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stract

ne remodelling is a self-adaptive process occurring in bone living tissue to optimize its mechanical respon
environmental demands. Some cells, namely osteocytes, monitor this response and communicate with oth
ls, osteoblasts, and osteoclasts, in charge of synthesizing or reabsorbing solid bone in order to acquire t
chanical strength required for bone functioning. In this paper, we employ a diffusive model of a mechanic
mulus to describe at the organ level the mechanisms involved in the transduction of the information an
ivation of the remodelling process. This stimulus is produced after a bone deformation, and thus w
ume it depends on strain energy density. The system that we analyse is a bone sample with a resorbab
ft. Mainly, we focus on the interaction between the two components of the system. From a mechanic
int of view, we consider a mixture of two solid phases described by a poro-viscoelastic model. The resul
w a general behaviour that matches the expected outcomes and confirms the usefulness of the propos
del.

ywords: Bone remodelling, bone-graft interaction, porous resorbable scaffold, Fick’s laws of diffusion,
-mechanical stimulus

Introduction

Bone is a biological tissue able to adapt itself to its environment. While conceiving a similar artific
terial remains a challenge [1, 2], one can consider integrating a synthetic graft into the bone structure
ain some effective clinical results. In this context, the main objective is to optimize the mechanical an
metrical properties of the graft in order to promote bone healing and remodelling. Our primary foc
e is, then, to analyse the interaction between the graft and the bone with a computationally efficient an
iable model. A few elements must be considered. First, the graft must be porous and sufficiently tough
port the external mechanical loads. Second, the stimulus [3, 4, 5] that activates the adaptation proce
a crucial role in the remodelling phenomenon. In fact, it can be considered as a macroscopic source
alicular flow, representing the mechanical state of the tissue, and may influence the cellular behavio
r time [6, 7, 8]. Third, we assume that both graft and bone micro-structures are very similar and c
refore be described within the same formulation but with different mechanical properties. Finally, in o
vious work [9], a second gradient theory was employed to capture the effects of the bone micro-structu
e to its multi-scale organization and heterogeneity [10, 11, 12, 13, 14, 15]. Such a theory is consistent wh
sidering long trabeculae whose mechanical response may have macroscopic consequences. Here, we ha
de the hypothesis that the trabeculae are rather short and stocky, thus, a first gradient theory is sufficie
describe their behaviour [16, 17]. Additionally, we want to simplify our mechanical approach to focus mo
the mechano-biological aspect of the problem, i.e., the mechanical stimulus.
The rationale of the paper is to examine the simplified case of isotropic bone tissue in the presence of
ft as a preliminary step to move forward with the more realistic case of anisotropic or orthotropic tiss
further development. The central aspect we investigate herein is the effects of the stimulus treated as
nal that can diffuse in the bone and possibly in an artificial porous graft employed as a scaffold for t
thesis of new bone. For anisotropic or orthotropic tissues, we have to deal with the evolution of ma
terial parameters; however, for each of them, we can imagine using the same transmission paths of stimul
nalling that we have examined in the present work.
print submitted to Mechanics Research Communications January 27, 2023
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The model

. Mechanical formulation
For the present study, we employ the same system as the one analysed in [9], consisting of trabecul

ne tissue surrounding an artificial graft. The aim of the graft is to promote the healing process by ensuri
echanical junction between the broken bone and a scaffold, which facilitates the remodelling proces

th the bone and the graft are considered porous materials. The former shows different kinds of porosit
h as lacunar-canalicular, inter-trabecular, or collagen-apatites porosity [18]. The latter is constituted
erconnected inner cavities that make cells’ functions (i.e., migration and colonization) possible as well
supply of nutrients.
The displacement u and the current Lagrangian porosity ϕ are defined as

u = x − X
ϕ(X, t) = n[χ(X, t)]J(X, t)

ere X is any particle of the system in the reference configuration, x = χ(X, t) is the position of the partic
in the current configuration, n[χ(X, t)] is the Eulerian porosity and J = det(F) = det(∇χ(X, t)) [19].
During the evolution, the stiffness of the bone/graft system may assume much softer values than t

tial ones, and consequently, the deformed configuration can be different from the reference one. To
sistent, we introduce a nonlinear behaviour in the simplest possible way, as follows, assuming that w
ain in the elastic response of the considered system. Moreover, the reason for such a choice lies also
complexity of bone microstructure, i.e., the trabeculae, that sometimes involves non-linear behaviou

withstanding small strain regime as, for instance, documented in [20]. We refrain here from conside
material nonlinearities because we want to focus our attention on the stimulus model rather than t

chanical behaviour.
Thus, the finite strain tensor Eij(X, t) and the change of the Lagrangian porosity ζ(X, t) read

