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Abstract

This work revolves around the Stolz’ positive scalar curvature sequence: in particular
we adapt it to the context of (G,F )-spaces, i.e. proper G-spaces with isotropy groups
belonging to a family F of subgroups of G, and to that of manifolds with non-isolated
singularities. In both cases, the sequence is studied for appropriate classes of metrics
with positive scalar curvature, and it is shown how the Stolz R-groups have a strict
dependence on the 2-skeleton.

This latter result will then be used in the (G,F ) framework to establish an isomor-
phism between the R-groups for spaces having isomorphic fundamental functors, a suitable
generalization of the fundamental group. We will introduce also a universal space, where
universal means that each space with this characterization admit a map with values in it,
inducing isomorphisms at the level of R-groups.

Subsequently, the mapping of the Stolz sequence to the Higson-Roe surgery sequence
for singular spaces with (L, G)-singularities will be studied. Specifically, a version of the
delocalized APS-index theorem by Zeidler, which makes use of localization algebras,
will be employed. This includes a description of K-theory for graded C⇤-algebras as
developed by Trout, which will be introduced for Real C⇤-algebras, with the advantage
of simultaneously including both the real and complex case.

Finally, as an application of these results, the wedge index difference homomorphism
is studied in the singular context. This homomorphism, besides serving as an obstruction
for two well-adapted wedge metrics to be concordant, is used to provide a lower bound
on the rank of the structure group of such positive scalar curvature metrics, namely the
bordism group Posspin,(L,G)

⇤ .
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1 Introduction
The Atiyah-Singer theorem, and the consequent index theory, have provided modern
mathematics with important tools capable of connecting fields such as analysis, geom-
etry, and global topology. In their original paper (see [4] and their follow-up works),
M.F. Atiyah and I. Singer relate the index of elliptic differential operators (the Fred-
holm one, defined in terms of the dimensions of Ker and Coker) acting on sections of
smooth vector bundles, with purely topological data concerning the operator itself and
the underlying space.

One of the main areas where index theory has achieved significant results and has
been extensively studied is in the context of metrics with positive scalar curvature. If
M is a smooth n-dimensional manifold and g is a Riemannian metric on it, recall that
the scalar curvature can be defined as the trace of its Ricci tensor or, in even more
”geometric” terms, its evaluation at a point x 2 M is the term kg(x) that appears in the
following expansion in e:

vol(Be(M, x))
vol(Be(Rn, o))

= 1 �
kg(x)

6(n + 2)
e2 + O(e4),

where Be denotes balls of infinitesimal radius e and vol denotes the volume functions
associated with the respective metrics.

At this point, one might ask: ”Why positive scalar curvature?”. The answer lies in
the resolution of the ”prescribed scalar curvature problem”, primarily due to J. Kazdan
and F. Warner, who in [22] proved that any smooth closed manifold M of dimension at
least 3 admits a metric with negative scalar curvature. They went further: any smooth
function f that takes negative values somewhere is the scalar curvature of some metric
on M.

Regarding the positive case, unfortunately, no similar result exists. Specifically, the
problem concerns two aspects: the existence of metrics with positive scalar curvature
(often abbreviated as psc-metrics) and, if possible, their classification up to suitable
relations.

Concerning existence, the most powerful tool available in index theory is the use
of appropriate obstructions to the existence of psc-metrics. In this sense, the most fa-
mous result pertains to the so-called Schrödinger-Lichnerowicz formula, established
for Dirac operators D on spin manifolds. This, given by:

D2 = r
⇤
r+

1
4

kg,

relates the scalar curvature to the so-called Dirac Laplacian D2 and has the significant
implication that if the scalar curvature kg is (uniformly) positive, then the operator D
is invertible. For a smooth closed manifold M, this implies that if the Fredholm index
of the operator D is non-zero, then M cannot admit psc-metrics. Thus, this index is
precisely an obstruction to its existence.

From here, numerous generalizations and stronger obstructions have been obtained,
thereby refining the notion of index. For example, the Rosenberg index aG(M) (see
[37, 38])is the foundation of the Gromov-Lawson-Rosenberg conjecture. This conjec-
ture asserts that for a closed, connected, smooth spin manifold of dimension � 5,
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the index aG(M), defined as an element in KO-theory (namely, K-theory for real C⇤-
algebras) of the real reduced C⇤-algebra of the fundamental group G = p1(M), namely
C⇤

r,Rp1(M), is a primary obstruction to the existence of psc-metrics on M (i.e., its van-
ishing is a necessary and sufficient condition for their existence).

This conjecture has been proven true under certain conditions. In his works [43]
and [44], Stolz established that it holds if the manifold M has a trivial fundamental
group. More generally, if p1(M) satisfies the strong Novikov conjecture, then the con-
jecture is verified in its stable formulation. Recall that the strong Novikov conjecture,
along with the Baum-Connes conjecture, concerns the relationship between the K-theory
of the reduced C⇤-algebra of a group and the K-homology of an appropriate classi-
fying space of that group. Both can be formulated in terms of the so-called assembly
map defined from these K-homology groups to the K-theory groups. In particular, the
strong Novikov conjecture asserts that this map is injective, while the Baum-Connes
conjecture asserts that it establishes an isomorphism.

Index theory for Dirac-type operators is generally formulated in terms of opera-
tor algebras and K-theory. The general idea is that such operators define elements in
certain C⇤-algebras A, and, in particular, using auxiliary structures and tools such as
functional calculus, these elements represent classes in the K-theory of C⇤-algebras. In
this context, the condition for an operator to be Fredholm (i.e., invertible modulo com-
pact operators) is replaced by the more general condition of invertibility within the
C⇤-algebra modulo one of its ideals.

Assuming I ⇢ A is such an ideal, then considering the short exact sequence:

0 ! I ! A ! A/I ! 0

which induces a long exact sequence in K-theory, then we assoiate to the Dirac operator
on an n-dimensional manifold a fundamental class [M] 2 Kn+1(A/I) (KOn+1(A/I)
when dealing with real C⇤-algebras).

The index is then given by applying to this class the boundary map d associated
with the long exact sequence, so ind(D) = d([M]) 2 Kn(I). At this point, the addi-
tional geometric condition regarding the uniform positivity of the scalar curvature of a
metric g ensures that the operator is already invertible in A. This implies the existence
of a lift of the fundamental class, namely a class r(M, g) 2 Kn+1(A) and, by exactness
of the K-theory sequence, the vanishing of the index class. It is observed that the group
Kn+1(A) is often called the structure group and r is an example of a secondary invariant.

In the case of a compact manifold, all this formulation describes the index exactly
like the usual Fredholm index. However, an important generalization, where the clas-
sical Fredholm condition fails, concerns the case of non-compact manifolds. From here,
we move to the so-called coarse index theory, based on techniques due to John Roe,
which then goes through the Roe algebras.

These, introduced in detail in 7.2 in a more general setting, are specific operator
algebras defined on spaces endowed with a representation of the C⇤-algebra C0(X) of
functions vanishing at infinity defined on a certain space X. These fit into a short exact
sequence:

0 ! C⇤(X) ! D⇤(X) ! D⇤(X)/C⇤(X) ! 0,
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which in particular gives rise to a long exact sequence in K-theory:

. . . ! Kn+1(C⇤(X)) ! Kn+1(D⇤(X)) ! Kn+1(D⇤(X)/C⇤(X))
d
�! Kn(C⇤(X)) ! . . .

known as the Higson-Roe surgery exact sequence. This sequence gives rise, in particular,
to an index class ind(D) = d([M]) 2 Kn(C⇤(M)) and a class r in Kn+1(D⇤(M)).

