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Abstract: Exploration of Venus is recently driven by the interest of the scientific community in
understanding the evolution of Earth-size planets, and is leading the implementation of missions that
can benefit from new design techniques and technology. In this work, we investigate the possibility
to implement a microsatellite exploration mission to Venus, taking advantage of (i) weak capture, and
(ii) nonlinear orbit control. This research considers the case of a microsatellite, equipped with a high-
thrust and a low-thrust propulsion system, and placed in a highly elliptical Earth orbit, not specifically
designed for the Earth-Venus mission of interest. In particular, to minimize the propellant mass, phase
(i) of the mission was designed to inject the microsatellite into a low-energy capture around Venus, at
the end of the interplanetary arc. The low-energy capture is designed in the dynamical framework of
the circular restricted 3-body problem associated with the Sun-Venus system. Modeling the problem
with the use of the Hamiltonian formalism, capture trajectories can be characterized based on their
state while transiting in the equilibrium region about the collinear libration point L1. Low-energy
capture orbits are identified that require the minimum velocity change to be established. These
results are obtained using the General Mission Analysis Tool, which implements planetary ephemeris.
After completing the ballistic capture, phase (ii) of the mission starts, and it is aimed at driving the
microsatellite toward the operational orbit about Venus. The transfer maneuver is based on the use of
low-thrust propulsion and nonlinear orbit control. Convergence toward the desired operational orbit
is investigated and is proven analytically using the Lyapunov stability theory, in conjunction with the
LaSalle invariance principle, under certain conditions related to the orbit perturbing accelerations and
the low-thrust magnitude. The numerical results prove that the mission profile at hand, combining
low-energy capture and low-thrust nonlinear orbit control, represents a viable and effective strategy
for microsatellite missions to Venus.

Keywords: Venus; low-energy capture; nonlinear orbit control; low-thrust propulsion

1. Introduction

The exploration of Venus has captivated scientists and space enthusiasts since the
beginning of the space age. In 1962, the Mariner II probe performed a close flyby of Venus,
collecting crucial atmospheric data and marking the first successful interplanetary mis-
sion [1,2]. Following this, the Venera program accomplished noteworthy achievements,
including the first impact on another celestial body (Venera 3, 1965) and successful atmo-
spheric entry (Venera 4, 1967). Subsequently, the program achieved data transmission
(Venera 7, 1970) and imagery capture (Venera 9, 1975) from the surface of Venus [3,4]. These
early missions were primarily dedicated to the landing of probes on the Venusian surface,
and it took 13 years after Mariner II for the deployment of the first orbiter, Venera 9.

Starting from the late 70’s and through the 80’s, the interest in comprehending Venus’s
surface and atmosphere prompted the development of orbiters. Data from the Pioneer
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Venus 1–2 spacecraft (1978) allowed producing the first topographical map of Venus surface
and provided atmospheric data within an altitude range of 10 to 50 km [5]. These results
were later improved by Magellan (1989), offering a high-resolution synthetic aperture radar
map of the Venusian surface with details down to 120 and 300 m [6]. Furthermore, Venus
Express (2005) generated a temperature map of the planet’s southern hemisphere and
collected information to study the upper atmosphere [7].

To date, the only spacecraft orbiting Venus is Akatsuki (2010), operated by JAXA, ded-
icated to investigate Venus’s climate. However, a renewed interest in the planet’s evolution
and human space exploration is leading the design of novel mission architectures [8–11].
In this context, Haibin et al. explored the feasibility of fast low-energy halo-to-halo trans-
fers to reduce fuel consumption and flight time with respect to traditional solutions [12].
Zubko et al. proposed the use of resonant orbits to expand landing areas and ensure
landing in the desired region [13,14]. This approach could even be extended to transfer an
orbiter from Earth to Venus using a free-impulse flyby of an asteroid [15]. Heiligers et al.
studied the application of solar sails to maintain pole-sitters at Venus, enabling continuous
planetary polar observation [16]. Girija et al. expanded the use of aerocapture at Venus,
demonstrating its effectiveness in deploying satellites in low-altitude circular orbits with
different inclinations [17]. The problem of rideshare launches to Venus was also addressed
by Graham et al., who combined patched perturbed Sims–Flanagan trajectories and low-
thrust propulsion to design an Earth-Venus trajectory which concludes in a weak capture
around the arrival planet [18]. Additionally, in the broader context of space exploration,
the choice of a nominal space telescope orbit around the Sun-Venus L2 libration point
has been discussed by Shirobokov et al., emphasizing its appeal for observing potentially
hazardous asteroids approaching Earth from the daytime side of the sky [19].

In this work, we develop an Earth-Venus mission which leverages the use of traditional
high-energy interplanetary transfers, low-energy captures and nonlinear orbit control for
low-thrust propulsion to inject a spacecraft into any desired orbit at Venus. Low-energy
trajectories are special solutions of the restricted 3-body problem, whose applications were
extensively investigated in the past decades [20–25]. Their use in the design of an Earth-
Venus transfer, though attractive because it leads to savings in the total delta-V (propellant
mass) required [26,27], has a major drawback in the longer transfer time. The combined
use of high- and low-energy trajectory, developed here, allows preserving the saving
in propellant mass while limiting the increase in the transit time [28]. Nonlinear orbit
control, implemented through an original feedback control law, and low-thrust propulsion
allow maneuvering the spacecraft from the capture orbit to the target one [29].Two target
orbits, originally selected for the Venus Flagship Mission by the Goddard Space Flight
Center, are considered in this study: (i) an elliptic orbit with semilatus rectum of 12,075.7 km,
eccentricity of 0.9011 and inclination of 90◦, and (ii) a circular orbit with the same inclination
and altitude of 300 km [30].

The paper is organized as follows. The mathematical model of the dynamical frame-
works are presented in Section 2. Nonlinear orbit control is developed in Section 3. Section 4
provides an overview of the mission profile and a description of the Earth-Venus inter-
planetary arc. The low-energy capture at Venus and the orbit injection are discussed in
Section 5, including also applications on the above-mentioned test cases. Final remarks are
reported in Section 6.

2. Orbit Dynamics

The Earth-Venus mission profile presented in this research is developed using two
dynamical frameworks that represent different limit cases of the general N-body problem.
The perturbed restricted two-body problem (R2BP), discussed in Section 2.2, is employed
when the spacecraft dynamics evolves under the dominating effect of a single (central)
celestial body. This applies to the interplanetary transfer arc, where the Sun serves as the
central body. Additionally, in the final phase where nonlinear control is applied, Venus acts
as the central body.
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When the gravitational attraction of the Sun and Venus are comparable, the space-
craft dynamics is investigated in the more general dynamical framework of the restricted
3-body problem. This circumstance occurs as the spacecraft evolves inside the equilib-
rium region surrounding the libration point L1 of the Sun-Venus system, as detailed in
Section 2.3. Given that Venus’s orbit is nearly circular, the CR3BP proves very adequate for
preliminary analysis.

2.1. Reference Frames

In this paper, the orbit dynamics of the perturbed two-body problem is described
using three distinct reference frames: the Local-Vertical Local-Horizontal (LVLH) frame,
the J2000 Earth-Centered Inertial (ECI) frame and the Venus-Centered Inertial (VCI) frame.
The LVLH frame, a non-inertial reference, has its origin at the center of mass Ob of the
spacecraft, while the ECI and VCI frames have their origins at the centers of mass of Earth
and Venus, respectively. The LVLH frame is defined by three axes: r̂, representing the
local-vertical direction pointing from the center of mass of the planet to Ob; ĥ, which aligns
with the angular momentum of the spacecraft’s orbit; and θ̂, completing the orthogonal
reference frame. In the VCI frame, denoted as (ĝ1, ĝ2, ĝ3), the third unit vector is aligned
with the planet’s rotational axis, pointing above the plane of the Ecliptic. ĝ1 is defined as
ĥ3 × ĝ3/|ĥ3 × ĝ3|, where ĥ3 is orthogonal to the Ecliptic plane. ĝ2 is derived by taking the
cross product of ĝ3 and ĝ1, ensuring that both axes lie within the Venusian equatorial plane.
Another useful reference frame, rotating together with the spacecraft, is associated with
(r̂, Ê, N̂), where Ê and N̂ are aligned with the local East and North directions, respectively
(varying depending on the orbiting planet). This frame introduces the angles ξ (absolute
longitude), φ (latitude), and ζ (heading). These angles establish the relationship between
the ECI or VCI frame and the (r̂, Ê, N̂)-frame, as well as the (r̂, θ̂, ĥ)-frame. To illustrate this
concept, let’s consider the VCI frame:[

r̂ θ̂ ĥ
]T

= R1(ζ)
[
r̂ Ê N̂

]T
= R1(ζ)R2(−φ)R3(ξ)

[
ĝ1 ĝ2 ĝ3

]T (1)

where Rj(χ) denotes the matrix associated with the elementary counterclockwise rotation
by an angle χ about axis j. Moreover, an additional relation between the VCI (or ECI) frame
and the (r̂, θ̂, ĥ)-frame can be written in terms of Keplerian orbit elements:[

r̂ θ̂ ĥ
]T

= R3(ω + θ)R1(i)R3(Ω)
[
ĝ1 ĝ2 ĝ3

]T (2)

reminding that (a, e, Ω, ω, i, θ) correspond to the semi-major axis, eccentricity, right as-
cension of the ascending node (RAAN), argument of pericenter, inclination, and true
anomaly, respectively.

