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Abstract
Nonlinear orbit control with the use of low-thrust propulsion is proposed as an effec-
tive strategy for autonomous guidance of a space vehicle directed toward the Moon. 
Orbital motion is described in an ephemeris model, with the inclusion of the most 
relevant perturbations. Unfavorable initial conditions, associated with weak, tempo-
rary lunar capture, are considered, as representative conditions that may be encoun-
tered in real mission scenarios. These may occur when the spacecraft is released 
in nonnominal flight conditions, which would naturally lead it to impact the Moon 
or escape the lunar gravitational attraction. To avoid this, low-thrust propulsion, 
in conjunction with nonlinear orbit control, is employed, to drive the space vehi-
cle toward two different, prescribed, low-altitude lunar orbits. Nonlinear orbit con-
trol leads to identifying a saturated feedback law (for the low-thrust magnitude and 
direction) that is proven to enjoy global stability properties. The guidance strategy 
at hand is successfully tested on three different mission scenarios. Then, the capture 
region is identified, and includes a large set of initial conditions for which nonlin-
ear orbit control with low-thrust propulsion is effective to achieve lunar capture and 
final orbit acquisition. For the purpose of achieving lunar capture, low-thrust propul-
sion is shown to be more effective if ignited at aposelenium.
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1 Introduction

Low energy missions to the Moon have attracted a great interest, for decades. In 
general, orbital motion in the Earth-Moon system has a chaotic nature, although 
several dynamical structures, such as periodic orbits and invariant manifolds, were 
proven to exist in the framework of the circular restricted three-body problem 
(CR3BP), which is usually employed for preliminary analysis. Some missions were 
already carried out, on the basis of early studies on low-energy trajectories in multi-
body environments. Examples are the European Smart-1 mission [1], the Japanese 
Hiten mission [2], and the NASA missions Genesis [3], Artemis [4], and GRAIL 
[5]. These missions exploit special classes of unstable periodic orbits that are proven 
to exist in the context of the CR3BP. Exterior and interior transfers to the Moon 
include transits through the regions located in the proximity of the collinear libration 
points. Former studies [6] established that the invariant manifolds associated with 
planar Lyapunov orbits play the role of separatrices. This means that in the phase 
space, the stable invariant manifold converging into the Lyapunov orbit separates 
the trajectories that transit from the Earth to the Moon from those that approach the 
interior collinear libration point and then return toward the Earth. Closely related to 
this, lunar capture dynamics represents a challenging and very significant problem 
of practical interest. In fact, a great deal of effort was dedicated to the identifica-
tion and topological description of (non-periodic) lunar capture orbits, since the 60 s 
[7–12]. A fundamental conjecture dates back to the 60 s and is due to Conley [11], 
who stated that “if a crossing asymptotic orbit exists, then near any such there is a 
capture orbit”. In the subsequent decades, different methodologies were proposed, 
with the intent of obtaining lunar capture orbits. A popular approach, followed by a 
successful application in a real mission scenario, is due to Belbruno and Miller [12], 
and employs the concept of ballistic capture, leveraging the Sun gravitational influ-
ence. More recently, the senior author investigated lunar capture dynamics using 
isomorphic mapping [13], with the intent of relating capture orbits to asymptotic 
trajectories.

In the last decades, low-thrust electric propulsion has attracted an increasing 
interest by the scientific community, and already found application in a variety of 
mission scenarios, e.g. the NASA Deep Space 1 [14] and the ESA Smart-1 [1] mis-
sions. Thanks to high values of the specific impulse, low-thrust propulsion allows 
substantial propellant savings, at the price of increasing—even considerably—the 
time of flight. In a very recent publication, Cox et al. [15] focus on transit and cap-
ture in the planar three-body problem, using low-thrust dynamical structures. In fact, 
under certain assumptions, periodic orbits and invariant manifolds can be proven to 
subsist even if low thrust is ignited.

The present research focuses on low-thrust lunar capture dynamics and orbit 
acquisition, leveraging nonlinear orbit control. Orbital motion is described in an 
ephemeris model, and modified equinoctial elements are employed, for the purpose 
of describing the spacecraft trajectory relative to the Moon. All the relevant pertur-
bations, i.e. third body gravitational attraction due to the Sun and the Earth, as well 
as several relevant harmonics of the selenopotential, are included in the dynamical 
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modeling. Initial spacecraft positions and velocities, associated with weak, tempo-
rary lunar capture, are selected, as representative conditions that may be encoun-
tered in real mission scenarios, e.g. when a space vehicle is released in nonnominal 
flight conditions. In the absence of any corrective maneuver, these conditions lead 
to either (i) escape the Moon realm or (ii) impact with the lunar surface. This work 
is intended to prove that low-thrust propulsion, in conjunction with nonlinear orbit 
control, can drive the spacecraft toward a stable, specified orbit about the Moon 
(e.g., a low-altitude polar orbit), even in the presence of very unfavorable initial con-
ditions. To do this, a saturated feedback law for the low-thrust magnitude and direc-
tion—with an upper bound on magnitude—is described and employed. In a previous 
work [16], a similar approach was employed for Earth orbits, for the purpose of orbit 
correction (at injection) and subsequent maintenance. Low-thrust nonlinear orbit 
control was shown to be effective both in driving the spacecraft toward the target tra-
jectory and for orbit maintenance, starting from initial conditions sufficiently close 
to the desired ones. Instead, this research applies nonlinear orbit control in the pres-
ence of challenging (off nominal) initial conditions, far from the target orbit. More 
precisely, two types of target lunar orbits are considered: (a) polar circular orbit with 
specified radius and (b) polar elliptic orbit with a minimum value of periselenium 
radius and a maximum value of aposelenium radius. The mentioned nonlinear feed-
back law is proposed as an autonomous real-time guidance strategy, and its effec-
tiveness is being tested in the presence of three different, challenging conditions at 
spacecraft release. Then, a large set of initial conditions are being considered, to 
investigate and characterize the effectiveness of low-thrust propulsion and nonlinear 
orbit control in leading the spacecraft toward the desired operational conditions. The 
final purpose is in identifying the capture region, i.e. the set of initial conditions 
compatible with low-thrust lunar capture and orbit acquisition.

In conclusion, the primary objectives of this study are (i) proposing a saturated 
nonlinear feedback control law based on nonlinear orbit control as an autonomous 
spacecraft guidance strategy to achieve lunar capture, (ii) providing an exhaustive 
stability analysis of the feedback law at hand, by completing the analysis presented 
in Ref. 16, (iii) testing its effectiveness in three challenging mission scenarios, in 
which an unpowered vehicle would impact the Moon or escape its realm, and (iv) 
identifying the capture region, i.e. a set of initial conditions for which low thrust 
propulsion and nonlinear orbit control represent an effective strategy for lunar 
capture and final orbit acquisition, while providing a concise and convenient two-
dimensional representation of this region.