Secondary invariants, of which r, as mentioned above, is an example, are useful
for classifying metrics with positive scalar curvature on a given manifold M. Cer-
tainly, such a classification is useful if it allows distinguishing ”classes” of metrics with
respect to a certain equivalence relation. This relation will be given by concordance,
which will be defined later in 2, and in that same section, we will introduce in detail
the main tool enabling such classification: the Stolz sequence. This has the following
form:

. . . ! Rspin
n+1(M) ! Posspin

n (M) ! Wspin
n (M) ! Rspin

n (M) ! . . .

where all of these are bordism groups whose definitions involve the geometric content
given by a positive scalar curvature metric. The group Posspin

n (M), in particular, con-
tains information about psc-metrics on M modulo an appropriate bordism relation.
The group Rspin

n+1(M) ' Rspin
n+1(Bp1(M)) (this isomorphism will follow from Theorem

3.16), on the other hand, as stated later in Theorem 2.6, acts freely and transitively on
the space of concordance classes of psc-metrics on M. This has been used, for instance,
in [39, 33] in order to give an estimation of the virtual rank of this affine group and of
the moduli space of concordance classes of psc metrics, obtained through the action of
the diffeomorphism group of M.

A fundamental step in [39] uses the fact, that a 2-connected map between CW-
complexes, such as the classyfing map u : M ! Bp1(M), induces an isomorphism
between Rspin

⇤ groups.
Unfortunately, these R bordism groups are difficult to compute. This problem is

generally addressed by mapping this sequence into one where the terms are better
understood. In particular, one such mapping we want to refer to is the one carried
out in [32], where the Stolz sequence is indeed mapped into the analytical sequence
of Higson-Roe (in its equivariant formulation). In their version ([32, Theorem 1.28]),
valid in the odd-dimensional case (but later proved on each dimension, see [50]), the
mapping has the following form:

. . . Rspin
n+1(M) Posspin

n (M) Wspin
n (M) Rspin

n (M) . . .

. . . Kn+1(C⇤
r G) Kn+1(D⇤( eM)G) Kn(M) Kn(C⇤

r G) . . .
µ

(1.1)

where G = p1(M), eM ! M is the universal cover of M, and the well-known iso-
morphisms K⇤(D⇤( eM)G/C⇤( eM)G) ' K⇤�1(M) and K⇤(C⇤( eM)G) ' K⇤(C⇤

r G) have been
used. Observe the the map µ, in the universal version of this sequence for the group G,
is the assembly map mentioned before involved in the Baum-Connes conjectures.
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1.1 Outline of main results
The work contained in this thesis mainly revolves around the Stolz sequence, and
in particular its R-groups, which will be introduced in more detail in the following
section. Specifically, the thesis can be fundamentally considered as composed of two
parts.

The first part, meaning Chapter 3, which is based on a joint work with Thomas
Schick and Vito Felice Zenobi, addresses the case of (G,F )-spaces, i.e., proper G-spaces
whose isotropy groups lie in a given family F of subgroups of G.

The second part, essentially given by the rest of the discussion, investigates the case
of stratified spaces in their ”smooth” version, where singularities, even non-isolated
ones, are present. See also [5] and [9] for general references regarding positive scalar
curvature metrics in singular cases. However, most of the results in this part regard
spaces with particular types of singularities, namely (L, G)-singularities, mainly intro-
duced in [8] and [7].

Now let’s summarize the main results contained here.
In the case of (G,F )-spaces, an analogous version of the Stolz sequence will be

introduced, whose exactness is derived in a nearly identical manner to the standard
case (see Proposition 3.1). Essentially, it requires that cycles be represented by spin
(G,F )-manifolds and maps to be G-equivariant. Additionally, the following theorem
is introduced, stating the general principle mentioned above, and which still holds true
even in this context, providing a more direct proof of the original result.

Theorem 3.16. Let f : X ! Y be a continuous, 2-connected G-map between (G,F )-CW-
complexes which induces an isomorphism between the fundamental groups of X and Y. Then
the functorially induced map f⇤ : Rspin

n (X)(G,F )
! Rspin

n (Y)(G,F ) is an isomorphism.

The main tools in its proof are provided by Morse theory and the Gromov-Lawson
theorem ([15, 40]), in an appropriately adapted version for the context.

Next, a realization of a universal space for this category of spaces is introduced.
Specifically, using the formalism of groupoids, a generalization of the fundamental
group for a CW complex will be presented, namely the fundamental functor P1(X; G,F )
associated with a (G,F )-CW complex X. This is a finer object as it takes into account
the fundamental groups associated with all the fixed point spaces with respect to the
action of subgroups in the family F .

Associated with this functor, a universal space BP1(X; G,F ) will be introduced,
and a concrete realization will be given starting from the complex X. Specifically, as
stated more precisely in the corollary below, every (G,F )-CW complex whose funda-
mental functor is ”isomorphic” to P1(X; G,F ) will have a map to this universal space,
which, in particular, will establish an isomorphism between their respective Stolz R
groups.

Corollary 3.25. For all (G,F )-CW complex Y such that its fundamental functor is
isomorphic to that of X, that is, there exists a isomorphism of groupoids:

F : P1(Y; G,F ) ! P1(X; G,F ),
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then there exists a 2-connected G-equivariant cellular map j realizing an isomorphism:

j⇤ : Rspin
n (Y)(G,F )

! Rspin
n (BP1(X; G,F ))(G,F )

After a general introduction to stratified spaces, or more precisely to Thom-Mather
stratified spaces, and to the class of wedge metrics that can be defined on them, Chap-
ter 4 introduces a Stolz sequence, namely the L-fibered Stolz sequence in the depth 1
case:

. . . ! Rspin,L� f ib
n+1 (X) ! Posspin,L� f ib

n (X) ! Wspin,L� f ib
n (X) ! Rspin,L� f ib

n (X) ! . . .

whose exactness is proven in detail in Theorem 4.17.
In Chapter 5, the problem of establishing an analogue of Morse theory in the context

of stratified spaces is addressed. This topic, known as Stratified Morse Theory (for
a general treatment, see [14]), is introduced by approaching the problem directly to
stratified spaces of depth 1, specifically to achieve a decomposition of these spaces as
CW-complexes.

To establish a result analogous to Theorem 3.16 mentioned above, it will be nec-
essary to restrict to special case of stratified spaces of depth 1. These are referred to
as spaces with (L, G)-singularities, where L, the link associated with the depth-1 stra-
tum of the stratified space, is fixed and has the structure of a homogeneous space, i.e.,
L = G/K. This particular geometry, which was introduced in [8, 7], will be detailed in
Section 6.

In Chapter 7, the discussion focuses on how it is possible to establish a mapping
between the Stolz sequence (in the (L, G) case mentioned above) and the Higson-Roe
surgery exact sequence. In particular, the aim is to prove the following result.

Theorem 7.46. Denoting by BG = EG/G the classifying space for Galois G-coverings,
then the (L, G)-Stolz sequence 6.6 with BG as reference space maps to the universal
Higson Roe surgery sequence (7.11). This means that the following diagram is com-
mutative:

. . . Rspin,(L,G)
n+1 (BG) Posspin,(L,G)

n (BG) Wspin,(L,G)
n (BG) Rspin,(L,G)

n (BG) . . .

. . . KOn+1(C⇤

r,RG) KOn(C⇤

L,0;G) KOn(C⇤

L;G) KOn(C⇤

r,RG) . . .

i ∂

IndG
rel

j

rG

i

IndG
L

∂

IndG
rel

As can be deduced from the statement, the exact sequence below differs from the
one previously proposed in the introductory part. Indeed, two equivalent formula-
tions have been used to describe it. The first involves the use of graded K-theory
groups, defined as homotopy classes of appropriate morphisms, rather than the stan-
dard approach in terms of projections and unitaries. This approach accounts for the
grading as well as the real structure of a C⇤-algebra, with the consequent advantage of
being able to address easily the real case. The second involves the use of localization
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algebras instead of Roe algebras (which will still be introduced in detail within the
chapter).