2.2. Perturbed Two-Body Problem

The R2BP describes the motion of a negligible mass m̃ (i.e., the spacecraft) under the
gravitational attraction of a central body of mass m1 � m̃. The spacecraft dynamics is
expressed in the LVLH frame. To avoid singularities in the dynamic equations of motion,
the modified equinoctial elements are employed. These elements are defined as follows [31]:

x1 = a(1− e2)

x2 = e cos (Ω + ω)

x3 = e sin (Ω + ω)

x4 = tan i
2 cos Ω

x5 = tan i
2 sin Ω

x6 = Ω + ω + θ

(3)
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Using the modified equinoctial elements, the following form of the dynamic equations
of motion is obtained [29]:ż =

√
x1
µ G(z, x6)a

ẋ6 =
√

µ

x3
1
(1 + x2 cos x6 + x3 sin x6)

2 +
√

x1
µ

x4 sin x6−x5 cos x6
1+x2 cos x6+x3 sin x6

ah
(4)

where the dot sign indicates the derivative in time and z := [x1, x2, x3, x4, x5]
T ,

G(z, x6) =



0 2
x1

η 0

sin x6
(η+1) cos x6+x3

η − x4 sin x6−x5 cos x6
η x3

− cos x6
(η+1) sin x6+x3

η − x4 sin x6−x5 cos x6
η x2

0 0 1+x2
4+x2

5
2η cos x6

0 0 1+x2
4+x2

5
2η sin x6


(5)

η = 1 + x2 cos x6 + x3 sin x6 (6)

and a = [ar, aθ , ah]
T is the net acceleration acting onto the satellite, given by the sum of the

thrust acceleration (aT) and the acceleration due to orbital perturbations (aP).
The thrust acceleration acting onto the spacecraft during an orbital maneuver is

determined by the ratio of the thrust force T to the spacecraft mass m̃. As the mass
decreases during the propelled phases, we introduce the variable x7 = m̃/m̃0, representing
the mass ratio, where m̃0 is the initial mass of the spacecraft. We can add another differential
equation to Equations (4) to express the rate of change of m̃, given by

ẋ7 = −uT
c

, with uT = |uT | ∈
[
0, u(max)

T

]
(7)

where uT denotes the ratio of T to m̃0, and c is the effective exhaust velocity of the propul-
sion system. Equation (7) allows us to rearrange the expression for the thrust acceleration as

aT =
uT

x7
(8)

In the analysis of the Venus arc, our model includes two significant perturbing factors:
the non-spherical nature of Venus’s gravitational field and the gravitational influence
exerted by a third celestial body, namely, the Sun. The former perturbations are modeled
through the spherical harmonic expansion of the gravitational potential (per unit mass).
This expansion is expressed in terms of Legendre polynomials, Plm

U =
µ

r

{
1−

∞

∑
l=2

(
RV
r

)l
Jl Pl0(sin φ)+

∞

∑
l=2

l

∑
m=1

(
RV
r

)l
JlmPlm(sin φ) cos

[
m(λg − λlm)

]}
(9)

where RV represents Venus’s equatorial radius, φ denotes the spacecraft’s latitude, and λg
its geographical longitude, measured from Venus’s prime meridian [32]. The corresponding
sidereal time, denoted as θG, is measured counterclockwise from ĝ3, which allows to
express the satellite’s geographical longitude as λg = ξ − θG. In this study, we consider all
harmonics up to l = m = 15 for the analysis of Venus [33]. The coefficients associated with
these harmonics are denoted as Jlm and λlm in Equation (9).

Within the
(
r̂, Ê, N̂

)
-frame, the gravitational acceleration acting upon the spacecraft

on Venus is obtained as

g = ∇U where ∇ = r̂
∂r
∂r

+
Ê

r cos φ

∂

∂λg
+

N̂
r

∂

∂φ
(10)
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The preceding equation, in conjunction with Equation (9), allows the calculation of the
three components of acceleration, namely, (gr, gθ , gh), in the LVLH frame.

Additionally, the contribution of the Sun is accounted for as a third-body
acceleration [34]

a(3B) = −µP

{
rP

r3
P
+

r− rP

[(r− rP) · (r− rP)]
3
2

}
(11)

where µP and rP respectively represent the gravitational parameter of the perturbing
body (mP) and the position vector of mP relative to m̃.

To summarize, during the interplanetary arc and the transfer from the capture orbit to
the target one, the spacecraft dynamics is modeled using Equations (4) and (7). The total
acceleration acting on the spacecraft is the sum of Equations (8)–(11).

2.3. Circular Restricted 3-Body Problem

The CR3BP describes the motion of a body of negligible mass m̃ under the gravitational
attraction of two celestial bodies with masses m1 > m2 � m̃, moving along circular orbits
about their common center of mass O [35]. In this work, the negligible mass m̃ represents the
spacecraft and the primaries are the Sun (m1) and Venus (m2). Because the primaries rotate
at a constant rate ω around O, the motion of the satellite can be conveniently described in a
rotating, or synodic, coordinate system centered in O, with axes x̂ pointing from m1 to m2,
ẑ orthogonal to the orbital plane of the primaries and ŷ completing the rectangular frame.
The dynamic equations governing the motion in the CR3BP are

ẋ = u
ẏ = v
ż = w

u̇ = 2v + x− 1− µ

r3
1

(x + µ)− µ

r3
2
(x− 1 + µ)

v̇ = −2u + y− 1− µ

r3
1

y− µ

r3
2

y

ẇ = −1− µ

r3
1

z− µ

r3
2

z

(12)

where µ = m2
m1+m2

, (x, y, z) and (u, v, w) are, respectively, the spacecraft position and veloc-
ity coordinates in the synodic frame, and ri indicates the distance between the spacecraft
and the i-th primary. It shall be noted that the set of Equations (12) is dimensionless, and the
corresponding dimensional values can be obtained by using the units of distance and time
expressed as {

DU = r12

TU = 1
ω

(13)

where r12 is the (constant) distance between the primaries.
The CR3BP admits 5 equilibrium points (Li), also named the Lagrange or libration

points, and one integral of motion, the Jacobi constant [36]:

C = −(ẋ2 + ẏ2 + ż2) + (x2 + y2) + 2
(

1− µ

r1
+

µ

r2

)
(14)

Indicating by C1 the value of the Jacobi constant calculated at L1, the libration point laying
on x̂ at −µ < xL1 < 1− µ, it can be proved that the spacecraft can transit between the two
primaries if and only if C < C1 [37]. This condition is pivotal to characterize low-energy
trajectories considered in this work, as detailed hereafter.
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Recalling that the Hamiltonian function of the CR3BP is by definition H = −C/2,
the system of Equations (12) can be rearranged in the form of Hamilton’s equations:

q̇ =
∂H
∂p

ṗ = −∂H
∂q

(15)

These equations can be linearized around the L1 equilibrium point by expanding the
Hamiltonian H as a power series and keeping terms up to second order. The corresponding
Hamiltonian position and conjugate momenta are defined as q =

[
x− xL1 , y, z

]T and
p =

[
u− y, v + x− xL1 , w

]T , respectively. The quadratic Hamiltonian function can be
written as:

H2 =
1
2
(p2

1 + p2
2 + p2

3 + 2p1q2 − 2p2q1)−
K
2
(2q2

1 − q2
2 − q2

3) = h (16)

with K = 1−µ

|xL1+µ|2 + µ

|xL1+µ−1|2 . In virtue of the linearization, this function satisfies the

relation H2 = 1
2 (C1 − C) = h, where h is an arbitrarily small constant named “energy level”.