Eij(X, t) =
1

2
(ui,j + uj,i + ui,kuk,j)

ζ(X, t) = ϕ(X, t)− ϕ∗(X, t)

h ϕ(X, t) and ϕ∗(X, t) the Lagrangian porosities at the current and reference configurations, respective
The system is constituted of two parts, the bone and the bio-resorbable graft, but it can be studied
hole by using the mixture theory. More specifically, the bone shows a solid phase and a porous spa
ically filled with bone marrow, interstitial fluids, blood, bone cells, etc. The graft is porous, too, and i

res are filled with organic matter as soon as it is implanted [4, 21, 22]. Although the initial conditions f
two parts are very similar, they evolve rather differently throughout time. In fact, during the remodelli
cess, in the graft, they may coexist three phases: bio-resorbable material, bone, and physiological fluid
According to the mixture theory, ϕ∗(X, t) can be written as

ϕ∗(X, t) = 1−
(
ρ∗b(X, t)
ρ̂b

+
ρ∗g(X, t)
ρ̂g

)
(

ere ρ∗
b (X,t)
ρ̂b

and ρ∗
g(X,t)

ρ̂g
are the volume fractions of the constituents and ρ∗b and ρ∗g are the appare

ss densities of bone tissue and graft artificial material in the reference configuration, respectively. T
erimposed hat denotes the mass densities evaluated considering the precise volume occupied by tho

ases. Since the apparent mass densities of different phases depend on environment mechanical excitatio
time, we assume that the reference configuration is linked to the apparent mass density in the referen

te, i.e., when zero stress occurs. The current porosity ϕ can be expressed as

ϕ = ϕ∗ + ζ (

The energy density can be expressed as [23, 24]
2
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E = Us + Uf + Ufg + Ufm =

1

2
λ(ρ∗b , ρ

∗
g)EiiEjj + µ(ρ∗b , ρ

∗
g)EijEjj

︸ ︷︷ ︸
Us

+

1

2
K1(ρ

∗
b , ρ

∗
g)ζ

2

︸ ︷︷ ︸
Uf

+
1

2
K2ζ,iζ,i

︸ ︷︷ ︸
Ufg

−K3(ρ
∗
b , ρ

∗
g)ζEii︸ ︷︷ ︸

Ufm

(

ere all the material parameters are considered as a function of the apparent mass density of the bone an
graft evaluated in the reference configuration. The subscripts stand for solid part (s), fluid one (f),
tribution related to the gradient of porosity (fg), and a fluid-solid coupling (fm), in the given order. Su
expression is the simplest when considering bone and graft as isotropic materials.
The Lamé coefficients λ and µ can be written as

λ =
νY (ρ∗b , ρ

∗
g)

(1 + ν)(1− 2ν)
, µ =

Y (ρ∗b , ρ
∗
g)

2(1 + ν)
(

h

Y = Y max
b

(
ρ∗b
ρ̂b

)2

+ Y max
g

(
ρ∗g
ρ̂g

)2

(

The three parameters K1,K2, and K3 allow taking into account the presence of the pores and their effec
the macroscopic deformation of the system under study. K1 is a compressibility coefficient defined in
the volume of fluid released from unit bulk volume per unit decrease in pore pressure under the conditi
constant confining stresses [23]. K2 is the aptitude of the system to oppose the establishment of a gradie
porosity, and it is assumed to be constant [9]. Finally, K3 couples the micro-structure due to pores an
bulk solid [9, 23]. Some procedures for the evaluation of material parameters in complex systems can

nd in [25, 26, 27, 28, 29]. The expressions of K1,K2 and K3 can be found in [9]. As mentioned in [
eral sources of dissipation may appear in the system at the interface between bone and graft, in the flu
t fills the pores, in the bone solid matrix, or at the interface between the solid and the fluid phase f
tance. We have decided to consider all these sources from a macroscopic point of view using a Raylei
ctional that can be explicitly written as

2Ds = 2µv

(
ĖijĖij −

1

3
ĖiiĖjj

)
+ kvĖiiĖjj (

ploying a Kelvin—Voigt model, where Ė is the solid-matrix rate of deformation and µv and kv are tw
cous coefficients.
In the system, at least two time scales should be considered. On the one hand, the one related to t
lied mechanical loads like walking, which is in the order of a few seconds [30]. On the other hand, t
related to the remodeling process, which is in the order of a few months [31]. Here, we only take in

ount the latter.
We apply the Generalized Principle of Virtual Work as follows

∫

B∗
δE dB∗ +

∫

B∗

∂Ds

∂Ėij

δEij∂B∗ =

∫

B∗
δW extdB∗ (

ere δW ext describes the virtual work done by external loads, which can be written as

δW ext =

∫

∂τB∗
τiδuidS

∗ +
∫

∂ΞB∗
ΞδζdS ∗ (

ere the first term takes into account the forces per unit surface (i.e. τi on the part of the boundary δτB
the second term is related to the effects of a pore pressure Ξ on the boundary δΞB∗.