This result, as previously mentioned, has the direct advantage of providing useful
information regarding the bordism groups present in the Stolz sequence, which are
otherwise difficult to compute. This becomes even more explicit in Chapter 8, where a
lower bound estimate on the rank of the structure group Posspin,(L,G) is proposed as its
application.

At the beginning of this chapter, an overview of some results concerning the spaces
of metrics definable on a manifold is provided, and in particular, the definition of the
index-difference homomorphism is recalled. This homomorphism provides an exam-
ple of an obstruction to the existence of a concordance relation between two positive
scalar curvature metrics.

Finally, all these constructions are revisited in the case of wedge metrics, particu-
larly in the wedge well-adapted case, on spaces with (L, G)-singularities.

Reducing this homomorphism to the smooth case, thanks to the particular structure
of these well-adapted metrics, will allow us to obtain that, under appropriate condi-
tions on a group G, including the validity of the Baum-Connes conjecture (in a rational
version), it is rationally surjective onto the KO-theory group of its reduced C⇤-algebra.
This, together with the mapping theorem, will then provide information on the min-
imum rank of the structure group Posspin,(L,G) (see Theorem 8.15). Specifically, the
following result will be demonstrated in the final section of this thesis.

Theorem 8.15. Let M be a compact, spin stratified pseudomanifold with (L, G)-singularities
of dimension n � 6 with link L simply connected. Assume that G = p1(M) satisfies all
the hypothesis of proposition 8.13 and denote by f : M ! BG the 2-connected classify-
ing map of the universal cover of M.

If:

k := dim
�
Coker

�
f] : KOn+1(M)⌦ Q ! KOn+1(BG)⌦ Q

��
,

then the following estimate holds:

rk
⇣

Posspin,(L,G)
n (M)

⌘
� k
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2 The Stolz sequence
In [42] Stolz introduced the notion of R-groups for compact manifolds with bound-
ary and explained how those fit in a exact sequence, namely the Stolz positive scalar
curvature sequence. These groups were defined as bordism groups associated to a su-
pergroup g whose cycles were given by compact g-manifolds with boundary and with
a specific positive scalar curvature on such boundary.

A supergroup g can be briefly thought as a triple made by a group p, a Z2-graduation
of p (i.e. a group homomorphism p ! Z2) and a suitable group-extension bp ! p. en-
dowed with a canonical g-structure. On a vector bundle E, one can define a g-structure
as a reduction of the structure group of E for a specific group defined from g. For spe-
cific supergroups, this can be reduced to the existence of a spin structure on a manifold,
which will be the case we discuss here.

The main application of the R-groups and the Stolz sequence has to be found in the
classification of concordance classes of positive scalar metrics. We now recall briefly
the main definitions and results.

First of all, we fix a generic space X, called reference space. In general, X can be
arbitrary. However, we will discuss later two natural choices for X that turn out to be
convenient for our purposes.

Firstly, a brief recall on the notion of bordism. This can be introduced as an equiv-
alence relation: if M1 and M2 are two smooth compact manifolds of dimension n, we
say that M1 and M2 are bordant if there exists a compact (n + 1)-dimensional manifold
W such that its boundary is non-empty and equal to M1 t M2. In particular, we say
that W is a bordism between M1 and M2.

Definition 2.1. Wn is the set of the equivalence classes with respect to the previous
equivalence relation. If we denote by [Mi] its elements (i.e. its cycles), then an addition
operation in Wn is well-defined, given by [M1] + [M2] = [M1 t M2], which makes Wn
an abelian group, which will be called the bordism group of closed n-manifolds.

Remark 2.2. A similar reasoning can be made regarding the Cartesian product of man-
ifolds, which thus defines a product Wn ⇥ Wm ! Wn+m. With these two operations,
W⇤ has a ring structure and is called the bordism ring.

By enriching the category on which the equivalence relation is defined, different
bordism theories are obtained. Obviously, this relation must be compatible with any
enrichments.

For example, if the manifolds Mi are all considered to have maps fi : Mi ! X, then
the bordism will also have a map to X, denoted by f , and this map must restrict to fi
on their respective boundary components. This gives rise to the bordism ring W⇤(X).

Another standard example is when manifolds are considered with orientation: in
this case, it will be required that a bordism between M1 and M2 is also oriented, and
that the boundary is M1 t (�M2), where �M2 indicates the manifold taken with the
opposite orientation. This gives rise to WSO

⇤ . This last example can be further general-
ized to the case of manifolds equipped with a G-structure. Here, the bordism will also
have to be equipped with a G-structure that restricts appropriately on the boundary.
In this case, we will obtain WG

⇤ (or, possibly, WG
⇤ (X)).
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Then we introduce the following three bordism groups:

• Wspin
n (X) is the spin bordism group with reference space X. This means that a

cycle here is given by a pair (M, f ), where M is a closed spin manifold of di-
mension n with fixed spin structure on its tangent bundle and f : M ! X is a
reference map. Bordisms between two cycles have to extend both the reference
maps and the spin structures, meaning that two cycles are equivalent if there ex-
ists a n + 1-dimensional spin manifold with boundary given by the union of the
two manifolds representing the cycles, together with a spin structure and a map
to X which restrict to those of the cycles on the respective boundary components.

• Posspin
n (X) is defined as the spin bordism group, but with the additional geomet-

ric information of a Riemannian metric of positive scalar curvature. A cycle is
made by a triple (M, f , g) where M and f are as before, while g is a psc met-
ric on M. Again, in addition to the requirements already discussed for the spin
bordism group, the bordisms between two cycles have to be endowed with psc-
metrics wich are product-like on a neighborhood of the boundary and restrict to
those of the cycles there.

• Rspin
n (X) is the Stolz R-group we referred before. Cycles in this group are made

by triples (M, f , g∂), where M is a compact, spin n-manifold with boundary,
f : M ! X is again a reference map and g∂ is a Riemannian psc-metric on the
boundary ∂M. Bordisms are then manifolds with corners. In particular, two
cycles (M, f , g) and (M0, f 0, g0) are equivalent if there is a compact, spin n + 1-
manifold whose boundary decomposes as ∂M [∂M V [∂M0 ∂M0, where V real-
izes a bordism between (∂M, f |∂M, g|∂M) and (∂M0, f |∂M0 , g|∂M0) in the sense of
Posspin

n�1(X). Of course, we require that the spin structures and the reference maps
of M and M0 are extended along the bordism.

Remark 2.3. All these bordism groups are covariantly functorial in X: in fact, a map
g : X ! Y induces a mapping g⇤ : Wspin

n (X) ! Wspin
n (Y) (similarly for Posspin

n (X) and
Rspin

n (X)) by pushing-forward the reference map.

Given the definition of the R-group, it follows directly that if a manifold M with
boundary admits a metric with positive curvature on its boundary g∂, defining a class
in the R-group that extends over the entire manifold, then this class is null-bordant,
meaning [M, h] = 0.

Proposition 2.4. The previous abelian groups fit into the so called Stolz positive scalar
curvature exact sequence:

. . . Rspin
n+1(X) Posspin

n (X) Wspin
n (X) Rspin

n (X) . . .∂ d i ∂

where ∂ is the mapping sending a manifold to its boundary, d is the forgetful map (i.e. it forgets
about the psc metric) and i is the obvious inclusion.
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Stolz’s R-groups are typically used for the classification of metrics with positive
scalar curvature on a fixed manifold, up to concordance. In particular, by concordance
here we mean the following equivalence relation:

Definition 2.5. Two Riemannian metrics g1, g2 of positive scalar curvature are said
concordant if there exists a Riemannian psc-metric h on M ⇥ [0, 1] such that it is prod-
uct like on a neighborhood of the boundary and restricts to g1 and g2 there.