The linear dynamical system obtained applying Equation (16) to Equation (15) has
one real (ρ) and two complex (iλ1, iλ2) eigenvalues. Based on Morse’s lemma, H2 can be
rearranged as the sum of three local integrals of motion, each associated with one of the
three eigenspaces mentioned above. This new form of H can be derived by applying a
canonical transformation by Siegel and Moser [σ, τ]T = TN [q, p]T , producing [38]:

Ĥ2 = ρσ1τ1 +
λ1

2
(σ2

2 + τ2
2 ) +

λ2

2
(σ2

3 + τ2
3 ) = h (17)

with σ1, τ1 ∈ R and σi, τi ∈ C, i = 2, 3. The long-term behavior of low-energy trajectories
and their osculating orbital elements can be characterized by their topological location
inside the phase space surrounding the libration point L1, which is referred to as the
“equilibrium region” and is defined by the following set of equations [39,40]:{

ρσ1τ1 +
λ1
2 (σ2

2 + τ2
2 ) +

λ2
2 (σ2

3 + τ2
3 ) = h

|σ1 − τ1| ≤ ε
(18)

where ε is an arbitrarily small constant. It is worth to clarify here that the second of
Equations (18) indicates that the spacecraft moves close to the equilibrium point. In fact,
if this condition is not verified, Ĥ2 does not provide an accurate description of the system
dynamics. Figure 1 shows a projection of the equilibrium region onto the [σ1, τ1] plane with
boundaries represented by the green dashed hyperbola (σ1τ1 = h/ρ) and the green straight
lines |σ1 − τ1| = ε. In the same figure, the flow associated to some classes of trajectories
is represented:

• σ1τ1 > 0 (solid black hyperbola), transit trajectories which cross the equilibrium region
multiple times (i.e., evolve alternately around one of the primaries)

• σ1τ1 < 0 (dashed black hyperbola), bouncing trajectories which may enter but never
cross the equilibrium region (they evolve around only one of the two primaries)

• σ1 = τ1 = 0, quasi-periodic orbits that evolve only within the equilibrium region
• σ1 = 0 (blue line) or τ1 = 0 (red line), trajectories asymptotic to or from the quasiperi-

odic orbits.

Moreover, as stated by Conley, trajectories close to asymptotic ones (σ1 → 0 or τ1 → 0)
represent long-term capture orbits, which evolve around either primary indefinitely over
time after crossing the equilibrium region once [39].

For the sake of clarity, the capture condition is henceforth expressed in terms of
position and velocity coordinates in the synodic frame, which are obtained by applying
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the inverse of the Siegel-Moser canonical transformation, followed by the conversion from
Hamiltonian to position space variables [41]:(

1 + 2γ2
)
(x− xL1) +

(
1− γ2

)
y + ρvx − ραvy → 0 (19)

with γ2 =

(
− µ

|xL1+µ−1|3 −
1−µ

|xL1+µ|3

)
and α = −2ρ/

(
ρ2 + γ2 − 1

)
.

The reader shall note that these properties are preserved also in the presence of a
fourth body introducing a small gravitational perturbation or if the motion of the primaries
is slightly elliptical [42,43]. Consequently, the CR3BP model is not only adequate, but also
acceptably accurate to design low-energy captures in the Sun-Venus system if further
perturbations are not considered.

m1 m2

τ1

σ1

Figure 1. Sketch of the flow in the equilibrium region projected onto the [σ1, τ1] plane: green
hyperbolas and lines indicate the boundaries, black hyperbolas represent transit (solid) and bouncing
(dashed) trajectories, straight lines represent trajectories asymptotic to (blue) and from (red) the
quasi-periodic orbit.

3. Nonlinear Orbit Control

We present a nonlinear feedback orbit control law for the guidance of a spacecraft
toward some desired conditions. These are specified in terms of modified equinoctial
elements, as a function of z only, in the following target set:

ψ(z) = 0 (20)

where ψ is a nonlinear vector function, such that dim (ψ) ≤ 5 (at most one condition can
be imposed for each orbital element contained in z).

The feedback control law is constructed using the direct method of Lyapunov, which
provides sufficient conditions for stability and avoids linearization around a reference
solution [44]. The following candidate Lyapunov function is introduced:

V =
1
2

ψTKψ (21)

where K is a diagonal matrix with positive constant elements (representing weight coef-
ficients selected a priori based on the application) and it is positive definite. It is easily
recognized that V ≥ 0, with V = 0 if and only if ψ = 0 (i.e., if the target state is reached),
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making it a definite positive function. Additional conditions must be satisfied for V to be a
valid Lyapunov function. First, we introduce the following auxiliary vector:

b := GT
(

∂ψ

∂z

)T
Kψ (22)

Two propositions establish the conditions for V to serve as a Lyapunov function and
lead to the identification of a saturated feedback law.

Proposition 1. If ψ and (∂ψ/∂z) are continuous, |b| > 0 unless ψ = 0, and u(max)
T ≥

x7|b + aP|, then the feedback control law

uT = −x7(b + aP) (23)

leads a dynamical system governed by Equations (4) and (7) to converge asymptotically to the target
set associated with Equation (20).

Indeed, the proposed control law ensures that V̇ = −bTb = −|b|2 ≤ 0 with V̇ =
0⇔ b = 0, which corresponds to the attracting set. Therefore, it establishes the candidate
function (21) as a valid Lyapunov function [44]. As a result, the control law (23) drives
the dynamical system to asymptotically converge to the target state defined by (20). This
control law incorporates feedback from the spacecraft state in all its terms, except for the
weight matrix. By leveraging the information provided by the state variables, the control
law dynamically adjusts the direction and magnitude of thrust at each iteration, enabling
the achievement of the desired orbital conditions. However, the physical feasibility of the
control lies in ensuring that the magnitude of uT does not exceed u(max)

T . Consequently,

the condition x7|b + aP| ≤ u(max)
T must be satisfied to ensure control feasibility. In cases

where this constraint is violated, an alternative feedback control law can be employed,
which operates in a saturated manner by applying maximum thrust.

Proposition 2. If ψ and (∂ψ/∂z) are continuous, |b| > 0 unless ψ = 0, and u(max)
T <

x7|b + aP| and bTaP ≤ 0, then the feedback control law

uT = −u(max)
T

b + aP

|b + aP|
(24)

leads a dynamical system governed by Equations (4) and (7) to converge asymptotically to the target
set associated with Equation (20).

It can be shown that for the given control law, V̇ ≤ 0 if bTaP < 0, while no conclusions
can be drawn if bTaP > 0 [45]. The sign of this term generally varies over time and relies on
the specific time-evolution of the dynamical system. Consequently, an additional sufficient
condition is necessary to ensure that V̇ < 0 even when bTaP > 0.

Proposition 3. If ψ and (∂ψ/∂z) are continuous, |b| > 0 unless ψ = 0, and x7|aP| < u(max)
T <

x7|b + aP|, then the feedback control law in Equation (24) leads a dynamical system governed by
Equations (4) and (7) to converge asymptotically to the target set associated with Equation (20).

Proposition 3 provides a valuable sufficient condition with a clear interpretation: if
the magnitude of the thrust acceleration, u(max)

T /x7, exceeds the perturbation acceleration
magnitude, |aP|, then V̇ < 0 unless b = 0.
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The two feedback laws presented in Equations (23) and (24) can be combined into a
single expression:

uT = −u(max)
T

x7(b + aP)

max
{

u(max)
T , |x7(b + aP)|

} (25)

This control law can be implemented using steerable and throttleable propulsive thrust,
where both the magnitude and direction can vary over time.

Propositions 1–3 establish sufficient conditions for Lyapunov stability. Consequently,
the asymptotic convergence is not necessarily compromised if V̇ becomes positive within
limited time intervals.

