region to make it as narrow as possible: satisfying this request is mandatory in machine
learning since escaping the annealed region is a paramount necessity to accomplish learning
as well as retrieval.

In Sect. 5 we identify the replica symmetric solution, i.e. the pressure of the model under
the self-averaging condition for the overlap. We study moreover, in the case of zero external
field, the solution of the stationary condition for the replica symmetric functional around the
origin. By investigating its stability in the cases up to K = 4, we find a set of conditions that
coincide with those ensuring the annealed solution (Fig. 1).
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Fig. 1 Schematic representation of the deep Boltzmann machine equipped with K layers under study. Each
circle represents a binary neuron while all the interactions are drawn among neurons in adjacent layers (but
there are no intra-layer interactions)

2 Definitions

The Deep BoltzmannMachine [DBM] under investigation here is the original one [25]: there
are N binary Ising spins The weights connecting layers L p and L p+1 are Np × Np+1 real
valued i.i.d. random couplings sampled from a Gaussian distribution. We assume that the
relative sizes, that we refer to as form factors, of the layers converge in the large volume
limit:

λ(N )
p ≡ Np

N
−−−−→
N→∞ λp ∈ [0, 1] (1)

for every p = 1, . . . , K . We denote by ΛN ≡ (N1, . . . , NK ) the sizes of the layers defining
the geometric structure underlying the DBM. Moreover we denote by λ = (λ1, . . . , λK ) the
relative sizes in the large volume limit. Observe that

∑K
p=1 λp = 1 .

Definition 1 Considering N spins σ = (σi )i=1,...,N ∈ {−1, 1}N arranged over K layers
L1, . . . , LK , the Hamiltonian of the (random) Deep Boltzmann Machine [DBM] is

HΛN (σ ) ≡ −
√
2√
N

K−1∑

p=1

∑

(i, j)∈L p×L p+1

J (p)
i j σiσ j (2)

where J (p)
i j , (i, j) ∈ L p × L p+1, p = 1, . . . , K − 1 is a family of i.i.d. standard Gaussian

random variables coupling spins in the layer L p to those in the layer L p+1 .

Definition 2 Given two spin configurations σ, τ ∈ {−1, 1}N , for every p = 1, . . . , K we
define the overlap over the layer L p as

qL p (σ, τ ) ≡ 1

Np

∑

i∈L p

σi τi ∈ [−1, 1]. (3)
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Therefore the covariance matrix of the Gaussian process HN can be written as

E HΛN (σ ) HΛN (τ ) = 2 N
K−1∑

p=1

λ(N )
p λ

(N )
p+1 qL p (σ, τ ) qL p+1(σ, τ ) (4)

Definition 3 Given β > 0, the random partition function of the model introduced by the
Hamiltonian (2) is

ZΛN (β) ≡
∑

σ∈{−1,1}N
e−β HΛN (σ ). (5)

and its quenched pressure density is

pDBM
ΛN

(β) ≡ 1

N
E log ZΛN (β) (6)

where E to denote the expectation over all the couplings J (p)
i j .

Remark 1 As it can be useful in machine learning [16], we may also include a magnetic field
within each layer by generalizing the Hamiltonian (2) as

H ′
ΛN

(σ ) ≡ HΛN (σ ) +
K∑

p=1

∑

i∈LP

h(p)
i σi , (7)

where for any p = 1, . . . K , (h(p)
i )i∈LP is family of i.i.d. random variables.

3 A Lower Bound for the Quenched Pressure of the DBM

In this section we give an explicit bound for the quenched free energy of the DBM-composed
by K layers—in terms of K independent Sherrington–Kirkpatrick spin-glasses [SK] (whose
sizes share one-by-one the sizes of the DBM’s layers).