2  Orbit Dynamics

This study considers low-thrust propulsion with nonlinear orbit control, for the pur-
pose of driving and maintaining a weakly-captured space vehicle in the proximity of 
some desired stable operational conditions about the Moon. The spacecraft of inter-
est is mainly affected by the lunar gravitational field, and its orbital motion can be 
appropriately investigated by employing a perturbed two-body-problem model. As 
a first perturbing action, the lunar gravitational potential differs to some extent from 
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that generated by a spherical mass distribution. As a result, some significant har-
monics of the selenopotential are to be included in the dynamical model, in order to 
yield more realistic results from simulations. Other than lunar asphericity, the third-
body perturbation due to the gravitational attraction of the Sun and the Earth repre-
sents an additional contribution. Steerable, throttleable low-thrust propulsion is used 
for orbit correction and maintenance maneuvers.

The remainder of this section describes the governing equations for orbit dynamics, 
as well as the orbit perturbations included in the dynamical modeling. As a preliminary 
step, some useful reference frames are introduced.

2.1  Reference Frames

The Earth-centered inertial frame (ECI) and the Moon-centered inertial frame (MCI) 
are defined in relation to the heliocentric inertial frame (HCI). The latter reference sys-
tem is associated with the right-hand sequence of unit vectors 

(
ĉ1, ĉ2, ĉ3

)
 , where ĉ1 is 

the vernal axis (corresponding to the intersection of the ecliptic plane with the Earth 
equatorial plane) and ĉ3 points toward the Earth orbit angular momentum. Vectrix S is 
introduced, S ∶=

[
ĉ1 ĉ2 ĉ3

]
.

The Earth-Centered inertial frame (ECI) has origin at the Earth’s center and is asso-
ciated with vectrix E =

[
ĉ
(E)

1
ĉ
(E)

2
ĉ
(E)

3

]
 , where unit vectors ĉ(E)

1
 and ĉ(E)

2
 lie on the 

Earth’s mean equatorial plane. In particular, ĉ(E)
1

 is the vernal axis, while ĉ(E)
3

 points 
toward the Earth rotation axis. The ECI-frame and the HCI-frame are related through 
the ecliptic obliquity angle (� = 23.4 deg),

where Rj(�) denotes an elementary counterclockwise rotation about axis j by a 
generic angle �.

According to the Cassini’s laws, the Moon rotation axis  is coplanar with the Moon 
orbit angular momentum �

→M

 and the normal to the ecliptic plane ĉ3 . The two vectors ẑM 

and �
→M

 are located at opposite sides of the ecliptic pole ĉ3 , and both of them are subject 

to clockwise precession due to the Sun, with a period of 18.6 years. Hence, axis ĉ(M)

3
 of 

MCI can be properly identified as the rotation axis  ẑM at a reference epoch tref  , 
ĉ
(M)

3
= ẑM

(
tref

)
 . If �M and �M denote respectively the precession angle and the Moon 

equator obliquity (separating ĉ(M)

3
 from ĉ3 ), then

where � (ref )

M
 represents the precession angle at tref  , whereas M ∶=

[
ĉ
(M)

1
ĉ
(M)

2
ĉ
(M)

3

]
 

identifies the MCI-frame.
The local horizontal frame (LH) represents a useful reference system that rotates 

together with the space vehicle. It is associated with R
LH

∶=
[
r̂ Ê N̂

]
 , where r̂ is 

aligned with the spacecraft position vector �
→

 (taken from the center of the Moon), Ê is 

(1)ET = R1(−�)S
T

(2)MT = R1

(
�M

)
R3

(
�

(ref )

M

)
ST
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directed along the local east direction, and N̂ is aligned with the local north direction. 
The LH-frame is related to the MCI-frame through the absolute longitude �a and the 
latitude �,

If �(ref )a  denotes the absolute longitude (taken counterclockwise from ĉ(B)
1

 ) of the ref-
erence meridian, then the satellite absolute longitude is  �a = �

(ref )
a + �g , where �g is 

the spacecraft geographical longitude. The local horizontal local vertical frame 
(LVLH) is another useful reference system that rotates together with the space vehi-
cle. It is associated with R

LVLH
∶=

[
r̂ �̂� ĥ

]
 , where �̂� is aligned with the projection 

of the spacecraft velocity �
→

 into the local horizontal plane, whereas ĥ points toward 
its angular momentum. The last two reference systems are related through the head-
ing angle �,

Let a, e, i, Ω , � , and f represent respectively the instantaneous (osculating) semi-
major axis, eccentricity, inclination, right ascension of the ascending node (RAAN), 
argument of periselenium, and true anomaly of the space vehicle; � denotes its argu-
ment of latitude, � ∶= � + f  . The three angles �a , � , and � can be obtained as func-
tions of the osculating orbit elements [17],

2.2  Equations of Motion

Orbit dynamics can be described using either osculating orbit elements or spherical 
coordinates. However, the Gauss equations [18] for the time derivatives of the orbit 
elements become singular if a circular or equatorial orbit is encounterd (or if an 
elliptic orbit transitions to a hyperbola). For these reasons, the modified equinoctial 
orbit elements (MEE) [19] l, m, n, s, and q are employed, together with the semilatus 
rectum (parameter) p, used in place of a. The six elements p, l, m, n, s, and q are 
defined as [19, 20]

(3)RT

LH
= R2(−�)R3

(
�a
)
MT

(4)RT

LVLH
= R1(�)R

T

LH

(5)� = arcsin (sin � sin i)

(6)�a = 2 arctan

�
cos � sinΩ + sin � cos i cosΩ√

1 − (sin � sin i)2 + cos � cosΩ − sin � cos i sinΩ

�

(7)� = 2 arctan

�
cos � sin i√

1 − (sin � sin i)2 + cos i

�
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These elements are nonsingular for all Keplerian trajectories, with the only excep-
tion of equatorial retrograde orbits ( i = � ). The osculating orbit elements can be 
retrieved by inverting Eq. (8). If � ∶= 1 + l cos q + m sin q , the spacecraft instanta-

neous radius r

(
=
||||�→
||||
)

 ) is given by r = p∕� . Letting x6 ≡ q and 

� ∶=
[
x1 x2 x3 x4 x5

]T
≡
[
p l m n s

]T , the governing equations for MEE can be 
written as

where �M represents the lunar gravitational parameter, whereas

Vector a  is  a (3 × 1)-vector that includes the components of the non-Keplerian 
acceleration that affects the spacecraft motion. These components, denoted with (
ar, a� , ah

)
 , are the projections of a into  the LVLH-frame. Vector a includes both 

the thrust acceleration and the perturbing acceleration inherent to the space environ-
ment. It is convenient to distinguish these two contributions, therefore � = �T + �P , 
where subscripts T and P refer to thrust and perturbations, respectively.