Nonlinear Control for Semi-Major Axis, Eccentricity, and Inclination

With the newly defined control law, we aim to achieve a specific target state identified
by the following orbit elements: semi-major axis, eccentricity, and inclination. This implies
that the other orbital elements are left free and can take any value within their respective
ranges. The desired conditions, denoted with the subscript d, can be expressed by the
following equations:

x1 = pd x2
2 + x2

3 = e2
d x2

4 + x2
5 = tan2 id

2
(26)

where pd = ad
(
1− e2

d
)

and ed < 1. We define the vector that represents the target set as:

ψ =

 x1 − pd
x2

2 + x2
3 − e2

d

x2
4 + x2

5 − tan2 id
2

 (27)

We analytically derive the components {b1, b2, b3} of the vector b to be used in the control
law (25):

b1 = −2 k2

√
x1

µ
(x3 cos x6 − x2 sin x6)

(
x2

2 + x2
3 − e2

d

)
(28)

b2 =
2
η

√
x1

µ

{
k1x1(x1 − pd) + k2

(
x2

2 + x2
3 − e2

d

)[
η2 + x2

2 + x2
3 − 1

]}
(29)

b3 =
k3

η

√
x1

µ
(x4 cos x6 + x5 sin x6)

(
x2

4 + x2
5 − tan2 id

2

)(
x2

4 + x2
5 + 1

)
(30)

where ki (i = 1, 2, 3) represent the elements of the diagonal matrix K.
We proceed with the identification of the attracting set, collecting all the dynamical

states that satisfy V̇ = 0⇔ b = 0. This set includes the target set since ψ = 0 implies b = 0.
However, the reverse is not guaranteed. As a matter of fact, considering the definition of
b, it includes the term ψ among its factors: if this term is zero, then b = 0. However, it is
possible for b to cancel out due to other terms. This implies that V̇ = 0 but V 6= 0, resulting
in the non-attainment of the target state. Hence, it is possible to reach the attracting set
without reaching the target set (b = 0, ψ 6= 0), leading to the settling of the Lyapunov
function at a nonzero steady-state value, thereby achieving a different condition than the
desired target.

In our case, the attracting set includes the following subsets [46]:

1. x1 = 0 (rectilinear trajectories);
2. x1 = pd, x2

2 + x2
3 = e2

d, and x4 = x5 = 0 (equatorial elliptical orbits with semilatus
rectum pd and eccentricity ed);

3. x1 = pd, x2
2 + x2

3 = 0, and x2
4 + x2

5 = tan2 id
2

(circular orbits with radius pd and
inclination id);

4. x1 = pd, x2
2 + x2

3 = 0, and x2
4 + x2

5 = 0 (circular equatorial orbits with radius pd);
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5. x1 = pd, x2
2 + x2

3 = e2
d, and x2

4 + x2
5 = tan2 id

2
(target set).

The application of LaSalle’s invariance principle allows ruling out subset 1.
Given the continuity of ψ and V̇ < 0 (except within the attracting set, denoted as A),

the condition V(z) < V(z0), where z0 represents the evaluation of z at the initial time,
defines a compact set C. To apply LaSalle’s principle, we seek the invariant set within the
intersection of A and C. The invariant set comprises dynamical states within the attracting
set of z that remain unchanged when a ≡ 0. Consequently, once the invariant set is reached,
b ≡ 0 at subsequent times, implying ḃ ≡ 0 while a ≡ 0. In this specific scenario, when
a ≡ 0, the time derivatives of the three components of b can be expressed as

ḃj =
∂bj

∂x6

√
µ

x3
1

η2 (j = 1, 2, 3) (31)

An examination of ḃj (j = 1, 2, 3) reveals that subset 1 (x1 = 0) does not belong to the
invariant set, thereby ruling out convergence toward rectilinear trajectories. On the other
hand, subsets 2 and 5 constitute the invariant set for the given problem [46].

It should be noted that convergence toward subsets 2 through 5 is purely theoretical,
as demonstrated in [46], with the interesting practical consequence that the dynamical
system under consideration exhibits global convergence toward the desired operational
conditions when the control law (25) is adopted.

4. Interplanetary Transfer

The mission begins at the satellite deployment on a Trans-Lunar Injection (TLI) trajec-
tory, chosen to be compatible with currently available rideshare opportunities, with orbit
parameters summarized in Table 1. Depending on mission requirements, the orbital in-
clination can be either 57◦ or the supplementary 123◦ (retrograde launch), while the right
ascension of the ascending node and the argument of perigee can be freely chosen.

Table 1. Orbit parameters for the spacecraft at deployment in the ECI reference frame.

Parameter Symbol [Unit] Value

Semi-major axis a [km] 216,500
Eccentricity e 0.969
Inclination i [deg] 57 or 123

Release Altitude h [km] 70,000

After being released from the launcher, the spacecraft undergoes a first
three-dimensional impulsive maneuver at the apogee to increase its energy and adjust
the inclination, which is necessary for the spacecraft to be on the right trajectory toward
Venus. The perigee altitude is raised to 1000 km, a value chosen to minimize the energy
losses by thrusting as close as possible to the attracting body (Earth) [34], while avoiding
crossing the Low Earth Orbit region. The selection of 1000 km, although arbitrary, appears
reasonable and serves as a mission constraint. Subsequently, at the perigee, another critical
impulsive maneuver called Trans-Venus Injection (TVI) is executed. With this maneuver,
the spacecraft is transferred to a hyperbolic orbit, reaching Venus at a pericenter altitude of
300 km. Upon reaching Venus, the mission explores two distinct scenarios to achieve cap-
ture around the planet and the attainment of the target orbits, with the goal of minimizing
the total propellant usage:

1. The first scenario, named “APO”, achieves this objective by first targeting a specific
“optimal apocenter” altitude for the initial capture around Venus and then employing
nonlinear low-thrust control to reach the desired target orbit.

2. The second scenario, labelled as “L1”, focuses on the use of low-energy captures
designed in the equilibrium region about L1.
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These scenarios will be comprehensively discussed in Section 5.
The preliminary interplanetary trajectory from Earth to Venus is designed using the

patched conics method, which simplifies calculations in a multi-body environment while
ensuring accuracy [34]. This method divides the trajectory into three arcs: a hyperbolic
departure trajectory from Earth, an elliptical heliocentric transfer arc, and a hyperbolic
arrival trajectory to Venus. The first and third arcs are considered within the sphere of
influence of the respective planet, with the Sun acting as the only attracting body beyond
these regions in the second arc. To determine the velocities at departure and arrival,
the hyperbolic excess velocities v∞1 and v∞2 are calculated. v∞1 represents the excess
velocity at departure relative to Earth, while v∞2 corresponds to the velocity at arrival at
Venus. These velocities are obtained by subtracting the velocities of Earth and Venus from
the departing and arriving velocities in the heliocentric frame, respectively. Specifically,
we have:

v∞1 = |v1 − vE| (32)

v∞2 = |v2 − vV | (33)

Here, v1 and v2 represent the departing and arriving velocities, while vE and vV
denote the velocities of Earth and Venus, respectively.

The mission timeline is set between 2029 and 2033, aligning with the launch periods
of notable future missions such as VERITAS, EnVision, DAVINCI+, Venera-D, and the
Venus Flagship Mission [10,47–50]. To analyze the optimal launch opportunities, porkchop
plots are generated for the years 2029–2033, covering each day of the year with a flight
duration (ToF, Time of Flight) ranging from 100 to 200 days. This range for the ToF is chosen
based on the consideration of a “short” journey to Venus, although more fuel efficient
longer duration solutions may exist. By examining the results of the porkchop plots, launch
opportunities that align with the available propulsion capabilities can be identified. These
plots depict contour lines of the hyperbolic excess velocity (v∞) in relation to combinations
of departure and arrival dates. They are generated by solving the Lambert’s problem
for all possible combinations of departure and arrival dates within specified intervals.
The algorithm outputs the initial and final velocities of the spacecraft, v1 and v2, along the
transfer heliocentric trajectory. Then the two hyperbolic excess velocities (v∞1 and v∞2 ) are
calculated using Equations (32) and (33). The DE405 ephemerides are used for the positions
and velocities of the two planets.

To systematically search for the optimal heliocentric transfer, the sum of the hyperbolic
excess velocities is minimized:

vTOT
∞ := v∞1 + v∞2 (34)

The desired solution corresponds to the best combination of departure date and
corresponding time of flight which minimizes vTOT

∞ . This overall minimization reduces the
propulsion effort required for departure from Earth and orbital insertion around Venus,
resulting in propellant savings.

An exhaustive investigation is conducted to find the minimum value of vTOT
∞ , with the

porkchop plots generated using MATLAB. The obtained solution is presented in Table 2.

Table 2. Solutions minimizing vTOT
∞ for the years 2029, 2031, and 2032. All times are given in UTC.

