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Abstract: The collapsible tubular mast (CTM) can be compactly folded for transport and deployed in
orbit to serve as a key structural element. Once deployed, the CTM is vulnerable to buckling under
axial load and bending moments, compromising its load-bearing capacity. The intricate relationship
between the CTM’s cross-section and its buckling behavior poses a significant challenge for designers.
This is due to the ultra-thin nature of the CTM, which gives rise to highly localized buckling modes
rather than global ones. To overcome this challenge, we developed surrogate models using a neural
network (NN) trained with data from finite element analysis (FEA). These NN-based surrogate
models provide high computational accuracy in predicting nonlinear buckling loads under axial force
and bending moments around the two principal axes of the CTM’s cross-section, achieving R2 values
of 0.9906, 0.9987, and 0.9628, respectively. These models also significantly improve computational
efficiency, reducing prediction time to a fraction of a second compared to several minutes with FEA.
Furthermore, the NN-based surrogate models enable the usage of the non-dominated sorting genetic
algorithm (NSGA-II) for multi-objective optimization (MOO) of the CTMs. These models can be
integrated in the NSGA-II algorithm to evaluate the objective function of existing and new individuals
until a set of 1000 non-dominated solutions, i.e., cross-sectional configurations optimizing buckling
performance, is identified. The proposed approach enables the design of ultra-thin CTMs with
optimized stability and structural integrity by promoting design decisions based on the quantitative
information provided by the NN-based surrogate models.

Keywords: lightweight structures; collapsible tubular mast (CTMs); buckling behavior; neural
network (NN)-based surrogate models; multi-objective optimization (MOO)

1. Introduction

The limited transport space and weight of the launch segment pose significant chal-
lenges on the integration of large-scale solar sails, deep space exploration antennas,
and high-capacity solar panels for large satellites. To address these constraints, two main
methods are employed: modular design strategies and deployable composite booms
(DCBs). Modular design strategies involve creating systems with interchangeable modules,
allowing for scalability by integrating additional modules to expand the system [1–3]. DCBs
can be efficiently packed by coiling for transport in orbit [4–8], and, upon deployment, they
serve as a fundamental structural component in various space systems such as parabolic
mesh antennas [9], solar sails [10–13], roll-out solar arrays [14], probes [15], and docking
systems [16]. In this work, we focus on DCBs. The DCB category encompasses a wide
range of structures, which can be distinguished according to their cross-sectional shape into
storable tubular extendible members (STEMs), triangular rollable and collapsible (TRAC)
booms, sheath-based rollable lenticular-shaped and low-stiction (SHEARLESS) booms, and
collapsible tube masts (CTMs). The STEM is a thin-walled composite shell with circular
cross-section [17]. The TRAC boom is composed of two curved C-shaped section joined
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along one edge [18]. The SHEARLESS boom is formed by coupling the edges of two
cylindrical shells front-to-front by a tightly fitted outer sheath [19]. The CTM is made by
joining along the edges two omega-shaped shells. In this paper, we examine the CTM.

Given its closed cross-sectional shape, the CTM has garnered increasing attention
from researchers since its inception. Initially proposed by B. Rennie for a metal alloy
boom structure [20], the double-omega cross-sectional design transitioned about a decade
later to carbon fiber reinforced polymers (CFRPs), marking the inception of CTMs under
the European Space Agency (ESA) [21]. Since then, the CTM has attracted significant
interest from major space agencies and corporations. The German Aerospace Center
(DLR) considers the development of the CTM as a key technique for its solar sailing
technology [22–24]. The National Aeronautics and Space Administration (NASA) has
explored the potential of the CTM boom as a solar sail boom for low-cost deep space
exploration [25]. DLR and NASA have collaborated in the Deployable Composite Booms
project, focusing on refining design methods and manufacturing techniques for CTMs,
as well as developing mechanical systems necessary for their storage and deployment [26].
The DCB technology developed will be tested through NASA’s Advanced Composite Solar
Sail System (ACS3) project, which is currently ongoing [27].

Thanks to the research effort devoted to the study of CTMs, various key aspects of
their behavior have been understood through the years. A particular emphasis has been
placed on their response to various mechanical loads, with a focus on those encountered
during packaging and operations.

During packaging, the cross-section of the CTMs must be flattened, and then the
CTMs must be coiled along their length. Excessive stresses may arise during these critical
processes, potentially causing damage to the CTM material. To have a more grounded
understanding of these processes, Hu et al. performed an in-depth analysis using ex-
perimental, numerical, and analytical techniques to investigate the mechanical response
of CTMs under both compressive and tensile flattening deformations [28]. Chen et al.
conducted experiments to study the behaviors of large deformations during flattening and
wrapping processes [8]. They developed three-dimensional finite element method (FEM)
models that accurately predicted the mechanical characteristics observed in their experi-
mental investigations. Bai et al. established analytical models to predict folding moment of
CTM, validating their analytical results against experimental findings [29]. Additionally,
they established an analytical model for the arising in-plane strain and interlaminar shear
stress [30]. Similar investigations were conducted by Liu et al., who numerically and exper-
imentally investigated the flattening and coiling processes, as well as stress distribution,
of a shape memory composite CTMs [31]. To prevent composite material failure during
critical folding and coiling processes, Palmeri et al. introduced a novel interface design for
CTMs [32]. Their approach involves strategically removing material from the fixed end of
the CTM to mitigate high localized curvature that may arise during packaging.

During operations, CTMs serve as supporting structure for large-scale space systems.
Particularly, CTMs guide these systems in retrieving their operational configuration by
deployment, and subsequently serve to maintain this configuration. Once deployed,
CTMs are subjected to axial load and bending moments, which can lead them to buckle.
Many recent studies have been conducted on this topic, with some focusing on buckling
behavior under pure axial loading [33,34], and others with emphasis on buckling behavior
under pure bending [35]. Hu et al. performed linear and non-linear buckling analysis of
CTMs under axial loading, comparing numerical findings with experimental results [33].
The estimated critical buckling load from finite element analysis (FEA) was found to be
considerably higher than experimental measurements. Introducing initial imperfections
based on experimental observations and performed post-buckling analyses, resulted in a
closer alignment with experimental findings. Yao et al. performed a correlation analysis
between numerical model and analytical prediction for CTM subjected to axial loading [34].
Based on Euler’s formula and laminated theory, they derived the critical buckling load
formula of CTMs. The correctness of this formula is verified against FEA, showing its
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applicability only to the CTMs with a slenderness ratio greater than 64. Jia et al. presented
an automatic FEA to perform simulation over 50 cross-section configurations scheme,
accounting for high geometric nonlinearity [35]. Finally, they constructed the design space
against non-linear buckling under pure bending moments.

