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Abstract: For the purpose of maintaining and prolonging the service life of civil constructions,
structural damage must be closely monitored. Monitoring the incidence, formation, and spread of
damage is crucial to ensure a structure’s ongoing performance. This research proposes a unique
approach for multiclass damage detection using acceleration responses based on synchrosqueezing
transform (SST) together with deep learning algorithms. In particular, our pipeline is able to classify
correctly the time series representing the responses of accelerometers placed on a bridge, which are
classified with respect to different types of damage scenarios applied to the bridge. Using benchmark
data from the Z24 bridge for multiclass classification for different damage situations, the suggested
method is validated. This dataset includes labeled accelerometer measurements from a real-world
bridge that has been gradually damaged by various conditions. The findings demonstrate that
the suggested approach is successful in exploiting pre-trained 2D convolutional neural networks,
obtaining a high classification accuracy that can be further boosted by the application of simple
voting methods.

Keywords: structural health monitoring; deep learning; vibrational damage detection; synchrosqueezing
transformation; feature extraction

1. Introduction

Large-scale infrastructures have seen accelerated aging and deterioration of function-
ality in the current era of urbanization and climate change. The structures’ operational
states have frequently been disrupted as a result of rising population and traffic, unantic-
ipated natural disasters, and human-caused damage, in addition to countless instances
of catastrophic breakdowns. In the context of civil engineering, damage can be defined
as a change in a system’s geometric or material properties that has a negative impact on
its performance, safety, dependability, and operational life [1]. This definition states that
damage does not always translates into a system total failure, but rather a relative decline
in system functionality leading to subpar performance [2]. Furthermore, the damage may
build up until it reaches the failure state if no corrective action is done. Depending on the
type of damage, systems may fail suddenly or gradually [3].

Different system damage detection (SDD) techniques are available depending on their
data analysis approach. Visual inspections are the foundation of traditional methods for di-
agnosing damage to civil constructions. However, a number of issues prevent the practical
adoption of these approaches [4]. The size of civil structures is generally quite vast, making
routine inspection tedious, time-consuming, and costly. Moreover, because traditional
methods rely on human judgment, experienced and highly trained labor is unquestionably
needed. Finally, some structural defects are difficult to detect, even for human experts,
resulting in unnoticed damages until the structure becomes impaired. In order to overcome
these issues, a promising approach is to rely on vibration-based SDDs [5]. These systems
ultimately aim to overcome the issues associated with the conventional SDD approaches by
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providing a methodical, practical, and consistent way of identifying the presence, as well
as locating and quantifying the severity, of the structural damage based on the vibration
response of the monitored structure. Moreover, vibration-based SDDs can be divided into
time domain and frequency domain methods. The former relies only on a system’s temporal
properties, usually by taking as input the raw or filtered data coming from physical sensors
distributed on the structure. These approaches are conceptually simpler to use, but, because
they are more susceptible to noise contamination and environmental influences, they show
significant performance issues for large buildings [6]. In fact, phase shifts between the
vibration responses of the undamaged and damaged structures occur in the time domain
as a result of changes in natural frequencies brought on by damage. In order to obtain this
information, response functions of both damaged and undamaged structures are subtracted
from one another, which results in a beating phenomenon in the presence of a frequency
mismatch. Even so, meaningful findings can only be obtained if the experimental hardware
is kept constant during the whole study. This recommends the usage of smart structures
that can both actuate and monitor the vibrations of the host structure using piezoceramic
patches that are surface mounted on, or implanted in, the structure [7]. On the other
hand, frequency domain techniques exploit a system’s frequency properties. Although
discrete variations in the natural oscillation frequency might not be enough to uniquely
identify the damage location, changes in structural frequencies may be a reliable indicator
of the existence of damage [8]. In order to correlate analytical data with experimental data,
frequency-domain-related damage detection algorithms often retrieve damage characteris-
tics by modifying an analytical reference model. Unfortunately, computational inaccuracies
are often introduced because the analytical model can only approximate the behavior
of a real mechanical structure [9]. Some of the existing research, such as [10,11], shows
that, in the field of frequency-based damage identification, either a small subset of the
first few model frequencies or all frequencies recorded during measurement are used for
damage detection. Nevertheless, the field is plagued by a lack of systematic investigations
for choosing modal frequencies, which could be a better tool for identifying damage in
practical applications, where errors or mismatches between experimental and numerical
analyses cannot be disregarded since they are sensibly affected by data noise. Finally,
time–frequency (TF) algorithms [12] are a promising way to have the best of both worlds
because, in contrast to pure time or frequency domain approaches, they can recognize both
the frequency components of the signal and their time-variant features, resulting in efficient
and valuable tools to extract structural health information. Short-time Fourier transform
(STFT) [13] and Wigner–Ville distribution [14] are two common TF techniques. The wavelet
transform (WT), which divides a signal into a number of local basis functions, is the most
popular TF technique [15].

