
1. Introduction
Plate boundaries are rarely defined by a single interface. Indeed, they often comprise diffuse deformation zones, 
illuminated by topography and bathymetry, seismicity, and fault distribution (Bird, 2003; Gordon & Stein, 1992; 
Kreemer et al., 2014). Convergent margins, in particular, are characterized by widely deformed zones and large 
orogenic belts, such as along the Nazca-South America plate boundary or between the Eurasia plate and the 
Africa, Anatolia, Arabia and India plates, where the size of the related orogens and the deformation zones, that 
is, the Andes and the Alpine-Himalayas system, generally grows proportionally with increasing convergent plate 
kinematics (Allmendinger et al., 2007; Cuffaro & Doglioni, 2018; Motaghi et al., 2017; Xiao & Santosh, 2014). 
In those tectonic settings, morphology described by topography and bathymetry show a variability of fault direc-
tion and kinematics, which is a consequence of changes in strain and stress accommodation or by the coexistence 
of different tectonic processes (Allmendinger et al., 2005; Cuffaro et al., 2011; Guillaume et al., 2022, and refer-
ences therein).

Southern Italy is located within the deformed Africa (AF)–Eurasia (EU) plate boundary in the central Mediter-
ranean Sea, where the magnitude of the geodetic strain rate derived by the global strain rate model GSRM v.2.1 
(Kreemer et al., 2014) is around 60–80 nstrain/a. Convergence between plates (Figure 1) is accommodated by 
compression along the southern Tyrrhenian Sea, extension between Sicily and Calabria (Kreemer et al., 2014; 
Palano et al., 2015, 2017), complex active tectonics in the Sicily Channel (Civile et al., 2021; Corti et al., 2006; 
Palano et al., 2020) and by a variable geodynamic setting in the Ionian Sea due to the Calabrian Arc subduction 
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(Gutscher et al., 2016; Polonia et al., 2016). Observed data in this latter sector are derived by marine geology 
acquisitions, and complexity is characterized by combination of the compression due to plate motions and tran-
stensional tectonics along the Alfeo-Etna Fault and the Ionian Fault Systems (Gutscher et  al.,  2016; Polonia 
et al., 2016; Presti, 2020; Proietti et al., 2021; Sgroi et al., 2021). The latter separates the accretionary prism in 
the Western Lobe and the Eastern Lobe. There, seismically active faults are observed (Figure 1). Distribution 
of faults and their kinematics in southern Italy are described by morphological interpretation of topography and 
bathymetry (Billi et al., 2007; Gutscher et al., 2016; Monaco et al., 2002), seismic reflection profiles (Bortoluzzi 
et al., 2017; Gallais et al., 2013; Polonia et al., 2016, 2017), seismicity (Presti, 2020; Totaro et al., 2016), and 
paleoseismology (Galli & Peronace, 2015).

Space geodesy helps to characterize the areas of tectonic compression and extension (Cuffaro et  al.,  2011; 
Kreemer et al., 2014; Palano et al., 2015). In those cases, geodetic strain rate computed by Global Navigation 
Satellite System (GNSS) velocities does not consider the location and geometry of faults in numerical solutions.

In this paper, we compute a new geodetic strain rate field, fault slip rakes and net slip rates in southern Italy, 
integrating GNSS velocities, global plate motions and available geologic data on fault geometry. We tested 
this approach by adopting numerical methods with the NeoKinema code (Bird & Liu, 2007), which computes 
long-term-average anelastic strain rate, derived fault kinematics and fault offset rates. To this scope, we compiled 
160 fault lineaments as well as a recent geodetic velocity field. Our main aim is (a) to increase the grid resolution 
(5 km) of the numerical solutions along the short segment of the AF-EU boundary and (b) to predict tectonic 
setting in southern Italy with the integration of geodetic and geologic record, comparing results with observable.

