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Abstract

A design is additive under an abelian group G (briefly, G-additive)
if, up to isomorphism, its point set is contained in G and the elements
of each block sum up to zero. The only known Steiner 2-designs that
are G-additive for some G have block size which is either a prime power
or a prime power plus one. Indeed they are the point-line designs of the
affine spaces AG(n, q), the point-line designs of the projective planes
PG(2, q), the point-line designs of the projective spaces PG(n, 2) and
a sporadic example of a 2-(8191,7,1) design. In the attempt to find new
examples, possibly with a block size which is neither a prime power nor
a prime power plus one, we look for Steiner 2-designs which are strictly
G-additive (the point set is exactly G) and G-regular (any translate of
any block is a block as well) at the same time. These designs will be
called “G-super-regular”. Our main result is that there are infinitely
many values of v for which there exists a super-regular, and therefore
additive, 2-(v, k, 1) design whenever k is neither singly even nor of
the form 2n3 ≥ 12. The case k ≡ 2 (mod 4) is a genuine exception
whereas k = 2n3 ≥ 12 is at the moment a possible exception. We also
find super-regular 2-(pn, p, 1) designs with p ∈ {5, 7} and n ≥ 3 which
are not isomorphic to the point-line design of AG(n, p).
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1 Introduction

We recall that a t-(v, k, λ) design is a pair D = (V,B) with V a set of v points
and B a collection of k-subsets of V , called blocks, such that any t-subset
of V is contained in exactly λ blocks. It is understood that 1 ≤ t ≤ k ≤ v.
The design is said to be simple if B is a set, i.e., if it does not have repeated
blocks. When v = k we necessarily have only one block, coincident with the
whole point set V , repeated λ times; in this case the design is said to be
trivial.

In the important case of λ = 1 one speaks of a Steiner t-design and the
notation S(t, k, v) is often used in place of “t-(v, k, 1) design”. An isomor-
phism between two designs (V,B) and (V ′,B′) is a bijection f : V −→ V ′

turning B into B′. Of course the study of t-designs is done up to isomor-
phism.

An automorphism group of a design D = (V,B) is a group G of permu-
tations on V leaving B invariant, i.e., a group of isomorphisms of D with
itself. If G acts regularly – i.e., sharply transitively – on the points, then
D is said to be regular under G (briefly G-regular). Up to isomorphism, a
G-regular design has point set G and any translate B + g of any block B is
a block as well.

For general background on t-designs we refer to [3] and [21].
Throughout the paper, every group will be assumed finite and abelian

unless specified otherwise. A subset B of a group G will be said zero-
sum if its elements sum up to zero. Representing the blocks of a design as
zero-sum subsets of a commutative group turned out to provide an effective
algebraic tool for studying their automorphisms (see, e.g., Example 3.7 in
[19]). Also, some recent literature provides remarkable examples of usage
of zero-sum blocks in the construction of combinatorial designs (see, e.g.,
[6, 26]). This gives even more value to the interesting theory on additive
designs introduced in [18] by Caggegi, Falcone and Pavone. Other papers
on the same subject by some of these authors are [16, 17, 24, 34]. They say
that a design is additive if it is embeddable into an abelian group in such a
way that the sum of the elements in any block is zero.

We reformulate just a little bit the terminology as follows.

Definition 1.1. A design (V,B) is additive under an abelian group G (or
briefly G-additive) if, up to isomorphism, we have:

(1) V ⊂ G;

(2) B is zero-sum ∀B ∈ B.

If in place of condition (2) we have the much stronger condition

(2)s B is precisely the set of all zero-sum k-subsets of V ,

then the design is strongly G-additive.
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By saying that a design is additive (resp., strongly additive) we will
mean that it is G-additive (resp., strongly G-additive) for at least one
abelian group G. Note that we may have designs which are G-additive and
H-additive at the same time even though none of them is isomorphic to a
subgroup of the other. For instance, it is proved in [18] that if p is a prime,
then the point-line design of the affine plane over Zp, which is obviously

Z2
p-additive, is also strongly Zp(p−1)/2p -additive.

In general, to establish whether an additive design is also strongly ad-
ditive appears to be hard. Examples of additive 2-(v, k, λ) designs which
are not strongly additive are given for 2 ≤ λ ≤ 6 in [34]. The question
on whether there exists an additive Steiner 2-design which is not strongly
additive is still open.

We propose to consider the G-additive designs whose set of points is
precisely G or G \ {0}.

Definition 1.2. An additive design is strictly G-additive or almost strictly
G-additive if its point set is precisely G or G \ {0}, respectively.

Of course strictly additive (resp., almost strictly additive) means strictly
G-additive (resp., almost strictly G-additive) for a suitable G. As it is
standard, Fq will denote the field of order q and also, by abuse of notation,
its additive group. It is quite evident that the 2-(qn, q, 1) design of points
and lines of AG(n, q) (the n-dimensional affine geometry over Fq) is strictly
Fqn-additive.

As observed in [17], every 2-(2v − 1, 2k − 1, λ) design over F2 is al-
most strictly F2v -additive1. Thus there exists an almost strictly Zv2-additive
2-(2v−1, 7, 7) design for any odd v ≥ 3 in view of the main results in [11, 36].
Also, there is an almost strictly Zv+1

2 -additive 2-(2v+1 − 1, 3, 1) design that
is the point-line design of PG(v, 2) (the v-dimensional projective geome-
try over F2). Finally, each of the well-celebrated designs found in [5] and
revisited in [13] is an almost strictly Z13

2 -additive 2-(8191, 7, 1) design.
Almost all known additive designs have quite large values of λ. For

instance, it is proved in [35] that if p is an odd prime and k = mp does not
exceed pn, then all zero-sum k-subsets of Fpn form the block-set of a strongly

additive 2-(pn, k, λ) design with λ = 1
pn

(
pn−2
k−2

)
+ k−1

pn

(
pn−1−1
m−1

)
. Applying this

with p = 3, n = 4 and k = 6, one finds a strongly additive 2-(81, 6, 18551)
design.

A sporadic example with λ = 2 is the strictly Z4
3-additive 2-(81, 6, 2)

design given in [30] and some more classes with a relatively small λ will
be given in [12]. Anyway, what is most striking is the shortage of additive
Steiner 2-designs. Up to now, only three classes were known:

1A 2-design is over Fq if its points are those of a projective geometry over Fq and the
blocks are suitable subspaces of this geometry.
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C1. the designs of points and lines of the affine geometries over any field
Fq (which are strictly additive);

C2. the designs of points and lines of the projective geometries over F2

(which are almost strictly additive);

C3. the designs of points and lines of the projective planes over any field
Fq (which are strongly additive under a “big” group [18]).

Nothing else was known, except for the sporadic example of the 2-(8191, 7, 1)
design mentioned above.

Hence to find additive Steiner 2-designs with new parameters, in partic-
ular with block size which is neither a prime power nor a prime power plus
one, appears to be challenging.

Note that the 2-(qn, q, 1) designs mentioned above are also Fqn-regular.
This fact suggests that a natural approach for reaching our target is to look
for strictly G-additive Steiner 2-designs which are also G-regular. Let us
give a name to the designs with these properties.

Definition 1.3. A design is super-regular under an abelian group G (or
briefly G-super-regular) if it is G-regular and strictly G-additive at the same
time.

Similarly as above, super-regular will meanG-super-regular for a suitable
G. Super-regular Steiner 2-designs will be the central topic of this paper.
Our main result will be the following.

Theorem 1.4. Given k ≥ 3, there are infinitely many values of v for which
there exists a super-regular 2-(v, k, 1) design with the genuine exceptions of
the singly even values of k and the possible exceptions of all k = 2n3 ≥ 12.

As an immediate consequence, we have the existence of a strictly additive
Steiner 2-design with block size k for any k with the same exceptions as in
the above statement.

A major disappointment is that the smallest v for which, fixed k, we are
able to say that a super-regular 2-(v, k, 1) design exists, is huge. Suffice it to
say that for k = 15 this value is 3·531. Consider, however, that there are sev-
eral asymptotic results proving the existence of some designs as soon as the
number of points is admissible and greater than a bound which is not even
quantified. This happens, for instance, in the outstanding achievement by P.
Keevash [26] on the existence of Steiner t-designs. Usually, these asymptotic
results are obtained via probabilistic methods and are not constructive. Our
methods are algebraic and “half constructive”. We actually give a complete
recipe for building a super-regular 2-(kq, k, 1) design under G× Fq (with G
a suitable group of order k) whenever q is an admissible power of a prime
divisor of k sufficiently large. Yet, in building every base block we have to
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pick the second coordinates of its elements, one by one, in a way that suit-
able cyclotomic conditions are satisfied and these choices are not “concrete”;
they are realizable only in view of some theoretical arguments deriving from
the theorem of Weil on multiplicative character sums.

In the penultimate section we will have a look at the super-regular non-
Steiner 2-designs.

The paper will be organized as follows. In the next section we first
prove two elementary necessary conditions for the existence of a strictly
G-additive 2-(v, k, 1) design: G cannot have exactly one involution, and
every prime factor of v must divide k.