Departure Arrival ToF v∞1 v∞2 vTOT
∞

Date Date (Days) (km/s) (km/s) (km/s)

25 October 2029 05:00 3 April 2030 19:24 160.6 2.8098 4.8299 7.6397
23 May 2031 16:00 26 October 2031 13:36 155.9 2.5632 3.8096 6.3728

6 December 2032 05:00 12 May 2033 17:00 157.5 3.1757 2.7201 5.8958
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The porkchop plots, displayed in Figures 2 and 3, provide a visual representation of
the transfer options for the years 2029 to 2033, with a specific focus on 2032. The optimal
solution corresponds to a departure on 6 December 2032, and an arrival 158 days later on
13 May 2033. The resulting vTOT

∞ is calculated as 3.1757 km/s+ 2.7201 km/s = 5.8958 km/s.
Notably, this solution is located in the same region as the minimum arrival hyperbolic
excess velocity at Venus, rather than the departure from Earth. The trajectory corresponding
to this optimal solution, obtained using the Lambert problem solver algorithm, is depicted
in Figure 4. This trajectory serves as the baseline for the mission and is reproduced using
the General Mission Analysis Tool (GMAT) propagator [51], in a high-fidelity framework.

Figure 2. Porkchop plots for vTOT
∞ (km/s) from 2029 to 2033.

Figure 3. Focus on minimum solution in 2032; the marker indicates the minimum.

During our investigation, we explored alternative trajectories and discovered a more
advantageous solution that involved multiple revolutions. This alternative solution,
with a departure on 5 June 2032, and arrival on 31 August 2033, resulted in a total v∞
of 5.6163 km/s. Compared to the previously identified optimal solution, this alternative
solution offered a reduction of 280 m/s in total v∞, but at the expense of a 452-day travel
duration, nearly three times longer. Table 3 presents the main parameters of the Hohmann
transfer for reference, which can serve only as a comparative case (because it assumes
coplanar circular orbits of Earth and Venus). Taking into account the trade-off between
energy savings and extended travel durations, we selected the shorter optimal solution as
the reference for our mission.
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Figure 4. Trajectory of the optimal solution for the year 2032 in the HCI reference system. The top
view is shown in the ecliptic plane, while the bottom image provides an out-of-plane perspective (the
z-axis is not to scale, emphasizing the out-of-plane component). The marker at the origin represents
the Sun.

Table 3. Numerical results for the Hohmann transfer from Earth to Venus, using JPL data [52].

Parameter Symbol [Unit] Value

Departure v-infinity v∞1 [km/s] 2.4991
Arrival v-infinity v∞2 [km/s] 2.7109

Time of Flight ToF [days] 146.04
Synodic period τsyn [days] 584

The initial reference solution involves departing from Earth on 6 December 2032,
at 05:00 UTC, and arriving at Venus on 12 May 2033, at 17:00 UTC. It’s important to
note that these dates do not consider the dynamics inside the spheres of influence or
perturbations. In the following sections, we will address these factors by employing GMAT
for the propagation.

The mission profile outlined at the beginning of Section 4 is designed using backward
propagation, from the Venus arrival date, which allows for a more detailed specification of
arrival conditions and enhances flexibility during the Earth departure phase. The space-
craft’s arrival at Venus is set to 12 May 2033, at 17:00 UTC. The trajectory is hyperbolic,
characterized by a pericenter altitude of 300 km and an excess velocity v∞2 = 2.7201 km/s
(C3 = 7.3989 km2/s2), as determined from the porkchop plots. By employing a Target
sequence in GMAT, the orientation of the hyperbola at Venus is determined, enabling
backward propagation to achieve an Earth return with an altitude of 1000 km from the
hyperbolic perigee. The dynamical model for this phase includes the Sun, Venus, Earth,
and the Moon as point masses, while disregarding other perturbations. It is worth not-
ing that multiple combinations of parameters exist that yield the same v∞1 , resulting in
hyperbolas that share energy and asymptote direction. To further optimize the mission,
additional conditions can be imposed, such as matching the initial inclination to the one of
the TLI trajectory, thereby eliminating the need for costly plane change maneuvers.

In the APO strategy, the spacecraft is transferred to the TVI trajectory on 5 Decem-
ber 2032, at 14:40 UTC, which is approximately 14 h earlier than the solution derived from
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the porkchop plots. This indicates that the solution obtained in GMAT, which considers
accurate propagation, deviates by less than a day compared to the Lambert algorithm.
Moreover, the v∞1 obtained in GMAT is 3.1651 km/s, closely matching the reference
value of 3.1757 km/s, with a difference of approximately 11 m/s. These results can be
considered satisfactory.

On the other hand, the L1 strategy requires one or more deep space maneuvers (DSMs),
within the interplanetary arc, to adjust the angles {i, Ω, ω} of the arrival hyperbolic
trajectory at Venus so that the spacecraft can be later injected into the equilibrium region
about L1, as detailed in Section 5.2. To determine the necessary DSM, a new Target sequence
is created in GMAT, focusing on finding the maneuver components in the Vertical-Normal-
Binormal (VNB) reference frame [51]. This DSM, like the other maneuvers, is considered
impulsive. In interplanetary missions, corrective maneuvers typically involve modest
impulses of tens of m/s. Analytical studies have shown that applying an infinitesimal
impulse at an infinite distance from the attracting body can modify the eccentricity of a
hyperbolic trajectory without changing its energy [53]. This insight is valuable as it allows
for the adjustment of the pericenter radius through small impulses at significant distances,
without introducing substantial energy variations to the trajectory.

In this particular case, a single corrective impulse, represented as ∆Vc, is sufficient.
The timing of the maneuver is a parameter that can be adjusted to minimize the magnitude
of the delta-v and reduce propellant consumption. By iteratively modifying the application
position in GMAT and calculating the corresponding delta-v magnitude, it is possible to
approximate the region where the minimum occurs. Figure 5 provides a visualization of
some of these results. The magnitude of the corrective delta-v is plotted as a function of the
days before arrival at Venus pericenter. The results indicate a decreasing trend until reaching
a minimum value at approximately 60 days prior to arrival (∆Vc = |∆Vc| = 16.9 m/s at
−60 days). Beyond this point, the magnitude of the delta-v starts to increase.
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Figure 5. Magnitude of ∆Vc depending on the application time, backward propagated from Venus.

Further investigation leads to the determination of the optimal solution. Utilizing
the Yukon optimizer, a slightly different solution is obtained with a delta-v magnitude of
16.8 m/s at −59.98 days. This final solution, achieved by adjusting the corrective impulse,
ensures an inclination close to 123◦ at the perigee, enabling the utilization of the retrograde
TLI trajectory. The components of the corrective impulse are listed in Table 4.

Table 4. Velocity components of ∆Vc in the VNB reference frame.

Components (m/s)
Magnitude (m/s)

v̂ n̂ b̂

5.9 14.8 −5.4 16.8
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Finally, for both the APO and L1 strategies, the angles {i, Ω, ω} that identify the
orientation of the hyperbola are presented in Table 5 in the VCI frame.

Table 5. Orientation angles of the arrival hyperbola at Venus in the VCI reference frame for APO and
L1 scenarios.

Scenario i Ω ω

APO 67.3338◦ 352.4962◦ 342.7342◦

L1 49.8824◦ 185.4746◦ 137.0611◦

4.1. Impulsive Maneuvers in the Geocentric Arc and Propellant Consumption Analysis

Two maneuvers are performed in Earth’s orbit to transition from the Trans-Lunar
Injection trajectory (specified in Table 1) to a hyperbolic departure from Earth. The first
maneuver, ∆V1, occurs at apogee and aims to increase the radius at perigee. It is typically
a three-dimensional maneuver, with an out-of-plane correction if necessary. The second
maneuver, ∆V2, takes place at perigee and is executed along the velocity vector to enter the
desired hyperbolic orbit with a perigee altitude of 1000 km. Figure 6 depicts a representation
of this phase, starting from the spacecraft’s orbital insertion after launch.

ΔV1

(TVI)

Spacecraft 
deployment 

into orbit

First impulse

at apogee

Second impulse 
at perigee

ΔV2

Figure 6. Geocentric arc trajectory, from the moment of spacecraft release into TLI orbit by the
launcher until the TVI maneuver at perigee. The figure also illustrates a segment of the departure
hyperbola.

According to Kepler’s theory, the ∆V2 value can be calculated as

∆V2 = v+P − v−P =

√
v2

∞1
+

2µE
rP
−

√
µE
a−

1− e−
1 + e−

= 560 m/s (35)

In the above equation, the subscript P denotes the perigee, while the subscripts + and −
represent the values after and before the maneuver. This value serves as a reference
for refinement in GMAT, where the dynamic model incorporates Earth’s gravitational
contribution, considering spherical harmonics up to the 4th degree and order, as well as
perturbations from the Sun and Moon.

