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Abstract Laboratory earthquake experiments provide important observational constraints for our
understanding of earthquake physics. Here we leverage continuous waveform data from a network of
piezoceramic sensors to study the spatial and temporal evolution of microslip activity during a shear
experiment with synthetic fault gouge. We combine machine learning techniques with ray theoretical
seismology to detect, associate, and locate tens of thousands of microslip events within the gouge layer.
Microslip activity is concentrated near the center of the system but is highly variable in space and time.
While microslip activity rate increases as failure approaches, the spatiotemporal evolution can differ
substantially between stick-slip cycles. These results illustrate that even within a single, well-constrained
laboratory experiment, the dynamics of earthquake nucleation can be highly complex.

Plain Language Summary The fault systems that produce damaging earthquakes are difficult
to study directly due to their depth and spatial extent in the Earth's crust. Laboratory earthquake
experiments can provide insight into the relevant physical processes active in real earthquake systems.
In experiments with granular material that emulates the crushed-up gouge material of real faults, larger
labquakes are always preceded by smaller, foreshock events. In this work, we provide a detailed study
of the space-time evolution of these microslip foreshocks in one such experiment. We show that even in
these simplified analogs of real earthquake cycles, earthquake nucleation processes and frictional behavior
can vary dramatically from cycle to cycle. In tectonic fault zones on Earth, such complexity will only be
magnified.

1. Introduction
The evolution of stress and strain fields in fault systems plays a fundamental role in earthquake occurrence.
Direct observations of these fields are difficult in the real Earth, where the seismogenic zone resides kilo-
meters below the surface. While direct measurements are possible in tectonic fault systems (Hickman &
Zoback, 2004; Zoback & Healy, 1992), they are expensive to obtain and provide only pointwise sampling
over time scales that are short compared to the full duration of the earthquake cycle.

These difficulties have spawned a plethora of analog laboratory experiments that have for decades played a
foundational role in our understanding of fault friction and earthquake physics (Abercrombie & Rice, 2005;
Beeler et al., 1994; Marone et al., 1990; Scholz, 1968). A key advantage of laboratory experiments is that
the observer controls the driving forces and can closely monitor the system as it approaches failure. In so
doing, one can derive basic relations governing fault friction (Dieterich, 1979; Marone, 1998; Ruina, 1983)
and study various frictional weakening mechanisms that control the dynamics of large slip events (Beeler
et al., 2008; Brodsky & Kanamori, 2001; Goldsby & Tullis, 2011; Rice, 2006; Tisato et al., 2012).

Laboratory earthquake experiments have been performed using a variety of system geometries, and with a
diverse array of real rock samples and analog Earth materials. In a typical setup, the loading velocity and
normal force are held constant as the system traverses multiple stick-slip cycles of shear motion. Microslip
events, apparent in the form of small acoustic emissions, are often observed preceding the failure. These
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Figure 1. Schematic of the double-direct shear apparatus and sensor geometry (not to scale). This system is driven
from the top at constant loading velocity and confined from the sides with constant normal load. Microslip events
occur in the gouge layer and are recorded by an array of 12 piezoceramic sensors located outside the steel confining
layer. We adopt the (x, y, z) coordinate system shown at the bottom right.

microslip events are not random in their occurrence but instead lend insight into the nucleation process as
the system evolves to dynamic rupture (Acosta et al., 2019; Bolton et al., 2019; Brantut et al., 2008; Goebel
et al., 2013; Johnson et al., 2013; Lubbers et al., 2018; Main et al., 1989; McLaskey et al., 2014; Passelègue
et al., 2013; Rouet-Leduc et al., 2017; Rivière et al., 2018; Scholz, 1968). Studying these events in the lab-
oratory setting may thus help understand their real Earth analogs: the background microseismicity and
foreshock sequences that occur between larger, system-spanning ruptures (Abercrombie & Mori, 1996; Chen
& Shearer, 2016; Dodge et al., 1996; Ellsworth & Bulut, 2018; Trugman & Ross, 2019).