Considering N spin variables σi , i = 1, . . . , N , we recall that the Hamiltonian of the SK
model is

HSK
N (σ ) ≡ − 1√

N

N∑

i, j=1

Ji j σiσ j (8)

where Ji j , i, j = 1, . . . , N is a family of i.i.d. standard Gaussian random couplings. Given
two spin configurations σ, τ ∈ {−1, 1}N , their overlap is

qN (σ, τ ) ≡ 1

N

N∑

i=1

σi τi ∈ [−1, 1] (9)

and the covariance matrix of the Gaussian process HSK
N is:

E HSK
N (σ ) HSK

N (τ ) = N q2N (σ, τ ). (10)

Given an inverse temperature β > 0, the random partition function of the SK model is

Z SK
N (β) ≡

∑

σ∈{−1,1}N
e−β HSK

N (σ ) (11)
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and its quenched pressure density is

pSKN (β) ≡ 1

N
E log Z SK

N (β) (12)

whereE to denote the expectation over all the couplings Ji j . The quenchedpressure converges
as N → ∞ and we denote its limit by pSK (β) [17,18,21,23,26].

Now let a = (ap)p=1,...,K−1 be a sequence of positive numbers. For every p = 1, . . . , K

we consider an SK model of size Np at inverse temperature β

√

λ
(N )
p θp(a) , where we set

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ1(a) ≡ a1

θp(a) ≡ 1

ap−1
+ ap if p = 2, . . . , K − 1

θK (a) ≡ 1

aK−1

. (13)

With the notation introduced we have the following:

Theorem 1 The quenched pressure of the DBM described by the cost function (2) satisfies
the following lower bound

pDBM
ΛN

(β) ≥
K∑

p=1

λ(N )
p pSKNp

(

β

√

λ
(N )
p θp(a)

)

− β2

2

K∑

p=1

(
λ(N )
p

)2
θp(a) +

+ β2
K−1∑

p=1

λ(N )
p λ

(N )
p+1

(14)

where θp(a) is defined by (13) and a ∈ (0,∞)K−1 can be arbitrarily chosen. Therefore:

lim inf
N→∞ pDBM

ΛN
(β) ≥ sup

a∈(0,∞)K−1

⎧
⎨

⎩

K∑

p=1

λp pSK
(
β

√
λp θp(a)

)
− β2

2

K∑

p=1

λ2p θp(a)

⎫
⎬

⎭
+

+ β2
K−1∑

p=1

λpλp+1.

(15)

Proof For every p = 1, . . . , K let HSK
L p

(s), s ∈ {−1, 1}L p be a gaussian process representing
the Hamiltonian of an SK model over the Np spin variables in the layer L p . We assume that
HSK
L1

, . . . , HSK
LK

are independent processes, also independent of HΛN , the Hamiltonian of

the DBM (2). For σ ∈ {−1, 1}N and t ∈ [0, 1] we define an interpolating Hamiltonian as
follows:

HN (σ, t) ≡ √
t HΛN (σ ) + √

1 − t
K∑

p=1

√

λ
(N )
p θp(a) HSK

L p
(σL p ) , (16)

where of course σL p ≡ (σi )i∈L p . An interpolating pressure is naturally defined as

ϕN (t) ≡ 1

N
E log ZN (t) (17)

where

ZN (t) ≡
∑

σ∈{−1,1}N
e−β HN (σ,t). (18)
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Observe that the quenched pressure of the DBM and a convex combination of quenched
pressures of SK models are recovered at the endpoints of [0, 1] :

ϕN (1) = pDBM
ΛN

(β) , (19)

ϕN (0) =
K∑

p=1

λ(N )
p pSKNp

(

β

√

λ
(N )
p θp(a)

)

. (20)

For every function f : {−1, 1}N × {−1, 1}N → R we denote

〈 f 〉N ,t ≡ E

∑

σ,τ

e−β HN (σ,t)−β HN (τ,t)

Z2
N (t)

f (σ, τ ). (21)

Let QN : {−1, 1}N × {−1, 1}N → R ,

QN ≡ 2
K−1∑

p=1

λ(N )
p λ

(N )
p+1 qL p qL p+1 −

K∑

p=1

(
λ(N )
p

)2
θp(a) q2L p

, (22)

then Gaussian integration by parts leads to the following result:

dϕN

dt
= β2

2

⎛

⎝2
K−1∑

p=1

λ(N )
p λ

(N )
p+1 −

K∑

p=1

(
λ(N )
p

)2
θp(a)

⎞

⎠ − β2

2

〈
QN

〉

N ,t
. (23)

Now by definition (13) of θp(a), we may rewrite

K∑

p=1

(
λ(N )
p

)2
θp(a) q2L p

=
K−1∑

p=1

(

λ(N )
p

√
ap qL p

)2

+
K−1∑

p=1

(

λ
(N )
p+1

1√
ap

qL p+1

)2
(24)

and plugging (24) into (22), we find out that

QN = −
K−1∑

p=1

(

λ(N )
p

√
ap qL p − λ

(N )
p+1

1√
ap

qL p+1

)2
≤ 0. (25)

The thesis follows immediately from (20), (19), (23) and (25) � .