Once the manifold M is fixed, two natural choices for the reference space X emerge.
The first one is to choose X = M, noting that both M and M ⇥ [0, 1] trivially possess
a map to X. The second choice is to set X = BG, where G = p1(M), observing that M
canonically admits a map to this space, and furthermore, every space with fundamen-
tal group G admits one.

Let’s consider the case where X = BG: using techniques from surgery theory, it
can be shown that the null-bordance of the bordism class in Rspin

n (BG) is not only a
necessary condition but also a sufficient one for the existence of an extension to positive
curvature of the metric defined on the boundary. Furthermore, in the case where the
dimension of the manifold M is � 5, Stolz exhibited the following result:

Theorem 2.6. Let M be a closed spin manifold, with dimension n � 5 and fundamental group
G. Suppose that M admits a psc metric g0, implying that [(M, f : M ! BG, g0|∂M)] =

0 2 Rspin
n (BG) vanishes. Then the group Rspin

n+1(BG) acts freely and transitively on the set of
concordance classes of metrics of positive scalar curvature on M.

This theorem, in particular, asserts that, given a psc metric g0 on M, there exists a
map:

ig0 : C+(M) ! Rspin
n (BG)

which is bijective for every choice of g0, where C+(M) is the set of concordance classes
of psc metrics on M. This implies that the two are non-canonically isomorphic: in
particular, C+(M) assumes a structure of Rspin

n (BG)-torsor, and ig0 induces a group
structure, in which g0 plays the role of the identity, isomorphic to Rspin

n (BG).
In any case, beyond the specific utilities that arise from a given problem, the two

choices for the reference spaces we discussed before are equivalent. Indeed, in the case
where p1(M) = G, the existence of a 2-connected map1 f : M ! BG is ensured, which,
together with the following theorem, establishes the equivalence of such choices.

Theorem 2.7. Let f : X ! Y be a continuous, 2-connected map. Then the functorially
induced map f⇤ : Rspin

n (X) ! Rspin
n (Y) is an isomorphism.

The proof of this theorem relies on the Gromov-Lawson theorem and basic tools
from Morse theory (we will be more detailed later). The objective of the next sections
will be to extend this notions and prove this theorem in other contexts, e.g. for (G,F )-
CW-complexes and some kind of smoothly stratified spaces. In particular, this theorem
will follow from these new results.

1A continuous map f : X ! Y between topological spaces is n-connected if for all x 2 X the induced
map f⇤ : pi(X, x) ! pi(Y, f (x)) is an isomorphism for all 0 < i < n and is surjective for i = n
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3 (G,F )-Stolz

3.1 Proper actions of discrete groups

In this section, we begin by providing a general introduction to transformation groups
and the notion of a G-space. We will then introduce the concept of a G-CW-complex
for a family of subgroups of G and observe how the Stolz sequence can be naturally
adapted for these spaces.

Suppose G is a topological group and X is a topological space. A left G-space (resp.
right G-space) is a pair (X, r) where r : G ⇥ X ! X is a continuous map satisfying the
following properties:

• r(e, x) = x for all x 2 X, where e is the identity element of G;

• r(g, r(h, x)) = r(gh, x) for all g, h 2 G and x 2 X for a left G-space (resp.
r(h, r(g, x))r(gh, x) for a right G-space).

Remark 3.1. For a left G-space, r is called a left G-action and is often abbreviated as
r(g, x) = gx (resp. for a right G-space, the right G-action r is denoted by r(g, x) = xg).

In general, we work with left G-spaces, which is why unless otherwise specified,
it is assumed that a G-space has a left-action. So let X be a G-space, and consider the
following equivalence relation in X:

x ⇠ gx, 8g 2 G.

The set of its equivalence classes X/G is called the orbit space of X and is equipped
with the quotient topology induced by the quotient map X ! X/G. The class of x 2 X,
denoted by Gx, is called the orbit of x. An action is called transitive if X has only one
orbit, i.e. for each pair of points x, y 2 X, there is a g 2 G such that y = gx.

Definition 3.2. Consider the right action of a subgroup H ✓ G on G itself and the
orbit space with respect to this action (whose elements are thus indicated as gH, with
g 2 G). We can introduce the following left action:

G ⇥ G/H ! G/H, (g0, gH) 7! g0gH.

We define a homogeneous space any G-space G/H equipped with this action.

Remark 3.3. Alternatively, a homogeneous space is any G-space on which G acts tran-
sitively. In fact, if X is such a space, let’s choose a point x 2 X and consider its stabilizer
(also called the isotropy group of x), which is the subgroup Gx = {g 2 G|gx = x}2.Then
the points of X are in correspondence with the classes in G/Gx (in particular, the point
x corresponds to the class eGx). Conversely, a G-space defined as in the previous defi-
nition is a space equipped with a transitive action.

Example 3.4. Examples of homogenous spaces are:

2Observe that Ggx = gGxg�1
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• The orthogonal group O(n + 1) acts transitively on the n-sphere Sn. However,
the stabilizer subgroup of each point on the sphere is isomorphic to O(n), and
then Sn

' O(n + 1)/O(n).

• Consider the Stiefel manifold given by the set Vk(R
n) of all orthonormal k-frames

in R
n. Of course, orthogonal transformations preserves orthonormality and two

frames are obtained one by another by an orthogonal transformation. However,
since k 6= n, the group O(n � k) keeps fixed the k-frames. Then Vk(R

n) '

O(n)/O(n � k). Similarly, one gets Vk(C
n) ' U(n)/U(n � k) and Vk(H

n) '

Sp(n)/Sp(n � k).

If H is a subgroup of G, then the H-fixed point set XH is defined as:

XH := {x 2 X | hx = x, 8h 2 H}.

Suppose f : X ! Y is a (continuous) map of G-spaces. f is called G-equivariant if it
preserves the G-actions, i.e., f (gx) = g f (x) for every g 2 G and x 2 X. The space of
G-equivariant maps from X to Y, denoted by CG(X, Y), can be topologized using the
compact-open topology, obtained by considering the subbase generated by the subsets
W(K,U ) = { f 2 CG(X, Y)| f (K) ⇢ U}, where K ⇢ X is a compact subset and U ⇢ Y is
an open set.

Two G-equivariant maps f0, f1 : X ! Y are said to be G-homotopic if there exists
a G-equivariant map F : X ⇥ [0, 1] ! Y such that F(�, 0) = f0 and F(�, 1) = f1,
considering the interval [0, 1] equipped with the trivial action of G and X ⇥ [0, 1] as a
G-space with the diagonal action of G.

Remark 3.5. Observe that for each subgroup H ⇢ G, a map f 2 CG(X, Y) preserves
the H-fixed point set, i.e f (XH) ✓ YH. Clearly, f maps the orbit of a given point
x 2 X to the orbit of its image. For this reason, f induces a map between the orbit
spaces f /G : X/G ! Y/G. Furthermore, observe that for every point x 2 X, we have
Gx ⇢ Gf (x).

Let’s recall that a continuous map f : X ! Y is called proper if it is a closed map
and the fibers f�1(y) of each point y 2 Y are compact. If X and Y are Hausdorff spaces
and Y is locally compact, then f is a proper map if for every compact subset K ⇢ Y,
f�1(K) is compact3.

If X is a G-space, and the action r of G on X is called proper (or alternatively, X is
called a proper G-space) if:

q : G ⇥ X ! X ⇥ X, (g, x) 7! (x, gx),

is a proper map.