The focus of this work is on high-resolution spatiotemporal imaging of microslip activity in shear experi-
ments with synthetic fault gouge. While the location of acoustic emission events in intact rock samples or
saw cut, block-on-block experiments has become relatively common (David et al., 2018; Goebel et al., 2013;
Marty et al., 2019; McLaskey & Glaser, 2011; McLaskey et al., 2010; Thompson et al., 2009), the same can-
not be said for granular shear experiments, where the overall frictional behavior and microslip activity may
differ substantially. We use state-of-the-art machine learning tools to reliably extract seismic arrivals on
multiple sensors and then associate these arrivals to microslip events occurring in the fault gouge layer.
With thousands of precisely located events in hand, we study their evolution in space and time within and
between individual stick-slip cycles, with an ultimate aim to further our understanding of the physics of the
earthquake cycle.

2. Experimental Data
We use experimental data from a double-direct shear (DDS) apparatus developed at Penn State and described
previously by a number of research teams (Anthony & Marone, 2005; Johnson et al., 2008; Mair et al., 2007;
Rivière et al., 2018; Tinti et al., 2016). This apparatus comprises a central block that is driven at a fixed loading
velocity (here 10 μm/s) in analogy to the plate rate in tectonic systems. This loading imparts shear stress
within two gouge layers, each of which has lateral dimension 100 mm × 100 mm and an initial thickness of
5 mm. The gouge layers are located on either side of the central driving block and are confined by a second
steel layer of 20 mm thickness (Figure 1). In this experiment, the gouge material consists of monodisperse
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Figure 2. Waveform data and phase detection. Each panel shows a time-aligned 5 ms snapshot of waveform data in
experiment p4677 (black lines) at one of the 12 sensors (here numbered 12 through 23). PhaseNet predictions (arrival
probabilities) are plotted in red alongside the waveform data, where peaks in the output label function correspond to
phase arrivals.

glass beads of 104–149 μm diameter. We use a load-feedback servo control system to maintain a fixed normal
stress of 2.5 MPa, while measuring shear stress throughout the experiment.

An important aspect of the experiment is the placement of piezoceramic sensors on the outside of the DDS
sample (Figure 1). The sensors are mounted in a steel block at the bottom of blind holes 2 mm from the DDS
sample. The sensors are arranged in a matrix with 16.8 mm spacing. Waveform data are recorded contin-
uously for each sensor at ∼4 MHz sampling rate. While both gouge layers in the double-direct system are
capable of such recordings, we report here on the right layer shown in Figure 1, which has a more complete
and regular grid of 12 sensors. This experimental setup was not originally designed to interrogate microslip
event locations, so the 12-sensor network covers only a central portion of the gouge layer. As such, we antic-
ipate a limited ability to resolve the locations of microslip activity near the lateral edges of system. However,
these events are of less interest here because they are a byproduct of boundary conditions not present in
most real Earth fault systems. Future experiments with a more complete array of sensors may however build
on these results.

3. Methods
The first step in our analyses is to detect phase arrivals from microslip events on each sensor. To do this, we
adapt the PhaseNet detection algorithm of Zhu and Beroza (2019). PhaseNet is a machine learning frame-
work with a classic U-Net architecture that outputs the relative probability of a phase arrival at each time
step. Before applying PhaseNet to our data set, we band-pass filter the waveforms into the 0.05–0.8 MHz
range that contains the dominant portion of seismic energy from microslip phase arrivals. We constrain
the network weights through training on a subset of data with manually reviewed arrivals determined by
an energy norm-based picker (McBrearty et al., 2019). After running PhaseNet on the full time series at
each sensor, we use a peak-finding algorithm to extract arrival times from the PhaseNet output probabil-
ities (Figure 2). The results are insensitive to the details of the peak-finding algorithm, as in this context
PhaseNet provides sharply peaked arrival probabilities.

With the collection of arrival times at each sensor in hand, the next step is to associate the arrivals with
individual events. This process is simplified by the fact that moveout of arrivals across the sensor network
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Figure 3. Comparison of microslip event rates in stick-slip Cycles 3 and 4. Event rates are plotted as a function of
normalized time within the slip event (bounded from 0 to 1) and compared to the other stick-slip cycles (gray) and the
average rate across cycles (black).

is typically much shorter than the interevent times (typical interevent times are ∼1 ms, see Figure S1 in
the supporting information). Because of this, there are relatively few overlapping events (an observation
confirmed with visual inspection of the waveforms), and thus, applying a temporal clustering algorithm,
DBSCAN (Ester et al., 1996), is sufficient to group sets of arrivals into events. We define an event to consist
of four or more arrivals within a time window of 35 μs, where the latter threshold is guided by the maximum
possible moveout lag across the sensor network. This requirement of four or more arrivals reduces the risk
for local sensor noise to generate a false event but may exclude some of the smallest microslip events from
our final catalog.