As a way to enhance the identification of time-varying parameters of structures,
synchrosqueezing transform (SST), a promising and flexible WT, is investigated in this
article. SST, as opposed to standard TF techniques such as STFT or continuous wavelet
transform (CWT) that do not take advantage of the signal sparsity, adds a nonlinear post-
processing mapping to a conventional STFT or CWT representation. The mapping results
in a condensed and sparse TF representation of the signal, pushing the energy content
into the STFT’s most noticeable frequencies [16]. Any structure’s sensitivity to change
with any modification in the structural attributes determines its damage characteristics in
relation to its modal frequency. In this context, machine learning (ML) approaches can be
successfully used to discriminate between damaged and undamaged structures, thanks
to recent advances in both the developed algorithms and computational power. These
techniques include, but are not limited to, convolutional neural networks (CNNs), support
vector machines, and self-organizing maps, among others. In general, those methods can
be applied with success to both time domain and frequency domain data. However, these
approaches rely on the availability of structured and consistent data, often performing
poorly if the input data are noisy or redundant, or if the training set is not big enough
to generalize. In this paper, an improved SST paired with a deep learning approach is
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suggested in order to perform damage detection on bridge structures. In particular, a
pipeline with different splitting methods is provided, in order to boost the classification
power of a neural network fed with RGB images obtained by applying a colormap on
SCWT data. Our intent is to give a general method for dealing with vibration damage
detection tasks, starting with the sensor’s acquirements, which could also take advantage
of pre-trained deep models without the need to train them from scratch. In fact, in this
study, we demonstrate that pre-trained deep CNNs, fine-tuned on images representing the
time-frequency content of the signal data, are actually able to extract important features
useful for damage classification. The rest of the paper is organized as follows. Section 2
contains a description of the most successful methods for vibration damage detection, in
order to give important insights into the work carried out so far in this field. In Section 3, we
show the proposed method, analyzing its pipeline and main characteristics. In Section 4, we
report on the hyperparameters and general settings of the conducted experiments, as well
as report on the considered benchmark dataset. In Section 5, we show the results obtained
by our method while performing a comparison with other available techniques, while in
Section 6 we report the final considerations on our method and possible future works.

2. Related Works

The traditional method of structural monitoring (visual inspection) entails hiring a
qualified structural inspector to examine the building, spot problems, and put proper
maintenance plans in place. Although arduous, subjective, and prone to error, this kind of
manual structural inspection uses up a significant portion of the annualized maintenance
budget. In order to overcome the issues related to manual visual inspection, structural
health monitoring (SHM) offers a sensor-driven real-time inspection method [17]. Based on
the collected data, vibration-based SHM approaches provide realistic solutions for tracking
the time-varying behaviors of aging buildings. Instrumentation and data collection, condi-
tion evaluation, damage detection, and damage prognosis are the four main components
of vibration-based SHM. The structures are initially equipped with a variety of sensors to
gather useful measurements (such as acceleration and displacement). Using various system
identification and damage detection techniques, the gathered data are then evaluated to
determine the structure’s state and spot any changes. Then, SHM exploits a variety of
prognosis approaches, maintenance, and retrofitting solutions to determine the remaining
structure’s usable life and the actions required to enhance its structural condition. Most
vibration data are typically gathered via a dense network of wired sensors placed through-
out the structure. However, because installing cables requires much effort, they are not
a practical or affordable solution for towering buildings or long-span bridges. For this
reason, smart wireless sensors have been proposed as a solution to the drawbacks of wired
sensors [18]. Another possible solution is to rely on test vehicles equipped with sensors to
ease the process of data acquisition, with promising results [19].