In Section 3 we recall some basic facts on regular designs and show that
any super-regular design can be completely described in terms of differences.
In particular, we prove that a sufficient condition for the existence of a
(G × Fq)-super-regular design with G a non-binary group of order k and q
a power of a prime divisor of k is the existence of an additive (G× Fq, G×
{0}, k, 1) difference family. This is a set F of zero-sum k-subsets of G× Fq
whose list of differences is (G× Fq) \ (G× {0}). In Section 4 we prove that
such an F cannot exist for k = 2n3 ≥ 12, clarifying in this way why this
case is so hard.

In Sections 5 it is shown that a difference family as above can be realized
by suitably lifting the blocks of an additive (G, k, λ) strong difference family,
that is a collection of zero-sum k-multisets on G whose list of differences is
λ times G.

In Section 6, as a first application of the method of strong difference
families, we construct a Fpn-super-regular 2-(pn, p, 1) design not isomorphic
to the point-line design of AG(n, p) for p ∈ {5, 7} and every integer n ≥ 3.

In Section 7 a combined use of strong difference families and cyclotomy
leads to a very technical asymptotic result. As a consequence of this re-
sult, the crucial ingredient for proving the main theorem is an additive
(G, k, λ) strong difference family with G a non-binary group of order k and
gcd(k, λ) = 1.

In Section 8 this ingredient is finally obtained, also via difference matri-
ces, for all the relevant values of k and then the main theorem is proved.

As mentioned above, the final construction leads to super-regular Steiner
2-designs with a huge number of points. In Section 9 it is shown that when
k = 15 the smallest v given by this construction is 3 · 59565939. On the
other hand we also show that a clever use of strong difference families and
cyclotomy allows to obtain smaller values of v. Still in the case k = 15, we
first obtain v = 3 ·5187 and then v = 3 ·531 by means of two variations of the
main construction. We also suggest a possible attempt to obtain v = 3 · 57
by means of a computer search.

In Section 10 we sketch how the same tools used with so much labor
to construct “huge” super-regular Steiner 2-designs allow to rapidly obtain
super-regular non-Steiner 2-designs with a “reasonably small” v at the ex-

5



pense of a possibly large λ and the loss of simplicity (each of them has v
k

blocks repeated λ times). For instance, we will show the existence of a non-
simple super-regular 2-design with block size 15 having only 3 ·53 points and
with λ = 21.

In the last section we list some open questions.

2 Elementary facts about strictly additive Steiner
2-designs

In these preliminaries we establish some constraints on the parameters of
a strictly additive Steiner 2-design. First, it is useful to show two very
elementary facts which we believe are folklore.

Fact 2.1. Every non-trivial subgroup of F∗q (the multiplicative group of Fq)
is zero-sum.

Proof. Let B 6= {1} be a subgroup of F∗q and let n be its order. Then, if b is

a generator of B, we have bn − 1 = 0, i.e., (b− 1)(
∑n−1

i=0 b
i) = 0 in Fq. Thus∑n−1

i=0 b
i, which is the sum of all elements of B, is equal to zero.

The subgroup of an abelian group G consisting of all the involutions of
G and zero will be denoted by I(G), i.e., I(G) = {g ∈ G : 2g = 0}. We
say that G is binary when I(G) has order 2, i.e., when G has exactly one
involution.

Fact 2.2. An abelian group G is not zero-sum if and only if it is binary.

Proof. The elements of G \ I(G) are partitionable into 2-subsets consisting
of opposite elements {g,−g} so that G \ I(G) is zero-sum. Then the sum
of all elements of G is equal to the sum of all elements of I(G). Now note
that either I(G) = {0} or I(G) is isomorphic to Zn2 for some n. If n = 1,
then G is binary and the sum of all elements of G is the non-zero element
of I(G), that is the only involution of G. If n > 1, then G is not binary
and I(G) \ {0} can be viewed as the multiplicative group of F∗2n , hence it is
zero-sum by Fact 2.1.

From the above fact we immediately establish when the trivial S(2, k, k)
is strictly additive.

Proposition 2.3. The trivial 2-(k, k, 1) design is strictly additive if and
only if k 6≡ 2 (mod 4).

Proof. It is evident that the trivial 2-(k, k, 1) design is strictly additive if
and only if there exists an abelian zero-sum group of order k. Then we get
the assertion from Fact 2.2 and the following observations.

Every group of odd order k is not binary.
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Every group of singly even order k is binary.
Among the groups of doubly even order k we have G = Z2

2×Zk/4 which
is not binary.

We recall that the radical of an integer n, denoted by rad(n), is the
product of all prime factors of n. Thus, the fact that a finite field Fq has
characteristic p can be also expressed by saying that rad(q) = p. The fol-
lowing property reduces significantly the admissible parameters for a strictly
additive 2-(v, k, 1) design.

Proposition 2.4. If a strictly G-additive 2-(v, k, 1) design exists, then G is
zero-sum and the radical of v is a divisor of k.

Proof. Let D = (G,B) be a 2-(v, k, 1) design which is strictly additive under
G. For any fixed element g of G, let Bg be the set of blocks through g and
recall that its size r (the so-called replication number of D) does not depend
on g. Now consider the double sum

σg =
∑
B∈Bg

(
∑
b∈B

b).

We have
∑

b∈B b = 0 for every B ∈ Bg because D is strictly additive, hence
σg is null. Also note that in the expansion of σg the fixed element g appears
as an addend exactly r times whereas any other element h of G appears as
an addend exactly once. Thus σg can be also expressed as (r−1)g+

∑
h∈G h.

We conclude that we have

(r − 1)g +
∑
h∈G

h = 0 ∀g ∈ G.

Specializing this to the case g = 0 we get
∑

h∈G h = 0 which means that G
is zero-sum. Hence the first assertion is proved and we can write

(r − 1)g = 0 ∀g ∈ G.

This means that the order of every element of G is a divisor of r − 1. Let p
be a prime divisor of v, set v = pw, and take an element g of G of order p
(which exists by the theorem of Cauchy). For what we said, p divides r− 1.
Now recall that r = v−1

k−1 , hence r − 1 = v−k
k−1 . Thus we can write pw−k

k−1 = pn
for some integer n which gives pw − k = (k − 1)pn. This equality implies
that p divides k. Thus every prime factor of v is also a prime factor of k
and the second assertion follows.

In particular, considering that every abelian group of singly even order
is binary, we can state the following.

Corollary 2.5. A strictly additive 2-(v, k, 1) design with v singly even can-
not exist.

In the next section we will see that in a super-regular 2-(v, k, 1) design
the radicals of v and k are even equal.
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3 Difference families

We need to recall some classic results on regular designs.
The list of differences of a subset B of a group G is the multiset ∆B of

all possible differences x− y with (x, y) an ordered pair of distinct elements
of B. More generally, if F is a set of subsets of G, the list of differences of
F is the multiset union ∆F =

⊎
B∈F ∆B.

Let H be a subgroup of a group G. A set F of k-subsets of G is a
(G,H, k, 1) difference family (briefly DF) if ∆F = G \H.

The members of such a DF are called base blocks and their number is
clearly equal to v−h

k(k−1) where v and h are the orders of G and H, respectively.
Thus a necessary condition for its existence is that v − h is divisible by
k(k − 1). It is also necessary that I(G) is a subgroup of H since in a list of
differences every involution necessarily appears an even number of times.

If G has order v and H = {0}, one usually speaks of an ordinary (v, k, 1)-
DF in G. Instead, when |H| = h > 1 one speaks of a (v, h, k, 1)-DF in G
relative to H or, more briefly, of a relative (v, h, k, 1)-DF.

For general background on difference families as above we refer to [3, 21].
More generally, one can speak of a difference family relative to a partial

spread of G, that is a notion introduced by the first author in [9]. A partial
spread of a group G is a set H of subgroups of G whose mutual intersections
are trivial. It is a spread of G when the union of its members is the whole
G. Also, it is said of type τ to express that the multiset of the orders of its
members is τ . In particular, to say that H is of type {ks} means that H has
exactly s members and all of them have order k.

Given a partial spread H of a group G, a set F of k-subsets of G is said
to be a (G,H, k, 1) difference family if ∆F is the set of all elements of G not
belonging to any member of H. If G has order v and H is of type τ , one
also speaks of a (v, τ, k, 1)-DF in G relative to H. If τ = {ks} for some s,
the obvious necessary conditions for its existence are the following:

k | v;
v

k
≡ 1 (mod k − 1); s ≡ 1 (mod k); I(G) ⊂

⋃
H∈H

H (3.1)

Clearly, a (G,H, k, 1)-DF can be seen as a difference family relative to a
partial spread of size 1.

The following theorem is a special case of a general result concerning
regular linear spaces [9].

Theorem 3.1. Let G be an abelian group of order v. A G-regular 2-(v, k, 1)
design may exist only for v ≡ 1 or k (mod k(k − 1)) and it is equivalent to:

• an ordinary (v, k, 1)-DF in G when v ≡ 1 (mod k(k − 1));

• a (v, {ks}, k, 1)-DF in G for some s when v ≡ k (mod k(k − 1)).
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We remark that the above theorem is false when G is non-abelian.

Remark 3.2. It is useful to recall the constructive part of the proof of the
above theorem (which also works when G is not abelian).

(r1) The set of all the translates of the base blocks of an ordinary (v, k, 1)-
DF in G form the block-set of a G-regular 2-(v, k, 1) design.