3.2 (G-F )-CW-complex
Let us fix a discrete group G and a family F of finite subgroups of G, which is closed
under conjugation and finite intersection.

3In this case, X is also locally compact.
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Definition 3.6. A (G,F )-CW-complex X is a G-space together with a G-invariant filtra-
tion

∆ = X(�1) ✓ X(0) ✓ X(1) ✓ · · · ✓ X(n) ✓ · · · ✓
[

n�0
X(n) = X

such that:

• X carries the colimit topology with respect to this filtration, meaning that a set
C ✓ X is closed if and only if C \ X(n) is closed 8n � 0;

• X(n) is obtained from X(n�1) for each n � 0 by attaching equivariant n-dimensional
cells, i.e. there exists a G-pushout

F
i2In G/Hi ⇥ Sn�1

//

✏✏

X(n�1)

✏✏F
i2In G/Hi ⇥ Dn

// X(n)

(3.1)

where the Hi belong to F .

The space X(n) is called the n-skeleton of X. An equivariant open n-dimensional cell
(closed cells are the respective closure) is a G-subset of X(n) � X(n�1), namely a preim-
age of a path component of G\(X(n) � X(n�1)).

Remark 3.7. In the above definiton, only the filtration by skeletons belongs to the
(G,F )-CW-structure but not the G-pushouts, only their existence is required. How-
ever, once a G-pushout is chosen, then the equivariant closed n-dimensional cells are
given explicitly by (3.1) as the image of each G/Hi ⇥ Dn via the lower arrow.

Remark 3.8. We assumed that the family of subgroups F was composed of finite sub-
groups so that these would be compact. In this way, X turns out to be a proper (G,F )-
CW-complex. Recall that a G-space is said to be proper if for every pair of points x
and y in X, there are open neighborhoods Vx and Vy such that the closure of the set
{g 2 G | gVx \ Vy 6= ∆} is compact.

Let us fix some notations. Let f : X ! Y be a continuous G-equivariant map
between (G,F )-spaces. If H ✓ G is a subgroup of G and XH is the H-fixed point set,
we will denote by f H : XH

! YH the restriction of f to the H-fixed point sets, with H
a subgroup of G.

Definition 3.9. We say that f is cellular if both X and Y are CW-complexes and one has
f (X(k)) ✓ Y(k), i.e. it preserves the filtrations of X and Y.

We have a Cellular Approximation Theorem in the equivariant context too [45, The-
orem 2.1].

Theorem 3.10. Let f : X ! Y be a G-map. Then there exists a G-homotopy h : X ⇥ I ! Y
such that h0 = f and h1 is cellular.

We also have an equivariant version of the Whitehead Theorem for (G,F )-spaces.
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Definition 3.1. Consider a function n : F ! N, then we say that f is n-connected if f H

is n(H)-connected for all H 2 F , namely the induced maps are isomorphisms on the first
n(H)� 1 homotopy groups of XH and YH and a surjection on the n(H)-th one. In particular,
we say that it is k-Connected if n is constantly equal to k � 0.

Moreover we say that a relative G-complex (X, A) has dimension less or equal to n if the
cells in X \ A are of the form G/H ⇥ Dk with k  n(H).

Proposition 3.11. Let f : Y ! Z be a n-connected map and X a (G,F )-CW-complex. Then
f⇤ : [X, Y]G ! [X, Z]G is surjective (resp. bijective) if dim X  n (resp. dim X < n).

As a particular case of this proposition we obtain the following result [45, Proposi-
tion 2.7].

Proposition 3.12. Let f : Y ! Z be a G-map between (G,F )-complexes such that f H is a
homotopy equivalence for all H. Then f is a G-homotopy equivalence.

3.3 The (G,F )-Stolz sequence

Let X be a (G,F )-CW-complex. In the following, by a spin (G,F )-manifold we mean a
spin manifold with a G-action preserving the spin structure and whose isotropy groups
are given by the family F .

We can then define the following groups.

• Wspin
n (X)(G,F ) is the (G,F )-equivariant spin bordism group: a cycle here is given

by a pair (M, f ), where M is a n-dimensional spin (G,F )-manifold with a G-
equivariant reference map f : M ! X. Two cycles (M, f ) and (M0, f 0) are equiv-
alent if there is a spin (G,F )-bordism W from M to M0 and there exists a G-
equivariant reference map F : W ! X extending f and f 0.

• Posspin
n (X)(G,F ) consists of equivalence classes of cycles (M, f , g), where the pair

(M, f ) is as before and g is a G-invariant metric with positive scalar curvature on
M. And two cycles (M, f , g) and (M0, f 0, g0) are equivalent if there exists a pair
(W, F) as before, along with a G-invariant metric gW on W which is of product
type near the boundary and restricts to g on M and to g0 on M0.

• Rspin
n (X)(G,F ) is the bordism group of spin (G,F )-manifolds with boundary (not

necessarily non-empty) of dimension n, endowed with a G-invariant Riemannian
psc-metric on the latter. Bordisms are then manifolds with corners. In particular
(M, f , g) and (M0, f 0, g0) are equivalent if there exists a (G,F )-bordism (W, F, ḡ),
where ḡ is a G-invariant psc-metric on the boundary (∂W, ∂F), so that it is a bor-
dism between (∂M, ∂ f , g) and (∂M0, ∂ f 0, g0) in the sense of Posspin

n�1(X)(G,F ).

As before, each of these sets is equipped with an abelian group structure given
by disjoint union of manifolds and is covariantly functorial in X, meaning that a G-
equivariant map of (G,F )-CW-Complexes j : X ! Y induces a mapping j⇤ on these
groups just by composing it with the reference maps.
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Remark 3.13. Of course here we assume that all the actions on a manifold with bound-
ary fix the boundary.

Proposition 3.1. The previous abelian groups fit into the following (G,F )-equivariant version
of the Stolz positive scalar curvature exact sequence:

. . . // Rspin
n+1(X)(G,F )

// Posspin
n (X)(G,F )

// Wspin
n (X)(G,F )

// Rspin
n (X)(G,F )

// . . .

where the first map sends a manifold to its boundary, the second one is the forgetful map (i.e. it
forgets about the psc metric) and the last one is the obvious map.

Let X be a (G,F )-CW-complex with non-trivial fundamental group p1(X, x). Let
eX its universal covering, then the proper (G,F )-action on X lifts to a ( eG, eF )-action on
eX via the generalized lifting lemma, where:

• 1 ! p1(X, x) ! eG ! G ! 1 is an extension of discrete groups, which depends
on how G moves the base point x chosen to define p1(X, x);

• eF is a family of finite subgroups of eG, namely that of the finite isotropy sub-
groups with respect to the G̃-action, such that its elements are sent (not necessar-
ily surjectively) to elements of F .

Example 3.14. Consider S1
⇢ R

2 whose Z2 action is given by reflection along the
X-axis, i.e. (�1)(x, y) = (x,�y). Observe that if F = {e, Z2}, where e is the iden-
tity, S1 has the following (Z2,F )-CW complex structure: its 0-skeleton consists of two
equivariant 0-cells of the form Z2/Z2 ⇥ D0, to which an equivariant 1-cell of the form
Z2/{e}⇥ D1 is attached.

Now, p1(S1) = Z and the universal cover is realized as p : R ! S1 given by p(q) =
e2piq.

Since j : Z2 ! Aut(Z) via j((�1)j)(m) = (�1)jm, then one can form the semidi-
rect product Z oj Z2, whose product law is:

⇣
k, (�1)i

⌘
·

⇣
m, (�1)j

⌘
:=

⇣
k + (�1)im, (�1)i+j

⌘
.