4 The Annealed Region of the DBM

In this section we identify a region in which the quenched and the annealed pressure of the
DBM coincide. The boundary delimiting this region will be given in Proposition 1.
Let pSK (β) be the limiting quenched pressure of an SK model at inverse temperature β and
let pA(β) be its annealed expression. By Jensen inequality:

pSK (β) ≤ pA(β) = log 2 + β2

2
(26)

and equality is achieved in the so called annealed region of the SK model [2,14,23,26]:

pSK (β) = pA(β) if β2 ≤ 1

2
, (27)
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notice that the region, due to a different parametrisation, is different than the one appearing
in [2]. This observation combined with Theorem 1 entail our result on the annealed region
of the DBM. Consider the following set of parameters:

AK ≡
{
(β, λ) : β2 λp θp(a) ≤ 1

2
for all p = 1, . . . , K and some a ∈ (0,∞)K−1

}
(28)

where θp(a) is defined in (13).

Theorem 2 For (β, λ) ∈ AK , the quenched and the annealed pressure of the DBM coincide
in the thermodynamic limit. Precisely, there exists

lim
N→∞ pDBM

ΛN
(β) = lim

N→∞
1

N
logE ZΛN (β) = log 2 + β2

K−1∑

p=1

λpλp+1. (29)

Proof The lower bound (15) found in Theorem 1 rewrites as follows:

lim inf
N→∞ pDBM

ΛN
(β) ≥ sup

a∈(0,∞)K−1

K∑

p=1

λp

(

pSK
(
β

√
λp θp(a)

)
− pA

(
β

√
λp θp(a)

))

+

+ log 2 + β2
K−1∑

p=1

λpλp+1.

(30)

Thanks to (26) and (27), if (β, λ) ∈ AK then the supremum in (30) vanishes and

lim inf
N→∞ pDBM

ΛN
(β) ≥ log 2 + β2

K−1∑

p=1

λpλp+1. (31)

The reversed bound for lim supN→∞ pDBM
ΛN

(β) follows immediately by Jensen inequality. �
Theorem 2 can be used to obtain a sufficient condition on (β, λ) in order to have equality

between quenched and annealed pressures of theDBM. In the followingwe focus on networks
made up with two, three or four layers (K ≤ 4).

Proposition 1 Consider a DBM with K = 2, 3, 4 layers. The annealed region AK defined
in (28) rewrites as

AK = {
(β, λ) : 4β4 ≤ φK (λ)

}
, (32)

where we set

φ2(λ) ≡ 1

λ1λ2
(33)

φ3(λ) ≡ 1

λ1λ2 + λ2λ3
(34)

φ4(λ) ≡ min{t > 0 : 1 − t (λ1λ2 + λ2λ3 + λ3λ4) + t2 λ1λ2λ3λ4 = 0}. (35)

Proof For K = 2, (β, λ1, λ2) ∈ A2 if and only if

∃ a1 > 0 s.t.

⎧
⎪⎨

⎪⎩

a1 ≤ 1

2β2λ1
1

a1
≤ 1

2β2λ2

⇔ 4β4 λ1λ2 ≤ 1. (36)
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As expected we have re-obtained the same result achieved in [5] by a second moment argu-
ment.

In order to extend the computations to K > 2, we set θ(x, y) ≡ 1

x
+ y for every x, y > 0.