(r2) If F is a (v, {ks}, k, 1)-DF in G relative to H, then the set of all the
translates of the base blocks of F together with all the right cosets
of all the members of H form the block-set of a G-regular 2-(v, k, 1)
design.

It is immediate from Theorem 3.1 that any G-super-regular 2-(v, k, 1)
design is generated by a suitable difference family. Let us see some other
consequences.

Proposition 3.3. If there exists a G-super-regular 2-(v, k, 1) design, then
we have:

(i) the order of every element of G is a divisor of k;

(ii) v ≡ k (mod k(k − 1));

(iii) rad(v) = rad(k);

(iv) k is not singly even.

Proof. Let D be a G-super-regular 2-(v, k, 1) design.
(i). Take any element g of G and any block B of D. By definition of a

G-regular design B+ g is a block of D as well. Also, by definition of strictly
G-additive design both B and B + g are zero-sum. Thus, considering that
the elements of B+ g sum up to (

∑
b∈B b) + kg, we deduce that kg = 0, i.e.,

the order of g divides k.
(ii). If v ≡ 1 (mod k(k − 1)), then k divides v − 1. By (i), the order of

any g ∈ G divides k, hence it also divides v − 1. On the other hand ord(g)
divides v by Lagrange’s theorem. Thus ord(g) would be a common divisor
of v and v− 1 whichever is g ∈ G. This would imply v = 1 which is absurd.
We conclude, by Theorem 3.1, that we have v ≡ k (mod k(k − 1)).

(iii). We already know from Proposition 2.4 that rad(v) divides rad(k).
On the other hand k divides v because of condition (ii) proved above, hence
rad(k) divides rad(v) and the assertion follows.

(iv). D has at least one block B which is a subgroup of G of order
k in view of (ii) and Remark 3.2(r2). Considering that B is zero-sum by
assumption, the group B is not binary by Fact 2.2, hence k 6≡ 2 (mod 4).
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Note that condition (i) of the above lemma implies, in particular, that if
p is a prime factor of k but p2 does not divide k, then the Sylow p-subgroup
of G is elementary abelian. Hence, when k is square-free, G is necessarily a
direct product of elementary abelian groups.

In the following a (G,H, k, 1)-DF will be said additive if all its base blocks
are zero-sum and all the members of H are zero-sum (i.e., not binary) as
well.

The above results (Theorem 3.1, Remark 3.2 and Proposition 3.3) allow
us to state the following.

Lemma 3.4. There exists a G-super-regular 2-(v, k, 1) design if and only if
G satisfies conditions (i), (ii) of Proposition 3.3 and there exists an additive
(G,H, k, 1)-DF of type {ks} for some s.

The next lemma will be our main tool to construct super-regular Steiner
2-designs.

Lemma 3.5. Let G be a zero-sum group of order k and let q ≡ 1 (mod
k − 1) be a power of a prime divisor p of k. If there exists an additive
(G × Fq, G × {0}, k, 1)-DF, then there exists a (G × Fqn)-super-regular 2-
(kqn, k, 1) design for every n ≥ 1.

Proof. The hypotheses easily imply that G×Fqn satisfies conditions (i), (ii)
of Proposition 3.3 for every n. Let F be an additive (G× Fq, G×{0}, k, 1)-
DF, and let S be a complete system of representatives for the cosets of F∗q
in F∗qn . For every base block B of F and every s ∈ S, let B ◦ s be the
subset of F∗qn obtained from B by multiplying the second coordinates of all
its elements by s. It is easy to see that F ◦ S := {B ◦ s | B ∈ F ; s ∈ S}
is an additive (G × Fqn , G × {0}, k, 1)-DF. The assertion then follows from
Lemma 3.4.

Recall that, for the time being, only three classes of non-trivial additive
Steiner 2-designs are known, that are classes C1, C2, C3 mentioned in the
introduction. The set of their block sizes clearly coincides with the set
Q ∪ (Q + 1) where Q is the set of all prime powers. Thus, for now, we
do not have any example of an additive non-trivial Steiner 2-design whose
block size is neither a prime power nor a prime power plus one. Also, for
k ∈ (Q+1)\Q we have only one example that is the projective plane of order
k−1. Let us examine which is the very first possible attempt of filling these
gaps using the above lemma. The first k which is neither a prime power nor
a prime power plus one is 15. We can try to find a super-regular 2-(15q, 15, 1)
design using Lemma 3.5, i.e., via an additive (Z15×Fq,Z15×{0}, 15, 1)-DF
with q a power of 3 or a power of 5. The first case is ruled out by Theorem
4.1 in the next section. Thus q has to be taken among the powers of 5. More
precisely, in view of the condition q ≡ 1 (mod 14), we have to take q = 56n

for some n. We conclude that 2-(15 · 56, 15, 1) is the first parameter set of
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a super-regular Steiner 2-design with block size belonging to (Q + 1) \ Q
potentially obtainable via Lemma 3.5. Unfortunately, we are not able to
construct a design with these parameters. In the penultimate section we
indicate a possible attempt to get it by means of a computer search. In that
same section we will prove the existence of a super-regular 2-(15 · 530, 15, 1)
design.

4 One more necessary condition and the hard case
k = 2n3 with n ≥ 2

The following result will lead to one more condition on the parameters of
a super-regular Steiner 2-design. This result will also imply that a non-
trivial super-regular 2-(v, k, 1) design with k = 2n3 may be generated by
an additive (v, k, k, 1)-DF only if a very strong condition on n holds. As a
matter of fact we suspect that this conditions is never satisfied. This is why
in our main result we are not able to say anything about the case k = 2n3
which appears to us very hard.

Theorem 4.1. If a super-regular 2-(v, k, 1) design is generated by an addi-
tive (v, k, k, 1)-DF and k ≡ ±3 (mod 9), then v

k ≡ 1 (mod 3).

Proof. Let F be an additive (G,H, k, 1)-DF generating a G-super-regular
2-(v, k, 1) design with k ≡ ±3 (mod 9). Thus G is a group of order v ≡ k
(mod k(k−1)), say v = kv1, and H is a subgroup of G of order k = 3k1 with
k1 not divisible by 3. For what we observed immediately after Proposition
3.3 the Sylow 3-subgroup of G is elementary abelian. For this reason, for
every two subgroups of G of order 3 there exists an automorphism of G
mapping one into the other. Then, up to isomorphism, we may assume that
G = Z3 ×G1 with G1 of order k1v1 and H = Z3 ×H1 with H1 a subgroup
of G1 of order k1.

For each B ∈ F , let B be the k-multiset on Z3 that is the projection of B
on Z3 and set F = {B | B ∈ F}. It is clear that ∆F is the projection of ∆F
on Z3. Thus, considering that ∆F = (Z3 ×G1) \ (Z3 ×H1) by assumption,
it is clear that ∆F is λ times Z3 with λ equal to the size of G1 \ H1, i.e.,
λ = k1(v1 − 1). Using some terminology that we will recall in the next
section, F is essentially a (Z3, k, λ) strong difference family.

Take any block B of F and for i = 0, 1, 2, let µi be the multiplicity of
i in B. Clearly, we have µ0 + µ1 + µ2 = k, hence µ0 + µ1 + µ2 ≡ 0 (mod
3). Considering that F is additive, B is zero-sum and then B is zero-sum
as well. It follows that µ1 + 2µ2 = 0 in Z3, i.e., µ1 ≡ µ2 (mod 3). We easily
conclude that

µ0 ≡ µ1 ≡ µ2 (mod 3) (4.1)

Now, let ν be the multiplicity of zero in ∆B and note that we have

ν = µ0(µ0 − 1) + µ1(µ1 − 1) + µ2(µ2 − 1),
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hence ν ≡ 0 (mod 3) in view of (4.1).
Note that λ can be seen as the sum of the multiplicities of zero in the lists

of differences of the blocks of F . For what we just saw, all these multiplicities
are zero (mod 3) and then λ ≡ 0 (mod 3). Recalling that λ = k1(v1− 1) we
conclude that v1 ≡ 1 (mod 3) which is the assertion.

As a consequence, we get the following non-existence result.

Theorem 4.2. A super-regular 2-(v, k, 1) design with k ≡ ±3 (mod 6) and
v
k ≡ 2 (mod 3) cannot exist.

Proof. Assume that there exists a G-super-regular 2-(v, k, 1) design D with
v and k as in the statement. Then D cannot be generated by an additive
(v, k, k, 1)-DF by Theorem 4.1. It follows that D is generated by an additive
(v, {ks}, k, 1)-DF for a suitable s > 1 by Theorem 3.4. On the other hand
the hypothesis obviously imply that v, as k, is divisible by 3 but not by
9. Thus G necessarily has only one subgroup of order 3, hence it cannot
have a partial spread with two distinct members of order k. We got a
contradiction.

Each of the following pairs (v, k) satisfies the admissibility conditions
v ≡ k (mod k(k − 1)) and rad(v) = rad(k) given by Proposition 3.3. Yet,
for each of them no super-regular 2-(v, k, 1) design exists in view of the above
theorem.

v k

3 · 26 · 510 3 · 22 · 5
3 · 218 · 1110 3 · 22 · 11

3 · 5 · 117 3 · 5 · 11

3 · 221 · 73 3 · 23 · 7
3 · 522 · 134 3 · 5 · 13

3 · 226 · 56 3 · 24 · 5

Another consequence of Theorem 4.1 is the following.