2. Data and Methods
Our approach consists of evaluating regional-to-local geodetic crustal deformation with the inclusion of fault 
properties within our study area. It is based on the analysis and processing of the available data following three 
main steps: (a) compilation of the traces of active faults with any available rakes and/or offset rates; (b) collection 

Figure 1. Tectonic settings in southern Italy and 2-D computation grid. Brown lines are the compiled fault lineaments 
derived from the Database of Individual Seismogenic Sources (DISS) database (thick lines, with associated slip rate, DISS 
Working Group, 2021), and additional literature (thin lines, with no slip rate, e.g., Billi et al., 2007; Polonia et al., 2016). 
Solid and dashed black lines are the compression fronts and the Eurasia (EU)–Africa (AF) plate boundary from DeMets 
et al. (2010). Shaded areas are the Ionian Fault System (IFS) and the Alfeo-Etna Fault System (AFS). Gray and black vectors 
are the Global navigation satellite system velocities after Billi et al. (2023) and the computed rates relative to fixed EU, 
respectively. Blue and red arrows denote compression and extension areas. In the lower left inset, the second invariant of the 
GSRM v.2.1 geodetic strain rate model by Kreemer et al. (2014) is reported, and the solid black lines are plate boundaries 
from DeMets et al. (2010). EL–Eastern Lobe, WL–Western Lobe.
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of a dense list of GNSS stations with location coordinates and local velocity components; (c) use of the code 
NeoKinema v5.4 (Bird & Liu, 2007) to model faults and continuum deformation of the study area.

(i) In southern Italy, we compiled 160 digitalized fault traces located in 12 sectors which are the Southern Tyrrhenian 
Faults (STF), the Southern Tyrrhenian Transcurrency (STT), the Sicily Onland Transcurrency (SOT), the Ionian Fault 
System (IFS), the Western Lobe Faults (WLF), the Alfeo-Etna Fault System (AFS), the Calabria Offshore Faults 
(COF), the Eastern Lobe Compression (ELC), the Western Lobe Compression (WLC), the Calabria-Sicily Faults 
(CSF), the Southern Tyrrhenian Extension (STE) and the Gioia Basin Faults (GBF), plus two compression fronts  (i.e., 
the Drepano and the Apennines fronts), which characterize the active deformation in the study area (Figures 1–3 and 
in Supporting Information S1). We merged data sets mainly from Billi et al. (2007), Carminati et al. (2010), Polonia 
et al. (2016), and Doglioni et al. (2012) with auxiliary information by existing literature (Figures S1–S5 in Supporting 
Information S1). An additional sector is the Database of Individual Seismogenic Sources (DISS) (DISS Working 
Group, 2021), but we did not include the sources in southern Tyrrhenian and Ionian Sea to avoid overlaps of crustal 
deformation results with faults used in Billi et al. (2007) and Polonia et al. (2016). Fault offset rate components are 
described by the primary and secondary slip, that is, the dominant and the minor sense of the offset for a specific 
fault. They are not largely available and were constrained as initial condition only for the DISS database (Table S1 
in Supporting Information S1). All compiled fault properties are reported in Table S1 in Supporting Information S1.

(ii) A recent GNSS velocity field in the ITRF14 reference frame (Altamimi et al., 2017) was obtained by Billi 
et al. (2023). We integrated that solution computing additional GNSS rates spanning the 1995.00–2023.00 time 
period, and extending the field westward to Sardinia and northward to the 42°N parallel (Figure 1), to include 
more continuous GNSS stations. To neglect local velocity outliers (e.g., Hammond et al., 2016; Jiang et al., 2022; 
Pan et al., 2021), we removed from the final solution all sites biased by large velocity uncertainties and/or show-
ing suspicious movements with respect to nearby sites (∼0.2% of the data set here analyzed). For example, 
stations close to Mt. Etna were not considered to avoid the short-term volcanic deformation signature (Palano 
et al., 2022). The velocity field can be considered as an interseismic solution, since no large earthquakes (M > 6) 
occurred in the study area during the measurement time-window. A final database of 392 GNSS velocities is 
provided (Figure 1 and Table S2 in Supporting Information S1), using processing methodologies adopted in Billi 
et al. (2023).

(iii) We modeled data obtained in (i) and (ii) using the NeoKinema code v.5.4 (Bird & Liu,  2007; Shen & 
Bird, 2022), a kinematic finite element code that estimates long-term average horizontal velocities at the Earth's 
surface by weighted least squares fitting of geodetic, geological and geophysical data. It solves an inverse 
problem, based on a spaced gridded interpolation, with the distance weighted approach (e.g., Cardozo & 
Allmendinger, 2009), where geological heave rates (i.e., the horizontal component of the net slip) and geodetic 
velocities are merged to estimate regional tectonic deformation field (i.e., strain rate). Stress directions (Heidbach 
et al., 2018) are useful to constrain the solution (Bird, 2009; Bird & Carafa, 2016; Bird & Liu, 2007; Carafa & 
Bird, 2016), but, here, we did not utilize them to obtain our deformation field (see in Supporting Information S1 
for details). Other adopted constraints are the use of a refined 5 km mesh grid and the AF-EU Euler vector by 
Altamimi et al. (2017) (Figure 1). Additional methodological details can be found in the supplementary informa-
tion and in Bird and Liu (2007), Bird (2009), and Carafa and Bird (2016).