Our ultimate goal is to provide locations of the microslip events that generate the detected phase arrivals.
This final step is more difficult than it may appear at first glance due to physical and geometric constraints.
Since the wave speed in the steel block containing the sensors (∼3,250 m/s) is much larger than that of the
fault gouge (∼570 m/s; e.g., Domenico, 1977; Muqtadir et al., 2020), ray theoretical arguments imply that any
ray arriving at one of the sensors must have been traveling near vertically in the gouge layer, as the critical
angle from gouge to steel is of order 10◦. This constraint accentuates the traditional tradeoff between event
depth and origin time to the extent that we have essentially zero depth resolution in the gouge. Consequently,
we resolve and report only the lateral (x, y) coordinates of each event within the gouge layer.

The phase arrivals we are working with are too numerous (tens of thousands per sensor) to manually review
more than a few for quality control purposes. Because of this, our location algorithm must account for
the possibility of one or more outlier arrival times within each event, which precludes traditional location
approaches based on L2 norm residual minimization. With this in mind, we combine a grid search in x and
y with a robust optimization approach based on the RAndom SAmpling Consensus (RANSAC) algorithm
(Fischler & Bolles, 1981) to minimize the misfit between the observed and predicted arrival times, the lat-
ter being determined through ray tracing. The RANSAC method has been used by statisticians for several
decades in regression problems with an unknown number of outlier data points but has only recently been
adopted by the seismology community (Woollam et al., 2020; Zhu et al., 2017). To our knowledge, this is
the first application of RANSAC to the study of microslip events in laboratory earthquake experiments. The
RANSAC method is quite effective for our purposes, where in some instances even the suppression of a
single outlier data point can dramatically improve the location (Figure S2). Because the phase type of the
detected arrivals was unknown a priori, we initially located using both P wave and S wave velocity mod-
els. However, we found that the S wave locations gave systematically lower misfits in the vast majority of
instances, and hence, our location results assume S wave arrivals. This is consistent with the association of
acoustic emissions with the rearrangement of force chains that impart shear couples on the gouge formation
(Anthony & Marone, 2005; Gao et al., 2019).

4. Results
We examine microslip event rates and locations within five stick-slip cycles during experiment p4677.
Microslip events occur at all times, indicating that the fault never fully locks (Scuderi et al., 2015). Event
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Figure 4. Comparison of microslip activity during the five stick-slip cycles analyzed in this study. Panel (a) shows the results for the experiment as a whole,
while panels (b) through (f) show results for each individual cycle. The top plot in each panel contains an event rate time series (black) plotted alongside the
measured shear stress (light blue). The bottom plot shows a kernel density estimate representation of the spatial distribution of microslip activity in the (x, y)
plane, with warmer colors indicating higher event rates per unit area. Here, we use a Gaussian kernel width of 2.5 mm, in line with typical location
uncertainties.

rates increase during each slip cycle in tandem with shear stress, though the details of this time evolu-
tion vary between cycles. This variability is most clearly observed by comparing the time evolution of
microslip event rates (here calculated in sliding windows of 0.2 s duration) within individual stick-slip cycles
to the average trend across all cycles (Figures 3 and S3). The third stick-slip event, for example, features
higher-than-average event rates throughout the cycle and no systematic increase near failure, while the
fourth follows the general trend of the remaining stick-slip cycles before culminating in a prominent spike
in microslip activity immediately preceding failure.