The following (trivial) observation about the monotonicity of θ(x, y) will be useful:

θ(x, y) ↘ w.r.t. x > 0 and θ(x, y) ↗ w.r.t. y > 0. (37)

Now for K = 3, (β, λ1, λ2, λ3) ∈ A3 if and only if

∃ a1, a2 > 0 s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a1 ≤ 1

2β2λ1

θ(a1, a2) ≤ 1

2β2λ2
1

a2
≤ 1

2β2λ3

. (38)

By (37) one can choose without loss of generality a1 = 1

2β2λ1
and a2 = 2β2λ3 . Precisely

equation (38) holds if and only if

θ

(
1

2β2λ1
, 2β2λ3

)

≤ 1

2β2λ2
⇔ 4β4 (λ1λ2 + λ2λ3) ≤ 1. (39)

For K = 4, (β, λ1, λ2, λ3, λ4) ∈ A4 if and only if

∃ a1, a2, a3 > 0 s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 ≤ 1

2β2λ1

θ(a1, a2) ≤ 1

2β2λ2

θ(a2, a3) ≤ 1

2β2λ3
1

a3
≤ 1

2β2λ4

. (40)

Using property (37) of the function θ , (40) rewrites as:

∃ a2 > 0 s.t.

⎧
⎪⎪⎨

⎪⎪⎩

θ

(
1

2β2λ1
, a2

)

≤ 1

2β2λ2

θ(a2 , 2β2λ4) ≤ 1

2β2λ3

, (41)

which is equivalent to
{

(1 − 4β2λ1λ2) (1 − 4β2λ3λ4) ≥ 4β4 λ2λ3

1 − 4β4 λ1λ2 ≥ 0
. (42)

Setting t ≡ 4β4, the first inequality in (42) rewrites as t ≤ t− ∨ t ≥ t+ where t± are
the solutions of equation 1 − t (λ1λ2 + λ2λ3 + λ3λ4) + t2 λ1λ2λ3λ4 = 0 . Now, since∑4

p=1 λp = 1, it is possible to prove that t− ≤ 1
λ1λ2

≤ t+ . Therefore (42) is equivalent to
t ≤ t− . �

We are interested in the λ’s that make the region AK as small as possible. By Proposition 1,
we simply have to compute the infimum of φK (λ), constraining over

∑K
p=1 λp = 1 and

λp ≥ 0 for every p = 1, . . . , K . Standard computations lead to the following
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Corollary 1 For K = 2, 3, 4

inf φK (λ) = 4. (43)

In particular when β ≤ 1 the DBM is in the annealed regime for any choice of λ . Moreover
the infimum of φK (λ) is reached for

⎧
⎪⎨

⎪⎩

λ1 = λ2 = 1
2 if K = 2

λ2 = 1
2 , λ1 + λ3 = 1

2 if K = 3

(λ4 = 0, λ2 = 1
2 , λ1 + λ3 = 1

2 ) or (λ1 = 0, λ3 = 1
2 , λ2 + λ4 = 1

2 ) if K = 4

.

(44)

These result have been obtained trough standard analytic computations for the cases
K = 2, 3 and with the support of Mathematica for K = 4. For the general K case instead a
refinement of the techniques is needed and could be a topic for future investigations.

These values of λ can be viewed as the shape that a DBM should have in order the
maximally compress the annealed region. The duality among disorder-to-order transition
in statistical mechanics of disordered systems and detectability-undetectability transition in
machine learning (see e.g. [6,8–10,12,15,19]) suggests that the knowledge of the optimal
shapes stemmed from the former could play some role in the latter.

5 A Replica Symmetric Approximation for the DBM

In this section we derive a replica symmetric expression for the intensive pressure of the
DBM and we show that it is consistent with the results found in the previous section. By
Theorem 2 and Proposition 1 an annealed region AK has been identified, even if in principle
quenched and annealed pressure could coincide on a larger region of the parameters (β, λ).
However, in Proposition 3 we will see that the annealed solution is stable for the replica
symmetric functional only in the interior of the region AK . This fact suggests that AK could
actually identify the whole annealed region of the DBM.