Although multiple authors have investigated the CTM buckling behavior, there re-
mains a lack of reliable predictions for the buckling loads, especially in relation to variations
in cross-sectional configuration. In the context of buckling under axial loading, the influence
of the cross-sectional configuration was analyzed treating the cross-sectional parameters
as continuous variables. However, this approach was taken only for very slender CTMs.
In fact, Yao et al. presented a parametric study using an analytic-based approach, but the
derived buckling load formula was valid only for CTMs with a minimum slenderness ratio
of 64 [34]. In the context of buckling under bending moments, the influence of the cross-
sectional configuration was investigated but accounted only for discrete cross-sectional
parameters values. Jia et al. carried out the largest computational investigation of CTM
buckling under bending moments, performing systematically simulation over 50 different
cross-sectional configurations [35]. However, to the best of our knowledge, no investiga-
tion of the buckling behavior under bending has considered cross-sectional parameters
as continuous variables. If predictions of buckling loads were available, the buckling
performance of the next generation of CTMs could be optimized during the design and
construction phases. Therefore, in this study, we aim to bridge this gap by developing
surrogate models of the buckling behavior of CTM under both axial loads and bending
moments, with particular emphasis on variations in cross-sectional configurations. Once
those models are available, a multi-objective optimization (MOO) can be performed, to find
the cross-sectional configuration that optimizes the buckling performance of CTMs under
different loading conditions.

Currently, various surrogate models have been developed to explore a wide range
of DCBs under different loading conditions. These models have been used to optimize
the designs. Yang et al. developed surrogate models for deployment stiffness and folding
behavior, investigating designs such as tubular DCBs, TRAC booms, N-shaped DCBs,
and CTMs [36–39]. They conducted FEA on different designs and established surrogate
models, on the basis of FEA results, using Response Surface Methodology (RSM) and
a neural network (NN). Optimization of the designs was carried out using a genetic
algorithm (GA). Similarly, Shi et al. optimized the M-shaped DCB using a combined RSM
and GA technique [40]. The RSM method was used to fit the FEA data to obtain surrogate
models for the strain storage and the fundamental frequency in the deployed state. Those
models are fed into a GA for MOO, aiming at maximizing the strain stored energy and the
fundamental frequency. Zhang et al. established a model of the initial snap-through and
coiling process of a tubular DCB using RSM, and subsequently employed a GA to optimize
the mechanical responses of the structure [41]. Bessa and Pellegrino proposed a surrogate
model to predict the imperfection-sensitive buckling moments obtained when bending the
TRAC booms. They combined Bayesian regression and uncertainty quantification to predict
the mean value and standard deviation of the quantity of interests, which are then used
in MOO to guide TRAC boom design [42]. A few surrogate models have been developed
based on neural networks (NNs) to optimize the design of deployable composite hinges
(DCHs) [43,44]. Liu et al. minimized the peak folding moment and mass while maximizing
the peak torsional moment by using RSM and machine learning techniques, along with
state-of-the-art GAs to obtain optimal DCH designs. Jin et al. maximized both the maximum
stored strain energy during folding and the maximum bending moment during deployment
of the DCH using data-driven surrogate modeling and shape optimization. Although NN-
based surrogate models have demonstrated significant potential for DCHs, research on their
application to DCBs remains elusive, and their use for CTMs modeling is still unexplored.

As in the above-mentioned works [36–44], to built the surrogate models, we gather
data on the structure responses under various input conditions via FEA. Particularly, we
generate input design samples, and run three FEM simulations per each design sample
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to determine the non-linear buckling load under three loading scenarios: axial loading
and pure bending around the two cross-sectional principal axis. The data collected is thus
used to train a neural network (NN), with the final aim of providing NN-based surrogate
models. The NN-based surrogate models are then embedded into a MOO process. Optimal
cross-sectional geometries are identified using the bio-inspired algorithm known as the
non-dominated sorting genetic algorithm (NSGA-II).

2. Materials and Methods

The CTM under investigation is represented in Figure 1 in its deployed configura-
tion. It is made by two 500 mm long bi-convex thin shells, bonded along their edges.
The cross-section of each shell is composed of three arc segments and two flat segments in
correspondence of the bonding area. The central arc segment is associated with the radius
of curvature, r1, and the subtended angle, α1; the edge arc segment is associated with the
radius of curvature, r2, and the subtended angle α2; the flat segment is associated with
its length, w. The subtended angles of both arc segments must be equal (α1 = α2 = α),
to prevent kinks and maintain tangent continuity.

𝑟1

𝑟2
𝑦

𝑥

Root

�

�

Tip

l

Figure 1. Geometric description of the CTM: r1 is the radius of the central arc-segment, r2 is the
radius of the edge arc-segment, α is the subtended angle of both the central and edge arc-segment.

The CTM cross-section in its flattened state is fully described by the length of the shell h:

h = 2(L1 + L2 + w) (1)

where:
L1 = r1α (2)

L2 = r2α (3)

To ensure a fair comparison between different cross-sectional configurations, we
consider the same flattened height, h = 130 mm, for every design. Furthermore, the bond-
ing region width is kept constant, w = 4.5 mm. Since h and w are known quantities,
and Equation (1) must be satisfied, only two of the three geometric parameters r1, r2, and α
can be chosen as design variable. Particularly, we allowed r1 and α to freely vary, and then
we computed r2 accordingly to the following:

r2 = (h − 2w − 2r1α)/(2α) (4)

In accordance with previously reported data for TRAC booms [45], each CTM omega
shell consists of a laminate with [45GFPW /0CF/45GFPW ] stacking sequence, where GFPW
denotes the JPS E-glass fabric plain weave prepreg with Patz PMT-F4 epoxy resin, while
CF represents a unidirectional Torayca T800 carbon fiber prepreg tape with NTPT Thin-



Biomimetics 2024, 9, 494 5 of 28

Preg 120 EPHTg-402 epoxy resin. The thickness of each CTM omega shell laminate is
about 80 µm. The bonding region is composed of a laminate with the stacking sequence
[45GFPW /0CF/(45GFPW )3/0CF/45GFPW ], achieved by bonding two CTM shells with a GFPW
lamina oriented at 45◦.