Let Tmax and m0 denote the maximum available thrust magnitude and the initial 
mass. If x7 represents the mass ratio and T the instantaneous thrust magnitude, then 
x7 obeys the following equation:

where c is the (constant) effective exhaust velocity of the propulsion system. The 
magnitude of the instantaneous thrust acceleration is aT = uTm0

/
m = uT∕x7 and 

varies in the interval 0 ≤ aT ≤ a
(max)

T
 , where a(max)

T
= u

(max)

T

/
x7 . Moreover, the thrust 

acceleration is �T = �T∕x7 , where �T has magnitude constrained to 
[
0, u

(max)

T

]
.

(8)
p = a

(
1 − e2

)
l = e cos (Ω + �) m = e sin (Ω + �)

n = tan
i

2
cosΩ s = tan

i

2
sinΩ q = Ω + � + f

(9)�̇ = G
(
�, x6

)
�

(10)ẋ6 =

√
𝜇M

x3
1

𝜂2 +

√
x1

𝜇M

x4 sin x6 − x5 cos x6

𝜂
ah

(11)G
�
�, x6

�
=

�
x1

�M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
2x1

�
0

sin x6
(�+1)cos x6+x2

�
−

x4sin x6−x5cos x6

�
x3

−cos x6
(�+1)sin x6+x3

�

x4sin x6−x5cos x6

�
x2

0 0
1+x2

4
+x2

5

2�
cos x6

0 0
1+x2

4
+x2

5

2�
sin x6

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(12)ẋ7 ∶=
ṁ

m0

= −
uT

c
with 0 ≤ uT ≤ u

(max)

T

(
uT ∶=

T

m0

and u
(max)

T
∶=

Tmax

m0

)
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In conclusion, orbit dynamics is described by the time evolution of the state vec-
tor � ∶=

[
�T x6 x7

]T
=
[
x1 x2 x3 x4 x5 x6 x7

]T , whereas the control vector is �T , 
directly related to the thrust acceleration. Equations (9), (10), and (12) represent the 
state equations.

2.3  Harmonics of the Selenopotential

Currently, some accurate models exist for the Moon gravitational fields, i.e. (a) God-
dard gravity model 3 (GLGM3150) and (b) Lunar Prospector models. This research 
employs the Lunar Prospector GLGM3150 model [21], which supplies a large number 
of coefficients of zonal, tesseral, and sectorial harmonics of the Moon gravitational 
field. These coefficients ( Jl,m and �lm ) appear in the classical equation of planetary 
gravitational potentials (per mass unit), written in terms of Legendre polynomials Plm,

where RM is the lunar equatorial radius.
In the LH-frame, the gravitational acceleration due to the Moon is given by

The previous expression, together with Eqs. (4)-(7) leads to obtaining the three com-
ponents 

(
Gr,G� ,Gh

)
 of the gravitational acceleration in the LVLH-frame, as a func-

tion of the instantaneous orbit elements. Because Gr includes the main gravitational 
term, the related perturbing accelerations are a(H)

P,r
= Gr + �M

/
r2 , a(H)

P,�
= G� , and 

a
(H)

P,h
= Gh . These components are incorporated in the (3 × 1)-vector 

�
(H)

P
=
[
a
(H)

P,r
a
(H)

P,�
a
(H)

P,h

]T
.

This works considers the first nine zonal harmonics of the selenopotential, i.e. J1 
through J9.

2.4  Third Body Perturbation

The Earth and Sun gravitational influence on the space vehicle while this orbits the 
Moon can be modeled as a third body perturbation. In general, the perturbing accel-
eration due to a third body can be expressed as

(13)

U =
�M

r
−

�M

r

∞∑
l=2

(
RM

r

)l

JlPl0(sin�) +
�M

r

∞∑
l=2

l∑
m=1

(
RM

r

)l

Jl,mPlm(sin�) cos
[
m
(
�g − �lm

)]

(14)�
→

= ∇U where ∇ = r̂
𝜕

𝜕r
+

Ê

r cos𝜙

𝜕

𝜕𝜆g
+

N̂

r

𝜕

𝜕𝜙

(15)

�
→

(3B)

P
= −

�3

s3
3

(
1 + q3

)3∕ 2
[
�
→

+ M �
→

Bq3

3 + 3q3 + q2
3

1 +
(
1 + q3

)3∕ 2
]
, with q3 ∶=

r2 − 2�
→

⋅
M �
→

B

r3B
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where �3 denotes the gravitational parameter of the third body, M �
→

B ( B = E or B = S , 
E and S standing for Earth and Sun) represents the position vector of the third body 

relative to the main body (i.e., the Moon), and r3B =
||||
M �
→

B
|||| . The previous expression 

makes use of the Battin-Giorgi [18, 22] approach to the Encke’s method for orbit 
perturbations.

In the ECI-frame, the instantaneous position vectors of both the Sun and the 
Moon with respect to the Earth center, denoted respectively with E�S

→

 and E�M
→

 , can 
be derived through interpolation of the ephemerides, using the approach described 
in Ref. [23]. Letting

the two relative position vectors M�E
→

 and M�S
→

 , which appear in Eq. (15), are given 
by

Equations  (15–17), in conjunction with Eqs. (1–4) lead to obtaining the three 
componemts of the third body perturbing acceleration due to both the Earth (
a
(E)

P,r
, a

(E)

P,�
, a

(E)

P,h

)
 and the Sun 

(
a
(S)

P,r
, a

(S)

P,�
, a

(S)

P,h

)
 . These components are incorporated in 

the perturbing accelerations �(E)
P

=
[
a
(E)

P,r
a
(E)

P,�
a
(E)

P,h

]T
 and �(S)

P
=
[
a
(S)

P,r
a
(S)

P,�
a
(S)

P,h

]T
.

3  Nonlinear Orbit Control

Previous research [24] has shown that any state (associated with elliptic orbits) is 
accessible when the spacecraft dynamics is subject to the Gauss equations for clas-
sical orbit elements. However, the same property also holds for equinoctial elements 
[24]. This represents the theoretical premise for applying nonlinear techniques to 
orbital control.