Recently, SHM has been accomplished by the analysis of images and videos taken by
modern sensors such as cameras, robotic sensors, telephones, and drones [20]. Regardless of
the type of sensor, the accuracy of the existing damage diagnosis and localization algorithms
heavily depends on the accessibility of several high-quality sensors and datasets. This is
a significant barrier that often prevents the application of SHM on big structures such as
buildings and bridges. In order to identify changes in the vibrational qualities of modal
parameters (such as frequency, damping, and mode shapes) or physical parameters (such
as stiffness, damping, or mass), the essential idea underlying vibration-based damage
detection (VDD) systems is to use pattern recognition algorithms [21]. Any modification of
these characteristics through time can be potentially correlated to structural damages. These
techniques are simpler to use, but they pose problems for large construction projects because
of noise pollution and environmental issues [22]. Moreover, although discrete variations in
natural frequencies can in principle be used to pinpoint the precise position of structural
damage, in practice this may not always be the case because a crack in two separate
places could have the same frequency variation regardless of where it is. Time–frequency
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methods [23] can recognize the signal frequency components and comprehend their time-
variant properties, in contrast to time-only and frequency-only domain techniques. The
hidden information in the data that is missed by stand-alone temporal or frequency domain
approaches can be found and tracked using TF methods applied on VDD [24]. Short-time
Fourier transform is a popular version of Fourier transform that enables the investigation
of nonstationary signals in the TF domain (STFT) [25]. The Fourier transform of a fixed
windowed signal serves as the basis for STFT. Only a small portion of the signal is examined
by this windowing technique at each time step t, after which a 2D signal depending on time
and frequency components is obtained. Moreover, the time–frequency resolution of the
STFT technique is inversely correlated with window length. While lengthening the window
improves frequency resolution, it also hinders the representation’s ability to monitor
frequencies. Due to the fact that the chosen window size is identical for all frequencies,
one of the greatest disadvantages of STFT is that a high resolution in both time and
frequency cannot be simultaneously achieved [26]. By generalizing the connection between
a nonstationary, time-variant process power spectrum and autocorrelation function, the
Wigner–Ville distribution can be obtained [27], as a signal can be represented in a high-
resolution TF space using the Wigner–Ville distribution.

Another way to frame VDD is as a pattern recognition task. In fact, pattern recognition-
based VDD algorithms’ main goal is to identify patterns in the features of damaged and
undamaged structures under the same operational and ambient conditions. Different time-
series modeling and machine learning methods have been applied to pinpoint the crucial
VDD properties [28]. Time-series modeling is one of the most commonly used techniques
for identifying structural degradation. The fundamental steps of this approach are the
creation of a time-based model, the assessment of model coefficients, and the computation
of residual errors; any divergence in the coefficients or residual errors might be interpreted
as a structural damage. Another popular VDD technique is based on auto-regressive (AR)
models. The AR models make the assumption that the observations contain noise and thus
sample their modeling error from a Gaussian distribution. Several variations of the AR
models, such as the auto-regressive 15 moving-average (ARMA) [29], the AR-integrated
moving-average (ARIMA) [30], and the AR model with exogenous input (ARX) [31] are
widely employed in SHM as well as for damage detection. Moreover, the Mahalanobis
distance, when applied to time-series pattern recognition, has demonstrated encouraging
results, for instance, when [32] tested several distance metrics for damage identification.
Finally, out of the several available ML methods, other popular approaches such as artificial
neural networks (ANN) [33], support vector machines [34], random forests [35], and
clustering techniques [36] have been extensively employed in the VDD field, with reviews
that deepen their usage for civil structure health monitoring [37].

Traditional VDD approaches are based on the stationarity assumption of the vibra-
tion response and selection of modal orders. However, these approaches have trouble
identifying the nonstationary component of vibration response that comes from natural
hazards. A structure’s intrinsic flaws also contribute to the frequency-dependent nonsta-
tionarity of the response, along with excitation-induced nonstationarity. In fact, when
there is an amplitude- and frequency-dependent nonstationary response, it becomes much
more difficult to identify the damage [38]. This problem can be handled by employing
sophisticated TF techniques. WT is an enhancement over-fixed window-based STFT and
offers the fundamentals of the conventional Fourier transform with flexible window place-
ment and size [39]. It can be divided into discrete and continuous wavelet transform
(CWT) [40], and provides the flexibility of combining high time and frequency resolutions
with a suitable basis function. Many VDD applications, including signal noise filtering,
data compression, and pattern recognition, use the CWT signal processing technique. To
identify sudden changes in a time-variant system, a wavelet-based frequency response
function [41] has been adopted. A suitable approach is to first process the signal with a
CWT, and then employ the generalized discrete Teager–Kaiser energy operator to locate
and magnify the modes of a damaged structure [42]. More in detail, in the previous work
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the operational deflection forms of the structure were also obtained using a state-of-the-art
method that applied joint approximation diagonalization of the power spectral density
matrices. However, CWT and CCWT require a significant increase in frequency resolution
to detect minute damage because of sensitivity issues when dealing with minute frequency
changes in the structures.