Theorem 4.3. Let k = 2n3 and assume that there exists a super-regular
2-(v, k, 1) design generated by an additive (v, k, k, 1)-DF. Then v = 2oi+n3

where o is the order of 2 in the group of units (mod k−1) and 0 ≤ i ≤ bn2−n
o c.

Proof. Let D be a G-super-regular 2-(v, k, 1) design with k = 2n3 and as-
sume that D is generated by an additive (G,H, k, 1)-DF so that G has order
v and H is a subgroup of G of order k. By Proposition 3.3 (ii) and (iii) we
have v = 2a3b ≡ k (mod k(k − 1)). Thus, reducing mod k and mod k − 1
we respectively get

2a3b ≡ 2n3 (mod 2n3) and 2a3b ≡ 1 (mod 2n3− 1) (4.2)
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From the first of the above congruences we deduce that a ≥ n and b ≥ 1.
By Theorem 4.1 we must have 2a−n3b−1 ≡ 1 (mod 3) which implies b = 1.
Hence v = 2a3 with a ≥ n. Multiplying the second congruence in (4.2) by
2n (which is the inverse of 3 mod k − 1), we get 2a ≡ 2n (mod k − 1), i.e.,
2a−n ≡ 1 (mod k − 1). This, by definition of o, means that a = oi + n for
some integer i. Hence we have

v = 2oi+n3 (4.3)

Now let 2t be the order of I(G) and recall that I(G) is necessarily contained
in H so that we have t ≤ n. Up to isomorphism, by the fundamental theorem
on abelian groups, we have G = Z2α1 × · · · ×Z2αt ×Z3 for a suitable t-tuple
(α1, . . . , αt) of positive integers summing up to a. For i = 1, . . . , t, there are
elements of G of order 2αi ; for instance the element whose ith coordinate is
1 and all the other coordinates are zero. Hence 2αi divides k by Proposition
3.3(i) and then αi ≤ n for i = 1, . . . , t. We deduce that we have

v = |G| ≤ (2n)t3 ≤ 2n
2
3 (4.4)

Comparing (4.3) and (4.4) we get oi + n ≤ n2, i.e., i ≤ bn2−n
o c and the

assertion follows.

Corollary 4.4. If k = 2n3 and there exists a non-trivial super-regular 2-
(v, k, 1) design generated by an additive (v, k, k, 1)-DF, then the order of 2
in the group of units of Zk−1 is less than n2 − n.

We suspect that the order of 2 in the group of units of Z2n3−1 is always
greater than n2−n but we are not able to prove it. For now, we are able to
say that it is true for n ≤ 1000 (checked by computer) and whenever 2n3−1
has a prime factor greater than (n2 − n)2; this is a consequence of a result
proved in [31] according to which the order of 2 modulo an odd prime p is
almost always as large as the square root of p. Thus, for now, we can state
the following.

Remark 4.5. Let k = 2n3 with n ≤ 1000 or k has a prime factor greater
than (n2 − n)2. Then there is no value of v for which a putative non-trivial
super-regular 2-(v, k, 1) design may be generated by an additive (v, k, k, 1)-
DF.

The above leads us to believe that the existence of a non-trivial super-
regular 2-(v, 2n3, 1) design generated by a (v, k, k, 1)-DF is highly unlikely.
On the other hand such a design might be obtained via a difference family
relative to a partial spread of size greater than 1. For instance, we cannot
rule out that there exists a G-super-regular 2-(3944, 12, 1) design generated
by an additive (G,H, 12, 1)-DF with G = F39×F44 and H a partial spread of
G of type {1285}. Indeed G satisfies conditions (ii), (iii) of Propositions 3.3
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and the necessary conditions (3.1) are also satisfied with an H constructible
as follows. Take a (full) spread H1 of F44 consisting of subgroups of F44 of

order 4 and note that it has size 44−1
3 = 85. Now take the (full) spread H2

of F39 consisting of all subgroups of F39 of order 3 which has size 39−1
2 > 85.

Thus it is possible to choose an injective map f : H1 −→ H2 and we can
take H := {H × f(H) | H ∈ H1}. On the other hand to realize an additive
(G,H, 12, 1)-DF with G and H as above appears to be unfeasible; suffice
it to say that it would have 38,166 base blocks. Also, the fact that the
literature is completely lacking of constructions for (v, {ks}, k, 1) difference
families with s > 1, further underlines the difficulty of the problem.

5 Strong difference families

In view of Lemma 3.5 our target will be the construction of additive (G ×
Fq, G × {0}, k, 1) difference families with G of order k and q a power of a
prime divisor of k. For this, we need one more variant of a difference family,
that is a strong difference family.

The notion of list of differences of a subset of a group G can be naturally
generalized to that of list of differences of a multiset on G as follows. If
B = {b1, . . . , bk} is a multiset on a group G, then the list of differences of
B is the multiset ∆B of all possible differences bi− bj with (i, j) an ordered
pair of distinct elements of {1, . . . , k}.

It is evident that the multiplicity of zero in ∆B is even. Indeed if bi−bj =
0, then bj − bi = 0 as well. It is also evident that this multiplicity is equal
to zero if and only if B does not have repeated elements, i.e., B is a set.

By list of differences of a collection F of multisets on G one means the
multiset union ∆F =

⊎
B∈F ∆B.

Definition 5.1. Let G be a group of order v and let F be a collection of
k-multisets on G. One says that F is a (v, k, λ) strong difference family in
G (or briefly a (G, k, λ)-SDF) if ∆F covers every element of G (0 included)
exactly λ times.

Note that if s is the number of blocks of a (G, k, λ)-SDF, then we neces-
sarily have λ|G| = sk(k − 1).

A SDF with only one block is called a difference multiset [8] or also a
difference cover [1].

Example 5.2. Take the 5-multiset B = {0, 1, 1, 4, 4} on Z5. Looking at its
“difference table”
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0 1 1 4 4

0 • 4 4 1 1

1 1 • 0 2 2

1 1 0 • 2 2

4 4 3 3 • 0

4 4 3 3 0 •

we see that the singleton {B} is a (5, 5, 4)-SDF in Z5.

Throughout the paper, the union of n copies of a set or multiset S will
be denoted by nS. Thus the difference multiset of the previous example
can be denoted as {0} ∪ 2{1, 4}. Much more in general, we recall that if
q is an odd prime power and F�

q is the set of non-zero squares of Fq, then

{0} ∪ 2F�
q is the so-called (q, q, q − 1) Paley difference multiset of the first

type [8].
We will say that a multiset on a group G is zero-sum if the sum of

all its elements (counting their multiplicities) is zero. A SDF in G will be
said additive if all its members are zero-sum. In view of Fact 2.1 the Paley
(q, q, q − 1) difference multisets of the first type are additive provided that
q 6= 3.

Strong difference families are a very useful tool to construct relative
difference families. Even though they were implicitly considered in some
older literature, they have been formally introduced for the first time by
the first author in [8]. After that, they turned out to be crucial in many
constructions in design theory (see, e.g., [4, 10, 14, 15, 20, 22, 23, 25, 32, 38]).

The following construction explains how to use strong difference families
in order to construct relative difference families.

Construction 5.3. Let Σ = {B1, . . . , Bs} be a (G, k, λ)-SDF and let q ≡ 1
(mod λ) be a prime power. Lift each block Bh = {bh1, . . . , bhk} of Σ to
a subset `(Bh) = {(bh1, `h1), . . . , (bhk, `hk)} of G × Fq. By definition of a
strong difference family, we have ∆F =

⊎
g∈G{g} ×∆g where each ∆g is a

λ-multiset on Fq. Hence, if the liftings have been done appropriately, it may
happen that there exists a q−1

λ -subset M of F∗q such that ∆g ·M = F∗q for
each g ∈ G. In this case, it is easy to see that

F =
{
{(bh1, `h1m), . . . , (bhk, `hkm)} | 1 ≤ h ≤ s;m ∈M

}
is a (G×Fq, G×{0}, k, 1)-DF. This DF is clearly additive in the additional
hypothesis that Σ is additive and each `(Bh) is zero-sum.

In most of the cases the above construction is applied when each ∆g is a
complete system of representatives for the cosets of the subgroup Cλ of F∗q
of index λ, that is the group of non-zero λ-th powers of Fq. Indeed in this
case we have ∆g ·M = F∗q for each g ∈ G with M = Cλ. Note, however,
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that ∆g is of the form {1,−1} · ∆g for every g ∈ I(G), hence it contains
pairs {x,−x} of opposite elements. Thus, if the elements of ∆g belong to
pairwise distinct cosets of Cλ, we necessarily have −1 /∈ Cλ, i.e., q ≡ λ+ 1
(mod 2λ). This explains why in the next Theorems 7.2 and 7.3 we require
that this congruence holds.

6 Anomalous 2-(qn, q, 1) designs

Let us say that a 2-(qn, q, 1) design is anomalous if it is Fqn-super-regular
but not isomorphic to the design of points and lines of AG(n, q).