By defining the action of this group (which is an extension of Z2 via Z) on R as:

(k, (�1)) q := k � q 2 R,

then this action covers that of Z2 on S1, since if (x, y) = e2piq:

p(k � q) = p(�q) = e�2piq = (x,�y).

Note that the action defined on R is free, so the family of isotropy subgroups is
only given by the trivial group eF = {e}. Therefore, this family maps to F , but not
surjectively.

Then we have the following easy identification.
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Proposition 3.15. The (G,F )-equivariant Stolz exact sequence associated to X is isomorphic
to the ( eG, eF )-equivariant Stolz exact sequence associated to eX.

In particular, the correspondence is given by associating to a cycle whose repre-
sentative map valued in X is f , the cycle represented by the pullback of the universal
cover covering eX ! X along the map f , namely a total space of a p1(X, x)-Galois cov-
ering, and lifting the metrics in an equivariant way. The vertical maps are then given
by taking quotient with respect to the action of p(X, x) ⇢ eG.

We now proceed to state the main result of this section, namely the (G,F )-version
of Theorem 2.7 stated before, for which it represents a generalization.

Theorem 3.16. Let f : X ! Y be a continuous, 2-connected G-map between (G,F )-CW-
complexes which induces an isomorphism between the fundamental groups of X and Y. Then
the functorially induced map f⇤ : Rspin

n (X)(G,F )
! Rspin

n (Y)(G,F ) is an isomorphism.

Proof. First of all, observe that Proposition 3.15 allows us to assume that X and Y are
simply connected, by passing to universal coverings.

Surjectivity. Start by showing the surjectivity of the map f⇤ : Rspin
n (X)(G,F )

!

Rspin
n (Y)(G,F ). Let us consider the class [W, j : W ! Y, g] 2 Rspin

n (Y)(G,F ), we want
to find a bordant cycle whose reference map factors through f .

Consider W as a bordism between its boundary ∂W and the empty set and choose
a G-invariant Morse function a : W ! R on it with critical points rearranged as de-
scribed in [28, Theorem 4.8], namely for any critical points pi and pj such that a(pi) <
a(pj), we have that Ind(pi) < Ind(pj). Notice that we are going to use the enhanced
version of this result to the equivariant setting, see for instance [25, 48].

Then there exists a suitable t 2 R such that the subset W1 := a�1([0, t]) ⇢ W
consists only of G-handles of dimensions 0,1 and 2. We immediately obtain a decom-
position of W as W1 [W2 such that W1 is a bordism from the empty set to M1 := a�1(t)
and W2 a bordism from M1 to ∂W. Of course, W2 has only critical points pi with
Inda(pi) � 3. Consider now the function �a: this is a Morse function on W2 seen
as a bordism from ∂W to M1 with same critical points pi but with indices now given
by Ind�a(pi) = dim(W)� Inda(pi). These critical points pi are then associated to G-
equivariant (Ind�a(pi)� 1)-surgeries, hence with codimension Indexa(pi) + 1 which
is � 3.

This allows us to apply the Gromov-Lawson Theorem in its G-equivariant version
as it is proved in [16]. We can then extend the metric with positive scalar curvature g on
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∂W to a G-invariant metric with positive scalar curvature ḡ on W2. Let us denote by g1

its restriction to M1. Observe that the triad (W1, j|W1
, g1) defines a class in Rspin

n (Y)(G,F )

and the manifold W ⇥ [0, 1] provides a bordism between (W1, j|W1
, g1) and (W, j, g).

Consider now the natural G-equivariant inclusion i : Y(2) ,! Y, then we have the
following facts.

• Since the manifold W1 is obtained from the empty set by attaching (G,F )-handles
of dimension 0,1 and 2, it is homotopy equivalent to a 2-dimensional (G,F )-CW-
complex. It follows from Theorem 3.10 that the map j1 := j|W1

factors through i
up to G-homotopy.

• Since f is 2-connected, up to G-homotopy we can assume that its restriction to the
2-skeleton f(2) : X(2) ! Y(2) has a right inverse, i.e. there exists a G-equivariant
map h : Y(2) ! X(2) such that f(2) � h = i. To see this, observe that the existence
of such a map h is guaranteed, up to G-homotopy, by proposition 3.11. In fact,
since f(2) is 2-connected and Y(2) has dimension  2, it suffices to apply 3.11 with
X = Y(2), Y = X(2), Z = Y and f = f(2) to the map i 2 [X, Z]G: the surjectivity of
f⇤ then guarantees the existence of h.

Thus, we obtain the following commutative diagram of G-equivariant maps

W1
j1

//

j1
✏✏

Y

Y(2)

h
✏✏

i
88

X(2)

f(2)

AA

j
// X

f

OO

(3.2)

and, if we set y := j � h � j1 : W1 ! X, we obtain by construction that the following
equality holds:

f⇤[W1, y : W1 ! X, g1] = [W, j : W ! Y, g] 2 Rspin
n (Y)(G,F ),

which proves that f⇤ is surjective.

Injectivity. In order to prove the injectivity of f⇤ : Rspin
n (X)(G,F )

! Rspin
n (Y)(G,F ), let us

consider a class [W, j : W ! X, g] 2 Rspin
n (X)(G,F ) such that its image f⇤[W, j : W !

X, g] is equal to the trivial element in Rspin
n (Y)(G,F ). This means that there exists:

• a n + 1-dimensional (G,F )-manifold with corners B, whose codimension 1 faces
are W itself and a bordism V from ∂W to the empty set, which intersect into the
only codimension 2 corner ∂W = W \ V;

• a G-invariant metric gV on V of positive scalar curvature of product type near the
boundary which restricts to metric g on ∂W;

17



• a G-equivariant map Y : B ! Y which restricts to f � j on W.

Consider now a G-invariant collar neighborhood of ∂W inside V such that the
boundary of B is made of three faces of codimension 1: W on the bottom, ∂W ⇥ [0, 1]
vertically and V̄ = V \ ∂W ⇥ [0, 1) on the top.

We want to split the bordism B, as we did to prove the surjectivity, into the com-
position of two bordisms first from W to a manifold with boundary W1 and then from
W1 to V̄, such that the first one involves only handle attachments of dimension less or
equal than 2 and the second one only of dimension greater or equal than 3. Since the
vertical boundary face ∂W ⇥ [0, 1] is a cylinder, B can be obtained from W by attaching
all the handles to the interior of W, away from ∂W ⇥ [0, 1]. Hence we can find a Morse
function on B which has all critical points there.

Thus, we can decompose B as desired: B1 from W to W1 involving only 0,1,2 handle
attachments and B2 from W1 to V̄. We can assume that these two bordisms have vertical
boundaries faces equal to ∂W ⇥ [0, 1/2] and ∂W ⇥ [1/2, 1] respectively and therefore
that W1 has boundary equal to ∂W.

By construction, the bordism B2 is the trace of surgeries of codimension � 3. There-
fore, we can apply the Gromov-Lawson Theorem to extend the metric gV̄ to a G-
invariant metric of positive scalar curvature g2 on B2. Let us denote by g1 the G -
invariant metric of positive scalar curvature obtained by restricting g2 to W1.

The last fact to prove is that Y|B1
: B1 ! Y factors through f : X ! Y. Indeed B1

is obtained form W by attaching, up to homotopy, cells of dimension up to 2, let us
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call the union of these closed 2-cells Z. Up to homotopy, Y|B1
maps Z to the 2-skeleton

Y(2) ⇢ Y and, as for W1 in (3.2), we obtain a factorization of Y|Z : Z ! Y as f � jZ, by
setting jZ := j � h � Y|Z : Z ! X.

Finally, observe that B1 is, up to homotopy, the push-out of the inclusions W ,! B1
and Z ,! B1 over ∂Z. Then, by universality, there exists a unique map F : B1 ! X
which in particular restricts to j on W. Just by observing that (B1, F, g1) is a null-
bordism of (W, j, g) in Rspin

n (X)(G,F ), the injectivity of f⇤ is proved.