Another possible way to perform damage detection is to rely on deep learning algo-
rithms trained in a supervised setting. In fact, for the establishment of a statistical model
during the training phase, supervised learning methods need labeled data for both undam-
aged and damaged categories. The identification, classification, and quantification of the
damage are usually carried out using DL techniques such as CNNs, fully convolutional
networks (FCNs), or recurrent neural networks (RNNs) in VDD-based literature. For
effective bridge SHM, a sparse coding-based CNN method with wireless sensors was in-
vestigated [43]. In order to extract high-level features from acceleration data, sparse coding
was applied as an unsupervised layer for unlabeled data. For a three-span bridge that
was instrumented using wireless sensors, several levels of damage situations were taken
into account. The proposed method outperformed previous techniques such as logistic
regression and decision trees, with a final accuracy equal to 98%. Another possibility is to
identify structural degradation directly using CNNs [44]. To find the best CNN settings,
50 network topologies with different hyper-parameters were examined. Recently, the use
of autoencoder data compression and a one-dimensional (1D) CNN for anomaly detection
in a lengthy suspension bridge has been proposed [45]. Moreover, a CNN-based VDD
technique for damage identification in compressed data has also been proposed [46]. In a
following study [47], a 1D CNN technique was employed on three structural assemblages:
an iron girder, a short steel beam bridge, and a long steel viaduct bridge to detect changes
in material properties. Finally, an alternative approach [48] has been developed, in which
the time history of a vibration signal can be given as input directly into CNNs, requiring
only basic array operations and a shallow architecture with fewer hidden layers. All these
methods are characterized by the use of a 1D CNN trained from scratch. In order to exploit
the expressive power of pre-trained CNNs, the vibration data need to be transformed into
images by using time–frequency transformations; the generated colormap can be then
used as input for a pre-trained 2D CNN [49]. In order to provide the necessary labeled
data, a possible solution is to simulate a scaled-down bridge model [50], while exploiting a
2D-CNN architecture that reaches up to 97% accuracy while being able to distinguish dam-
age from structurally symmetrical locations. A recent work [51] successfully applied a TF
transformation on signals coming from a real railway bridge that underwent a retrofitting
procedure to perform an anomaly detection task. Other approaches with their pros and
cons are reviewed in a survey paper [52].

3. Proposed Methods

In this work, we propose a pipeline working on hybrid time–frequency-transformed
data in order to solve a multiclass classification task in which different categories correspond
to different damage scenarios applied to a bridge. The baseline architecture of our method
is represented in Figure 1. The raw data are composed of a time series representing
accelerometer measurements in the time domain. In order to maximize the classification
accuracy on the test set, we provide different methods based on visual features extraction
of RGB images calculated on the provided data. Such images are obtained using the
synchrosqueezing continuous wavelet transform function [53] (SCWT), which produces a
2D time–frequency signal representation that can be plotted as a gray-scale image. In order
to apply the most modern and competitive CNN techniques, we transform the image from
gray-scale to the RGB domain by using a JET colormap function, and use such obtained
images to extract visual features from the last convolutional layer of a CNN. In order to
enhance the performance of the feature extraction step further, we propose two feature-
enhancing techniques. The first proposed method, based on image-splitting, focuses on
cropping the input image to obtain more features for classification. The second method,
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based on an signal-splitting mechanism, focuses on exploiting with greater detail the spatial
relationship in the time domain by splitting the signal into several pieces and calculating
the SCWT for each of them. Both techniques proved to be successful in increasing the base
pipeline accuracy, as demonstrated in Section 5.

Figure 1. Pipeline of the baseline proposed method. The input signal is transformed by the SCWT
function to a 2D gray-scale image and then expanded into an RGB format through the use of the
JET color mapping. The resulting image is fed to the backbone network (pre-trained CNNs), which
produces the visual features exploited by the fully connected layer for the classification.

3.1. Data Pre-Processing

As we transform time-series measurement signals, represented in Figure 2, into images
that will serve as input for our pipeline, a critical step is the choice of the function responsi-
ble for the continuous wavelet transform, as it must ensure the generation of expressive
time–frequency images.

Figure 2. Time domain representation of 1D input signals taken from the considered dataset.
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Our choice fell on SCWT transformation as it is one of the most successful time–
frequency transforms available, with promising results for several tasks such as signal
recovery under severe noise, voice modeling, physiological signal classification, tumor
categorization, and so on [54–56]. In fact, besides the wavelet transform function, which is
able to give an effective time–frequency signal representation [57,58], SCWT also applies
a priori to sparsely localize oscillations by taking advantage of TF representation redun-
dancies, making the assumption that components with the same instantaneous frequency
can be fused together to obtain a more precise, concentrated TF representation. The main
formula behind the SCWT transformation is represented in Equation (1):

x(t) =
K

∑
k=1

Ak(t)e2iπφk(t) (1)

where Ak and φk are, respectively, time-varying amplitude and phase functions. Moreover,
in order to define and use the SCWT correctly, we must make some additional choices.
Specifically, we need to decide on the representation of the wavelet function. In our case, we
used the Morlet wavelet [59] since it is one of the most suitable wavelets for time–frequency
analysis of non-stationary time-series data. We employed the logarithmic scale for the
visual representation of the result, which is a gray-scale image of size 228 × 432 × 1. Finally,
we applied the JET colormap function in order to expand the single image channel to three
RGB channels, which is the image format most suitable for the exploitation of pre-trained
deep neural networks. We used a publicly available Python library to perform the data
transformation [60]. An example of the image produced by the application of the SCWT
function followed by the JET colormap can be seen in Figure 3.