The material properties sourced from [45]. Particularly, the stiffness properties of the
laminate of the CTM shells are modeled according the A and D matrix collected below:

A =

5432 619 0
619 942 0

0 0 737

 N/mm (5)

D =

1.076 0.482 0
0.482 0.781 0

0 0 0.459

 Nmm (6)

and the corresponding matrices for the bonding region, denoted by Aw and Dw, are given
as follows:

Aw =

11369 1512 0
1512 2269 0

0 0 1727

 N/mm (7)

Dw =

28.20 4.32 0
4.32 7.44 0

0 0 4.93

 Nmm (8)

In this study, we focus on finding the combination of cross-sectional parameters
r1 and α that maximize the nonlinear buckling loads of the CTM considering idealized
geometries, i.e., without imperfections. To this extent, the proposed methodology consists
of three steps: data collection, surrogate model construction, and MOO. The data collection
steps consists of two stages: design of experiment (DoE) and creation of the response
database. Thorough the DoE process, a set of initial design samples is created and the
corresponding response database is then evaluated through computational analysis via
FEA. The design samples and response database constitutes the data collection which
serves as the basis for constructing the surrogate models. The construction of the surrogate
models consists of building models capable of accurate prediction for the buckling behavior.
The NN-based surrogate models are built by training a NN with the data acquired during
the data collection step. The predictive capability of the NN-based surrogate models are
validated using statistical error function. Finally, a MOO is performed to find optimal
cross-sectional designs that maximize the buckling loads of the structure. For the MOO
process, the NSGA-II algorithm is used. Each individual in the NSGA-II consists of a
set of the variables fully describing the cross-sectional geometry. The surrogate models
are embedded into the NSGA-II algorithm to assess the buckling loads value of each
individual, which serves as their fitness score. Iteration after iteration new individuals are
generated through selection, cross-over and mutation mechanisms, and these individuals
are evaluated using the surrogate models to determine their objective values. The iteration
stops when the optimal designs are found. The workflow of the proposed methodology is
shown in Figure 2.

A similar workflow, encompassing design of experiments where sampling designs
are created, computational analyses of each design sample where quantities of interest
are investigated using FEA, surrogate model construction, and MOO, has been followed
in previous research [36–44]. Most of earlier works employed RSM to build surrogate
models [36–38,40,41]. Yang et al. developed surrogate models for coiling and deploying
tubular booms through RSM [36]. Using the same methodology, they also created surrogate
models for the wrapping peak moment, maximum stress, and fully deploying fundamental
frequency for a TRAC boom, as well as for bending stiffness around the x- and y-axes
and torsional stiffness around the z-axis for an N-shaped boom [37,38]. Similarly, Shi et al.



Biomimetics 2024, 9, 494 6 of 28

developed surrogate models for strain storage and fundamental frequency in the deployed
state of an M-shaped boom [40], while Zhang et al. modeled the initial snap-through and
coiling processes of a tubular DCB [41]. In contrast, Bessa and Pellegrino used Gaussian
process regressions (GPR) to build surrogate models for the buckling behavior of TRAC [42].
To date, only Hui Yang et al. have employed NN-based surrogate models for DCBs [39].
Specifically, they developed surrogate models for the coiling peak moment and maximum
principal stress in a four-cell lenticular honeycomb deployable (FLHD) boom. However,
NN-based surrogate models have been used by Liu et al. and Jin et al. to optimize
DCHs [43,44]. All the aforementioned studies culminated in an optimization design process,
with most utilizing the NSGA-II algorithm [37–41]. The sequential quadratic programming
algorithm was also used for optimization purposes in [36]. Some of these studies performed
benchmarks between different optimization algorithms [42–44].

Fz

Mx

My

Fz

Mx

My

1.1 Design of Experimets (DoE) 1.2 Computational Analysis

1. Data collection

Design 
Samples

Input Database

NN-based surrogate models

Initial population

Fitness assesssment

Creation of 
new populationEnd condition

Response Database

2. Surrogate model construction

1000 design sample are created.
Each sample includes a pair of design variable

Per each sample, a non linear buckling prediction is 
performed under three different loading scenarios. 

A NN for predicting the buckling is trained per each loading scenario.

The NSGA-II searches the design space for optimal designs

yes

no

3. Mulit-objective optimization

Optimal designs

Figure 2. Workflow of the proposed methodology consisting of three steps: data collection, surrogate
model construction, and multi-objective optimization.

The subsequent subsections describe, in detail, each step of the proposed methodology
applied to the optimal design of CTM cross-section.
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2.1. Data Collection

In this subsection, the data collection step is described, detailing each of the two stages
involved separately. Following the order in which the stages are performed, the Design of
Experiments (DoE) process is presented first, followed by the computational analysis phase.

In the DoE, sample designs are created by sampling the design space. In this work,
the design space is made of two design variables: the radius of the central arc segment, r1,
and the subtended angle of both arc segments, α. The radius r1 has a lower limit due to
the high strain that may occur during folding and a upper limit determined by the length
of the flattened shell being h = 130 mm. The angle α has a maximum allowable value for
manufacturing reasons. Those limits have been indicated in [46]. A minimum value for
the angle α has also been set. The design variables, alongside with their lower and upper
bounds, are collected in Table 1.

Table 1. Design variables with lower and upper bounds.

Design Variable Lower Bound Upper Bound

r1 12 mm 50 mm
α π/5 rad π/2 rad

Once the design space is identified, various methodologies are available to perform
sampling. The Sobol sequence and Latin Hypercube sampling are commonly used ap-
proaches [47,48]. In alignment with prior research, the Sobol sequence has been chosen
for the DoE process in this study [42]. The Sobol sequence generates sample designs that
are evenly distributed, minimizing clustering and avoiding gaps effectively. Each sample
design is characterized by a pair of design variables, i.e., r1 and α. Knowing r1 and α
values, r2 is computed according to Equation (4). The same bonds identified for r1 must be
enforced for r2. If the r2 value falls between the limits depicted for r1, the sample design is
kept. Otherwise, it is discarded.

At the end of the DoE process, 1000 sample designs are created.
Following the DoE, the next phase of data collection consists of the computational

analysis of each DoE point. The computational analysis involves FEM simulations con-
ducted using the commercial software Abaqus 2020, which is widely utilized for predicting
local buckling in a variety of structures [49–53].

For each design sample, three models are developed to study the buckling behav-
ior under different loading conditions: axial load and bending moment around the two
principal axis of the CTM cross-section.

In every model, the CTM is modeled by sketching its cross-section geometry in the
x − y plane and then by extruding it to the desired length of 500 mm along the z direction.
The elements used for the CTM are S4R: four-node shell elements with reduced integration
(and hourglass control). The material properties for the CTM shell are given through the
stiffness matrices in Equations (5) and (6), while the material properties for the bonding
region are given through the stiffness matrices in Equations (7) and (8). A material-oriented
coordinate system, aligned with the longitudinal and transverse coordinates of the CTM, is
established for the shell elements.

For every model, the boundary conditions (BCs) vary accordingly to the loading
condition. To easily vary the BCs from one model to another, we use Multi-Point Constraints
(MPCs) to define BCs. The MPC links the motion of follower points to the motion of a
single reference point (RP). The edge nodes at the root cross-section and the edge nodes at
the tip cross-section have been associated with two RPs, namely the root RP and the tip RP.
The MPCs with the corresponding RPs are shown in Figure 3.
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Figure 3. Multi-Point Constraints (MPCs) used in the present study to apply boundary conditions
(BCs). The edge nodes at the root cross-section and the edge nodes at the tip cross-section have been
associated with a root and a tip reference point (RP), respectively.