Proposition 6.1. If there exists an anomalous 2-(qn, q, 1) design, then there
exists an anomalous 2-(qm, q, 1) design for any m ≥ n.

Proof. Let V be the n-dimensional subspace of AG(m, q) defined by the
equations xi = 0 for n + 1 ≤ i ≤ m. Take the standard 2-(qm, q, 1) de-
sign (Fmq ,B) and replace all its blocks contained in V with the blocks of
an anomalous 2-(qn, q, 1) design. We get, in this way, the block-set of an
anomalous 2-(qm, q, 1) design.

In the next theorem we put into practice Lemma 3.5 and Construction
5.3 to get an anomalous 2-(p3, p, 1) design for p = 5 and p = 7. Our proof
is a slight modification of the construction for regular 2-(pq, p, 1) designs in
[2] (improved in [7]) with p and q prime powers, q ≡ 1 (mod p− 1). In our
construction below q coincides with p2.

Theorem 6.2. There exists an anomalous 2-(p3, p, 1) design for p = 5 and
p = 7.

Proof. By Lemma 3.5 a super-regular 2-(53, 5, 1) design can be realized by
means of an additive (Z5 × F25,Z5 × {0}, 5, 1)-DF. We can obtain several
DFs of the required kind using Construction 5.3 with Σ the additive (5, 5, 4)
difference multiset B = {0, 1, 1, 4, 4} of Example 5.2. For instance, let us lift
B to the subset `(B) of Z5 × F25

`(B) = {(0, 0), (1, 1), (1,−1), (4, `), (4,−`)}

with ` a root of the primitive polynomial x2 + x+ 2. It is readily seen that
`(B) is zero-sum. Looking at its difference table

(0, 0) (1, 1) (1,−1) (4, `) (4,−`)

(0, 0) • (4,−1) (4,1) (1,−`) (1, `)

(1, 1) (1,1) • (0,2) (2,1− `) (2,1 + `)

(1,−1) (1,−1) (0,−2) • (2,−1− `) (2,−1 + `)

(4, `) (4, `) (3, `− 1) (3,1 + `) • (0,2`)

(4,−`) (4,−`) (3,−1− `) (3,−`+ 1) (0,−2`) •
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we see that ∆`(B) =
4⋃
g=0

{g} ×∆g with

∆0 = {1,−1} · {2, 2`};
∆1 = ∆4 = {1,−1} · {1, `};
∆2 = ∆3 = {1,−1} · {`− 1, `+ 1}.
Now note that each of the 2-sets ∆0 = {2, 2`}, ∆1 = {1, `} and ∆2 =

{` − 1, ` + 1} contains a non-zero square and a non-square of F25. Thus, if
M is a complete system of representatives for the cosets of {1,−1} in F�

25,
we clearly have ∆g ·M = F∗25. Hence

F =
{
{(0, 0), (1,m), (1,−m), (4, `m), (4,−`m)} | m ∈M

}
is an additive (Z5 × F25,Z5 × {0}, 5, 1)-DF. If we take, for instance, M =
{`2i | 0 ≤ i ≤ 5} then the blocks of F , written in additive notation, are the
following:

B1 = {(0, 0, 0), (1, 0, 1), (1, 0, 4), (4, 1, 0), (4, 4, 0)};

B2 = {(0, 0, 0), (1, 4, 3), (1, 1, 2), (4, 4, 2), (4, 1, 3)};

B3 = {(0, 0, 0), (1, 3, 2), (1, 2, 3), (4, 4, 4), (4, 1, 1)};

B4 = {(0, 0, 0), (1, 0, 2), (1, 0, 3), (4, 2, 0), (4, 3, 0)};

B5 = {(0, 0, 0), (1, 3, 1), (1, 2, 4), (4, 3, 4), (4, 2, 1)};

B6 = {(0, 0, 0), (1, 1, 4), (1, 4, 1), (4, 3, 3), (4, 2, 2)}.

We can check, by hand, that the super-regular 2-(125, 5, 1) design D
generated by F is anomalous. Assume for contradiction that it is isomorphic
to the point-line design of AG(3, 5). It is then natural to speak of lines of
D rather than blocks. Also, it makes sense to speak of the planes of D and
a line containing two distinct points of a plane π is clearly contained in π.

Let π be the plane of D containing the two lines through the origin
B0 = {(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0)} and B1. Of course, if Bπ is
the set of lines of D contained in π, then (π,Bπ) is isomorphic to the affine
plane over F5. The line through (1, 0, 0) ∈ B0 and (1, 0, 1) ∈ B1 is

C = B4 + (0, 0, 3) = {(0, 0, 3), (1,0,0), (1,0,1), (4, 2, 3), (4, 3, 3)}

and belongs to Bπ since it joins two points of π. The line through (1, 0, 4) ∈
B1 and (0, 0, 3) ∈ C is

D = B1 + (0, 0, 3) = {(0,0,3), (1,0,4), (1, 0, 2), (4, 1, 3), (4, 4, 3)}.

The line through (1, 0, 4) ∈ B1 and (4, 2, 3) ∈ C is

D′ = B6 + (0, 4, 0) = {(0, 4, 0), (1,0,4), (1, 3, 1), (4,2,3), (4, 1, 2)}.
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These two lines D and D′ also belong to Bπ since they also join two points
of π. We also note that they are both disjoint with the line B0 ∈ Bπ. This
contradicts the Euclid’s parallel axiom: there is a point of π (that is (1, 0, 4))
and two distinct lines of π through this point (D and D′) which are both
disjoint with a line of π (that is B0).

Now consider the (7, 7, 6) Paley difference multiset of the first type, that
is {0}∪2{1, 2, 4}, and apply Construction 5.3 lifting it to a suitable 7-subset
of F49. Without entering all the details, we just list the base blocks of the
resultant (Z3

7,Z7 × {0} × {0}, 7, 1)-DF.

{(0, 0, 0), (1, 1, 0), (1, 6, 0), (2, 2, 1), (2, 5, 6), (4, 2, 0), (4, 5, 0)}

{(0, 0, 0), (1, 2, 4), (1, 5, 3), (2, 0, 3), (2, 0, 4), (4, 4, 1), (4, 3, 6)}

{(0, 0, 0), (1, 2, 2), (1, 5, 5), (2, 2, 6), (2, 5, 1), (4, 4, 4), (4, 3, 3)}

{(0, 0, 0), (1, 3, 5), (1, 4, 2), (2, 1, 6), (2, 6, 1), (4, 6, 3), (4, 1, 4)}

{(0, 0, 0), (1, 0, 1), (1, 0, 6), (2, 6, 2), (2, 1, 5), (4, 0, 2), (4, 0, 5)}

{(0, 0, 0), (1, 3, 2), (1, 4, 5), (2, 4, 0), (2, 3, 0), (4, 6, 4), (4, 1, 3)}

{(0, 0, 0), (1, 5, 2), (1, 2, 5), (2, 1, 2), (2, 6, 5), (4, 3, 4), (4, 4, 3)}

{(0, 0, 0), (1, 2, 3), (1, 5, 4), (2, 1, 1), (2, 6, 6), (4, 4, 6), (4, 3, 1)}

One can check that the design generated by the above DF is anomalous
with the same isomorphism test used for getting the anomalous 2-(53, 5, 1)
design.

The above results allow us to state the following.

Corollary 6.3. There exists an anomalous 2-(pn, p, 1) design for p ∈ {5, 7}
and any integer n ≥ 3.

We tried to get an anomalous 2-(113, 11, 1) design with the same method
used in the proof of Theorem 6.2, i.e., by means of a suitable lifting of the
(11, 11, 10) Paley difference multiset {0} ∪ {1, 3, 4, 5, 9}, but we fail.

7 Cyclotomy

Starting from the fundamental paper of Wilson [37], cyclotomy has been
very often crucial in the construction of many classes of difference families.
Here it is also crucial for getting a good lifting of a SDF as required by
Construction 5.3.

Given a prime power q ≡ 1 (mod λ), let Cλ be the subgroup of F∗q of

index λ. If r is a fixed primitive element of Fq, then {riCλ | 0 ≤ i ≤ λ− 1}
is the set of cosets of Cλ in F∗q . For i = 0, 1, . . . , λ − 1, the coset riCλ
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will be denoted by Cλi and it is called the i-th cyclotomic class of order λ.
Note that we have Cλi ·Cλj = Cλi+j (modλ). We will need the following lemma

deriving from the theorem of Weil on multiplicative character sums (see [28],
Theorem 5.41).

Lemma 7.1. [14] Let q ≡ 1 (mod λ) be a prime power and let t be a positive
integer. Then, for any t-subset C = {c1, . . . , ct} of Fq and for any ordered
t-tuple (γ1, . . . , γt) of Ztλ, the set X := {x ∈ Fq : x−ci ∈ Cλγi for i = 1, . . . , t}
has arbitrarily large size provided that q is sufficiently large.

In particular, we have |X| > 2λt−1 for q > t2λ2t.

In most cases the above lemma has been used to prove that the set X
is not empty. But this is not enough for our purposes. The last sentence in
the above statement is formula (2) in [14].

The following theorem is essentially Corollary 5.3 in [14] where it ap-
peared as a special consequence of a more general result. Here, for conve-
nience of the reader, it is better to show its proof directly. Then we will see
how this proof can be modified in order to get its additive version.