Figure 3. Image showing the result of SCWT function on the input signal, followed by a JET color
mapping to obtain a suitable RGB image representation.

3.2. Feature Extraction and Classification

After the data processing step, we proceeded to test different pre-trained convolutional
neural networks, which could serve as backbone networks in our pipeline.

Specifically, we exploited ResNet50 [61], DenseNet121 [62], and MobileNet v1 [63]
architectures, chosen among others due to their ability to extract relevant visual features
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while having different numbers of trainable parameters and computational complexity. In
fact, the MobileNet v1 model is one of the fastest networks available in the deep learning
field, with a lightweight architecture made of fewer than 11 million trainable parameters.
On the other side, the ResNet50 model has a number of trainable parameters equal to
40 million and represents a reliable, robust, and successful deep model widely employed as
a backbone [64,65]. Finally, the DenseNet121 model is one of the most powerful (accuracy-
wise) CNN architectures, with multiple residual connections among the convolutional
layers, which bring the total number of trainable parameters to 14.7 million, although being
heavier than the other two as it requires the most computational power and GPU memory.
All these networks have been pre-trained on the ImageNet dataset [66] to obtain robust and
general visual features that have been specialized through a fine-tuning training procedure
on the whole network except the last fully connected layer, which has been trained from
scratch to match the actual classification task. Finally, we would like to remark that our
method is network-agnostic so that any kind of convolutional or transformer network can
in principle be used as a backbone model for features extraction.

3.3. Image-Splitting

The baseline model described in the previous paragraph is already able to produce a
high accuracy; however, in order to further the method performances further, we imple-
mented an image-splitting technique. It consists of the splitting of the input image into four
tiles, namely the upper-right tile, the upper-left tile, the lower-right tile, and finally the
lower-left tile. Figure 4 reports our proposed pipeline with the use of the image-splitting
technique.

Figure 4. Picture showing the pipeline of the proposed method with the addition of the image-splitting
technique.

After the tiling step, each resulting image is fed to the backbone network, and the visual
features of the last layer before the fully connected layer are accumulated in an aggregated
vector for the final classification. In this way, the fully connected layer appointed to
produce the classification receives an increased number of features, potentially improving
the accuracy performances. In order to reduce the total number of experiments, we analyzed
the image-splitting technique only on the best-performing network (ResNet50), but it is
easily applicable on any other backbone as well without any loss of generality. However, an
alternative way to increase the number of features and thus the corresponding performances
are defined in the next paragraph.

3.4. Signal-Splitting

A second option to increase the number of available features for the classification
step is to split the input signal and produce the corresponding image for each sub-signal.
We define this technique as signal-splitting. In contrast to the previous method, which
divided each image into four tiles, we now divide each of the signal time-series arrays into
four segments. Each segment is processed independently using the SSWT with the same
parameters described in the previous sections. At this point, we again obtain four different
images, each representing a part of the original time-series array. The rest of the pipeline
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works as before, with each image fed into the backbone network and the resulting features
aggregated into a single vector for classification. The pipeline exploiting the signal-splitting
technique is depicted in Figure 5.

Figure 5. Picture showing the pipeline when using the signal-splitting technique.

4. Implementation Details

To provide a comprehensive perspective on the development of our proposed methods,
we show the implementation details in this section. We introduce the dataset that we
employed for validating our experiments and the task that we selected among all the
possible ones on that benchmark dataset. We also report the hyperparameter settings of
our implemented models and explain the metric that we adopted for characterizing and
comparing the behavior of the models.

4.1. Dataset

In order to set up meaningful experiments we chose a dataset made of vibrational
measurements acquired from a real bridge, and in particular the Z24 bridge [67]. The
Z24 bridge benchmark dataset served as a test set for several solid mechanics-based and
data-driven SHM damage identification techniques. It includes information of the SHM
sensor from a three-span, post-tensioned concrete box girder bridge in Switzerland that
has been under observation for almost a year. After nine months of routine use, during
its final month of operation, the bridge was exposed to artificially produced damage.
Environmental parameters were also captured concurrently with the SHM accelerometers.
In [67], you can find comprehensive information about the Z24 bridge SHM program
and the several performed tests. In particular, several SHM subprograms with distinct
objectives were carried out on the Z24 bridge. The two primary SHM subprograms were
as follows:

• A long-term continuous monitoring test for the year prior to the harm. The purpose
of this test was to look at the effects of the environment on the dynamics of the
bridge structure.

• A month before the bridge was destroyed, short-term progressive damage testing
under various damage scenarios.