For all the three models, the RP to which the nodes on the root edge are linked is
constrained in x, y, z translation and x, y, z rotation to simulate the interlocking of the boom
with the spacecraft. At the other RP, the BCs applied vary for each model, depending on the
loading condition. In the scenario of axial loading, a unitary axial force along the z-axis, Fz=,
is applied to the tip RP, and only the rotational degree of freedom (DoF) around z is fixed.
In the scenario of a bending moment around the x-axis, a unitary bending moment around
the x-axis, Mx, is applied to the tip RP, the transitional DoF along x and the rotational DoF
around y and z are fixed, while the others are left free. In the case of a bending moment
around the y-axis, a unitary bending moment around the y-axis, My, is applied to the tip
RP, the transitional DoF along y and the rotational DoF around x and z are fixed, while the
others are left free.

For all models, a well-established approach from the literature is used to predict
the non-linear buckling load of the CTM under the various loading scenarios [35,42,45].
The approach consists of performing three analyses subsequently: firstly, a linear buckling
analysis is performed, then a non-linear static analysis is carried out and, finally, a sequential
linear buckling analysis concludes the procedure. In the first linear buckling analysis,
a linear bifurcation analysis is performed on the undeformed configuration of the CTM
to provide an initial prediction for the buckling load. Subsequently, a nonlinear static
analysis is performed under load control using a large displacement formulation to capture
geometric non-linearity. The linear buckling load given as output of the precedent linear
buckling analysis is applied to the CTM, and the simulation proceeds without stabilization
up to that load or until convergence failure due to buckling occurs. Finally, a sequential
linear buckling analysis is conducted, which is a linear bifurcation analysis performed
on the deformed CTM. The deformed CTM shape is attained from the non-linear static
analysis, starting from the gradually decreasing last available increment until reaching an
increment where the buckling load can be extracted, i.e., an increment where the structure
is close to but not in the post-buckling regime. This approach guarantees that linear
perturbation analysis effectively determines buckling mode shapes and loads/moments
near the buckling point, accurately predicting the buckling behavior of even nonlinear
structures [42].
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The procedure for non-linear buckling estimation has been implemented into a Python
script within Abaqus software. This Python script automates the simulation process, en-
abling the handling of simulations consisting of three sequential analyses, over 1000 sample
designs, and under three different loading scenario. The results of these simulations, which
are of interest, are saved in a database that is subsequently used for constructing the
surrogate models.

2.2. Surrogate Model

Each surrogate model is implemented using a NN approach [54]. In this work, we
use a fully connected NN (FCNN) with a structure consisting of multiple layers: the input
layer, several hidden layers, and the output layer. Each layer in a FCNN includes multiple
neurons, with each neuron connected to all neurons in the preceding and subsequent layers.
These connections have associated weights, which determine the influence of one neuron
on another. The neuron calculates a weighted sum of its inputs and applies an activation
function to produce an output. The output of the last layer, which is the output layer,
represents the prediction of the NN based on the initial input data, which is compared
to the actual value to obtain an error. During training, weights are adjusted through
algorithms to minimize the error in the NN’s output, enabling the NN to learn and make
accurate predictions.

The quality of NN can be assessed through evaluation indices such as: the mean
square error (MSE), which measures the deviation between the predicted value and the true
value; the mean absolute error (MAE), which represents the discrepancy between the true
and predicted values; and the R-squared (R2) value, which reflects how well the predicted
values match the true values, with a value closer to 1 indicating a better fit. The MSE, MAE,
and R2 are used herein to check if the NN-based surrogate models constructed are capable
of accurate predictions.

The construction of the NN-based surrogate model begins with selecting appropriate
NN hyper-parameters such as: the initialization of weights and the algorithm for weights
updates, the activation function, the regularization technique, and the NN architecture.
These hyper-parameters have great effects on the accuracy of the NN-based surrogate
model and should be optimized to improve performance. The optimization of such hyper-
parameters involves an iterative trial-and-error process, aimed to balance complexity
and efficiency.

In the present work, the weights of each layer are initialized using the He uniform
initialization [55]. According to the He uniform initialization, weights are drawn from a
uniform distribution:

W ∼ U
(
−

√
6

nin
,

√
6

nin

)
(9)

where nin is the number of neurons in the preceding layer. Those weights are updated
according to the Adaptive Moment Estimation (Adam) algorithm [56].

For the current work, after each layer, the Rectified Linear Unit (ReLU) activation
function is performed [57]. The ReLU activation functions can introduce non-linearity into
the model, enabling the NN to learn and represent complex relationships between inputs
and outputs. The ReLU function is defined as:

ReLU(x) =

{
x if x ≥ 0
0 if x < 0

(10)

The regularization techniques are used to prevent overfitting, where the NN becomes
too specialized in the training data and performs poorly on new data. In this work, dropout
is applied to randomly disable a fraction of the neurons during training, preventing them
from relying too much on each other and thus improving the model’s robustness [58].
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We have chosen the He uniform distribution for weight initialization, the Adam
algorithm for weight updates, the ReLU as the activation function, and the dropout as the
regularization technique, as these hyper-parameters are commonly used in neural networks.
Indeed, various examples of their usage are available in the literature across a wide range of
domains, such as remote sensing [59,60], structural surrogate modeling [43,44], biomedical
imaging [61], climate change modeling [62], and natural language processing [63].

Finally, determination of the architecture of the NN includes determining the input
layer, the output layer, and the hidden layers, and the corresponding number of neurons
for each layer. The number of neurons in the input and output layers can be determined
according to the number of input variables and output variables. In this paper, the input
variables are the radius of the central arc segment, r1, and the subtended angle of both arc
segments, α, while the output variable is the non-linear buckling prediction. A generic
architecture with the specific input and output layer for the present study is shown in
Figure 4.

�

Input layer Output layer
Hidden layers

𝑟1
Lcr

Figure 4. Neural network (NN) architecture including the input layer, the hidden layers, and the
output layer. The neurons in the input correspond to the design variables, which are the radius of
the central arc segment, r1, and the subtended angle of both arc segments, α. The output layer is
composed of a single neuron representing the predicted non-linear buckling load.

The number of hidden layers and of the corresponding neurons, used in the NN-based
surrogate models, has been assessed through a fine-tuning process. Particularly, to select
the NN architecture, 16 architectures are investigated and compared. These architectures
can be distinguished into four different categories based on the number of layers (increasing
from 1 to 4) and four different categories based on the total number of neurons (8-16-32-64).
Each NN architecture has been designed with a central symmetry criterion, streamlining
the trial-and-error process and enhancing the efficiency of NN design and implementation.
The results of this comparison and the subsequent NN architecture of choice will be
presented later in this paper.

Each NN was trained using the MEA loss function, with a maximum of 1000 epochs
and an automatic early stopping criterion based on a patience parameter of 200 epochs.