3.4 A (G,F ) universal space

In this section we are going to define the fundamental functor of a (G,F )-CW-complex
as a natural generalization of the fundamental group of a CW-complex. This functor
will be constructed in such a way that it contains all the information related to the
fundamental groups, or rather the fundamental groupoids, of the fixed point spaces of
the groups H belonging to the family F . To be clearer, let’s recall some basic notions
about groupoids.

Definition 3.17. A groupoid is an algebraic structure G ◆ G0, where both G and
G0 are sets, and the two arrows represent two surjective maps r, s : G ! G0, called
respectively the range and source maps. Furthermore, it is required that:

• G0 is injectively included in G, and identifying G0 with its image, both r and s are
the identity on G0;

• defining the set of composable pairs:

G2 = {(g1, g2) 2 G ⇥ G|s(g1) = r(g2)},

on this set there exists a product operation:

p : G2 ! G, (g1, g2) 7! g1g2,

such that s(g1g2) = s(g2) and r(g1g2) = r(g1);

• there is an involution:

(�)�1 : G ! G, g 7! g�1,

such that s(g�1) = r(g) (implying that s(g) = r(g�1)). In particular, gg�1 =
r(g) and g�1g = s(g).

Furthermore, it is required that for every g 2 G, r(g)g = g and s(g)g = g, which
explains why the set G0 is also called the set of units, and that the product p satisfies an
associative property, i.e.:

(g1g2)g3 = g1(g2g3), 8 (g1, g2), (g2, g3) 2 G2.
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Remark 3.18. A more intuitive way to think about a groupoid is to consider an element
g as an arrow that starts from s(g) and arrives at r(g) (which explains the names
”range” and ”source”). In particular, the product is simply the composition of these
arrows, and the inverse is the same arrow but ”traversed” in the opposite direction.

From this perspective, it is possible to consider a groupoid as a category, where the
objects are given by the elements of G0 and the morphisms by the arrows in G.

From the categorical perspective, a morphism of groupoids is simply a functor be-
tween them.

Examples 3.19. (i) Any group G is a groupoid with G0 = {e}, where e is its identity
element.

(ii) If X is a G-space, then we can form the action groupoid whose objects are the points
of X, and the arrows are elements of G ⇥ X, where s(g, x) = x and r(g, x) = gx.
Clearly, the product is well-defined using the properties of the action of G, thus
given by:

(h, y)(g, x) = (hg, x) if y = gx.

(iii) The fundamental groupoid of topological space X, which constitutes a generaliza-
tion of the fundamental group, without the choice of a fixed base point. This is
denoted by P1(X) ◆ X, where the objects are the points of X, and the elements
of P1(X) are given by the homotopy classes with fixed endpoints of continuous
paths between two points in X. Clearly, if [g : [0, 1] ! X] 2 P1(X), the source
and range maps send [g] to its respective initial and final points, i.e. g(0) and
g(1) respectively. The product is the usual composition of paths (wherever this
is possible) and the inverse is given by the opposite path, i .e. the path with
changed parameter via t 7! 1 � t.

Remark 3.20. If x 2 X, it is clear that:

P1(X)|x = s�1(x) \ r�1(x) ' p1(X, x),

i.e. it is exactly the fundamental group of X with base point x.

Now consider the following orbit category:

OrbF (G)

whose objects are all subgroups in F and morphisms are sub-conjugations, namely
compositions of natural inclusions H ,! K as subgroups of G and conjugations K !

gKg�1 by elements g 2 G.

Definition 3.21. Let X be a (G,F )-CW-complex. The fundamental functor of X is the
contravariant functor:

P1(X; G,F ) : OrbF (G) ! Groupoids

which associates:
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• to H 2 F the fundamental groupoid of XH restricted to the 0-skeleton of XH,
which we denote by P1(XH)

|XH
(0)

,

• to a morphism between two objects H and K in OrbF (G) the induced homomor-
phism of groupoids between P1(XK)

|XK
(0)

and P1(XH)
|XH

(0)
.

We recall the following result [45, Proposition 3.8], from which it is easy to observe
how morphisms in OrbF (G) induce functorially morphisms between the fixed point
spaces for the subgroups of the family F and consequently between the groupoids of
these.

Proposition 3.22. Let G be compact and H ⇢ G a closed subgroup. If X is a G-space, there
exists a canonical homeomorphism:

XH
' CG(G/H, X)

The construction of Definition 3.21 is functorial: this means that if j : Y ! X is a
G-equivariant cellular map between (G,F )-CW-complexes, then there is an induced
natural transformation

j# : P1(Y; G,F ) ! P1(X; G,F )

whose component at H is the homomorphism of groupoids

j#(H) : P1(YH)
|YH

(0)
! P1(XH)

|XH
(0)

induced by j
|YH : YH

! XH.
Now, given a (G,F )-CW-complex X, consider its 2-skeleton X(2). Then, for each

H 2 F we attach a suitable amount of G/H-cells of dimension k to XH in order to
make pk�1(XH) trivial, for all k � 3. Then, we call the such obtained (G,F )-CW-
complex BP1(X; G,F ). This latter is universal in the following sense.

Proposition 3.23. For all (G,F )-CW-complex Y and for all natural transformations

F : P1(Y; G,F ) ! P1(X; G,F ),

there exists, unique up to G-equivariant homotopy, a G-equivariant cellular map

j : Y ! BP1(X; G,F )

such that j# = F.

Proof. We begin by defining the map j on the G-equivariant 0-skeleton of Y by putting

j|Y(0)
:= F({e})|Y(0)

.

Now, we proceed to define j on the 1-skeleton of Y. Let us fix H 2 F , then a cell c1 of
dimension 1 in YH defines an element g 2 P1(YH)

|YH
(0)

: set j(c1) as the unique cell of
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dimension 1 in XH which represents F(H)(g) 2 P1(XH)
|XH

(0)
and set j on the G-orbit

of c1 in such a way that if g · g represents g · c1 in P1(XgHg�1
)
|XgHg�1

(0)

, then j(g · c1)

is the unique cell representing F(gHg�1)(g · g) 2 P1(XgHg�1
)
|XgHg�1

(0)

. In this way we

have that j is G-equivariant, indeed g · j(c1) = j(g · c1), because F(gHg�1)(g · g) =
g · F(H)(g). Observe that since F is a natural transformation, we can do it for every
H 2 F in a compatible way.

Now, let us take a cell c2 of dimension 2 in YH. Its attaching map y : S1
! YH

(1)
defines a contractible loop and then a unit in the P1(YH)

|YH
(0)

. Since F(H) is a ho-

momorphism of groupoids, then j � y has to represent a unit as well in P1(XH)
|XH

(0)
,

namely there exists a 2-cell with attaching map j � y which we define to be j(c2).
Finally, by higher contractibility of each fixed point subsets of BP1(X; G,F ), we

can extend j from Y(2) to Y, in a G-equivariant way.
It follows by construction to check that j# = F. Let us check that if there exists

an other G-equivariant map j0 : Y ! BP1(X; G,F ) such that j0

# = F, then it is G-
homotopic to j. It is immediate to check that if j0

# = j#, then their restriction to Y(0)
are equal and that their restriction to Y(1) are G-homotopic through jt

(1) with t 2 [0, 1].
Then we have a G-equivariant map

j [ j0
[ jt

(1) : Y ⇥ {0} [ Y ⇥ {1} [ Y(1) ⇥ (0, 1) ! BP1(X; G,F )

which we can extend to a G-homotopy

jt : Y ⇥ [0, 1] ! BP1(X; G,F )

always because all the fixed point subsets of BP1(X; G,F ) have trivial homotopy
groups in dimensions bigger than 1.