The objective of these subprograms was to investigate the dynamics of the bridge
under fifteen different damage scenarios and two reference undamaged conditions. Among
all the different benchmarks that can be derived from these settings, we selected one
that enabled the use of produced data for a multiclass damage classification task. In
particular, the bridge had nine sensor network setups for the last subprogram, each of
which recorded the vibrations caused by the tests for progressive damage. Each setup
employed 33 accelerometers. A representation of the top view and the cross-sectional view
of the Z24 bridge can be seen in Figure 6.
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We would like to remark that this dataset offers the unique possibility of testing damage
detection algorithms on a real-world bridge that has been effectively damaged with several
degrees of damage. However, it cannot be ruled out that some bias and coupling factors
between the installed sensors and the bridge structures could make the damage detection
algorithm overfit on that particular setup, instead of generalizing on the features of the
damaged structures. In order to further toughen up the generalization capabilities of such
methods, it is advisable to also take into consideration medium-sized, laboratory bridge
models as well data coming from bridges simulated on CAD softwares [68].

Figure 6. top and cross-sectional views of Z24 bridge.

4.2. Ambient Vibration Test vs. Forced Vibration Test

In the dataset, two types of data measurements were collected, grouped in the so-
called forced vibration test and ambient vibration test. In the former, the bridge was shaken by
EMPA’s two vertical shakers. The dual-channel shaker input signal was produced using
the inverse FFT algorithm so that it was possible to create a force–frequency spectrum
with a fairly flat frequency range from 3 to 30 Hz. The other data measurements provided
are related to the ambient vibration test, which used a new data-gathering program and
a measurement system that was recently installed. These measurements relied on the
ambient perturbations (e.g., wind) to produce the sensor’s signals. We used the ambient
vibration test measurements to perform our experiments since they can be obtained without
needing expensive structures or machines to produce the signals.

4.3. Task and Dataset Definition: The Lowering of Pier Task

From all the damaged scenarios provided in the Z24 benchmark, we chose to test our
implemented models on what we considered the most challenging multiclass classification
task, based not only on the number of categories but also on the similarity between them,
which differ only by the intensity of the applied damage. In particular, we chose the “low-
ering of pier” task, which is a multiclass classification problem with 5 different categories,
as reported in Table 1.

The dataset was composed of a total of 1422 time series. Starting from this set of data,
we obtained the train and test set using a 1/3 split factor, leading to a train set composed
of 948 time series and a test set composed of 474 time series. We would like to remark
that we built this custom train–test split because no official train–test splits were provided;
as this choice is performed also by other works that propose different bridge damage
identification techniques, it should be emphasized that a direct comparison between the
accuracies obtained by different methods could be misleading as they are not tested on the
same set of train–test data.
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Table 1. Considered damage scenarios for the classification task and the relative number of samples
(time series) associated with them.

Damage Scenario Number of Time Series Class Label

Undamaged 291 0

Lowering of pier, 20 mm 258 1

Lowering of pier, 40 mm 291 2

Lowering of pier, 80 mm 291 3

Lowering of pier, 95 mm 291 4

4.4. Hyperparameters

Before the conversion to temporal–frequency images, data values were normalized
between 0 and 1, making use of the min–max normalization [69]. The images produced by
the chosen SCWT algorithm had a shape of 288 × 432 × 3. The batch size used during the
training was equal to 64. The classifier module is a simple sequence of three fully connected
layers: the first one is composed of 64 units while the second has 32 units, both exploiting a
LeakyReLU activation function [70]. The last fully connected layer has a number of neurons
equal to the number of categories in the selected task (5) and a softmax activation function.
Since the model was dealing with a multiclass classification problem, a sparse-categorical
cross-entropy function was used as a loss function. As a loss optimizer, we selected the
Adam optimizer [71] with an initial learning rate equal to 0.001 for a total of 40 epochs.
However, the learning rate was reduced by a factor of 0.2 for the last 20 epochs. A dropout
layer with a drop rate equal to 0.3 was also included in the first and second fully connected
layers to reduce overfitting. For the image-splitting method, image crops were selected
with an equal shape of 144 × 216 × 3. In the case of the signal-splitting method, the original
time series were split into four equal segments. After the conversion to images, each image
was then resized with a shape of 80 × 120 × 3, keeping the same height–width ratio as the
original image. The use of a reduced resolution in both image- and signal-splitting methods
enables the reduction of total GPU memory and computation; the use of the most recent
GPUs could enable the implementation of our pipeline with full-resolution images.

4.5. Performance Metrics

In order to access the performances of the considered models, we chose as a perfor-
mance metric the accuracy on the given classification task, defined as N

T , with N being the
number of correct predictions and T being the total number of predictions. The reached
accuracy is expressed in Section 5 as a percentage of the correct classified samples with
respect to the whole test set. Moreover, we considered three additional metrics: precision,
recall and F1-score.