The NN-based surrogate model has been trained using the previously collected
database, with 80% of the data allocated for training, of which 85% was used for training,
15% for validation, and the remaining 20% for testing. These datasets were normalized to a
range of [0, 1] as follows:

xnorm =
x − xmin

xmax − xmin
(11)

where xnorm, x, xmin, and xmax denote the normalized value, the original value, the mini-
mum value, and the maximum value of the data, respectively.

The NN-based surrogate models have been implemented in Python using Tensor-
Flow [64].
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2.3. MultiObjective Optimization

The NN-based surrogate models are then used to perform a MOO, with the aim
of identifying a range of trade-off solutions to achieve global optimization of buckling
performance. The set of trade-off solutions is best known as the Pareto non-inferior solution
set, and its graphical representation in the objective space is referred to as the Pareto front.
A MOO problem can be described as follows:

Minimize f1(x), f2(x), . . . , fm(x) (12)

Subject to gj(x) ≤ 0, ∀j = 1, 2, . . . , p (13)

hk(x) = 0, ∀k = 1, 2, . . . , q (14)

xmin ≤ xi ≤ xmax, ∀i = 1, 2, . . . , n (15)

where f1(x), f2(x), . . . , fm(x) denote the objective functions, gi(x), hk(x) are the inequal-
ity and equality constraints, respectively, and x represents the decision variable vector.
The primary goal is to minimize each objective function fi(x) over the feasible solution
space. The decision variable vector x comprises design variables. These variables are
subject to certain limitations. Particularly, xmin and xmax are their lower and upper bounds,
respectively. The inequality and equality constraints require specific combinations of design
variables to comply with established relationships, thus imposing additional restrictions
on the feasible solution space.

In this study, we established a total of three objective functions:

• Maximize the non-linear critical buckling load under pure axial loading.

f1(x) = −Fcr (16)

• Maximize the non-linear critical buckling moment under pure bending about the
x-axis.

f2(x) = −Mxcr (17)

• Maximize the non-linear critical buckling moment under pure bending about the
y-axis.

f3(x) = −Mycr (18)

Note that maximizing a function f (x) is equivalent to minimizing − f (x).
The design space is the same depicted in Section 2.1, with the design variable being the

radius of the central arc, r1, and the subtended angle of both arc segments, α. The design
variables are treated as continuous variables within the upper and lower bounds, previously
detailed in Table 1.

The feasible solution design space is further restricted by a total of two inequality con-
straints:

• r2 has a lower bound
r2 > 12 mm (19)

• r2 has an upper bound
r2 < 50 mm (20)

to ensure that the radius of the edge arc segment r2 is also within the acceptable values
according to the previous literature.

The MOO was carried out using pymoo, a high-performance Python-coded algorithm
toolbox [65]. Among the algorithms available in the toolbox, we chose an elistic non-
dominated sorting genetic algorithm, best known as NSGA-II [66]. We have chosen to
employ the NSGA-II algorithm due to its extensive application in the optimization of
DCBs [37–41]. Furthermore, a recent study has demonstrated the effectiveness of the
NSGA-II algorithm in optimizing the design of CTMs [67]. Specifically, Liu et al. used
the NSGA-II to minimize the ultimate coiling radius, the folding moment, and the linear
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density of a CTM, while maximizing the moment of inertia about the principal axes of its
cross-section. The NSGA-II algorithm achieved superior performance compared to four
other state-of-the-art algorithms evaluated during the optimization process. The objective
functions are evaluated through the NN-based surrogate models, which are fed into the
NSGA-II algorithm.

The NSGA-II uses real-valued coding. Initial points are sampled using the LHS, which
divides the input space into cells and randomly selects one point in each cell along each
dimension. Parents are then chosen using the binary tournament selection operator. It
randomly selects two individuals from the population, and chooses the one demonstrat-
ing superiority across multiple objectives for reproduction. Once parents are selected,
the crossover operation is implemented by using the simulated binary crossover (SBX)
algorithm [68]. The SBX operator simulates the single-point crossover operator on binary
strings to create two offspring solutions. This operator uses a distribution index ηc; higher
ηc values produce offspring closer to the parents, and lower ηc values produce more diverse
offspring. For the present study, we use a distribution index ηc of 15 for the crossover,
as it is the default value in the pymoo toolbox for the SBX operator when using NSGA-II.
The NGSA-II automatically removes duplicates from offspring populations, repeating the
mating process until the desired number of unique offspring is achieved. Finally, the poly-
nomial mutation (PM) operator is applied to introduce variation in the generated solution
thus ensuring population diversity [68]. The PM operator follows the same distribution
as the SBX, and is characterized by a probability of execution. For this study, we use a
distribution index ηc of 20 for the mutation operator, as it is the default value in the pymoo
toolbox for the PM operator when using NSGA-II. Additionally, the probability of applying
the PM operator, referred to as the mutation rate, is set to 0.9, which is also the default
value. Iteration after iteration, new individuals are generated through binary tournament
selection, simulated binary cross-over and polynomial mutation, until a total number of
100 generations has been reached.

To find the optimal population size for the NSGA-II algorithm, we evaluated popula-
tion of 250, 500, 750, and 1000 individuals. As the population size increases, more design
points appears on the Pareto front. Therefore, we select the population size to be 1000.
The number of offspring is set equal to 100. All the hyper-parameters are collected in
Table 2.

Table 2. Hyper-parameters for the NSGA-II algorithm.

Hyper-Parameter

No. of populations 1000
No. of offspring 100

Sampling operator latin hypercube sampling (LHS)
Selector operator binary tournament

Cross-over operator simulated binary crossover (SBX)
ηc (SBX) 15

Mutation operator polynomial mutation (PM)
ηc (PM) 20

Mutation rate 0.9
Max generation 100

Eliminate Duplicate Active

For constraint handling, we use the feasibility-first approach [69], which prioritizes
feasible solutions by comparing infeasible ones based only on their constraint violation values.

The MOO was carried out on a personal computer equipped with 16 GB of RAM,
an AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz CPU, and an NVIDIA GeForce
RTX 3060 Laptop GPU with 6 GB of dedicated RAM.
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3. Results

In this section, the results of the combined NN-based surrogate models and MOO
methodology are presented. Firstly, the design samples obtained through the DoE process
and the corresponding response database evaluated through computational analysis are
reported and discussed. Then, the NN-based surrogate models are presented, and their
predictive capabilities are assessed through statistical error function. Finally, the designs
for global optimization of the CTM buckling performance, which have been identified by
feeding the NN-based surrogate models into the NSGA-II algorithm, are commented.

3.1. Data Collection Results

In this subsection, the results of the data collection are reported. The results of the
DoE process and computational analysis are presented, following the order in which the
two stages are performed.