The interactions between the bone tissue and the artificial bio-resorbable graft are taken into account v
extra contribution of the virtual work as it has been proposed in [9].
3
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. Remodelling formulation
In this section, we describe the bone remodelling process once the graft has been implanted. The ev
ion of the apparent mass density of both the bone (ρb) and the graft (ρg) is described in the referen
figuration. More specifically, we express the time derivatives of the mass densities as a function of
chanical stimulus S(X, t) and the porosity ϕ(X, t) as follows [4]





∂ρ∗b
∂t

(X, t) = Ab(S)H(ϕ) with 0 < ρ∗b ≤ ρ̂b

∂ρ∗g
∂t

(X, t) = Ag(S)H(ϕ) with 0 < ρ∗g ≤ ρ∗g(X, 0)

(

and Ag being two functions assumed to be piece-wise linear as follows

A{b,g}(S) =

{
s{b}S for S ≥ 0

r{b,g}S for S < 0
(1

ere the coefficients s and r are the rates of growth and resorption, respectively and the symbol b, g stan
the alternative between b, i.e., bone, and g, i.e., graft.
The function H(ϕ) accounts for the porosity that plays a critical role during the remodelling process.
t, the pores allow the bone cells to reach the more remote zones of the system and operate to remo
synthesize bone tissue as demanded by the environmental external loads. Therefore, two scenarios c
ear: either i) the porosity is low, there is no room for the bone cells and the densities do not change or
porosity is high, the remodelling cannot take place. Therefore, we have assumed a maximal value of
the porosity of about 0.6, which provides the most efficient conditions for bone remodelling when porosi
ar away from the two extreme cases. [32].
The mechanical stimulus S is conventionally sensed by the osteocytes and consents bone to monitor an
pt its overall state. Here, we assume that both the osteoclasts and osteoblasts modify the solid phas
, consequently the mechanical properties (i.e. the stiffness) of the system. In the present work, t

mulus has been expressed through a diffusion equation as follows [32]

∂S

∂t
− κ∆S + βS = f(r∗b )(Us + Uf + Ufm) (1

ere κ and β are two scalars and the latter is activated only when S > 0. The function f(r∗b ) is a prop
nalling weight. The initial conditions for the stimulus are set to be equal to 0 in the graft and 4.275×10−

the bone, corresponding to an equilibrium state, namely homeostasis. Regarding the boundary condition
set Neumann ones, assuming no stimulus flux is exchanged with the outside.
In our formulation, we remark that boundary conditions affect the mass density evolution only indirect
e crucial contribution is due to the boundary conditions specifying the mechanical interaction with t
ernal world and driving the bone functional adaptation. A secondary effect worth mentioning comes fro
boundary conditions of the stimulus equation since the actual distribution of the stimulus, and then t

cture” of the mechanical state, depends on it.

Numerical implementation for an illustrative case

In this section, we detail the numerical implementation of our formulation for an illustrative two-dimensio
) case. As in [9], we consider a beam of length L = 2 cm and width w = 0.5 cm. The beam is constitut

three regions: two bone regions (B) and the central one representing the graft (G). The material sequen
hen BGB. The left side of the beam is constrained to avoid longitudinal displacements but keeping fr
transverse ones (see Fig. 1). On the right side, a force per unit line f(X2, t) with a symmetric line

tribution along the transverse direction is applied. The longitudinal component of the force can be writt

f(X2, t) =

(
X2

w
− 1

2

)
[F0 + F1 sin(Ωt)] (1

ere F0 = ψY max
b and F1 = F0/2 are two nominal forces and Ω is the frequence. The model paramete

reported in Table 1.
The numerical simulations have been performed through a finite element analysis using COMSOL Mu
hysics.
4
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ρ̂b (kg/m3) 1800
ρ̂g (kg/m3) 1800

ν 0.3
Y max
b (GPa) 17
Y max
g (GPa) 13.6
νv (N s/m2) 2.57x1012

kv (N s/m2) 2.06x1012

sb (s/m2) 1.27x10−7

rb (s/m2) 1.06x10−7

rg (s/m2) 1.59x10−7

κ (m2/s) 1.6x10−4

β 0.6
ψ (N) 1.68x10−3

Ω (Hz) 8.27x10−6

Table 1: Material parameters of the model used in the numerical simulations.

ure 1: Schematic representation of the 2D system under study. The sample is constituted by two bone (B) regio
a graft (G) region in the middle in a BGB sequence.