The essential contribution of this work is constraining the locations of these microslip events; previous
works have documented the decrease in seismic b value leading to failure (Goebel et al., 2013, 2017; Main
et al., 1989; Rivière et al., 2018; Sammonds et al., 1992; Scholz, 1968; Weeks et al., 1978). Our location
approach uses a five-sample RANSAC implementation with a tolerance level of 5 μs, which is comparable
to the uncertainty in the PhaseNet predictions. Under these conditions, we are able to locate slightly more
than half (15,222) of the 30,326 total detected events. The different stick-slip cycles in our experiment share
some universal features, most notably that the microslip event activity concentrates near the center of the
system (between sensors 18, 13, 20, and 14). This may indicate a correspondence between microslip activity
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Figure 5. Space-time evolution of microslip activity during the third and fourth stick-slip cycles in the experiment (panels a–d and e–h, respectively). As in
Figure 4, each panel contains a spatial density map of microslip activity during one quarter of the slip cycle (time period marked in red).

and the area of the fault plane where the breakage and rearrangements of force chains spanning the gouge
layer are most prevalent (Anthony & Marone, 2005; Daniels & Hayman, 2008; Gao et al., 2019). Although
our sensor network does not encompass the entire slip plane, it covers a broad enough area that it is unlikely
that the central concentration is simply an artifact of station geometry.

While the spatial patterns averaged over multiple cycles appear rather simple (Figure 4a), each stick-slip
cycle exhibits a unique spatiotemporal signature that traces out a distinctive pattern of microslip event activ-
ity. Figure 5 illustrates this by taking snapshots of microslip activity at different points in the third and fourth
stick-slip cycles highlighted above (see Figure S4 for the other slip events). During the third stick-slip cycle,
microslip event activity achieves a high rate relatively early on, and there are multiple spatial and temporal
peaks in event rate before the final stick-slip failure. This behavior is likely related to the notch in the shear
stress curve at ∼1,841 s, where a small stick-slip event is embedded in the full stick-slip cycle. The fourth
stick-slip cycle, in contrast, features a steady climb in event rate and a distinct, localized hot spot in microslip
activity during the final stages of the nucleation process.

We can quantify these spatiotemporal relations with the Kullback-Leibler (KL) divergence metric (Kullback
& Leibler, 1951), which is commonly used to compare two probability distributions (MacKay & Kay, 2003).
Here, we use a symmetric definition of the KL divergence, appropriate for cases when there is no refer-
ence probability distribution. Lower values of KL divergence indicate a higher degree of similarity in the
two distributions, approaching 0 in the limit that the distributions are identical. To apply this concept to
the microslip event data, we divide each stick-slip cycle into 20 nonoverlapping time windows (100 time
windows in total across the five stick-slip cycles). For each time window, we compute a spatial probability
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Figure 6. Symmetric KL divergence between different snapshots in time of microslip event activity. The large grid cells
along the x and y axes correspond to different stick-slip cycles, labeled 1 to 5. Each cycle is discretized into 20 time
windows, and the pairwise KL divergence of the spatial event density in that time window with event density in all
other time windows is displayed in matrix form. In this way, our analysis explores all possible combinations of
snapshots within pairs of cycles. Darker colors correspond to lower values of KL divergence, and hence more similar
spatial event densities.

density map of microslip activity (like those shown in Figures 4 and 5) and calculate the KL divergence of
these spatial density maps with those from all other time windows.

The results of this analysis are presented in Figure 6 and lead to three main observations. First, the width
of the diagonal streak in the KL matrix suggests that the spatial patterns of microslip activity are temporally
persistent only for about 10–20% of the stick-slip cycle before this similarity begins to deteriorate. Second,
the spatial distributions for different stick-slip cycles (represented in the off-diagonal square grids) share
some similar features, notably the concentration of microslip activity near the center of the apparatus, but
are measurably divergent in their fine-scale details. Third, in comparing different stick-slip cycles, the spa-
tial patterns are most dissimilar at the beginning of the cycle, where the microslip activity is effectively
randomized in the aftermath of the previous stick-slip event.