Figure 5 displays the 1000 DoE points generated using the Sobol sequence applied
to the two design variables, r1 and α. The design samples do not span the entire design
space that would be covered if solely the constraints on r1 and α were considered. In fact,
the lower and upper limits for r1 must also be enforced for r2. Given the need to validate
the r1 and α pairs to ensure that the corresponding r2 value falls within the limits for r1,
the design space is further restricted beyond the constraints on r1 and α alone, as shown in
Figure 5.

15 20 25 30 35 40 45 50

0.8

1

1.2

1.4

Figure 5. Design samples, in terms of the design variables r1 and α, to determine the influence of the
cross-sectional configuration on the non-linear buckling behavior of the CTM. The design samples
has been built as a Sobol sequence.

The three simulation models developed to study the buckling behavior of each sample
design are executed, and the response of each sample design subjected to axial load,
bending moment around the x-axis, and bending moment around the y-axis has been
collected and analyzed.

For the scenario where an axial force is applied, four distinct non-linear buckling
patterns are observed. The buckling pattern can be recognized as wrinkles in the central
arc segment, wrinkles in the edge arc segment, wrinkles in the web regions, or wrinkles
diffused over a wide region including both the web and the edge arc segment, as shown in
Figure 6.
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Figure 6. Buckling patterns for non-linear buckling in the axial loading scenario: (a) Wrinkles on
central arc segment. (b) Wrinkles on edge arc segment. (c) Wrinkles on web region. (d) Wrinkles on a
wide region including edge arc segment and web region. The scale-plate is shown in the figure with
the magnitude of displacements expressed in m. In the deformed configuration, the magnitude of
displacements has been amplified by a factor of 5.
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In the scenario of a bending moment around the x-axis, three non-linear buckling
patterns can be distinguished: wrinkles in the central arc segment, wrinkles in the edge arc
segment, and finally a diamond pattern, as shown in Figure 7.
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Figure 7. Buckling patterns for non-linear buckling in the bending moment about the x-axis scenario:
(a) Wrinkles on central arc segment. (b) Wrinkles on edge arc segment. (c) Diamond wave pattern.
The scale-plate is shown in the figure with the magnitude of displacements expressed in m. In the
deformed configuration, the magnitude of displacements has been amplified by a factor of 5.

Finally, a bending moment around the y-axis leads to the compression in the outer
edge of the web. The only buckling pattern observed is the wrinkle pattern shown in
Figure 8.

The formation of wrinkles in a structure undergoing buckling indicates that the
structure is experiencing non-uniform local deformations or instabilities before reaching
global collapse. These wrinkles are folds or creases that form on the surface of the structure
due to local compressive stresses, and can be an early sign of potential failure or nonlinear
behavior of the structure under critical buckling loads. In practical terms, the formation of
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wrinkles can compromise structural integrity, and may indicate that the structure is nearing
its maximum load-carrying capacity. The presence of wrinkles is due to the ultra-thin
nature of the CTM, which gives rise to highly localized buckling modes rather than global
ones. Due to the complexity of predicting these modes analytically, surrogate models are
essential for capturing this localized highly nonlinear behavior, providing a powerful tool
for mitigating structural failure.

Figure 8. Buckling pattern for non-linear buckling in the bending moment about the y-axis scenario:
wave pattern on compressed web. The scale-plate is shown in the figure with the magnitude of
displacements expressed in m. In the deformed configuration, the magnitude of displacements has
been amplified by a factor of 5.

3.2. Surrogate Models Results

In this section, the NN-based surrogate models are presented and their predictive
capability discussed. Each NN-based surrogate model is trained using data points derived
FEA. Out of 1000 data points, 800 are used for training, with 680 allocated for training and
120 for validation. The remaining 200 experiments are used for testing. Those datasets are
shown in Figure 9.

15 20 25 30 35 40 45 50

0.8

1

1.2

1.4

Figure 9. Training, validation and test datasets used to construct the NN-based surrogate models.
The 680 red circles correspond to the input array of the training dataset, the 120 blue triangles
correspond to the input array of the validation dataset, the 200 black squares correspond to the input
array of the test dataset. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article).
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The result of the comparative analysis between 16 different NN architectures is pre-
sented for the NN-based surrogate model for non-linear buckling prediction in the axial
loading scenario, with details given in Table 3. In Table 3, moving down the rows increases
the number of layers (from 1 to 4), and moving to the right across the columns increases
the total number of neurons (8-16-32-64). It can be observed that, for NNs with the same
number of layers, performance improves as the number of neurons increases. With the
same number of neurons, performance increases as the number of layers increases up to
three. However, adding a fourth layer does not result in further performance improvement,
but instead leads to a reduction in performance, especially in the case where the total
number of neurons is equal to 8. Based on these considerations, we opted to employ a
NN configuration with three hidden layers, having 16 neurons in the first and last hidden
layers and 32 neurons in the middle hidden layer. This NN configuration has been labeled
as 16-32-16. The same methodology was applied to select the NN architectures for the
NN-based surrogate models for the predicting the critical bending moments around the x
and y axes.

Table 3. Evaluation metrics R2, MSE, MAE of the NN-based surrogate model for non-linear buckling
prediction in the axial loading scenario, obtained with 16 different NN architectures. Moving down
the rows increases the number of layers (from 1 to 4), and moving to the right across the columns
increases the total number of neurons (8-16-32-64).

8 Neurons 16 Neurons 32 Neurons 64 Neurons

1 layer 8 16 32 64

R2 0.9744 0.9840 0.9864 0.9870
MSE 0.00106 0.00066 0.00056 0.00053
MAE 0.0259 0.0204 0.0192 0.0185

2 layers 4-4 8-8 16-16 32-32

R2 0.9820 0.9844 0.9878 0.9894
MSE 0.00074 0.00064 0.00050 0.00043
MAE 0.0217 0.0192 0.0175 0.0153

3 layers 2-4-2 4-8-4 8-16-8 16-32-16

R2 0.9848 0.9867 0.9890 0.9906
MSE 0.00062 0.00055 0.00045 0.00039
MAE 0.0195 0.0174 0.0157 0.0144

4 layers 2-2-2-2 4-4-4-4 8-8-8-8 16-16-16-16

R2 0.9683 0.9862 0.9877 0.9891
MSE 0.00130 0.00057 0.00050 0.00045
MAE 0.028 0.0179 0.0168 0.0154

These investigations resulted in the selection of a the same NN architecture across
all three surrogate models, leading to the following evaluation indices: R2 = 0.9987,
MAE = 0.0054, and MSE = 6.7048 × 10−5, and R2 = 0.9628, MAE = 0.0313, and
MSE = 0.00178 for the x and y bending moment scenarios, respectively.