For every p = 1, . . . , K , we consider in this section also a random external field h(p)
i

acting on the spin σi for i ∈ L p (see Remark 1). The h(p)
i for i ∈ L p are i.i.d. copies of

a random variable h(p) satisfying E|h(p)| < ∞. All the (h(p)
i )i∈L p for p = 1 . . . , K are

independent and independent also of the disorder of the process HΛN . We denote by h the
relevant parameters coming from all the above random variables. The quenched pressure
density of the model is thus

pDBM
ΛN

(β, h) ≡ 1

N
E log

∑

σ

exp

⎛

⎝−βHΛN (σ ) +
K∑

p=1

∑

i∈L p

h(p)
i σi

⎞

⎠ (45)

where HΛN was defined in (2).
For y = (yp)p=1,...,K ∈ [0,∞)K the replica symmetric functional of the DBM is defined

as

P RS
ΛN

(y, β, h) ≡
K∑

p=1

λ(N )
p Ez,h log cosh

(

β
√
2

√
λ

(N )
p−1 yp−1 + λ

(N )
p+1 yp+1 z + h(p)

)

+

+ β2
K−1∑

p=1

λ(N )
p λ

(N )
p+1 (1 − yp) (1 − yp+1) + log 2

(46)
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where z is a standard Gaussian random variable independent of h(1), . . . , h(p), and for con-
venience we set y0 ≡ yK+1 ≡ λ

(N )
0 ≡ λ

(N )
K+1 ≡ 0 . Its limit as N → ∞ is denoted by

P RS(y, β, h, λ) . Definition (46) is motivated by the following

Proposition 2 For every y = (yp)p=1,...,K ∈ [0,∞)K , the following identity holds:

pDBM
ΛN

(β, h) = P RS
ΛN

(y, β, h) − β2
∫ 1

0

〈
Q̃N

〉

N ,t
dt , (47)

where 〈 · 〉N ,t denotes the quenched Gibbs expectation associated to a suitable Hamiltonian
and for every σ.τ ∈ {−1, 1}ΛN

Q̃N (σ, τ ) ≡
K−1∑

p=1

λ(N )
p λ

(N )
p+1

(
qL p (σ, τ ) − yp

) (
qL p+1(σ, τ ) − yp+1

)
. (48)

Proof For every p = 1, . . . , K we consider a one-body model over the Np spin variables

indexed by the layer L p , at inverse temperature β
(
λ

(N )
p−1 yp−1 + λ

(N )
p+1 yp+1

)
and random

external field distributed as h p . For σ ∈ {−1, 1}N and t ∈ [0, 1] we define an interpolating
Hamiltonian as follows:

HN (σ, t) ≡ √
t HΛN (σ )

+
K∑

p=1

∑

i∈L p

(√
1 − t

√
2

√
λ

(N )
p−1 yp−1 + λ

(N )
p+1 yp+1 z(p)i + h(p)

i

)

σi (49)

where z(p)i , i ∈ L p, p = 1, . . . , K are independent standard Gaussian random variables,
independent also of HΛN defined in (2). For t ∈ (0, 1)we introduce the interpolating pressure
ϕN (t) as

ϕN (t) ≡ 1

N
E log

∑

σ

exp
(− β HN (σ, t)

)
. (50)

Observe that the quenched pressure of the DBM and a convex combination of quenched
pressures of one-body models are recovered at the endpoints of [0, 1] :

ϕN (1) = pDBM
ΛN

(β, h), (51)

ϕN (0) = log 2 +
K∑

p=1

λ(N )
p Ez,h log cosh

(

β
√
2

√
λ

(N )
p−1 yp−1 + λ

(N )
p+1 yp+1 z + h p

)

.

(52)

Gaussian integration by parts leads to the following result:

dφN (t)

dt
= β2

K−1∑

p=1

λ(N )
p λ

(N )
p+1 (1 − yp) (1 − yp+1) − β2

〈
QN

〉

N ,t
(53)

where Q̃N = Q̃N (σ, τ ) has been defined in (48) and 〈 · 〉N ,t denotes the quenched Gibbs
expectation associated to the Hamiltonian HN (σ, t) + HN (τ, t).

Therefore (47) follows by (51), (52), (53). �
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Remark 2 Informally we say that the DBM is in the replica symmetric regime when there
exists a stationary point y∗ ofP RS(y) such that

∫ 1
0 〈Q̃N 〉N ,t dt vanishes in the thermodynamic

limit. Unfortunately due to the lack of convexity in the structure of the remainder Q̃N it is
not immediate to see what should be the right extremization procedure for P RS(y).