Using GMAT, the magnitude of ∆V1 is determined to be 7.7 m/s. The individual
components in the VNB reference frame are reported in Table 6.

Table 6. Velocity components of ∆V1 in the VNB reference frame for the APO and L1 scenarios.

Scenario
Components (m/s)

Magnitude (m/s)
v̂ n̂ b̂

APO 7.6585 −0.0764 −3.7229× 10−4 7.6589
L1 24.2227 5.5241 0.0307 24.8447
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The magnitude of ∆V2 obtained through GMAT’s Target sequence is very close to the
predicted value, measuring 557.5 m/s. The overall delta-v budget in Earth’s orbit, ∆VE, is
the sum of ∆V1 and ∆V2, amounting to 565.2 m/s.

To estimate the propellant required for these maneuvers, we apply the Tsiolkovsky
equation with an effective exhaust velocity of cHT = 3000 m/s. This allows us to calculate
the mass ratio x7 f , representing the final mass (m̃ f ) of the spacecraft after all maneuvers,
relative to its initial mass (m̃0). After applying the equation to the total delta-v, ∆VE, we
find a final mass ratio of 0.8283 or 82.83%, indicating that only 17.17% of the propellant has
been consumed compared to the probe’s initial mass.

For the L1 strategy, the magnitude of the delta-v values are |∆V1| = 24.9 m/s (at
apogee) and ∆V2 = 565.6 m/s (at perigee), respectively. The components of ∆V1 in the VNB
reference frame are detailed in Table 6. In this case, the total delta-v in Earth’s orbit, ∆VE,
includes the two delta-v values in the geocentric arc and the corrective delta-v. The sum
is ∆VE = ∆V1 + ∆V2 + ∆Vc = 607.3 m/s. The final mass ratio is determined to be 0.8167
or 81.67%, indicating a propellant consumption of 18.33% before entering Venus’s sphere
of influence.

4.2. Comparative Analysis of Mission Profiles

It is beneficial to compare the two mission profiles designed so far.

For the “APO” scenarios, the trajectory follows the following sequence:

1. Launch and insertion into a direct TLI trajectory on November 24, 2032, at 1:03 UTC.
2. Application of a three-dimensional impulsive maneuver ∆V1 at apogee to lower the

pericenter altitude and slightly change the inclination (magnitude of 7.7 m/s).
3. Application of an impulsive maneuver ∆V2 at perigee in the direction of velocity for

insertion into the departure hyperbola (magnitude of 560 m/s).
4. Ballistic interplanetary arc until arrival at Venus with a pericenter altitude of 300 km

and a velocity of 10.473 km/s.

For the “L1” scenario, the sequence presents some differences:

1. Launch and insertion into a retrograde TLI trajectory on 23 November 2032, at
21:17 UTC.

2. Application of a three-dimensional impulsive maneuver ∆V1 at apogee to lower the
pericenter altitude and slightly change the inclination (magnitude of 24.9 m/s).

3. Application of an impulsive maneuver ∆V2 at perigee in the direction of velocity for
insertion into the departure hyperbola (magnitude of 565.6 m/s).

4. Interplanetary arc with an intermediate corrective impulse ∆Vc (magnitude of
16.8 m/s).

5. Arrival at Venus with a pericenter altitude of 300 km and corresponding velocity
of 10.473 km/s.

5. Capture and Orbit Injection at Venus

Upon reaching the 300 km pericenter along the hyperbolic orbit on 12 May 2033,
at 17:00, the spacecraft can employ various strategies to achieve the desired orbits around
Venus. In the subsequent paragraphs, we present comprehensive descriptions of these
strategies for both target orbits. Each scenario involves a Venus Orbit Insertion (VOI)
maneuver at the pericenter to decelerate the spacecraft, with the magnitude of deceleration
tailored to the specific strategy. Chemical propulsion is employed for the high-thrust
phase, while electric propulsion is used for the low-thrust phase, following the control
law (25) to achieve the target orbit parameters, including semi-latus rectum, eccentricity,
and inclination. The performance parameters for the low-thrust system are:

cLT = 30 km/s u(max)
T = 5× 10−5 g0
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Here, cLT represents the effective exhaust velocity for low-thrust propulsion (LT), and u(max)
T

represents the maximum thrust acceleration relative to the spacecraft’s initial mass (m̃0) at
launch. The values selected are of the same order of magnitude as those of Busek BIT-3 ion
thrusters [54]. To consider the maximum propulsive acceleration relative to the initial mass
m̃i during the low-thrust control phase, normalization of u(max)

T by the corresponding mass
ratio x7i = m̃i/m̃0 is necessary.

5.1. Capture in Highly Elliptic Orbit and Low-Thrust Orbit Injection

The first scenario (named “APO”) involves the impulsive application of the VOI
maneuver at the pericenter of the inbound hyperbolic trajectory toward Venus, followed
by a low-thrust orbital control phase. The VOI maneuver, performed using chemical
propulsion in the opposite direction of the spacecraft’s velocity, reduces the spacecraft’s
energy and inserts it into an elliptical capture orbit around Venus.

For this scenario, three different strategies are considered, indicated as “APO.A,”
“APO.B,” and “APO.C.” Each strategy is analyzed twice: for the final elliptical orbit and for
the final circular orbit. The magnitude of the impulsive delta-v at the pericenter associated
to the VOI, denoted as ∆V3, varies case by case based on the strategy and the target orbit. It
is optimized to minimize the overall propellant consumption, considering both chemical
and electric propulsion. Depending on the magnitude of ∆V3, the spacecraft is inserted into
an elliptical orbit with varying eccentricities (same pericenter radius and different apocenter
radii). Increasing the magnitude of ∆V3 reduces the apocenter radius of the elliptical orbit,
while decreasing the impulsive maneuver intensity results in a more energetic elliptical
orbit with a higher apocenter altitude. At first glance, the latter case may seem more
advantageous as it allows for initial propellant savings followed by the low-thrust phase.
However, due to the non-linearity of the control law, reducing ∆V3 does not necessarily
reduce the overall propellant consumption since the low-thrust phase may require higher
consumption. If it were the case, the minimum value of ∆V3 would be sought, which would
subsequently allow for the successful application of the non-linear low-thrust control.
This delta-v might not be the minimum for inserting into an elliptical orbit, which means
reducing the velocity just below the escape velocity. In fact, Equation (25) can work in some
cases even when applied to a hyperbolic orbit if the available thrust levels are sufficient [55].
Since the intensity of the impulsive maneuver cannot be determined in advance, the value
of ∆V3 is sought to maximize the resulting mass ratio once the target orbit is reached.

To conduct this search, the insertion into an elliptical orbit with apocenter radius equal
to the radius of Venus’s Sphere of Influence (SOI) is taken as a reference: rA ≡ rSOI =
0.616× 106 km (using the Laplace definition). A very high apocenter allows for significant
savings in maneuver costs. The corresponding delta-v, denoted as ∆VSOI , is calculated
using Keplerian theory:

|∆VSOI | = v−P − v+P =

√
v2

∞2
+

2µV
rP︸ ︷︷ ︸

10.47318 km/s

−

√
µV

aSOI

1 + eSOI
1− eSOI︸ ︷︷ ︸

10.06204 km/s

= 411.1 m/s (36)

where v−P represents the velocity at the pericenter before the maneuver (on the hyperbola),
and v+P the velocity just after the maneuver (on the ellipse). The pericenter radius is
calculated as: rP = RV + hP, with RV = 6051.8 km [56]. The result in (36) is confirmed
in GMAT.

The optimization process involves searching for the optimal value of ∆V3 in the vicinity
of ∆VSOI . Once the maneuver is applied, the low-thrust orbital control phase begins, aiming
to reach the two target orbits using different strategies for each. The numerical iteration
proceeds as follows:

• Determine the braking ∆V3 (applied along −v̂).
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• Calculate x7i = x70 e−∆V3/cHT (Tsiolkovsky’s law), with x70 determined in Section 4
based on ∆VE. This value serves as the initial value for the mass ratio x7 and helps
establish the maximum thrust acceleration: u(max)

T = 5× 10−5 g0/x7i .
• Propagate the spacecraft’s motion while applying low-thrust control: numerically

integrate the dynamic Equations (4)–(7) using the control law (25) to determine uT ,
inserted in (8). Gravitational perturbations related to spherical harmonics (up to
degree and order 15) and the third body (the Sun) are taken into account using
the Expressions (9)–(11), respectively. The initial conditions utilize the equinoctial
elements corresponding to the starting state (dependent on the control activation point
based on the strategy) and x7i for the mass ratio. The propagation continues until the
desired target orbit is reached (although this may not always occur).