In Sect. 2.2, the spacecraft motion was shown to be governed by Eqs. (9), (10), 
and (12). In particular, Eq. (9) can be rewritten as

where the perturbing acceleration �P includes several contributions, related to the 
space environment, namely harmonics of the selenopotential (term �(H) ) and third 
body gravitational attraction due to both the Earth ( �(E)

P
 ) and the Sun ( �(S)

P
 ). Thus, 

�P = �
(H)

P
+ �

(E)

P
+ �

(S)

P
 . It is worth noticing that Eq.  (18) assumes a control-affine 

form in the absence of perturbing accelerations ( �P = 0 ). For systems governed 
by Eq. (18) with �P = 0 , the Jurdjevic-Quinn theorem [25, 26] provides a feedback 

(16)E�S
→

=
[
xS yS zS

]
ET and E�M

→

=
[
xM yM zM

]
ET

(17)M�E
→

= − E�M
→

and M�S
→

= −
(
S�E
→

+ E�M
→

)
= E�S

→

− E�M
→

(18)�̇ = G
(
�, x6

)(�T

x7
+ �P

)
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control law that can drive the dynamical system to an arbitrary target state, making 
the controlled system Lyapunov-stable.

In practical mission scenarios, orbit maintenance regards some (or all) of the fol-
lowing orbit elements: semimajor axis a, eccentricity e, inclination i, right ascen-
sion of the ascending node (RAAN) Ω , and argument of periapse � . These identify 
the orbit size, shape, and orientation in space. Under the assumption that the target 
trajectory is defined in terms of these orbit elements only, the desired operational 
conditions depend only on � and can be formally defined by

The previous vector equation is problem-dependent and corresponds to q (≤ 5) rela-
tions that involve equinoctial elements x1 through x5 . If q < 5 , Eq. (19) identifies a 
target set that is assumed to be a connected and differentiable manifold.

3.1  Feedback Control Law and Related Lyapunov Stability

This section is specifically devoted to defining a feedback control law capable of 
driving the dynamical system at hand (associated with Eqs. (10), (12), and (18)) 
toward the target conditions identified by Eq. (19). To do this, the following can-
didate Lyapunov function is introduced:

where K denotes a diagonal matrix with constant, positive elements, which play the 
role of arbitrary weights. These are selected a priori in relation to the application of 
interest. It is immediate to recognize that V > 0 unless � = 0 . Yet, further condi-
tions are required in order that V be an actual Lyapunov function. This issue is being 
addressed in the following three propositions, all proven in Ref. [16].

Proposition 1. Let � ∶= G
T (��∕��)TK� . If and � and (��∕��) are continu-

ous, |�| > 0 unless � = 0 , and u(max)
T

≥ x7
||� + �P

|| , then the feedback control law,

leads a dynamical system governed by Eqs. (10), (12), and (18) to converge asymp-
totically to the target set associated with Eq. (19).

The previous proposition includes the condition u(max)
T

≥ x7
||� + �P

|| . If this ine-
quality is violated, the feedback law (21) is infeasible, because ||�T || = x7

||� + �P
|| 

exceeds the maximum value u(max)
T

 . In this case, an alternative feedback law can 
be employed, in place of Eq. (21).

Proposition 2. Let � ∶= G
T (��∕��)TK� . If and � and (��∕��) are continu-

ous, |�| > 0 unless � = 0 , u(max)
T

< x7
||� + �P

|| , and �T�P ≤ 0 , then the feedback 
control law

(19)�(�) = 0

(20)V =
1

2
�T

K�

(21)�T = −x7
(
� + �P

)
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leads a dynamical system governed by Eqs. (10), (12), and (18) to converge asymp-
totically to the target set associated with Eq. (19).

The preceding proposition requires the sufficient condition �T�P ≤ 0 to guar-
antee V̇ < 0 . However, �T�P usually assumes both positive and negative values, 
depending on the specific time evolution of the dynamical system at hand. An 
additional sufficient condition that ensures V̇ < 0 even if �T�P > 0 , regardless of 
the particular time evolution, is provided by the following:

Proposition 3. Let � ∶= G
T (��∕��)TK� . If and � and (��∕��) are continu-

ous, |�| > 0 unless � = 0 , and x7||�P|| < u
(max)

T
< x7

||� + �P
|| , then the feedback con-

trol law (23) leads a dynamical system governed by Eqs. (10), (12), and (18) to 
converge asymptotically to the target set associated with Eq. (19).

The two feedback laws (20) and (23) can be written in compact form as

Equation (23) incorporates the saturation condition on �T , i.e. ||�T || ≤ u
(max)

T
 , and pro-

vides a control law that can be actuated using steerable and throttleable thrust (with 
time-varying magnitude and direction).

If the perturbing acceleration is negligible compared to the thrust acceleration (||�P|| ≪ u
(max)

T

/
x7

)
 , then the control law (22) can be regarded as nearly-Lyapunov-

optimal. Proposition 3 provides a very useful sufficient condition that has a straight-
forward physical interpretation: if the thrust acceleration magnitude, u(max)

T

/
x7 , 

exceeds the perturbation acceleration magnitude, aP , then V̇ < 0 (unless � = 0).
It is worth remarking that Propositions 1 through 3 represent sufficient condi-

tions for stability. This circumstance implies that the assumptions of Propositions 
1 through 3 can be violated, without necessarily compromising asymptotic stability 
toward the desired final condition, associated with Eq. (19).

3.2  Nonlinear Control for Semimajor Axis, Eccentricity, and Inclination of Lunar 
Orbits

The previous stability properties refer to the spacecraft dynamics, governed by Eqs. 
(10), (12), and (18). The desired operational conditions are defined by Eq.  (19), 
which is problem-dependent and identifies the target set.

In this research, the desired lunar orbit is specified in terms of target values of 
semimajor axis, eccentricity, and inclination, denoted respectively with ad , ed , and 
id . Thus, due to Eq. (8), the desired operational conditions are

(22)�T = −u
(max)

T

� + �P
||� + �P

||

(23)�T = −u
(max)

T

x7
(
� + �P

)

max
{
u
(max)

T
, x7

||� + �P
||
}
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where pd = ad
(
1 − e2

d

)
 and ed < 1 . The left-hand sides of Eqs. (24–26) form vector 

� , whose components are denoted with 
(
�1,�2,�3

)
.

The preceding section supplies three sets of sufficient conditions (stated in Propo-
sitions 1 through 3) that guarantee asymptotic stability, i.e. convergence toward the 
target set, identified by Eqs. (24–26). This subsection is intended to analyze these 
conditions, for the (3 × 1)-vector � defined by Eqs. (24–26).

As first steps, both � and (��∕��) turn out to be continuous in the entire domain 
where equinoctial elements are defined (i.e., i ≠ �).