Theorem 7.2. If there exists a (G, k, λ)-SDF, then there exists a (G ×
Fq, G × {0}, k, 1)-DF for every prime power q ≡ λ + 1 (mod 2λ) provided
that q > (k − 1)2λ2k−2.

Proof. Let Σ = {B1, . . . , Bs} be a (G, k, λ)-SDF with Bh = {bh1, . . . , bhk}
for 1 ≤ h ≤ s. Let T be the set of all triples (h, i, j) with h ∈ {1, . . . , s} and
i, j distinct elements of {1, . . . , k}. For every g ∈ G, let Tg be the set of
triples (h, i, j) of T such that bh,i−bh,j = g. Note that

⋃
g∈G Tg is a partition

of T and that each Tg has size λ by definition of a (G, k, λ)-SDF. Thus it is
possible to choose a map ψ : T −→ Zλ satisfying the following conditions:

1) the restriction ψ|Tg is bijective for any g ∈ G;
2) ψ(h, j, i) = ψ(h, i, j) + λ/2 for every pair of distinct i, j.
As a matter of fact the number Ψ of all maps ψ satisfying the above

conditions is huge. If λ = 2µ and |G| = 2nm where 2n is the order of I(G),
it is easy to see that Ψ = λ!2

n−1(m−1)(2µµ!)2
n
.

Now lift each Bh to a subset `(Bh) = {(bh1, `h1), . . . , (bhk, `hk)} of G×Fq
by taking the first element `h,1 arbitrarily and then by taking the other
elements `h,2, `h,3, . . . , `h,k iteratively, one by one, according to the rule
that once that `h,i−1 has been chosen, we pick `h,i arbitrarily in the set

Xh,i = {x ∈ Fq : x− `h,j ∈ Cλψ(h,i,j) for 1 ≤ j ≤ i− 1}.

Note that {`h,1, ..., `h,i−1} is actually a set, i.e., it does not have repeated
elements. Indeed given two elements j1 < j2 in {1, . . . , i − 1}, we have
`h,j2− `h,j1 ∈ Cλψ(h,j2,j1) since `h,j2 has been picked in Xh,j2 . Thus we cannot
have `h,j2 = `h,j1 . It follows that Xh,i is not empty by Lemma 7.1, hence an
element `h,i with the above requirement can be actually chosen.
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Also note that we have

`h,i − `h,j ∈ Cλψ(h,i,j) ∀(h, i, j) ∈ T (7.1)

This is clear if i > j considering the rule that we followed for selecting the
`h,i’s. If i < j, for the same reason, we have `h,j − `h,i ∈ Cλψ(h,j,i), i.e.,

`h,j − `h,i ∈ Cλψ(h,i,j)+λ/2 in view of the second property of ψ. Multiplying

by −1 and considering that −1 ∈ Cλλ/2 since q ≡ λ + 1 (mod 2λ), we get

(7.1) again.
We finally note that we have

⊎s
h=1 ∆`(Bh) =

⊎
g∈G{g} ×∆g with ∆g =

{`h,i − `h,j | (h, i, j) ∈ Tg}. Thus, in view of (7.1) and the first property of
ψ, we see that ∆g is a complete system of representatives for the cyclotomic
classes of order λ whichever is g ∈ G. At this point we get the required
(G × Fq, G × {0}, k, 1)-DF by applying Construction 5.3 as pointed out at
the end of Section 5.

The additive version of the above theorem is straightforward in the case
that rad(q) is not a divisor of k. On the contrary, if rad(q) divides k, which
in view of Lemma 3.5 is the case we are interesting in, we have to lift the
base blocks of the given additive SDF much more carefully. Also, we need
to raise the bound on q significantly, and to ensure that the order of G is
not too large.

Theorem 7.3. Assume that there exists an additive (G, k, λ)-SDF of size s
with k 6= 3 and let q ≡ λ+ 1 (mod 2λ) be a prime power. Then there exists
an additive (G× Fq, G× {0}, k, 1)-DF in each of the following cases:

(i) rad(q) does not divide k and q > (k − 1)2λ2k−2;

(ii) rad(q) divides k, |G| < 2λ2k−5s and q > (2k − 3)2λ4k−6.

Proof. Let Σ = {B1, . . . , Bs} be a (G, k, λ)-SDF as in the proof of the pre-
vious theorem and let q ≡ λ+ 1 (mod 2λ) be a prime power.

(i) k is not divisible by rad(q), and q > (k − 1)2λ2k−2.
Take a (G × Fq, G × {0}, k, 1)-DF, say F , which exists by Theorem 7.2.
For every block B ∈ F , let σB be the sum of the second coordinates of all
elements of B and set B′ = B + (0,−σB

k ). It is evident that {B′ | B ∈ F}
is an additive (G× Fq, G× {0}, k, 1)-DF.

(ii) rad(q) divides k, |G| < 2λ2k−5s, and q > (2k − 3)2λ4k−6.
We keep the same notation as in the proof of the above theorem and the
procedure for getting `(Bh) will be exactly the same until determining the
element `h,k−4. After that we have to be much more careful in picking the
last four elements `h,k−3, `h,k−2, `h,k−1 and `h,k. In the following, we set

σh,i =
∑i

j=1 `h,j once that all `h,j ’s with 1 ≤ j ≤ i have been chosen.
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Choice of `h,k−3.
If rad(q) 6= 3, just proceed as in the proof of Theorem 7.2; we can take
`h,k−3 in Xh,k−3 arbitrarily. If rad(q) = 3 we take it in Xh,k−3 \ {−σh,k−4}.
Note that rad(q) = 3 implies k > 4 since we have k 6= 3 by assumption,
hence it makes sense to consider the sum σh,k−4.

Choice of `h,k−2.
We pick this element in Xh,k−2 \ Y , where Y is the union of the sets

Y1 = {−σh,k−3 − `h,i − `h,j | 1 ≤ i ≤ j ≤ k − 3},

Y2 = {−σh,k−3 − `h,i | 1 ≤ i ≤ k − 3}, Y3 =
1

2
Y2,

and, only in the case that rad(q) 6= 3, the singleton Y4 = {−σh,k−3

3 }. Note
that this selection can be done since |Xh,k−2| > |Y |. Indeed we have

|Xh,k−2| > 2λk−4 by Lemma 7.1 and 2λk−4 > λ|G|
s in view of the upper

bound on the order of G. Also, we have λ|G|
s = k(k − 1) since, as observed

after Definition 5.1, we have λ|G| = sk(k − 1). Finally, it is evident that Y
has size less than k(k − 1).

Choice of `h,k−1.
We pick this element in the set

X ′h,k−1 = {x ∈ Fq : x− ch,j ∈ Cλγh,j for 1 ≤ j ≤ 2k − 3}

with the pairs (ch,j , γh,j) defined as follows:

ch,j = `h,j and γh,j = ψ(h, k − 1, j) for 1 ≤ j ≤ k − 2;

ch,k−2+j = −σh,k−2−`h,j and γh,k−2+j = ψ(h, k, j)+
λ

2
for 1 ≤ j ≤ k−2;

ch,2k−3 = −
σh,k−2

2
and γh,2k−3 = ψ(h, k, k − 1)− α

where Cλα is the cyclotomic class of order λ containing −2.
Note that the first k − 2 conditions required for the generic element of

X ′h,k−1 are exactly the conditions for the generic element of Xh,k−1. Thus
X ′h,k−1 is a subset of Xh,k−1.

Assume that ch,j1 = ch,j2 with 1 ≤ j1 < j2 ≤ 2k − 3.
If j2 ≤ k − 2, then we have `h,j1 = `h,j2 which contradicts the fact that

`h,j2 − `h,j1 ∈ Cλψ(h,j2,j1) (recall indeed that `h,j2 is in Xh,j2).
For the same reason, we cannot have k − 1 ≤ j1 < j2 ≤ 2k − 4.
If j1 = k − 2 and j2 = 2k − 3 we get −σh,k−3 − 3`h,k−2. If rad(q) = 3,

this means σh,k−3 = 0, hence `h,k−3 = −σh,k−4 contradicting the choice of
`h,k−3 in this case. If rad(q) 6= 3, then we would have `h,k−2 = −σh,k−3

3
contradicting the choice of `h,k−2 in this case.
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In all the remaining cases the reader can check that we would get `h,k−2 ∈
Y . On the other hand, `h,k−2 had been picked out of Y on purpose. We
conclude that the ch,j ’s (j = 1, 2, . . . , 2k − 3) are pairwise distinct. Thus,
Lemma 7.1 and the assumption q > (2k−3)2λ4k−6 guarantee that X ′h,k−1 is
not empty and the selection of `h,k−1 described above can be actually done.

Choice of `h,k.
Take `h,k = −σh,k−1. This last (obligatory) choice assures that `(Bh) is
zero-sum; the sum of the first coordinates of all its elements is zero because
Σ is additive, and the sum of the second coordinates of all its elements is
σh,k = σh,k−1 + `h,k = 0.

It is evident that `h,i ∈ Xh,i for 1 ≤ i ≤ k − 1. As a consequence of the
fact that `h,k−1 ∈ X ′h,k−1, we show that this is true also for i = k, i.e., that

we have `h,k − `h,j ∈ Cλψ(h,k,j) for 1 ≤ j ≤ k − 1.