• Identify the final mass ratio x7 f after integration.

This iterative process is repeated for a series of ∆V3 values to determine the one that
maximizes the final mass ratio.

For each control gain, namely k1, k2, and k3, an initial range is manually defined.
These intervals serve as a starting point for the Particle Swarm Optimization (PSO) process.
Within these ranges, the particles in the swarm can explore and move. The results obtained
from PSO can be further refined by using MATLAB’s fminsearch routine. The optimization
of weights is performed for each strategy using a reference case that applies ∆VSOI , and then
these optimized weights are used for all considered ∆V3 values.

Since the exact time required to reach the target state is unknown in advance, the prop-
agation is initiated for a predetermined number of days considered sufficient to achieve the
objective. If needed, the propagation can be restarted for a longer duration. A stopping
condition is also implemented: the numerical integration is halted when V < 10−16, which
implies ψ = 0, related to MATLAB’s machine precision [57]. When the weights are well-
optimized, this condition is easily met. However, if the weights are not fully optimized,
the propagation continues for the entire planned duration. It is important to note that even
if the stopping condition is not met, it does not necessarily mean that the target conditions
(such as obtaining V ≈ 0) are not reached. It simply suggests that the used weights may
not be fully optimized yet.

In our study, we explore various cases based on the moment of ignition for electric
propulsion, referred to as APO.A, APO.B, and APO.C strategies. These strategies aim to
achieve the target orbit with the highest possible mass ratio while considering realistic
mission scenarios and limitations.

The APO.A strategy assumes the immediate activation of low-thrust nonlinear control
right after the application of ∆V3. By initiating propulsion effects starting from the pericen-
ter, this strategy allows us to analyze the impact of thrust on the trajectory. However, it is
important to note that APO.A is not practically implementable as it assumes an instanta-
neous application of the VOI maneuver and immediate activation of the electric thruster
right after.

In order to introduce more realism, the APO.B strategy incorporates a time delay of
one hour between the impulsive application of ∆V3 and the activation of low-thrust control.
This delay simulates the scenario where spacecraft state control can be performed and the
two maneuvers can be temporally separated.

For the APO.C strategy, the low-thrust control is applied after propagating the space-
craft for an entire orbit until reaching the new pericenter. This approach ensures that the
pericenter does not end up inside the planet with a negative altitude, which can be caused
by significant third-body perturbations. In fact, solutions that result in a return to Venus
with an altitude lower than 200 km are disregarded, as atmospheric perturbations become
highly significant and potentially destructive.

The analysis begins with the examination of the elliptical target orbit with dimensions
300× 116,108.4 km. The desired orbital parameters expressed in the VCI reference frame are:

pd = 12,075.715 km, ed = 0.9011, id = 90◦ (37)
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The comprehensive results for all strategies and target orbits can be found in Table 7,
which provides the final mass ratio and the associated time of flight during the low-thrust
control phase.

For the APO strategies, each time a range for ∆V3 is explored for the optimiza-
tion. For example, for APO.A, ∆V3 ∈ [∆VSOI − 40 m/s, ∆VSOI + 100 m/s] is analyzed.
The results of this analysis, with the ∆V3 interval discretized into 200 points, are depicted
in Figure 7.

Table 7. Results for APO and L1 strategies with elliptical and circular target orbits.

Scenario

Target Orbit Strategy APO L1

Mass Ratio Time of
Flight Mass Ratio Time of

Flight

Elliptical
A 68.05% 17.77 days 64.65% 30.14 days
B 68.04% 16.87 days 65.82% 24.31 days
C 68.12% 10.31 days 65.82% 24.31 days

Circular
A 55.40% 83 days 53.13% 88 days
B 54.49% 92 days 55.63% 75 days
C 56.10% 86 days 55.71% 75 days

380 400 420 440 460 480 500

V
3
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x
7
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Figure 7. Final mass ratio as a function of the applied ∆V3 for the APO.A strategy with an elliptical
target orbit. The maximum value is highlighted in red. The gray dashed vertical line represents the
position of ∆VSOI .

The maximum final mass ratio achieved is 67.91%, corresponding to ∆V3 = 438.7 m/s.
The reference ∆VSOI position, corresponding to a final mass ratio of 67.68%, is marked by
a gray dashed vertical line. Further optimization in the vicinity of this solution leads to
convergence to the target state after 17.77 days with a final mass ratio of 68.05%. Instanta-
neously applying ∆V3 = 438.7 m/s corresponds to rA = 400,384.4 km. However, due to
the gravitational effect of the Sun perturbing the trajectory, propagating to the apocenter
yields a radius of 396,877.6 km. The temporal behaviors of controlled orbital parameters
and the mass ratio are shown in Figure 8.

By propagating beyond the necessary time to reach the target state, a change in the
slope of the mass ratio can be observed. The absolute value of the slope decreases as
the orbit tracking phase is completed, and the maintenance phase begins to compensate
the gravitational effects related to spherical harmonics and the third body. For instance,
by maintaining control for an entire year, the mass ratio decreases to 67.03%, resulting in
an approximate 1% of mass depletion.

Similar results are obtained for the APO.B and APO.C strategies. The most favorable
solution is provided by the APO.C strategy, with a higher final mass ratio of 68.12%. It also
corresponds to the shortest time of flight, approximately 10 days.
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Figure 8. Trends of semi-latus rectum, eccentricity, inclination, and mass ratio for the APO.A strategy
with an elliptical target orbit.

The objective now is to achieve a circular orbit with an altitude of 300 km. The same
principles discussed for the elliptical target orbit apply here as well. The desired orbital
elements in the VCI reference frame are:

pd = 6351.8 km, ed = 0, id = 90◦ (38)

The three strategies are investigated again to minimize propellant consumption. The results
are presented in Table 7. Once again, the optimal solution aligns with strategy APO.C,
with a mass ratio of 56.10% achieved in 86 days, this time with ∆V3 < ∆VSOI . The trajectory
undergoes significant deformation due to the gravitational effect of the Sun, as evident in
the violet portion of Figure 9.

Figure 9. Trajectory for APO.C strategy with circular target orbit. The violet segment represents
the ballistic trajectory from the first to the second pericenter, while the blue segment represents the
portion under orbital control, starting at the red marker.

Numerous revolutions around the planet are completed, as often happens in low-
thrust applications. The orbit gradually reduces its semimajor axis, eliminating eccentricity
at an altitude of 300 km. The corresponding temporal variations of the relevant orbital
parameters are presented in Figure 10. At approximately 86 days, a change in slope is
observed in the mass ratio, marking the beginning of the orbit’s station-keeping phase.
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Figure 10. Trends of semi-latus rectum, eccentricity, inclination, and mass ratio for APO.C strategy
with circular target orbit.

5.2. Low-Energy Capture and Low-Thrust Orbit Injection

In this scenario the spacecraft is transferred from the hyperbolic trajectory (interplan-
etary arc) to a long-term capture orbit by a two-impulse maneuver. The first maneuver
is provided during the Venus flyby, at the pericenter, and allows injecting the spacecraft
into the equilibrium region surrounding L1 of the Sun-Venus system. This is achieved
providing a ∆V3 that reduces the energy level from the high value of the interplanetary
trajectory h � 0 to a lower h > 0 compatible with the models described in Section 2.3.
The corresponding ∆V3 is lower compared to the previously discussed cases in Section 5.1,
as L1 lies outside Venus’s sphere of influence.

At the entrance into the equilibrium region, the spacecraft dynamical state is charac-
terized by h > 0, σ1 > 0 and τ1 > 0, therefore a second maneuver (∆VL1) is performed to
establish the long-term capture condition given by Equation (19) (σ1 → 0).

In this study, energy levels of the order h = 10−4 inside the equilibrium region are
considered and the following capture conditions are computed: x− xL1 = 4.91× 105 km,
y = 1.98 × 105 km and u = −0.120 km/s. Then a target sequence in GMAT allows
determining the hyperbola’s orientation angles at flyby (see i, Ω, and ω in Table 5) and
∆V3 = 387.9 m/s, applied opposite to the spacecraft’s velocity. From these data, the value
∆VL1 = 51 m/s is finally determined. Figure 11 shows the obtained trajectory.

This is a low-energy trajectory that is “trapped” by the planet’s gravitational field for
a relatively long period. During this period, low-thrust control is activated, allowing the
spacecraft to reach the desired target orbit.