Then, vector b, whose components are 
{
b1, b2, b3

}
 , is derived analytically for the 

problem at hand,

The attracting set collects all the dynamical states that fulfill V̇ = 0 . In fact, out of 
the attracting set V̇ < 0 . The latter condition is met if � = 0 , i.e. if the three compo-
nents 

{
b1, b2, b3

}
 equal 0, for any choice of the positive coefficients 

{
k1, k2, k3

}
 . It is 

straightforward to recognize that x1 = 0 yields b1 = b2 = b3 = 0 . Other than this solu-
tion, from inspection of Eq. (33), b2 = 0 regardless of 

{
k1, k2

}
 if ( �1 = 0 and �2 = 0 ) 

or ( �1 = 0 and x2 = x3 = 0 ). The term 
(
�2 + x2

2
+ x2

3
− 1

)
 can equal 0 also at specific 

values of x6 , but this circumstance is ruled out because x6 is time-varying. Then, b1 = 0 
if either �2 = 0 or x2 = x3 = 0 . Lastly, b3 = 0 if either �3 = 0 or x4 = x5 = 0 . In short, 
the attracting set includes the following five subsets:

1. x1 = 0 (rectilinear trajectories);
2. x1 = pd, x

2
2
+ x2

3
= e2

d
, x2

4
+ x2

5
= 0 (equatorial elliptic orbits with semilatus rectum 

pd and eccentricity ed);
3. x1 = pd, x

2
2
+ x2

3
= 0, x2

4
+ x2

5
= tan2

(
id
/
2
)
 (circular orbits with radius pd and 

inclination id);
4. x1 = pd, x

2
2
+ x2

3
= 0, x2

4
+ x2

5
= 0 (circular equatorial orbits with radius pd);

5. x1 = pd, x
2
2
+ x2

3
= e2

d
, x2

4
+ x2

5
= tan2

(
id
/
2
)
 (target set).

(24)x1 − pd = 0

(25)x2
2
+ x2

3
− e2

d
= 0

(26)x2
4
+ x2

5
− tan2

id

2
= 0

(27)b1 = −2k2

√
x1

�E

(
x3 cos x6 − x2 sin x6

)
�2

(28)b2 =
2

�

√
x1

�E

{
k1x1�1 + k2�2

(
�2 + x2

2
+ x2

3
− 1

)}

(29)b3 =
k3

�

√
x1

�E

(
x4 cos x6 + x5 sin x6

)
�3

(
x2
4
+ x2

5
+ 1

)
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This analysis identifies two further subsets (3 and 4), which were not detected in Ref. 
[16]. Because the attracting set contains subsets other than the target set (which coin-
cides with subset 5), asymptotic stability at the desired conditions is only local, based 
on Lyapunov’s theorem [27]. However, the LaSalle’s principle [27] can be used to rule 
out, if possible, subsets 1 through 4. Because � is continuous and V̇ < 0 (except in 
the attracting set, denoted with A henceforth), the condition V(�) ≤ V

(
�0
)
 (where �0 

is z evaluated at the initial time) defines a compact set C. The invariant set must be 
sought in A ∩ C , i.e. in the portion of the attracting set contained in C. By definition, 
the invariant set collects all the dynamical states (in the attracting set of z) that remain 
unchanged when � ≡ 0 . This implies that if the invariant set is reached, then � ≡ 0 at 
future times, which implies �̇ ≡ 0 while � ≡ 0.

For the application at hand, the time derivatives of the three components of  b are 
given by

where j = 1, 2, 3 . The previous expression, evaluated at � ≡ 0 reduces to

Equations (27) through (29), in conjunction with Eq. (31), lead to

Inspection of Eqs. (32–34) reveals that subset 1 ( x1 = 0 ) does not belong to the 
invariant set, therefore convergence toward rectilinear trajectories is ruled out. 
Instead, subsets 2 thorugh 5 form the invariant set for the problem at hand.

Actually, convergence toward subsets 2 through 4 is only theoretical. In fact, the 
Lyapunov function can be rewritten in terms of orbit elements as

where p, e, and i are the instantaneous semilatus rectum, eccentricity, and inclina-
tion. Function V, written in the form of Eq.  (35) and evaluated at p = pd , can be 
regarded as a function of two variables, i.e. e and i. It is relatively straightforward 

(30)

ḃj =
𝜕bj

𝜕�
�̇ +

𝜕bj

𝜕x6
ẋ6 =

𝜕bj

𝜕�
G
(
�, x6

)
� +

𝜕bj

𝜕x6

[√
𝜇E

x3
1

𝜂2 +

√
x1

𝜇E

x4 sin x6 − x5 cos x6

𝜂
ah

]

(31)ḃj =
𝜕bj

𝜕x6

√
𝜇E

x3
1

𝜂2 (j = 1, 2, 3)

(32)ḃ1 =
2k2

x1

(
x2 cos x6 + x3 sin x6

)
𝜓2

(33)ḃ2 =
2

x1

(
x2 sin x6 − x3 cos x6

){
k1x1𝜓1 + k2𝜓2

(
−𝜂2 + x2

2
+ x2

3
− 1

)}

(34)ḃ3 =
k3

x1
𝜓3

(
x2
4
+ x2

5
+ 1

)(
x2x5 − x3x4 + x5 cos x6 − x4 sin x6

)

(35)V =
1

2

[
k1
(
p − pd

)2
+ k2

(
e2 − e2

d

)2
+ k3

(
tan2

i

2
− tan2

id

2

)2
]
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to prove that subset 5, i.e. the target set, corresponds to the global minimum of V, 
whereas the remaining subsets that form the invariant set are associated with unsta-
ble equilibrium conditions. In fact, the partial derivatives of V with respect to e and 
i are

Because �V∕�e = 0 at e = 0 and e = ed and �V∕�i = 0 at i = 0 and i = id , V is sta-
tionary in all the subsets that form the invariant set, which in fact includes all the 
equilibrium conditions. However, using Eqs. (36–39), in.

The preceding inequalities prove that (a) subsets 2 and 3 correspond to saddle points 
for V, (b) subset 4 is associated with a local maximum of V, and (c) subset 5, i.e. the 
target set, corresponds to the global minimum of V, and is the only stable equilib-
rium condition. This circumstance has the remarkable practical consequence that—
from the numerical point of view—the dynamical system of interest enjoys global 
convergence toward the desired operational conditions, provided that the control law 
(23) is adopted, while holding the assumptions of either Proposition 1, 2, or 3.