1 ≤ j ≤ k − 2: by definition of X ′h,k−1, we have

`h,k−1 − ch,k−2+j ∈ Cλψ(h,k,j)+λ/2. (7.2)

Now note that `h,k−1− ch,k−2+j = −`h,k + `h,j by the definitions of ch,k−2+j
and `h,k. Thus, multiplying (7.2) by −1 and recalling that −1 ∈ Cλλ/2, we

actually get `h,k − `h,j ∈ Cλψ(h,k,j).
j = k−1: considering the last condition required for the generic element

of X ′h,k−1, we have `h,k−1 +
σh,k−2

2 ∈ Cλψ(h,k,k−1)−α. Multiplying by −2 and

remembering that −2 ∈ Cλα we get −2`h,k−1 − σh,k−2 ∈ Cλψ(h,k,k−1) which is
what we wanted. Indeed, by definition of `h,k, we have −2`h,k−1 − σh,k−2 =
`h,k − `h,k−1.

We conclude that the above constructed liftings are in the same situation
of the liftings constructed in the proof of Theorem 7.2, i.e., (7.1) holds.
Thus, reasoning as at the end of that proof, we can say that they form a
(G × Fq, G × {0}, k, 1)-DF. The assertion follows considering that each of
these liftings is zero-sum.

We are going to see that the above theorem allows to obtain a difference
family as required in Lemma 3.5 as soon as one has an additive (G, k, λ)-
SDF with G a zero-sum group of order k and λ not divisible by rad(k). This
will be the crucial ingredient for proving our main result.

Lemma 7.4. Assume that there exists an additive (G, k, λ)-SDF with G a
zero-sum group of order k and assume that k has a prime divisor not dividing
λ. Then there exists a G-super-regular 2-(v, k, 1) design for infinitely many
values of v.

Proof. Let Σ be a SDF as in the statement and let p be a prime divisor of k
not dividing λ. Let n be the order of p in the group of units of Zλ, let 2e be
the largest power of 2 dividing pn−1

λ , and set λ1 = 2eλ. Clearly, 2eΣ is an
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additive (G, k, λ1)-SDF. We have pn−1 = 2eλµ with µ odd, hence qn ≡ λ1+1
(mod 2λ1). It easily follows, by induction on i, that pni ≡ λ1 + 1 (mod 2λ1)
for every odd i. It is obvious that |G| = k < 2λ2k−51 and of course there are
infinitely many odd values of i for which pni > (2k − 3)2λ4k−61 . Hence, by
Theorem 7.3, there exists an additive (G × Fpni , G × {0}, k, 1)-DF for each
of these odd values of i. The assertion then follows from Lemma 3.5.

8 The main result

For the proof of the main result we need one more ingredient, that is the
notion of a difference matrix.

If G is an additive group of order v, a (v, k, λ) difference matrix in G
(or briefly a (G, k, λ)-DM) is a (k × λv)-matrix with entries in G such that
the difference of any two distinct rows contains every element of G exactly
λ times. For general background on difference matrices we refer to [3, 21].

We will say that a DM is additive if each of its columns is zero-sum.
An adaptation of an old construction for ordinary difference families by
Jungnickel [29] allows us to prove the following.

Lemma 8.1. If Σ is an additive (G, k, λ)-SDF and M is an additive (H, k, µ)-
DM, then there exists an additive (G×H, k, λµ)-SDF.

Proof. Let Σ be a (G, k, λ)-SDF and let M = (mrc) be an (H, k, µ)-DM. For
each block B = {b1, . . . , bk} ∈ Σ and each column M c = (m1c, . . . ,mkc)

T of
M , consider the k-multiset B ◦M c defined as follows:

B ◦M c = {(b1,m1c), . . . , (bk,mkc)}.

It is straightforward to check that

Σ ◦M := {B ◦M c | B ∈ F ; 1 ≤ c ≤ µ|H|}

is a (G×H, k, λµ)-SDF. It is clearly additive in the hypothesis that both Σ
and M are additive.

In the proof of the following theorem we construct the crucial ingredient
considered in Lemma 7.4.

Theorem 8.2. Let k be a positive integer which is neither a prime power,
nor singly even, nor of the form 2n3. Then there exists an additive (G, k, λ)-
SDF in a suitable zero-sum group of order k with gcd(k, λ) = 1.

Proof. Let q be the largest odd prime power factor of k and set k = qr. The
hypotheses on k guarantee that q is greater than 3. Now consider the k-
multiset A on Fq which is union of r copies of the (q, q, q−1) Paley difference
multiset of the first type:

A = r{0} ] 2rF�
q .
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Let α : Fq −→ N be the map where α(x) is the multiplicity of x in ∆A
for every x ∈ Fq. We have

α(0) = r(r − 1) +
q − 1

2
2r(2r − 1) = (2q − 1)r2 − qr.

Now let x be an element of F∗q and distinguish two cases according to whether
q ≡ 1 or 3 (mod 4).

1st case: q ≡ 1 (mod 4). In this case it is well-known that F�
q is a partial

(q, q−12 , q−54 , q−14 ) difference set2. If x ∈ F�
q , there are q−5

4 representations of

x as a difference from F�
q . Each of them has to be counted (2r)2 times in

the number of representations of x as a difference from A. The remaining
representations of x as a difference from A are x = x− 0 (2r · r times) and
x = 0 − (−x) (r · 2r times). Thus we have α(x) = (4r2) q−54 + 2r2 + 2r2 =
(q − 1)r2.

If x ∈ F 6�q , there are q−1
4 representations of x as a difference from F�

q .
Each of them has to be counted (2r)2 times in the number of representations
of x as a difference from A. There is no other representation of x as a
difference from A. Hence we have α(x) = (4r2) q−14 = (q − 1)r2.

2nd case: q ≡ 3 (mod 4). Here, F�
q is a (q, q−12 , q−34 ) difference set.

Every x ∈ F∗q admits precisely q−3
4 representations as a difference from F�

q .
Each of them has to be counted (2r)2 times in the number of representations
of x as a difference from A. The remaining representations of x as a difference
from A are x = x−0 (2r·r times) if x is a square, or x = 0−(−x) (r·2r times)
if x is not a square. Thus, for every x ∈ F∗q we have α(x) = (4r2) q−34 +2r2 =
(q − 1)r2.

In summary, we have:

α(0) = (2q − 1)r2 − qr and α(x) = (q − 1)r2 ∀x ∈ F∗q (8.1)

Now let B = rFq be the k-multiset which is union of r copies of Fq and let
β : Fq −→ N be the map of multiplicities of ∆B. It is quite evident that we
have:

β(0) = qr(r − 1) and β(x) = qr2 ∀x ∈ F∗q (8.2)

We claim that
Σ = {A,B, . . . , B︸ ︷︷ ︸

r−1 times

}

is a (q, k, (k − 1)r2)-SDF in Fq. Indeed, if σ is the map of multiplicities of
∆Σ, in view of (8.1) and (8.2) we have:

σ(0) = α(0) + (r − 1)β(0) = (2q − 1)r2 − qr + qr(r − 1)2 = (qr − 1)r2;

σ(x) = (q − 1)r2 + qr2(r − 1) = (qr − 1)r2 ∀x ∈ F∗q .
2A k-subset B of an additive group G of order v is a (v, k, λ, µ) partial difference set if

∆B = λ(B \ {0}) ∪ µ(G \ (B ∪ {0}). If λ = µ then B is a (v, k, λ) difference set.
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Considering that F�
q is a zero-sum subset of Fq for q > 3 (see Fact 2.2),

the multiset A is zero-sum. Also, considering that Fq is zero-sum, B is
zero-sum as well. We conclude that Σ is additive.

The hypothesis that k is not singly even implies that r is also not singly
even. Hence we can take an abelian zero-sum group H of order r. Let M
be the matrix whose columns are all possible zero-sum k-tuples of elements
of H summing up to zero. Let (i, j) be any pair of distinct elements of
{1, . . . , k} and let h be any element of H. The number of zero-sum k-tuples
(m1, ...,mk) of elements of H such that mi−mj = h is equal to rk−2. Indeed
each of these k-tuples can be constructed as follows. Fix any element ` in
{1, ..., k} \ {i, j}, take mx arbitrarily for x /∈ {i, `}, and then we are forced
to take mi = mj + h and m` = −

∑
x 6=`mx.

The above means that there are exactly rk−2 columns (m1,c, . . . ,mk,c)
T

of M such that mi,c−mj,c = h. Equivalently, the difference between the ith
row and the jth row of M covers the element h exactly rk−2 times. Thus, in
view of the arbitrariness of i, j and h, M is a (r, k, rk−2) difference matrix.
Of course it is additive by construction.

Thus, applying Lemma 8.1, we can say that Σ◦M is an additive (k, k, λ)-
SDF in G := Fq × H with λ = (k − 1)rk. Recall that q is the largest odd
prime power factor of k so that q is coprime with both k − 1 and r = k

q .
Thus λ is coprime with k and the assertion follows.