The precision metric is defined as tp
tp + f p , where tp is the number of true positive

samples (the samples belonging to the positive class, correctly classified as positive class)
and f p is the number of false positive samples (the samples belonging to the negative class,
incorrectly classified as positive class). The precision metric is intuitively representing the
ability of the classifier to not label a negative sample as positive.

The recall metric is defined as tp
tp + f n , where f n is the number of false negative samples

(the samples belonging to the positive class, incorrectly classified as negative class). This
metric is intuitively representing the ability of the classifier to find all the positive samples.

Finally, F1-score is defined as tp
tp + 0.5 ( f p + f n) . the F1-score is actually calculating

the harmonic mean of the precision and recall scores. The F1-score measures how much
precision and recall scores deviate from each other, as more differences between precision
and recall values correspond to worse F1-score values.
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In the case of our multi-category classification task, these additional metrics were
calculated with a one-versus-all scheme, with the mean values across all the categories
being reported in the results tables.

Finally, we also reported the number of trainable parameters for each method, which
is a fair complexity indicator of the considered models.

5. Results

In this section, we evaluate the performance of our proposed models together with
several machine learning and deep learning methods that are suitable for this classification
task, both in the original 1D domain and in the transformed 2D domain. Moreover, we
tested the performances of several different networks when used as the backbone in
our method. In fact, Table 2 shows a comparison between ResNet50, MobileNet v1, and
DenseNet121 networks when used as a backbone. The ResNet50 model achieved the highest
accuracy of 97.08%; almost 2% more accuracy than the MobileNet v1 architecture and almost
7% more than the DenseNet121 one. We hypothesize that this behavior is accounted by
the highest number of trainable parameters of the ResNet50 network; however, the slight
decrease in the performance of MobileNet v1 still makes it suitable for resource-constrained
settings, such as performing the classification procedure on site exploiting embedded,
low-powered devices (https://coral.ai/products/dev-board/, accessed on 3 May 2023).
Such behavior is confirmed by the precision, recall and F1-score metrics, which exhibit the
highest values in the case of ResNet50, with the three values equal to each other, which
corresponds to the number of false positives equal to the number of false negatives for this
network. However, as can be noticed also from the values of precision, recall and F1-score
for MobileNet v1 and DenseNet121, our method does not have any preferred category for
any considered backbone.

Table 2. Table showing the performances reached by the proposed method when exploiting dif-
ferent backbone architectures. The first four rows report the test accuracy together with precision,
recall and F1-score, while the last row shows the number of trainable parameters of the considered
backbone network. The best results are reported in bold.

ResNet50 MobileNet v1 DenseNet121

Accuracy 97.08% 95.36% 90.21%

Precision 97.22% 94.41% 87.14%

Recall 97.22% 94.06% 87.08%

F1-score 97.22% 94.12% 86.92%

Parameters 40,105,093 10,898,885 14,707,525

In Table 3, instead, we show the impact on the performances of the image-splitting and
signal-splitting techniques. For brevity, we applied those techniques to our model using the
backbone with the best accuracy (ResNet50). The accuracy increase of image-splitting and
signal-splitting techniques were, respectively, 0.4% and almost 0.5%; although the absolute
accuracy increase seems to be limited, they are both able to bring the error from around
3% (one misclassification out of 33) to 2.5% (one misclassification out of 40), which is a
considerable improvement on a critical task such as damage detection on bridges. The other
considered metrics showed the highest values in the case of signal-splitting, confirming the
validity of this technique, with all metrics showing similar values as the proposed method
did not overfit on a specific category over the others. Finally, we can conjecture that the
increase in performance (similar in the two methods) is probably due to the same increase
in the total number of visual features fed to the classification layer.

https://coral.ai/products/dev-board/
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Table 3. Table showing the test accuracy, precision, recall, and F1-score reached by the baseline model
and the two splitting techniques, when using the same backbone (ResNet50). The best results are
reported in bold.

ResNet50 Image-Splitting Signal-Splitting

Accuracy 97.08% 97.47% 97.50%

Precision 97.22% 97.39% 97.77%

Recall 97.22% 97.17% 97.34%

F1-Score 97.22% 97.27% 97.51%

In Table 4 we show a comparison between our proposed models (with and without
the image- or signal-splitting techniques) and some popular baseline models applied to
the same task. In particular, our models have been compared with a simple multi-layer
perceptron network, which works on original time-series data, and on three deep models,
called 1DCNN, LSTM, and TDNN. The 1DCNN [48] model has been developed specifically
for damage classification on the Z24 bridge. It works by applying a 1D convolutional neural
network on 1D signals (time series) coming from sensors and it implements a custom signal
window technique; these reasons make it the ideal candidate for comparison with our
method. Unfortunately, the train and test split performed by the authors are not provided,
making the comparison data biased and possibly unfair. Because of that limitation, we
report both the performances as shown in the original paper (last four rows of Table 4)
and the performances obtained by running that method on our train and test splits (first
four rows of Table 4). The second compared deep model [72], referred to as LSTM, takes
advantage of the time relations between consecutive samples in a time series, producing
accurate, temporally related features, while implementing a custom window function as
well, in order to feed data to a long short-term memory module. As in the previous case,
we report both the original results as well as the results of a run on our defined train and
test data split. Finally, the TDNN model [73] works by extracting context from the time
series using a time-delay neural network, pre-trained on audio signals. We report only the
accuracy from the original paper as the model source code is not publicly available.