It is worth remarking that the feedback law addressed in this section considers a 
target orbit with specified values of semilatus rectum, eccentricity, and inclination. 
Extension to more general Keplerian orbits is relatively straightforward using the 

(36)
�V

�e
= 2k2e

(
e2 − e2

d

)

(37)
�V

�i
= 2k3 tan

i

2

(
1 + tan2

i

2

)(
tan2

i

2
− tan2

id

2

)

(38)�2V

�e2
= 2k2

(
3e2 − e2

d

)

(39)
�2V

�i2
= −

k3

2

(
1 + tan2

i

2

)[
3 tan2

i

2

(
tan2

id

2
− 1

)
− 5 tan4

i

2
+ tan2

id

2

]

(40)�2V

�e�i
= 0

(41)
subset 2 ∶ 𝜕2V

/
𝜕e2 > 0 and 𝜕2V

/
𝜕i2 < 0, while holding 𝜕2V∕(𝜕i𝜕e) = 0

(42)
subset 3 ∶ 𝜕2V

/
𝜕e2 < 0 and 𝜕2V

/
𝜕i2 > 0, while holding 𝜕2V∕(𝜕i𝜕e) = 0

(43)
subset 4 ∶ 𝜕2V

/
𝜕e2 < 0 and 𝜕2V

/
𝜕i2 < 0, while holding 𝜕2V∕(𝜕i𝜕e) = 0

(44)
subset 5 ∶ 𝜕2V

/
𝜕e2 > 0 and 𝜕2V

/
𝜕i2 > 0, while holding 𝜕2V∕(𝜕i𝜕e) = 0
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definitions of MEE. As a further generalization, Ref. [28] considers a target orbit 
with prescribed, time-varying RAAN.

4  Low‑Thrust Lunar Capture and Orbit Acquisition

This study considers a spacecraft equipped with a low-thrust propulsion system, tai-
lored to achieving and maintaining a specified desired orbit about the Moon, in spite 
of unfavorable initial conditions. The propulsive performance is defined by the max-
imum value of u

T
 , denoted with u(max)

T
 , and the effective exhaust velocity c,

The reference epoch, corresponding to the initial time of the numerical simula-
tions, is set to June 6, 2021 at 12:00 UTC. The numerical simulations are performed 
using canonical units. The distance unit (DU) equals the lunar radius, whereas the 
time unit (TU) is such that �M = 1DU3

/
TU2 . Moreover, the following weighting 

coefficient are used, after extensive trial-and-attempt tuning: k1 = 1 , k2 = 1000 , and 
k3 = 1 . These values turn out to be effective to drive the space vehicle toward the 
target orbit in the three illustrative examples being described. However, in a particu-
lar mission scenario, if the spacecraft initial conditions are specified (or predicted 
with sufficient advance), then gain tuning can allow selecting even more appropri-
ate values of constants 

(
k1, k2, k3

)
 , i.e. values that minimize the time of flight while 

using the feedback law (23). This approach was proven to be effective in Ref. [28], 
and led to finding near-optimal gains, associated with a time of flight close to the 
actual optimal (minimum-time) solution.

Two operational conditions are defined: (a) polar circular orbit at altitude of 
550 km and (b) polar elliptic orbit with specified values of the minimum perisele-
nium and maximum aposelenium radii, denoted respectively with r(min)

P
 and r(max)

A
 . 

In this work, r(min)
P

= RM + 100 km and r(max)
A

= RM + 1000 km . In the (e, p)-plane, 
orbit (a) corresponds to a point, whereas (b) is associated with a triangular region, 
idenitified by the inequalitites

Initial spacecraft positions and velocities, associated with weak, temporary lunar 
capture, are selected, as representative conditions that may be encountered in real 
mission scenarios, e.g. when a space vehicle is released in nonnominal flight con-
ditions. In the absence of any corrective maneuver, these conditions very often 
lead to either (i) escape the Moon realm or (ii) impact with the lunar surface. Low-
thrust propulsion, in conjunction with the feedback control law (23), is used, with 
the intent of driving the spacecraft toward either condition (a) or condition (b). In 

(45)c = 30 km∕ sec and u
(max)

T
= 5 ⋅ 10−5 g0

(
g0 = 9.8m

/
sec2

)

(46)rP =
p

1 + e
≥ r

(min)

P
⇒ p ≥ r

(min)

P
(1 + e)

(47)rA =
p

1 − e
≤ r

(max)

A
⇒ p ≤ r

(max)

A
(1 − e)
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both cases the target set is defined by Eqs. (24–26), with pd = RM + 550 km , ed = 0 , 
and id = 90 deg . However, if the operational condition (b) is pursued, low thrust is 
turned off when both inequalitites (42) and (43) are fulfilled, while holding

(48)||𝜓3
|| =

||||tan
2 i

2
− tan2

id

2

|||| < 10−5

Table 1  Initial orbit elements for the 3 mission scenarios

Orbit elements p0 (km) e0 i0 (deg) Ω0 (deg) �0 (deg) f0 (deg)

Mission scenario 1 5016 0.91 23.0 0 0 0
Mission scenario 2 29000 0.70 23.0 0 0 0
Mission scenario 3 4565 0.94 23.0 0 0 0

Fig. 1  Mission scenario 1: orbit evolution with no control (red) and with nonlinear orbit control (blue 
and cyan) (Color figure online)

Fig. 2  Mission scenario 1: zoom on the terminal arcs in the (e,p)-plane: target point (a) and target region 
(b)
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4.1  Illustrative Examples

This subsection considers 3 illustrative examples of the use low-thrust propulsion in 
conjunction with nonlinear orbit control, for the purpose of driving the spacecraft of 
interest toward the operational conditions (a) and (b), also termed “target point” and 
“target region” henceforth, with reference to the respective representartions in the 
(e, p)-plane. Orbit propagations cover a duration of 3 years, starting from the initial 
epoch t0 . Three unfavorable initial conditions (with subscript 0), reported in Table 1 
in terms of osculating orbit elements, are assumed, which would lead the spacecraft 
to either impact the Moon or escape the lunar gravitational attraction.

In the first mission scenario, the space vehicle would impact the lunar surface in 
about 4 days, in the absence of any control action. In Fig. 1, the related path in the 
(e, p)-plane is portrayed in red and denoted with “no control”. Instead, low-thrust 
propulsion and nonlinear orbit control are proven to be able to drive the spacecraft 
toward either the target region or the target point. Figure 2a illustrates the related 
paths in the (e, p)-plane, with a zoom on the terminal arc leading to the target point. 
The two paths associated with operational conditions (a) and (b) overlap until the 
target region is entered. Then, low thrust is switched off if the target region is pur-
sued (condition (b)), whereas it remains on if the target point represents the final 
objective (cyan arc). For the former case, Fig. 2b shows that the osculating elements 
(e, p) are kept in close proximity of the boundary of the target region, for the entire 
residual mission duration. Figure 3 depicts the mass ratio time histories. Pursuing 

Fig. 3  Mission scenario 1: mass ratio time histories, associated with target point (a) and target region (b)

Table 2  Final mass ratio for 
the 3 mission scenarios, with 
reference to the two operational 
conditions

Operational conditions Mission 
scenario 1

Mission 
scenario 2

Mission 
scenario 
3

Target point 0.632 0.652 0.638
Target region 0.824 0.853 0.831
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Fig. 4  Mission scenario 1, target point: trajectory and inclination time history (orbit acquisition phase)

Fig. 5  Mission scenario 2: orbit evolution with no control (red) and with nonlinear orbit control (blue 
and cyan) (Color figure online)

Fig. 6  Mission scenario 2: zoom on the terminal arcs in the (e,p)-plane: target point (a) and target region 
(b)
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the target region (final orbit (b)) implies saving a moderate yet relevant propellant 
amount with respect to point targeting (final orbit (a)). Nevertheless, the propellant 
consumption associated with the target point strategy is completely compatible with 
a mission duration of 3 years (cf. Table 2 and Fig. 3a). With reference to the latter 
strategy, Fig. 4b portrays the inclination time history, and points out that 87.5 days 
are needed to enter the desired polar orbit plane. Finally, Fig. 4a illustrates the low-
thrust trajectory, for the entire time of flight.