The total delta-v from the start of the mission, entirely associated with chemical
propulsion, is calculated as ∆VHT = ∆VE + ∆V3 + ∆VL1 = 1041.5 m/s. This corresponds to
a mass ratio x7i = 70.67%.

Various cases are explored based on the moment of ignition for electric propulsion,
identified as “L1.A,” “L1.B,” and “L1.C.” The objective remains to minimize the overall
propellant consumption. In the L1.A strategy, low-thrust control is activated one hour
after applying ∆VL1 within the equilibrium region. In the L1.B strategy, control is acti-
vated at the first pericenter (expected to be reached on 2 November 2033) at an altitude of
219,818 km, which already possesses an inclination of approximately 90◦. Since the trajec-
tory constructed for this scenario with weak capture involves numerous revolutions around
the planet, this behavior can be utilized to identify other potential points for low-thrust
application over the years. Specifically, reference is made to the subsequent pericenters and



Aerospace 2023, 10, 887 22 of 28

apocenters after the first one. Using the same weights as in the L1.B strategy, we examine
whether convergence to the target state is achievable at these points.

Figure 11. Low-energy trajectory with the application of ∆VL1 in the synodic reference frame centered
at L1 (red dot). The solid curve represents the trajectory after the impulse, while the dashed curve is
prior to it, starting from the arrival at Venus. The purple and yellow markers represent Venus and L2.

The attainment of the target elliptical and circular orbits, with orbital elements defined
in (37) and (38), is now examined. The results are presented in Table 7. The optimal solution
for the elliptical target orbit is achieved by activating thrust from the first pericenter at
Venus, using strategy L1.B. The trajectory is shown in Figure 12.

Figure 12. Trajectory for L1.B strategy with elliptical target orbit (in orange). The red marker indicates
the starting point of the orbital control, the yellow marker indicates Venus.
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In this case, the inclination at pericenter is already 90◦, which provides an advantage.
Further exploration using the L1.C strategy for subsequent pericenters and apocenters
reveals results depicted in Figure 13. The optimal solution corresponds to activating control
at the first pericenter, resulting in a final mass ratio of 65.82%.

Figure 13. Successful application of low-thrust control along the trajectory radius for an elliptical
target orbit. Bullets are used to depict the pericenters (red) and apocenters (blue). The values for the
corresponding final mass ratios are represented by red (apocenter) and blue (pericenter) asterisks in
the lower figure.

The L1 strategy offers flexible low-thrust control activation for achieving the desired
orbit. Real-time adaptability is enabled by a feedback control law, which has been demon-
strated to consistently converge to the target state. To validate its effectiveness, simulations
are conducted considering temporary propulsion system failure. The L1.B strategy, iden-
tified as the most fuel-saving, involves activating low-thrust control at pericenter for N1
days, followed by a temporary propulsion failure lasting N2 days. For elliptical orbits,
the resulting mass ratio and total flight time vary with N1 and N2, as shown in Figure 14.
A range of N1 ∈ [0, 30] and N2 ∈ [0, 100] is explored, encompassing all scenarios, including
delayed control activation (N1 = 0). Convergence is achieved in all 3000 cases, with higher
mass ratio values when the failure occurs within the first 10 days after reaching Venus’s
pericenter. The total flight time increases with N2. On average, the mass ratio is 64.26%,
with a standard deviation of 0.61%, and the average total flight time is 82.08 days, with a
standard deviation of 29.50 days. Figure 15 displays overlaid profiles for the controlled
orbital parameters.
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Figure 14. Percentage mass ratio variation (left) and total flight time in days variation (right) with
N1 (horizontal axis) and N2 (vertical axis) for elliptical orbit.
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Figure 15. Overlaid profiles of semilatus rectum, eccentricity, and inclination for the L1.B strategy
with elliptical target orbit and temporary propulsion system failure (multiple graphs with varying N1

and N2, each with a different color).

Moving on to achieving a circular orbit, the L1 strategies yield optimal results by
initiating low-thrust control once the spacecraft enters orbit around Venus. In this scenario,
a slightly superior outcome is attained at the pericenter reached on 19 December 2034,
corresponding to a mass ratio of 55.71% compared to 55.70% at the initial pericenter on
2 November 2033. Multiple opportunities exist for implementing low thrust during the
capture phase around the planet.

5.3. Discussion of Results

The analysis of different strategies for achieving orbits around Venus has revealed
significant findings, demonstrating the effectiveness of both APO and L1 strategies. These
strategies combine impulsive maneuvers with chemical propulsion and subsequent low-
thrust control using electric propulsion.

For the elliptical target orbit, the APO.C strategy stood out as the most fuel efficient
solution, resulting in a final mass ratio of 68.12% achieved within a short time of 10.31 days.
In the L1 scenario, the L1.B strategy emerged as the one with the highest final mass ratio of
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65.82% and a total flight time of 24.31 days. However, when comparing these results with a
traditional strategy that relies solely on optimized impulsive chemical propulsion, with a
final mass ratio around 67%, the proposed strategies offer little or no advantage in terms of
propellant savings.

For the circular target orbit, the APO strategies achieved mass ratios ranging from
approximately 54% to 56%, with the APO.C strategy performing slightly better than the
others. On the other hand, the L1 strategies demonstrated favorable outcomes, with the
L1.B strategy standing out with a mass ratio of 55.71% and the shortest total flight time
of 75 days. When contrasting these outcomes with a specific case with only chemical
propulsion, resulting in a mass ratio of approximately 27%, the superiority of the proposed
APO and L1 strategies becomes even more evident. These strategies deliver mass ratios
that are approximately twice the values with impulsive injection, leading to a substan-
tial enhancement in efficiency and performance. The comparison clearly demonstrates
the superiority of the proposed approaches over traditional methods, emphasizing their
significant advantage in achieving circular target orbits around Venus.

Furthermore, the analysis considered the impact of temporary propulsion system
failure on the L1.B strategy. Simulations demonstrated that convergence to the target state
was still attainable in all cases, with the mass ratios deviating only slightly from the nominal
case. This highlights the robustness and adaptability of the proposed strategies in real
mission scenarios.

6. Concluding Remarks

We developed a novel mission profile to transfer a spacecraft from a highly elliptic
Earth orbit to a target orbit around Venus. This study, verified by means of numerical inte-
gration, includes a novel approach that (i) combines traditional high-energy interplanetary
trajectories with low-energy ones, to transfer the spacecraft into a weak capture orbit at
Venus, and (ii) implements a novel nonlinear orbit control using low-thrust propulsion,
to inject the spacecraft into the desired final orbit. This mission profile benefits from the
use of low-energy arcs and low-thrust propulsion to reduce the propellant mass required
for maneuvers, while still allowing for short transfer times, only marginally longer than
Earth-Venus transfers designed using a traditional approach.

Two different scenarios were investigated, named as APO and L1. In the APO scenario,
an impulsive maneuver performed at the first Venus flyby injects the spacecraft into a highly
elliptic orbit and then nonlinear orbit control, implemented by a low-thrust propulsion
system, allows transferring it into the desired target orbit. In the L1 scenario, the spacecraft
is initially injected into the equilibrium region surrounding Sun-Venus L1. From here, it
is sequentially transferred to a weak capture trajectory and finally, by means of nonlinear
orbit control and low-thrust propulsion, into the target orbit.

To evaluate the feasibility of these two options, we performed numerical studies in
GMAT and MATLAB, considering departure dates for Venus missions planned between
2028 and 2033. If compared to a traditional (impulsive) strategy, the proposed mission
profiles result in significant savings in the propellant mass. Specifically, the propellant usage
reduces from the 73% to the 44% for the APO strategy and to the 45% for the L1 strategy,
considering a circular target orbit around Venus. Even-though the L1 scenario requires an
additional mid-course interplanetary maneuver (DSM) and is less favorable with respect to
the APO scenario, it enhances the mission flexibility and reliability, since the low-thrust
propulsion system can be actuated at any apocenter or pericenter of the low-energy capture
orbit ensuring successful injection into the target orbit.

Furthermore, our research proves that delaying the injection into the low-energy
capture trajectory from the beginning of the interplanetary arc to its end can lead to savings
in the total transfer time. While low-energy transfers from Earth to Venus can take up
to 300% more time than traditional ones, the L1 scenario demonstrates a better outcome,
with only a 56% increase in total transfer time.
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In conclusion, the proposed novel mission profiles, leveraging low-energy trajectories
and low-thrust propulsion, offer significant propellant savings and improved mission
efficiency, making them promising candidates for future interplanetary missions from
Earth to Venus.
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