Results and discussion

We have tested two sizes of the graft, specifically Lg = 0.8 cm and Lg = 0.4 cm, corresponding to 40
20% of the total length L of the specimen. At the initial configuration, the volume fraction of the bo

) and the graft (ρ
∗
g

ρ̂g
) have been fixed to 0.5. To be consistent with a practical case and to be able

reciate the effects of mechanical stimulation on the remodelling process, the analysed time period is equ
15 weeks.
In Fig. 2, we show the volume fraction of bone (2a and b) and graft (2c and d) at the final configurati
the long (2a and c) and short (2b and d) graft, respectively. One can observe that for both long and sho
fts, bone has been synthesized also in the central zone where the graft is implanted. The results depen
the initial distribution of the stimulus. In fact, at the beginning of the simulation, the stimulus is equ
zero in the graft (i.e. no osteocytes are present), whereas, at the end of the simulation, the stimulus h
used inside the graft inducing the synthesis of bone in this region too. In this test, newly synthesised bo
onises the outer part of the sample preferentially, including the graft. On the contrary, the central pa
haracterized by losing graft mass without a relevant gaining of bone tissue. This evolution agrees wi
natural distribution of bone density, which is typically denser in the outer part of bones and has hi

rosity in the inner regions. According to functional adaptation, the mass density increases where the stra
ore elevated. Indeed, it is worth noting that the obtained mass density pattern matches the distributi

the strain energy that has been used here as a descriptor of the mechanical state of the bone system,
hypothesised.
In Fig. 3, the distribution of the change of porosity ζ at the initial (3a and c) and at the final (
d) configurations for the long (3a and b) and short (3c and d) graft is reported. Fig. 3 shows th
deformation involving the porosity is localised in the vicinity of the outer regions, while no significa

ormation is observed in the central zone, as expected. We can observe a low level of porosity deformati
the differences between the bone and the graft regions at the end of the simulation.
5
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ure 2: Plots of the volume fraction of bone ρ∗b
ρ̂b

(a and b) and graft
ρ∗g
ρ̂g

(c and d) at the final configuration f
= 0.8 (a and c) and Lg = 0.4 (b and d).

The average stored energy decreases over time because the mass density of the system increases an
sequently, its overall stiffness, which leads to a lower strain (Fig. 4). As for the porosity ζ, we al
erve a clear difference between the bone and the graft since a different distribution of matter, namely t
centage of the phases, is present in the various regions.
Overall the results show that with a sufficiently high external load, the graft can be partially fulfilled

ne. Additionally, the final composition of the system (i.e. bone versus graft) depends also on the rates
ne synthesis and resorption of both phases. Finally, even though the formulation is different from the o
sented in [9], we have obtained similar results for the synthesis/resorption of the bone/graft sample.
previous work [9], the stimulus was directly evaluated by an explicit integral form. On the contrary,
present work, we propose to apply the diffusion equation to assess the stimulus in a complex system ma

bone and a resorbable artificial material. This approach is computationally more efficient since solving
E is more straightforward numerically than computing a convolution integral for each time step. Fro
hysical perspective, considering the stimulus as a “vehicle” carrying the state information of the tiss
diffusing within it seems to be a rather educated guess. Naturally, there are some differences in t

ults of the two methods. For the direct integral formulation, setting the influence distance of osteocyt
ch smaller than the sample size allows us to see a more significant difference in the evolution of gra
ss density for different sizes. Instead, in the present case, the diffusion character of the stimulus combin
h the sink term of its metabolic resorption makes the differences in the mass evolution for different graf
s marked at the scale we examined. However, this is just preliminary work to understand if the propos
mulation is able to cover some typical behaviours that occur in the remodelling process. We believe th
roach is promising and deserves further investigation because of the obtained results.
Finally, to corroborate the proposed continuum approach, we can consider that using a micro-comput
ography (micro-CT) analysis, it is possible to obtain a detailed picture of the micromorphology of tr
6
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ure 3: Distribution of the change of porosity ζ for Lg = 0.8 (a and c) and Lg = 0.4 (b and d) at the beginning
c) and at the end of the simulation (b and d).

ular bone tissue, including the presence of a bioresorbable graft, experimentally. With this informatio
apparent mass density of the bone system can be obtained and, therefore, compared with the numeric
ulations performed.
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