Proof of Theorem 1.4. If k is a prime power we have the super-
regular 2-(kn, k, 1) designs associated with AG(n, k). The singly even values
of k are genuine exceptions in view of Proposition 3.3(iv). Finally, if k
is neither a prime power, nor singly even, nor of the form 2n3, then the
assertion follows from Theorem 8.2 and Lemma 7.4. �

9 A huge number of points

As already mentioned in the introduction the super-regular Steiner 2-designs
obtainable by means of the main construction (Theorem 8.2 combined with
Lemma 7.4) have a huge number of points. On the other hand, there are
some hopes to find more handleable super-regular Steiner 2-designs. We
discuss this for the first relevant value of k, that is k = 15.

Let us examine, first, which is the smallest v for which the main construc-
tion leads to a non-trivial super-regular 2-(v, 15, 1) design. Keeping the same
notation as in Theorem 8.2, we have q = 5, r = 3 and Σ ◦M is a (15, 15, λ)-
SDF in Z3 × Z5 ' Z15 with λ = 14 · 315. Now proceed as in the proof of
Lemma 7.4 taking p = 5. The order of 5 in Zλ is n = 2 · 314 = 9565938
and the largest power of 2 in qn−1

λ is 4. Thus 4(Σ ◦M) is a (15, 15, λ1)-SDF
with λ1 = 4λ and we have 5ni ≡ λ1 + 1 (mod 2λ1) for every odd i. One
can check that 5n > (2k − 3)2λ4k−61 = 272 · (56 · 315)54. Hence we have an
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additive (Z15×F5n ,Z15×{0}, 15, 1)-DF. In conclusion, the first v for which
the application of Lemma 7.4 with the use of Σ ◦M leads to a super-regular
2-(v, 15, 1) design is 3 · 59565939.

On the other hand, in this specific case, we can find a much lower v with
the use of another SDF. Consider the following three 15-multisets on Z15

B = {0} ∪ 2{1, 2, 3, 7, 9, 11, 12};

B′ = {0} ∪ 2{1, 3, 4, 5, 7, 12, 13};

B′′ = {0} ∪ 2{1, 5, 8, 10, 11, 12, 13}.

It is straightforward to check that Σ′ = {B,B′, B′′} is an additive (15, 15, λ′)-
SDF with λ′ = 42. Let us apply Lemma 7.4 using Σ′ rather than Σ ◦M .
The order of q = 5 in Zλ′ is n = 6 and the largest power of 2 in qn−1

λ′ is 4.
Thus 4Σ′ is a (15, 15, λ′1)-SDF with λ′1 = 4λ′ and we have 56i ≡ λ′1 + 1 (mod

2λ′1) for every odd i. The first odd i for which 5ni > (2k − 3)2λ′1
4k−6 is 31.

Hence, the first v for which the use of Σ′ in Lemma 7.4 gives a super-regular
2-(v, 15, 1) design is 3 · 5187.

Now we show a more clever use of Σ′ which exploits its nice form (every
base block is of the form {0} ∪ 2A with A a 7-subset of Z15 \ {0}). Let
q ≡ 1 (mod 42) be a prime power and lift the blocks of Σ′ to three zero-sum
15-subsets of Z15 × Fq of the form

`(B) = {(0, 0), (1,±`1), (2,±`2), (3,±`3), (7,±`4), (9,±`5), (11,±`6), (12,±`7)},

`(B′) = {(0, 0), (1,±`′1), (3,±`′2), (4,±`′3), (5,±`′4), (7,±`′5), (12,±`′6), (13,±`′7)},

`(B′′) = {(0, 0), (1,±`′′1), (5,±`′′2), (8,±`′′3), (10,±`′′4), (11,±`′′5), (12,±`′′6), (13,±`′′7)},

where, to save space, we have written (x,±y) to mean the two pairs (x, y)

and (x,−y). We have ∆`(B) ∪ ∆`(B′) ∪ ∆`(B′′) =
14⋃
i=0

{i} × ∆i with

∆i = {1,−1} ·∆i where each ∆i is a list of 21 elements of Fq. For instance,
it is readily seen that ∆0 = {`i, `′i, `′′i | 1 ≤ i ≤ 7}.

Assume that the above liftings are done in such a way that each ∆i is
a complete system of representatives for the cyclotomic classes of order 21.
In this case we have ∆i ·M = F∗q with M a system of representatives for the
cosets of {1,−1} in C21 and then, by Construction 5.3, we get an additive
(Z15 × Fq,Z15 × {0}, 15, 1)-DF. Reasoning as in the proof of Theorem 7.2,
one can see that the required liftings certainly exist by Lemma 7.1 provided
that q > 62 · 2112. Now note that we have 56i ≡ 1 (mod 42) for every
i ≥ 0 and 56i > 62 · 2112 as soon as i ≥ 5. Thus we have an additive
(Z15 × F530 ,Z15 × {0}, 15, 1)-DF. So the first v for which this construction
leads, theoretically, to a strictly additive 2-(v, 15, 1) design is 3 · 531 that is
dramatically smaller than the value obtained before by applying the main
construction “with the blinkers”. Yet, it is still huge! We cannot exclude,
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however, that by means of a (probably heavy) computer work one may
realize a good lifting of Σ′ with q = 56. In this case we should have a
2-(3 · 57, 15, 1) design.

10 Super-regular non-Steiner 2-designs

As underlined in the introduction, the paper is focused on super-regular
Steiner 2-designs since their construction appears to be challenging. Here
we just sketch how the methods used in the previous sections allow to obtain
super-regular non-Steiner 2-designs much more easily and with a relatively
“small” number of points. In particular, without any need of cyclotomy
(that is the heaviest tool used) it is possible to show that every additive
(k, k, λ)-SDF with k not singly even gives rise to a super-regular 2-(kq, k, λ)
design for any power q > k of a prime divisor of k.

First, we need to recall the following well known fact.

Proposition 10.1. Let F be a (v, k, k, λ)-DF in G relative to H, let C be
the set of right cosets of H in G, and set

B = {B + g | B ∈ F ; g ∈ G} ∪ λC.

Then (G,B) is a G-regular 2-(v, k, λ) design.

The above is contained in Remark 3.2 (r2) for λ = 1 and produces a
non-simple design for λ > 1.

Lemma 10.2. If there exists an additive (G × Fq, G × {0}, k, λ)-DF with
G a zero-sum group of order k, then there exists a super-regular 2-(kq, k, λ)
design.

Proof. The (G × Fq)-regular 2-(kq, k, λ) design obtainable from F using
Proposition 10.1 is clearly additive. The assertion follows.

Theorem 10.3. If there exists an additive (k, k, λ)-SDF with k not singly
even, then there exists a super-regular 2-(kq, k, λ) design for every power
q > k of a prime divisor of k.

Proof. Let Σ = {B1, . . . , Bs} be an additive (k, k, λ)-SDF in G and let q be a
prime power as in the statement. Take a zero-sum k-subset L = {`1, . . . , `k}
of Fq whose existence is almost evident3. Lift each block Bh = {bh1, . . . , bhk}
of Σ to the subset Lh = {(bh1, `1), . . . , (bhk, `k)} of G × F∗q . By definition
of a strong difference family, we have ∆{L1, ..., Lh} =

⊎
g∈G{g} ×∆g where

each ∆g is a λ-multiset on F∗q so that we have

∆g · F∗q = λF∗q ∀g ∈ G. (10.1)

3It is also an immediate consequence of a formula giving the precise number of k-subsets
of Fq whose sum is an assigned b ∈ Fq (see Theorem 1.2 in [27] or, for an easier proof,
Theorem 1.1(3) in [33]).
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Given m ∈ F∗q , denote by Lh ◦m the subset of G× Fq obtained from Lh by
multiplying the second coordinates of all its elements by m. Taking (10.1)
into account, it is easily seen that

F = {Lh ◦m | 1 ≤ h ≤ s;m ∈ F∗q} (10.2)

is a (G × Fq, G × {0}, k, λ)-DF. Also, we note that F is additive since Σ is
additive and L is zero-sum. The assertion then follows from Lemma 10.2.

Applying the above theorem using the (15, 15, 42)-SDF given in the pre-
vious section, we find a super-regular 2-(15q, 15, 42) design for every power
q of 3 or 5 not smaller than 25. Here, however, in view of the special form of
the used (15, 15, 42)-SDF, one could see that if L is chosen more carefully as
in Section 9 and if in (10.2) we make m vary in a system of representatives
for the cosets of {1,−1} in F∗q rather than in the whole F∗q , we get an additive
a (Z15 × Fq,Z15 × {0}, 15, λ)-DF with λ = 21 rather than 42. Thus we can
say that there exists a super-regular 2-(15q, 15, 21) design for every power q
of 3 or 5 not smaller than 25. In particular, using q = 25, we can say that
there exists a super-regular 2-(375, 15, 21) design.

11 Open questions

Our research leaves open several questions. The most intriguing is probably
the following.

(Q1) Does there exist a strictly G-additive Steiner 2-design which is not
G-regular?

Here are some other questions which naturally arise.

(Q2) Do there exist strictly additive 2-(v, k, 1) designs with k singly even?

(Q3) Do there exist super-regular Steiner 2-designs with block size k =
2n3 ≥ 12?

Finally, it would be desirable to solve the following problem.

(P) Find an additive Steiner 2-design with a non-primepower block size
and a “reasonably small” number of points.
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