In the second mission scenario, the space vehicle would escape the lunar realm, 
in the absence of any control action. The related path in the (e, p)-plane is portrayed 
in red and denoted with “no control”. Escape corresponds to reaching eccentricity 
greater than 1. Instead, low thrust propulsion and nonlinear orbit control are able 
to drive the spacecraft toward either the target region or the target point. Figure 5 

Fig. 7  Mission scenario 2: mass ratio time histories, associated with target point (a) and target region (b)

Fig. 8  Mission scenario 2, target point: (a) trajectory and (b) inclination time history (orbit acquisition 
phase)
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Fig. 9  Mission scenario 3: orbit evolution with no control (red) and with nonlinear orbit control (blue 
and cyan) (Color figure online)

Fig. 10  Mission scenario 3: zoom on the initial arcs in the (e,p)-plane

Fig. 11  Mission scenario 3: zoom on the terminal arcs in the (e,p)-plane: target point (a) and target 
region (b)
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illustrates the related paths in the (e, p)-plane, whereas Fig.  6a shows a zoom on 
the terminal arc leading to the target point. Also in this case, the two paths associ-
ated with operational conditions (a) and (b) overlap until the target region is entered. 
Figures 5 through 8 are the counterparts of Figs. 1 through 4 for case 1, and simi-
lar considerations apply (Fig. 7). With reference to the target point strategy, Fig. 8b 
portrays the inclination time history, showing that 58.6 days are needed to enter the 
desired polar orbit plane. Finally, Fig. 8a illustrates the low-thrust trajectory, for the 
entire time of flight.

In the third mission scenario, the space vehicle would travel in close proxim-
ity of the Moon before escaping the lunar realm, in the absence of any control 
action. This circumstance is apparent by inspecting Figs. 9 and 10, which illus-
trate the ballistic path in red. The constraint on the minimum periapse radius 

Fig. 12  Mission scenario 3: mass ratio time histories, associated with target point (a) and target region 
(b)

Fig. 13  Mission scenario 3, target point: a trajectory and b inclination time history (orbit acquisition 
phase)
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is violated while the space vehicle is far from its periselenium. As a result, no 
lunar impact occurs, although the spacecraft approaches the Moon up to a min-
imum altitude of 511  km before escaping its gravitational attraction. Instead, 
low-thrust propulsion and nonlinear orbit control are able to drive the space-
craft toward either the target region or the target point. Figure 11a illustrates a 
zoom on the terminal arc leading to the target point. Also in this case, the two 
paths associated with operational conditions (a) and (b) overlap until the target 
region is entered (Fig. 12). Figures 9 and 11 through 13 are the counterparts of 
Figs. 1 through 4 for case 1, and similar considerations apply. With reference to 
the target point strategy, Fig. 13b portrays the inclination time history, showing 
that 79.7 days are needed to enter the desired polar orbit plane. Finally, Fig. 13a 
illustrates the low-thrust trajectory, for the entire time of flight.

From inspection of Figs. 3, 7, and 12 it is apparent that two phases exist: (i) 
orbit acquisition, corresponding to the maximum thrust magnitude (and faster 
mass decrease), followed by (ii) orbit maintenance, associated with intermedi-
ate, time-varying thrust magnitude (and reduced mass depletion, compared to 
the preceding phase). These two phases are encountered regardless of the final 
operational condition.

4.2  Capture Region

The preceding methodology is then applied to a large set of initial conditions. A 
number of different values are considered for the initial eccentricity e0 and semilatus 
rectum p0 . More specifically, equally-spaced values are assumed for both elements, 
with spacing set to 0.01 for e0 and 1000  km for p0 . Elements i0 , Ω0 , and �0 are 
identical to those reported in Table 1, for all cases. Moreover, two different initial 
conditions are assumed for the initial true anomaly, i.e. f0 = 0 or f0 = 180 deg . The 

Fig. 14  Orbit evolution in the (e, p)-plane, with initial condition at periselenium. a Natural dynamics: 
capture region (green), impact region (yellow), escape region (red). b Powered dynamics: capture region 
(green), escape region (red) (Color figure online)
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natural orbit dynamics is considered first, then low-thrust propulsion with nonlinear 
orbit control is employed, for an overall time of flight of 3 years.

Figure 14a illustrates—with different colors—the regions corresponding to lunar 
capture (for at least 3 years), impact, or escape (before 3 years have elapsed), under 
the assumption that the spacecraft is at periselenium at t0 ( f0 = 0 ). Figure 14b por-
trays the corresponding orbit evolution when low thrust and nonlinear orbit control 
are used. The line that appears in the lower part is associated with the minimum 
periselenium altitude, set to 100 km. It is apparent that the low-thrust capture region 
includes a large portion of initial conditions that would otherwise lead an unpow-
ered space vehicle to impact the Moon or escape its realm.

Similarly, Fig. 15a illustrates—with different colors—the regions corresponding 
to lunar capture (for at least 3 years), impact, or escape (before 3 years have elapsed), 
under the assumption that the spacecraft is at aposelenium at t0 ( f0 = 180 deg ). Fig-
ure 15b portrays the corresponding orbit evolution when low-thrust and nonlinear 
orbit control are used. It is apparent that the capture region includes again a large 
portion of initial conditions that would otherwise lead an unpowered space vehicle 
to impact the Moon or escape its realm.