The training performance of each NN is presented in terms of MAE, evaluated on both
the training and validation datasets in Figures 10–12 for axial loading, bending moment
around the x-axis and bending moment around the y-axis, respectively. These figures show
that the MAE reaches a plateau before the end of the fixed 1000 training epochs for every
NN, suggesting that the training has effectively converged.
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Figure 10. Learning curve for the NN predicting buckling behavior under axial loading, showing the
MAE against the number of epochs for both the training and validation datasets.
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Figure 11. Learning curve for the NN predicting buckling behavior under pure bending around
x-axis, showing the MAE against the number of epochs for both the training and validation datasets.
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Figure 12. Learning curve for the NN predicting buckling behavior under pure bending around
y-axis, showing the MAE against the number of epochs for both the training and validation datasets.
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The NN-based surrogate models lead to the non-linear buckling predictions shown in
Figures 13–15 for the case of axial load, bending moment around the x-axis and bending
moment around the y-axis, respectively.

Figure 13. Prediction of the non-linear critical load as a function of the radius of the central arc r1 and
the subtended angle of both arc segments, α, given by the NN-based surrogate model for buckling
behavior under axial loading.

Figure 14. Prediction of the non-linear critical moment as a function of the radius of the central arc
r1 and the subtended angle of both arc segments, α, given by the NN-based surrogate model for
buckling behavior under pure bending around the x-axis.



Biomimetics 2024, 9, 494 20 of 28

Figure 15. Prediction of the non-linear critical moment as a function of the radius of the central arc
r1 and the subtended angle of both arc segments, α, given by the NN-based surrogate model for
buckling behavior under pure bending around the y-axis.

3.3. Multi-Objective Optimization Results

The Pareto front and the corresponding design variables are shown in Figure 16 and
Figure 17, respectively.

Figure 16. Pareto front identified using the NSGA-II algorithm with the non-linear critical buckling
load under pure axial force application, the non-linear critical buckling moment under pure bending
around the x-axis and the non-linear critical buckling moment under pure bending around the
y-axis as objective functions and lower and upper limit for the radius of the edge arc segment r2 as
inequality constraints.

In Figure 16, the Pareto front is plotted in a 2D graph, with the x-axis showing the
predicted values for the nonlinear buckling moment under pure bending around the x-axis,
and the y-axis showing the predicted values for the nonlinear buckling moment under pure
bending around the y-axis. The color represents the nonlinear buckling load under axial
force application, as indicated by the color bar shown on the side of Figure 16. The max-
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imum value for the three objective functions are: Mxcr = 11.71 Nm, Mycr = 10.27 Nm,
and Fcr = 545.26 N. An increment of the critical buckling moment around the x-axis always
corresponds to a decrement of the critical buckling moment around the y-axis; these objec-
tives are always competing. The relations between the critical buckling moment around
either the x or the y axis and the critical buckling load is not as straightforward.

Figure 17. Optimal design identified using the NSGA-II algorithm with the non-linear critical
buckling load under pure axial force application, the non-linear critical buckling moment under pure
bending around the x-axis and the non-linear critical buckling moment under pure bending around
the y-axis as objective functions and lower and upper limit for the radius of the edge arc segment
r2 as inequality constraints. The vertical line divides the optimal designs space in two regions: a
left-hand region where the r1 values range from 19.45 mm to 25.62 mm, and a right-hand region
where the r1 values range from 25.62 mm to 41.71 mm. The design point having r1 = 25.62 mm and
α = 1.57 rad lies on that vertical line.

In Figure 17, the cross-section parameters leading to a global optimum for buckling
performance are shown. Specifically, the x-axis displays the value of the central arc radius,
r1, and the y-axis displays the value of the subtended angle of both arc segments. The mini-
mum and maximum value for the optimal cross-sectional parameters are 19.45 mm and
41.71 mm, 1.12 rad and 1.57 rad, for r1 and α, respectively. A vertical line divides the opti-
mal designs space in two regions: a left-hand region and a right-hand region. The design
point having r1 = 25.62 mm and α = 1.57 rad lies on that vertical line. In the left-hand
region, the r1 values range from 19.45 mm to 25.62 mm, while the subtended angle α takes
a constant value equal to 1.57 rad. In the right-hand region, the r1 values range from
25.62 mm to 41.71 mm, while α decreases from its uppermost value of 1.57 rad to its lowest
value of 1.12 rad. In the right-hand region, the radius of the edge arc segment r2 takes
approximately a constant value equal to its lower limit of 12 mm. Once again, the points are
colored according to the scale of the nonlinear buckling loads under axial force application,
allowing for easy correspondence between points on the Pareto front and cross-sectional
parameter pairs in the optimal design space.

4. Discussion

In this paper, 1000 sample designs are created, whose buckling behavior has been
characterized through FEA under three different loadings: axial load, bending moment
around the x-axis, and bending moment around the y-axis. One simulation, consisting of
three analyses (linear buckling, non-linear static analysis, and sequential linear buckling),
has been run per each loading condition over every sample design. The simulation process
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has been automated by developing a Python script to communicate with the Abaqus
software. Worth noting is that the extent of computations in this study far exceeds that
of any previous studies on buckling behavior conducted on CTMs. The sample designs
and the response database thus obtained have been collected to serve as data for the
machine learning process. An NN has been training for each loading scenario, and three
NN-based surrogate models have been constructed. These models demonstrate good
accuracy in predicting for the non-linear buckling behavior of CTMs. The surrogate models
are embedded into the NSGA-II algorithm for MOO, giving a set of trad-off solutions that
can be tailored to specific mission requirement.

Considering optimal solutions, the higher the r1 value, the better the buckling per-
formance when a bending moment around the y-axis is applied. Conversely, for bending
moments around the x-axis, increasing r1 leads to a deterioration in buckling performance.
Therefore, the enhancement of the buckling performance under bending moment about
perpendicular axes is always a trade-off. A further investigation of the optimal designs
is conducted considering the critical buckling axial load. Specifically, two regions are
identified within the space of optimal designs: a left-hand side, where the r1 values range
from 19.45 mm to 25.62 mm, and a right-hand where the r1 values range from 25.62 mm
to 41.71 mm. The critical buckling axial load increases with an increment of r1 up to its
maximum obtained in correspondence of r1 = 25.62 mm, starting from which a further
increment of r1 cause the critical buckling axial load to decrease. Therefore, we distin-
guish a left-hand side of the optimal designs space, where r1 is smaller than 25.62, and a
right-hand side of the optimal design space, where r1 is larger than 25.62. In the left-hand
side of the optimal designs space, simultaneous increment of the non-linear buckling load
and non-linear buckling moment around the y-axis is possible by keeping α = π/2 and
increasing the value of r1 from its lowest value of 19.45 mm up to the value of 25.62 mm.
In the right-hand side of the optimal designs space, a simultaneous improvement in the
non-linear buckling load and non-linear buckling moment around the x-axis is possible by
decreasing the value of r1 from its highest value of 41.71 mm down to 25.62 mm. Thus, it is
advisable to choose the design space sides for selecting optimal solutions depending on the
metric one aims to favor. It should be noted that, in the left-hand side, α is kept constant
and equal to its maximum allowable value of 1.57 rad, while in the right-hand side, the α
and r1 pairs always correspond to a r2 equal to its minim allowable value of 12 mm. This
means that our engineering decision to constrain the design space has affected the Pareto
front, and and alternative initial constraints on the design variables would lead to different
Pareto fronts.