Stationary points of P RS(y) satisfy the following system of self-consistent equations:

yp = Ez tanh
2
(
β

√
2

√
λp−1yp−1 + λp+1yp+1 z + h p

)
∀ p = 1, . . . , K . (54)

From now on we assume zero external field, namely h p ≡ 0 for every p = 1, . . . , K .
Observe that y = 0 is a solution of (54) and at this stationary point the replica symmetric
functional equals the annealed pressure of the DBM (already computed in the r.h.s. of (29)):

P RS(y = 0, β, h = 0, λ) = log 2 + β2
K−1∑

p=1

λpλp+1. (55)

We are interested in the conditions on β, λ that make the annealed solution y = 0 a stable
solution of the fixed point equation (54). It is convenient to write (54) as y = F(y) , where
the function F : RK → R

K , F = (Fp)p=1,...,K is defined by

Fp(y) ≡ Ez tanh
2
(
β

√
2

√
λp−1yp−1 + λp+1yp+1 z

)
. (56)

Let JF (y) ≡
(

∂Fp
∂ yp′

)

p,p′=1...K
be the Jacobian matrix of F at point y . y = 0 is a stable

solution of (54) if the spectral radius ρ(JF (0)) < 1, namely if all the eigenvalues of JF (0)
have absolute value smaller than 1. Gaussian integration by parts allows to compute the
Jacobian matrix at y = 0:

∂Fp

∂ yp′

∣
∣
∣
y=0

= 2 β2 λp (δp−1,p′ + δp+1,p′) , (57)

we denote its characteristic polynomial by

ΔK (x) ≡ det
(
x I − JF (0)

)
. (58)

Now we confine our investigation to the cases K = 2, 3, 4, as in Sect. 4. We have:

Δ2(x) = x2 − 4β4 λ1λ2 , (59)

Δ3(x) = x3 − 4β4 x (λ1λ2 + λ2λ3) , (60)

Δ4(x) = x4 − 4β4 x2 (λ1λ2 + λ2λ3 + λ3λ4) + 16β8 λ1λ2λ3λ4. (61)

Standard computations show the following

Proposition 3 Consider a DBM with K = 2, 3, 4 layers and assume h = 0. The region of
parameters (β, λ) such that the annealed solution y = 0 is a stable solution of the replica
symmetric consistency equations (54) coincide with the interior of the region AK introduced
in Sect. 4. Precisely:

ρ(JF (0)) < 1 ⇔ 4β4 < φK (λ), (62)

where φK (λ) is defined by (33),(34),(35).
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6 Conclusions

While much theoretical work on the processes of learning and retrieving information in
shallow neural network has been produced along the past decades, deep neural networks still
escape this formalization.As the analysis of archetypal -despite quite atypical-models always
played as a useful rudimentary guide, in a quest for a comprehension of neural networks,
the random-weight theory (i.e. the natural setting for the statistical mechanics of disordered
systems) has provided to be fundamental since the celebrated AGS theory.

With this this perspective inmind in this paperwe studied, through the statisticalmechanics
of disordered systems, the properties of the quenched free energy of a Deep Boltzmann
Machine (DBM). The control (tunable) parameters for this model are the inverse temperature
β and the collection of the form factors λ (i.e. the relative ratios among adjacent layers)
while the order parameters are the overlaps within each layer. We identified, in the control
parameters space, a region where the quenched pressure density in the thermodynamic limit
coincides with its annealed expression. A side result is the existence of the infinite volume
limit for the pressure in the parameters regions that we have identified.

Inspired by the connection between the disorder-to-order transition in statisticalmechanics
of disordered systems and the detectability-undetectability transition inmachine learning, we
confined the annealed region in a space as narrow as possible. Such condition of extremality
results in constraints relating noise and form factors: a collection of optimal lambdas and,
remarkably, for K = 4, the need for a small extremal layer (i.e. the size of last layer has
to grow sub-linearly with respect to the total network size). We speculate this condition
to be somehow expected and welcomed since learning tasks typically require information
compressing. We plan to analyse networks of arbitrary depth in future works.
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