Comparison of the preceding figures reveals that the use of low-thrust propulsion 
and nonlinear orbit control is more advantageous if it is ignited when the spacecraft 
is at aposelenium at the initial epoch. In fact, in the 

(
e0, p0

)
-plane the region associ-

ated with lunar capture when f0 = 180 deg is much larger than that corresponding to 
f0 = 0 . Enhanced effectiveness of low-thrust nonlinear orbit control, if it is ignited at 
aposelenium, represents a remarkable finding, which deserves further analysis. As a 
first outcome of this study, orbit propagations point out that escape takes place in the 
very early phases after the spacecraft is released, i.e. before completing the first orbit 
about the Moon. This behavior occurs both for unpowered spacecraft and for those 
initial conditions that yield escape in spite of the use of low-thrust propulsion. This 
fact implies that if nonlinear orbit control avoids escape in the very early phases of 

Fig. 15  Orbit evolution in the (e, p)-plane, with initial condition at aposelenium. a Natural dynamics: 
capture region (green), impact region (yellow), escape region (red). b Powered dynamics: capture region 
(green), escape region (red) (Color figure online)
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spaceflight, then the space vehicle remains captured in the proximity of the Moon, 
so that low-thrust propulsion can successfully drive it toward the final desired opera-
tional conditions. Therefore, for the purpose of avoiding escape after spacecraft release, 
it is vital that low thrust be able to promptly reduce the orbit eccentricity. Ignition at 
aposelenium can be shown to be more effective than ignition at periselenium through 
the approximate analysis that follows. If 

(
ar, a� , ah

)
 represent the components of the 

non-Keplerian acceleration in the LVLH-frame, then the Gauss equations for the orbit 
eccentricity and the true anomaly are [29]

where in the last step the right-hand side of Eq.  (46) is reduced to the first term, 
which prevails over the remaining ones. Using these relations, the derivative of e 
with respect to f, denoted with e′ , is obtained,

The thrust control law that minimizes e′ is sought, under the assumption that (
ar, a� , ah

)
 only include the contribution due to propulsion. First, the two compo-

nents 
(
ar, a�

)
 , which appear in Eq. (47), are expressed in terms of acceleration mag-

nitude aT and angle �,

and Eq. (47) is rewritten as

Then, minimization of e′ leads to

and the minimum value of e′ is

(49)ė = ar

√
p

𝜇M

sin f + a𝜃

√
p
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e + e cos2 f + 2 cos f

1 + e cos f
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√
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√
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e
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√
p
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e(1 + e cos f )
≃
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p2

�M
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(1 + e cos f )3
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The preceding expression provides an indication on the sensitivity of e′ with respect 
to the true anomaly f, when the thrust acceleration is chosen with the intent of mini-
mizing e, which is the key requirement in the early phases of spaceflight, to avoid 
escape. Figure 16 portrays the auxiliary function g(f , e) ∶=

(
�Me

�
)/(

p2aT
)
 , for dif-

ferent values of e (= 0.6, 0.7, 0.8, 0.9). Inspection of this figure points out that for all 
values of e, function g has minimum values at f = � , and this means that the effect 
of low thrust is amplified at aposelenium if compared to what occurs at perisele-
nium. Although orbit perturbations are neglected, the preceding analysis provides 
a justification of the enhanced effectiveness of low-thrust propulsion in avoiding 
escape, when ignition occurs at aposelenium.

As a final remark, it is worth noticing that in all cases, if low-thrust propulsion is 
ignited, then no impact with the lunar surface occurs (cf. Figures 14b and 15b).

5  Concluding Remarks

Nonlinear orbit control with the use of low-thrust propulsion is proposed as an effec-
tive strategy for autonomous guidance of a space vehicle directed toward the Moon. 
Orbital motion is described in an ephemeris model, and modified equinoctial ele-
ments are employed, for the purpose of describing the spacecraft dynamics relative 
to the Moon. All the relevant perturbations, i.e. third body gravitational attraction 
due to the Sun and the Earth, as well as several relevant harmonics of the selenopo-
tential, are included in the dynamical modeling. Unfavorable initial conditions, asso-
ciated with weak, temporary lunar capture, are considered, as representative condi-
tions that may be encountered in real mission scenarios. These may occur when the 
spacecraft is released in nonnominal flight conditions, which would naturally lead it 

(55)e� = −aT
p2

�M(1 + e cos f )2

√
sin2 f +

(
e + e cos2 f + 2 cos f

1 + e cos f

)2

Fig. 16  Function g( f,e), related to the sensitivity of e’ with respect to f when low thrust minimizes e’
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to impact the Moon or escape the lunar gravitational attraction. Instead, low-thrust 
propulsion, in conjunction with nonlinear orbit control, is proven to be an effec-
tive strategy to drive the spacecraft toward a stable, specified orbit about the Moon 
(e.g., a low-altitude polar orbit). To do this, a saturated feedback law for the low-
thrust magnitude and direction—with an upper bound on magnitude—is described 
and applied, and is demonstrated to enjoy quasi-global analytical stability proper-
ties. Moreover, the operational conditions are proven to correspond to the only sta-
ble equilibrium of the closed-loop dynamical system, and this ensures numerical 
convergence toward the target orbit (in global sense). The sufficient conditions for 
asymptotic stability consider the perturbing acceleration term, and lead to identify-
ing two types of arcs: (i) maximum-thrust arcs and (ii) time-varying, intermediate-
thrust arcs. The feedback control law at hand does not require any offline reference 
trajectory. Therefore, it is effective as an autonomous real-time guidance strategy, 
even in the presence of unpredictable nonnominal flight conditions. Two types of 
target orbits are assumed: (a) polar circular orbit with specified radius, and (b) polar 
elliptic orbit with a minimum value of periselenium radius and a maximum value 
of aposelenium radius. These two final conditions can be represented in the (e,p)-
plane, where p and e denote the orbit semilatus rectum and eccentricity, respectively. 
Three illustrative examples are considered, corresponding to different initial condi-
tions, associated with a variety of uncontrolled trajectory evolutions. In all of these 
cases, orbit propagations demonstrate that low-thrust nonlinear orbit control repre-
sents an effective real-time feedback strategy for achieving lunar capture ad conver-
gence toward an operational orbit, even starting from unfavorable initial conditions 
that would naturally lead the space vehicle to impact the Moon or escape the lunar 
gravitational attraction. Driving the spacecraft toward orbit (b) and the subsequent 
maintenance maneuvers require about 15% of the initial mass, for a mission duration 
of 3 years. If orbit (a) is pursued, propellant consumption increases, but the mass 
budget is still favorable and completely compatible with a 3-year mission. Then, a 
large set of initial conditions was considered. In most cases, the spacecraft would 
naturally impact the Moon or escape its gravitational attraction. Instead, if nonlin-
ear orbit control with low-thrust propulsion is employed, impact is avoided and the 
capture region is enlarged considerably, especially if the thrust is ignited when the 
spacecraft is at aposelenium. The numerical results over a large set of initial condi-
tions represent a further confirmation on the utility and effectiveness of low-thrust 
nonlinear orbit control in achieving lunar capture and final orbit acquisition. Exten-
sion of this study may be pursued with the aim of identifying a feedback control law 
able to drive the space vehicle toward non-Keplerian orbits, associated with time-
varying orbit elements. As a remarkable example of current interest, the operational 
path of the Lunar Gateway is a non-Keplerian near rectilinear Halo orbit, and gen-
eralization of nonlinear orbit control to target this type of trajectory would certainly 
represent a valuable extension of this research, worth of future investigation.
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