5. Discussion and Conclusions
In this study, we analyze the spatial and temporal progression of microslip activity in a DDS experiment
with synthetic fault gouge. Our processing workflow uses waveform data from an array of 12 piezoceramic
sensors in combination with machine learning seismological techniques to detect, associate, and locate
microslip events within the gouge layer. The individual stick-slip cycles in our experiment share some uni-
versal characteristics, including an increase in microslip event rate as stick-slip failure approaches and a
spatial concentration of these events near the center of the apparatus. However, we also find a diversity of
microslip spatiotemporal patterns across stick-slip cycles and provide quantitative support for these observa-
tions through KL divergence calculations. Our results suggest that each stick-slip cycle comprises a unique
spatiotemporal evolution of microslip activity as failure approaches and that the support of shear stress is
inhomogeneously distributed across the gouge layer. While event rates tend to increase later in the slip cycle,
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the progression is not always smooth, and the final instances preceding failure may feature multiple hot
spots of concentrated microslip activity.

This is a very different picture than the classic paradigm of earthquake nucleation as a smooth expansion of
localized aseismic slip until a critical dimension is reached and dynamic rupture initiates (Ohnaka, 2000).
Preslip nucleation models of this type are often contrasted (Mignan, 2014) with those corresponding to an
earthquake cascade, where individual foreshock events trigger one another and eventually the mainshock
as part of a stochastic process. Our observations do not fit neatly into either end-member model, as we see
evidence both of stochastic triggering behavior and a systematic acceleration of microslip activity as failure
approaches. Hybrid models are more appealing (McLaskey, 2019), but even they are prone to oversimplify
the underlying physics.

With these new results in hand, it is important to bear in mind their limitations. Laboratory earthquake
experiments are imperfect analogs for real Earth fault systems. We focused on an experiment that features
a gouge layer like those present in the real Earth and thus shares some of the same important underlying
physics. Nevertheless, this experiment is highly simplified and does not include elevated temperature, the
geological or geometrical heterogeneity of real fault zones, the influence of fluid transport, or the interaction
of adjacent fault systems.

Because of this, it is uncertain how well the conclusions we derive here will generalize and scale to rupture
characteristics of real earthquakes. However, it is worth considering that even within the context of a single
experiment, we observe a rich complexity in rupture nucleation replete with significant cycle-to-cycle vari-
ability. The granular physics of fault gouge may thus significantly complicate nucleation and failure. The
implications of this are self-evident, as it is hard to imagine things getting simpler in the real Earth.

Data Availability Statement
Experimental data for run p4677 are publicly available in the repository (at https://zenodo.org/record/
3981051#.XzQiRJNKjLg).
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Introduction

This supplementary material contains several figures that support the results presented

in the main text. Figure S1 shows the distribution of microslip inter-event times. Figure S2

compares event location using the traditional L2 residual norm approach to the RANSAC

approach deployed in this study. Figure S3 compares microslip event rates for di↵erent

slip cycles. Figure S4 compares spatial event density maps for di↵erent time windows.
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Figure S1. Probability distribution of inter-event times for the microslip event catalog. The

median value is 0.93 ms.
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(a) (b)

Figure S2. Illustration of the RANSAC event location approach. Each panel shows the misfit

between the observed and predicted arrivals for a single microslip event. Panel (a) corresponds to

the results using a conventional L2-norm based inversion approach, while panel (b) corresponds

to the results using RANSAC for outlier removal. Predicted arrival times are evaluated via grid

search over source locations, with spacing of 0.001m for each point in the domain 0  (x, y)  0.1

m, and with a padding region outside these bounds to mitigate edge artifacts. The colorscale is

a measure of relative misfit: the ratio between the misfit at a given grid point and that at its

minimum (the inferred hypocenter), marked with a star. The RANSAC approach detects and

removes a single outlier sensor (s23, shaded in panel b), thus providing a lower RMS misfit (1.4e

µs compared to 5.2 µs) and better spatial resolution (the tightness of misfit contours).
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(a) (b) (c)

Figure S3. Comparison of microslip event rates in stick-slip cycles one, two, and five. See main

text for cycles three and four. Event rates are plotted as a function of normalized time within

the slip event (bounded from 0 to 1), and compared to the average rate across cycles (black).
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure S4. Space-time evolution of microslip activity during the first, second and fifth stick-

slip cycles in the experiment (panels a–d, e–h, i–l, respectively). See main text for cycles three

and four. Each panel contains a spatial map of microslip activity during one quarter of the slip

cycle (time period marked in red). Warmer colors in the spatial map indicate higher event rates

per unit area.
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