3. Results
The obtained geodetic deformation field with the integration of fault geometries describes the various tectonic 
settings of southern Italy (Figure 2). We show the strain rate first invariant (2D-dilatation) and second invariant 
(2nd INV), as defined in Riguzzi et al.  (2012) and Kreemer et al.  (2014). Three profiles (Figures 2c–2e) are 
presented to evaluate simulation results from Ionian Sea to South Tyrrhenian Sea, passing through Calabria 
(section AAʹ, Figure 2d), Messina Strait (section BBʹ, Figure 2e), and Sicily (section CCʹ, Figure 2f). Along those 
sections, 2D-dilatation and 2nd INV provided by global strain rate model GSRM v.2.1 (Kreemer et al., 2014) 
are also reported for comparison. Grid solution computed with a 5-km spaced resolution, with no smoothing 
factor, highlights tectonic deformation as obtained in previous studies (Cuffaro et al., 2011; Palano et al., 2012), 
for example, compression in the southern Tyrrhenian Sea, extension in central Sicily and Calabria, but it also 
provides a general compression in the Ionian Sea, due to plate motion constraints.

Higher values with respect to those previously computed by Kreemer et  al.  (2014) are obtained, sometimes 
exceeding 300 nstrain/a for both 2D-dilatation and 2nd INV estimations (Figure 2). The deformation field in the 
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Ionian Sea is like the one by GSRM model v.2.1, but higher and oscillating values are observed onshore Sicily 
and Calabria (Figure 2).

Predicted fault rakes and net slip rates are obtained and a comparison between observed (OFK) and predicted 
(PFK) fault kinematics is also provided (Figure 3 and Table S1 in Supporting Information S1). Observed fault 
kinematics are inferred from literature and the kinematics is assigned to faults according to common rake values 
for normal (N = 270 ± 45), thrust (T = 90 ± 45), right-lateral (R = 180 ± 45), and left-lateral (L = 0 ± 45) 
faults (see in Supporting Information S1). Input fault properties are here also used as benchmark to validate the 
proposed approach and model results, and quantitatively to evaluate model goodness, which is the ratio between 
the number of PFK concordant with the OFK and the total number of OFK. The computed primary and secondary 
offset rates for each fault (Table S1 in Supporting Information S1) allowed us to derive net slip (Figure 3).

Overall, 117 predicted fault rakes align with the observed ones over the entire database (Tables S1–S13 in Support-
ing Information S1), with an obtained ratio of 117/160. The fit is best in the DISS, ELC and WLC sectors, worst 
in the CSF, COF and SOT ones. Obtained net slip rates are comparable with ones used in input for the DISS 
sector and, overall, are mostly confined under 0.50 mm/a, except for some other values over 0.80 mm/a, such as 
1.37 mm/a for the fault n. 3 (e.g., the Aspromonte-Peloritani seismogenic source, Figures 3a and S2a in Supporting 
Information S1), or 0.83 and 3.05 mm/a for faults n. 37 and n. 149, respectively (Figures S2b and S5n in Supporting 
Information S1). Moreover, net slip rate is also evaluated along the two compression fronts of the Drepano and 
the Apennines systems (Table S14 in Supporting Information S1), providing low values of 0.03 and 0.05 mm/a, 
respectively.

Figure 2. Geodetic strain rate model (this study) for the Southern Tyrrhenian and Ionian Seas. (a) 2D-dilatation and (b) 
second Invariant with location of the AAʹ, BBʹ, and CCʹ profiles. Gray areas are those where computed values exceed 300 
nstrain/a. Brown lines are the compiled fault lineaments and the dashed black lines are the EU-AF plate boundary from 
DeMets et al. (2010). (c–e) sections of the AA’, BBʹ, and CCʹ profiles with 2D-dilatation and second Invariant strain rate 
values and topographic elevation from the Emodnet (https://emodnet.ec.europa.eu/en/bathymetry) and the ETOPO 2022 
Global Relief Model (www.ncei.noaa.gov/products/etopo-global-relief-model) databases. Along the profiles, a comparison 
with the GSRM v.2.1 model (Kreemer et al., 2014) is proposed. m.s.l.–mean sea level.
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4. Discussion and Conclusions
This geodetic/geological integrated approach constitutes a procedure which allowed us to compute the interseis-
mic deformation field in and around southern Italy and obtain the long-term tectonic setting.