Looking at the reported performances, our method with the signal-splitting boost
produces the highest accuracy, with an improvement of 3.5% with respect to the original
LSTM model results and more than 6.5% with respect to the same model running on our set
of data. All the other compared deep methods are lagging behind, with an accuracy ranging
from 83% to 86%, making them unsuitable for a critical task such as damage identification,
which usually requires a very high classification accuracy. The shallow method based
on multi-layer perceptron clearly fails to provide a good classification system, with an
accuracy value of 72%.

Besides the splitting methods that act as a booster module, our model’s superior
performance lies in the use of a proficient time–frequency transformation and a CNN
pre-trained on ImageNet, enabling the exploitation of robust and general visual features
that are suitable for classifying various damage scenarios in the data.

Looking at all the values of precision metrics, which show small deviation with respect
to the corresponding recall, we can deduct that for all the considered metrics the numbers
of false positives and false negatives are quite similar, and that the classes balance in the
Z24 bridge dataset is helping the classifiers to not overfit on a single category.
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Table 4. Table showing the performances produced by our methods compared with other techniques.
The metrics without the * character refer to the results of the methods as published in their respective
works, while the metrics with the * character refer to the same methods running on our train and test
data splits. The best results are reported in bold.

ResNet50 Image-
Splitting

Signal-
Splitting MLP 1DCNN LSTM TDNN

Accuracy * 97.08% 97.47% 97.50% 72.05% 86.28% 90.92%

Precision * 97.22% 97.39% 97.77% 73.17% 88.18% 89.21%

Recall * 97.22% 97.17% 97.34% 71.31% 86.55% 88.74%

F1-score * 97.22% 97.27% 97.51% 71.42% 86.79% 88.61%

Accuracy 85% 94% 83.08%

Precision 86% 95%

Recall 85% 94%

F1-score 85% 94%

6. Conclusions

In this work, we propose a model for damage identification on bridges. Our proposed
method achieves an accuracy of 97.5%, making it the most accurate method when compared
with state-of-the-art techniques on the same dataset. Our results show that the ResNet50
model is highly effective when exploited as a backbone, but that other networks such
as MobileNet v1 are still exploitable for high performances in low-resource scenarios.
Additionally, we found that the image-splitting and signal-splitting methods can improve
the accuracy of the overall classification. The other metrics, with their high and similar
values, confirm the capability of our method to perform effective classification in all the
five categories without sensible distinction between false positives and false negatives.
Above all, we demonstrate the power of temporal–frequency transformation methods such
as SCWT for such tasks, as they enable the use of pre-trained deep neural networks for
the development of robust visual features able to distinguish different damage scenarios.
In future works, we plan to test other architectures based on different paradigms, such
as the transformer networks, comparing them with the traditional CNN to understand
the impact of the transformer module on the anomaly detection task. Moreover, we plan
to evaluate our algorithm on other bridge datasets with different types of sensors and
anomalies. Another possible line of research is to explore scalable and distributed solutions
that can handle large-scale and high-frequency sensor data using edge computing and cloud
computing technologies. Finally, we believe that the presented model can be effectively
employed also in other damage classification tasks, for example on different structures
with respect to the bridges, which will be a subject of future research.
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Abbreviations
The following abbreviations are used in this manuscript:

SHM Structural health monitoring
SST Synchrosqueezing transform
SDD System damage detection
ML Machine learning
CNN Convolutional neural networks
ANN Artificial neural networks
TF Time–frequency
STFT Short-time Fourier transform
WT Wavelet transform
CWT Continuous wavelet transform
VDD Vibration-based damage detection
AR Auto-regressive
ARMA Auto-regressive moving-average
ARX Auto-regressive exogenous input
CCWT Continuous Cauchy wavelet transform
DL Deep learning
FCN Fully convolutional networks
RNN Recurrent neural networks
Re LU Rectified linear unit
GPU Graphics processing unit
LSTM Long short-term memory
RGB Red, green and blue
EMPA Swiss Federal Laboratories for Materials Testing
FFT Fast Fourier transform
TDNN Time-delay neural network
MLP Multi-layer perceptron
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