All these findings are summarized in Figure 18. By following the orientation of the
dashed arrows along the vertical line, one can trace the trend of nonlinear buckling loads
under axial load, bending moment about the x-axis, and bending moment about the y-axis
as the design variables vary. Three optimal configurations are highlighted in black boxes.
From left to right, these configurations represent the designs that maximize the nonlinear
buckling moment about the x-axis, the nonlinear axial buckling load, and the nonlinear
buckling moment about the y-axis, respectively. The corresponding critical load values
are Mxcr = 11.61 Nm, Fcr = 545.24 N, and Mycr = 10.27 Nm. Additionally, intermediate
configurations between these optimal designs are shown to provide a clearer visualization
of how the cross-sections evolve within the optimal design space. Further representations
of the designs that individually maximize each of the three critical loads are shown in
Figure 19. In Figure 19, a three-dimensional image of these CTMs in their deployed state,
along with the respective cross-section, is displayed. The order followed from left to right
in Figure 18 is followed from top to bottom in Figure 19.
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Figure 18. Optimal design samples with comments based on their non-linear critical loads.
The dashed arrows trace the trend of nonlinear buckling loads under axial load, bending moment
about the x-axis, and bending moment about the y-axis as the design variables vary. The vertical line
divides the optimal designs space in two regions: a left-hand region, where the nonlinear buckling
load and the non-linear buckling moment about the y-axis follow the same trend, and a right-hand
region, where the nonlinear buckling load and the non-linear buckling moment about the x-axis
follow the same trend. The optimal designs that maximize the nonlinear buckling moment about the
x-axis, the nonlinear axial buckling load, and the nonlinear buckling moment about the y-axis are
highlighted in black boxes and are shown from left to right, respectively. Intermediate configurations
between these optimal designs are provided as well.

We recognize that optimizing the buckling behavior of CTMs under three loading
conditions does not pose a high-dimensional problem, as it involves only three-objective
functions and two design variables defining a relatively small design space. Consequently,
the most of the decision space could have been visualized by evaluating via FEA a larger
number of sample designs, without usage on surrogate models. However, even within
this framework, the contribution of NN in the proposed approach resulted in a much
faster design process than would have been achievable with solely time-consuming FEA.
Furthermore, MOO enables design decisions informed by quantitative information rather
than intuition alone, and MOO could not have been performed based solely on FEA.
Instead, it necessitates models to evaluate objective functions, which can be facilitated
through NN-based surrogate modeling.

In addition to providing a valuable tool for designing of CTMs with optimal buckling
behavior, this work serves as an illustration of the combined NN-based surrogate models
and MOO approach. We strongly believe that integrating NN with MOO is the viable
solution for designing solutions within a reasonable time-frame in high-dimensional input
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or output spaces, with NN-based surrogate models facing the challenge of predicting
complex behaviors in low time and MOO allowing us to handle multi-dimensionality.
Hence, the proposed approach paves the way for increasingly complex optimizations of
ultra-thin structures exhibiting highly nonlinear behaviors.

Figure 19. From top to bottom, the three-dimensional images show CTMs in their deployed state,
along with their respective cross-sections. These images represent the designs that maximize, respec-
tively, the nonlinear buckling moment about the x-axis, the nonlinear axial buckling load, and the
nonlinear buckling moment about the y-axis.

5. Conclusions

This paper proposes a combined NN-based surrogate model and multi-objective
optimization approach to design composite lightweight CTMs with optimal buckling per-
formance. First, we generated 1000 sample designs using the Sobol sequence method. Each
design is defined by two variables: the radius of the central arc segment, r1, and the sub-
tended angle, α, characterizing the CTMs’ cross-section. To examine the buckling behavior
of each design, we employed FEA. Specifically, we evaluated the non-linear buckling load
for each design under three different loading conditions: axial load, bending moment about
the x-axis, and bending moment about the y-axis. This involved performing three types
of analyses (linear buckling, non-linear static analysis, and sequential linear buckling) for
each design under each loading condition, totaling 3000 analyses. The computational effort
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in this study exceeds any prior research on the buckling behavior of CTMs. The resulting
sample designs and their corresponding non-linear buckling loads for each loading scenario
were compiled into a database for machine learning. Separate NNs were trained for each
loading condition, using datasets divided into three parts: 680 points for training, 120 points
for validation, and 200 points for testing. This approach produced three surrogate models
that accurately predict the non-linear buckling behavior of CTMs, with R2 values of 0.9906,
0.9987, and 0.9628 for axial loading, pure bending about the x-axis, and pure bending about
the y-axis, respectively. These NN-based surrogate models were then incorporated into the
NSGA-II algorithm for multi-objective optimization (MOO), resulting in a set of trade-off
solutions that can be tailored to specific mission requirements.

In the buckling optimization framework, the proposed approach resulted in a faster
design process than would have been achievable with solely time-consuming FEA. In fact,
NN-based surrogate models predict the buckling behavior for newer sample designs much
faster than FEA, with the prediction time reduced to a fraction of a second, compared
to the several minutes required by FEA. Furthermore, the application of multi-objective
optimization enabled the identification of trends that would have been challenging to detect
through intuition alone. By utilizing multi-objective optimization based on quantitative
data derived from surrogate models, we were able to elucidate how improvements in
buckling performance under axial loading correlate with enhancements in buckling perfor-
mance under bending moments about the y-axis, but only within the design space where
the cross-sectional radius of curvature is less than 26.52 mm. For larger radii of curvature,
improvements in axial load buckling performance are instead associated with improve-
ments in buckling performance under bending moments about the x-axis. Consequently,
we advise designers to select design spaces tailored to the anticipated loading conditions
of the boom during operational scenarios. These findings were achievable solely due to
the capacity of MOO to manage multiple objective functions concurrently. The efficacy of
this MOO was contingent upon the availability of surrogate models for buckling behavior.
Without such surrogate models, it would not have been feasible to deviate from intuitive
assumptions and to guide the CTM design based on rigorous quantitative analysis.

In addition to serving as a valuable tool for designing CTMs with optimal buckling
behavior, the case study acts as a benchmark to illustrate the advantages of integrating NN
and MOO in the design process of a broader range of lightweight composite structures. This
integration facilitates the discovery of feasible solutions within a reasonable time-frame,
leveraging the reduced computational costs of NN evaluations compared to FEA. This
enhanced computational efficiency supports a shift from intuition-based design decisions
to data-driven approaches. By tackling the challenge of multidimensionality in the decision-
making process, a data-driven approach reveals crucial solutions that intuition alone might
overlook. We firmly believe that integrating NN and MOO represents the path towards
innovative designs for lightweight composite structures.
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