We suggest that the higher strain rate values in our model relative to those previously obtained (Billi 
et al., 2023; Devoti et al., 2011; Kreemer et al., 2014; Palano et al., 2012) are due to the dense network of 
GNSS stations, the dimension of the computation mesh (from 5  km) and the lack of smoothing function 
application when the solution grid images are generated (Figure 2). This is observed for closer GNSS stations 
with variable velocities. For example, it can be verified at the Aeolian Islands or in the region south of the 
Messina Strait (Figure 2), where the huge number of stations provides a 2D-dilatation and/or second invariant 
over 300 nstrain/a and a compression south of the Messina Strait, respectively (Figure 2 and Data set S6 in 
Supporting Information S1). In the former region, the inferred strain is due to the superposition of regional 
tectonic strain and local strains related to the long-term contraction of a magmatic body at Aeolian Islands 
(e.g., Cintorrino et al., 2019). In the latter region, compression is also powered by the horizontal component 
of the imposed initial offset rate for the Aspromonte-Peloritani seismogenic source (fault n. 3, Table S1 in 
Supporting Information S1).

Since our main purpose is to predict long-term fault kinematics by the integration of space geodesy and geologi-
cal record, discrepancies with respect to previous strain rate solutions are not discussed here in details. Although 
strain rate field is not here a primary result, but it contributes to evaluate fault tectonics, it is worth noticing that 
higher values for geodetic strain rate solutions were previously computed in the Aeolian Island region (Bortoluzzi 
et al., 2010) and recently proposed by Serpelloni et al. (2022) in northwestern Sicily. A similar strain rate order of 
magnitude is obtained also using our GNSS solution on a 5 km meshgrid and the SSPX software by Cardozo and 
Allmendinger (2009) (Figure S10 in Supporting Information S1). Hence, we suggest that the regional signature 
of our GNSS solution is robust and reliable, providing a detailed snapshot of the ongoing crustal deformation 
over the study area.

Figure 3. Observed versus predicted fault kinematics for the 160 selected lineaments at different sectors in southern Italy 
(see text for acronyms). Predicted net slip rate is reported in every upper inset. T–Thrust; N–Normal; R–Right Lateral; L–Left 
Lateral. As an example, the term N-L represents primary (N) and secondary (L) slip respectively.
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The use of the NeoKinema code also contributes to predict fault kinematics offshore in the South Tyrrhenian Sea, 
and in the Ionian Sea, because imposed plate motions are used as velocity constraints, when GNSS rates are not 
available. The estimated uncertainties of primary and secondary slip rates (i.e., the components of the offset rate, 
Table S1 in Supporting Information S1) are in order of the 10%, and the overall fault kinematic solution describes 
the behavior of fault displacements in southern Italy (Figure 4), denoting mostly compression in the Ionian Sea, 
a strike slip displacement with a normal component in the Sicily Channel and a complex kinematics in southern 
Tyrrhenian Sea, Sicily and Calabria.

Model goodness in the 13 sectors is measured considering the percentage of alignment between predicted and 
observed fault kinematics (Figure 4). We find an overall agreement with the existing literature in three sectors 
at 100% (DISS, ELC and WLC), in one over the 80% (STT), and in two over the 70% (AFS and STE). Lower 
performances are provided in two other sectors over the 60% (IFS and GBF), in two around 50% (STF, and WLF) 
and in three less than 40% (SOT, COF, and CSF). Overall, the global comparison over the 13 sectors gives an 
obtained model goodness of 73% (Figure 4).

We suggest that lower performances from onshore sectors can be attributed to the dense number of GNSS stations 
and by the refined computation meshgrid. Indeed, the SOT and CSF sectors are within the GNSS network 
(Figure 4), so that we guess that the analyzed faults locally respond to the near deformation field provided by 
variable GNSS displacements in Sicily and Calabria, lowering the model goodness with respect to the observed 
fault kinematics derived for instance by Billi et al. (2010), Polonia et al. (2016) and Barreca et al. (2018). The 
same reasons, but with different percentages, can be proposed for the STF, GBF and STE sectors (Figure 4), 
where GNSS velocities at Ustica and Aeolian Islands and variable fault directions strongly constrain predicted 
fault kinematics (Figure 1), or for the case of Capo Peloro Fault (Fault n. 160. Table S13 in Supporting Infor-
mation S1), where discrepancy between predicted and observed fault kinematics can be attributed to the high 
number of different GNSS velocity directions in Sicily and Calabria.

Figure 4. Predicted fault rakes in southern Italy, with primary (solid color) and secondary (dashed color) slip type. Lower 
right panel shows model goodness, indicating percentage agreement with existing literature (gray bars). See text for 
acronyms. T–Thrust; N–Normal; R–Right Lateral; L–Left Lateral.
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Predicted offshore fault kinematics (Figure  4) are mostly constrained by fault location and direction and by 
far-field kinematic constraints (i.e., GNSS) and mostly by imposed plate motions. This could be the case of the 
STT, WLF and AFS sectors, where misfit between observed and predicted data can be explained with fault direc-
tions with respect to the differences in GNSS velocities between Sicily and Aeolian Islands or Ustica, or relative 
to the general plate motion directions. Same conclusions can be derived for the IFS sector, where a general 
right-lateral movement is observed (Polonia et al., 2016), also if in its westernmost part a left-lateral displace-
ment is detected (Gutscher et al., 2017). We suggest that the obtained left-lateral kinematics in the western IFS 
sector (Figure 4) can be derived by the combination of plate velocity directions and the fault orientation in that 
domain.

In the COF sector (Figure 4), instead, the extensional kinematics derived by Polonia et al. (2016) and Capozzi 
et al. (2012) is not aligned with the predicted compression that we obtained, because we suppose that the major 
constraint due to the imposed convergent AF-EU plate motion at domain boundaries poorly combines with the 
fault locations and directions in that domain, resulting in overall compression (Figure 4). On the contrary, the 
distribution of thrusts in the ELC and WLC sectors fully align with the directions of the AF-EU plate motion, 
resulting in the 100% of model goodness in both the sectors. Finally, the DISS sector (Figure 4) gives a full model 
goodness also because slip rates are used there as initial constraints, so that the NeoKinema code considers those 
fault lineaments as active features, when computing the general deformation field coupled with GNSS velocities 
and imposed plate motions.

Computed net slip rates are in the order of 1 mm/a in average, except for a few higher values (Figure 3) in the 
DISS sector or in those domains where highly variable GNSS velocity directions are detected (e.g., STF, SOT, 
CSF, STE); in all the other sectors they are very low, suggesting that the imposed AF-EU plate motion is not 
capable to provide remarkable computed displacements along fault planes, or emphasizing the major effect of a 
temporary locking along the AF-EU subduction interface (Carafa et al., 2018).

We remark that the use of the distance weighted approach, the primary and secondary slip uncertainty compu-
tation, and the integration of plate kinematics in the resulting deformation field make the NeoKinema code 
a robust tool to predict tectonic setting and fault kinematics at least in southern Italy. On the contrary, faults 
are treated as single surfaces, so that with our geometric parameters we cannot investigate parallel structures 
that converge at depth to one large structure, collecting a larger amount of strain. For this reason, we do not 
provide consider ations on seismic hazard, also if our rake prediction is qualitatively comparable with the focal 
mechanisms from the European–Mediterranean Regional Centroid-Moment Tensor catalog (Pondrelli, 2002), 
or from Orecchio et al. (2014), Polonia et al. (2016) and Sgroi et al. (2021), in southern Tyrrhenian and Ionian 
Seas.

In conclusion, the approach of combining geodetic observation with geological record, using numerical meth-
ods, results in computation of a high-resolution deformation field and long-term tectonic setting in a study 
area, integrating space geodesy, plate motions and fault geometries. The possibility to obtain predicted fault 
displacements and net slip rates allows us to consider this procedure as a favorable method to improve the 
knowledge of fault kinematics along diffuse plate boundaries, when faults are known but their kinematic attrib-
utes elude us. The procedure level of accuracy can be improved onshore with the increase of GNSS data in 
a study area, and overall, with a refinement of the angular vectors describing plate motions. Furthermore, 
the precision increase of fault location onshore and at seafloor is fundamental to avoid artifacts in fault kine-
matic modeling, and to obtain robust computed crustal deformation fields with the integration of geological 
constraints.

Data Availability Statement
The source code NeoKinema v.5.4, used to obtain numerical solutions, and the related Guide to Kinematic 
Modelling of Neotectonics with NeoKinema are provided by Bird  (2021). Figures were generated with the 
Generic Mapping Tools of Wessel et al. (2019). The used models, which describe the input and the output data 
of this study (e.g., Datasets S1–S6 and Tables S1 and S2 in Supporting Information S1) can be found at Cuffaro 
et al. (2023).
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