Remark 3.24. Observe that when G = {e} is the trivial group, then of course the family
F is trivial and X is a standard CW-complex. In particular, if X is connected, the above
construction reduces to attach cells to its 2-skeleton X(2) in order to make its homotopy
groups pk(X) trivial for k � 2. It follows that the space obtained in this way is an
Eilenberg-Mac Lane space K(p1(X), 1). Since the homotopy type of a K(p1(X), 1) CW-
complex depends only on the group p1(X), it follows that BP1(X; G,F ) is exactly the
classifying space Bp1(X) up to homotopy (see [17, Theorem 1B.8.]).

Now we combine the results obtained in this section and Theorem 3.16, obtaining
as a corollary the fact that the Stolz (G,F )-equivariant R-groups depend only on the
isomorphism class of the fundamental functor.

Recall that an isomorphism between two functors F, G : C ! D is a natural trans-
formation h with a two-sided inverse or, equivalently, a natural transformation such
that:

8c 2 Obj(C), h(c) : F(c) ! G(c) is an isomorphism in D.
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Corollary 3.25. Let Y be a (G,F )-CW complex such that there exists an isomorphism:

F : P1(Y; G,F ) ! P1(X; G,F ),

meaning that its fundamental functor is isomorphic to that of X.
Then the G-equivariant cellular map j : Y ! BP1(X; G,F ) of Proposition 3.23 is 2 con-

nected. Moreover, j functorially induces the following isomorphism between the Stolz groups:

j⇤ : Rspin
n (Y)(G,F )

! Rspin
n (BP1(X; G,F ))(G,F )
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4 Smoothly Stratified Spaces
Let X be a locally compact, second countable, metrizable topological space.

Definition 4.1. A locally finite family S = {Ya} is a stratification of X if each Ya is a
locally closed (i.e. it is open in its closure), smooth manifold without boundary and X
decomposes as X =

S
a Ya.

Observe that the dimension of each Ya is not fixed, but depends on the index a. In
essence, a stratified space will be given by a topological space, its stratification, and
compatibility conditions that govern how the stratification is realized. In particular,
these conditions are expressed by the use of tubular neighborhoods around each stra-
tum.

Let’s introduce the following control data. Given a stratification S = {Ya} consider
a family of tubular neighborhoods {Ta, pa, ra}, where for each a:

• Ta is an open neighborhood of Ya in X;

• pa : Ta ! Ya is a continuous retraction;

• ra : Ta ! R�0 is a continuous map such that r�1
a (0) = Ya.

Definition 4.2. Let X be as above. Then X is a stratified space if there exist a stratifica-
tion S = {Ya} together with a family {Ta, pa, ra} satisfying the following:

(i) if Ya, Yb 2 S are such that Ta \ Yb 6= ∆, then Ya ⇢ Yb and we will indicate it as
Ya < Yb, providing a partial order on S ;

(ii) if Ya < Yb, then the map:

(pa, ra) : Ta \ Yb �! Ya ⇥ R�0

is a proper differentiable submersion4.

(iii) for each pair of strata Ya ⇢ Yb and all x 2 Ta \ Tb such that pb(x) 2 Ta \ Yb,
then:

(a) papb(x) = pa(x);
(b) rapb(x) = ra(x).

By dimension of the stratified space X, we mean the maximal dimension of all of its
strata.

Definition 4.3. The depth of a stratum Ya 2 S , indicated d(Ya), is the maximal length
of all ascending chains (with respect to the partial order <), with Ya as first element,
i.e.:

d(Ya) = sup{n : Ya < Y1 < Y2 < . . . < Yn}.

In particular, the depth of a stratified space X is the maximal depth of any stratum.
4Observe that by Ehresmann’s theorem, this guarantees that (pa, ra) is a locally trivial fibration.
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Clearly, a stratified space of depth 0 is simply a smooth manifold without boundary.
As a consequence of Thom’s First Isotopy Lemma ([47, Theorem 2.6]), the retrac-

tion pa : Ta ! Ya is a locally trivial fibration with fibre the cone C(La) (i.e. the
product La ⇥ [0, 1] with La ⇥ {0} collapsed to a point which be the vertex of the cone)
over some stratified space La of depth d(Ya)� 1. This means that each point p 2 Ya

has a neighborhood in X homeomorphic via a strata-preserving homeomorphism to
Bdim(Ya)

e (p)⇥ C(La) and La ' (pa, ra)�1(p, e). Observe that ra can be identified with
the radial coordinate along these cones. From now on, we refer to La as the link of the
stratum Ya.

Definition 4.4. Let X, X0 be two stratified spaces and F : X ! X0 be a continuous map.
F is a weak morphism if:

• for any stratum Ya of X, there is a stratum Y0

a0 such that F(Ya) ✓ Y0

a0 ;

• for each a, F|Ya is smooth;

• F is compatible with the control data in the following sense:

F(Ta) ✓ Ta0 , pa0 � F = F � pa.

F is a morphism if, in addition, we have:

ra0 � F = ra.

Moreover, if F maps the open strata of X diffeomorphically to those of X0, we say
that F is a stratified isomorphism.
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Observe that in the definition of morphism is not required for the spaces X, X0 to
have same depth or dimension.

In order to work in a smooth category, we require that all the fibrations pa have
transition functions which are stratified isomorphisms. We then obtain the following
definition.

Definition 4.5. Let X be a stratified space as before. We say that X is a smoothly strati-
fied space (or a stratified pseudomanifold) if the following hold:

(i) for each stratum Ya 2 S , the fibration pa has transition functions which are strat-
ified isomorphisms, which then preserve the radial variable ra;

(ii) denoting by Xk the union of all strata of dimension less or equal than k, and by n
the largest dimension of all strata, then we get the following filtration:

X = Xn ◆ Xn�1 = Xn�2 ◆ Xn�3 ◆ . . . ◆ X0,

and we require that Xn \ Xn�2 is an open smooth manifold dense in X.

It is common to indicate the union of all strata of depth greater than 0 and its com-
plement as the singular set and regular set respectively of the pseudomanifold, i.e.:

sing(X) =
[

d(Ya)>0

Ya, reg(X) = X \ sing(X)

Remark 4.6. If X is a stratified space of depth k, then by constructing the cone C(X)
over X, we obtain a stratified space of depth k + 1. In particular, its stratification will
be given by that of X plus the vertex of the cone C(X), represented by X ⇥ {0}, which
will be the only stratum at depth k + 1.

Defining bordism groups of smoothly stratified space will require the notion of a
stratified space with boundary.

Definition 4.7. By a smoothy stratified space with boundary of dimension n we mean
a pair (X, ∂X) such that:

(i) ∂X is a smoothly stratified space of dimension n � 1;

(ii) X satisfies all the requests in the definition of a smoothly stratified space except
that it is required that Xn \ (Xn�2 [ ∂X) to be an open smooth, oriented manifold
dense in X;

(iii) ∂X has a collar neighborhood, meaning that there exists U ⇢ X closed with an
orientation-preserving, stratified isomorhism U ' ∂X ⇥ [0, 1];

(iv) if S = {Ya} are the strata of X, then {Ya \ ∂X} are the strata of ∂X.
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An important aspect regarding smoothly stratified spaces is that singularities, which
are given by strata of depth > 0, can be resolved. Specifically, there is an equivalence
between the class of smoothly stratified spaces and the class of manifolds with corners
with so-called iterated fibration structures. This correspondence, primarily introduced
by Melrose and well developed in [2, Section 2.2, 2.3], is made explicit through two
processes called blowup and blowdown. The transition from a stratified space to the
corresponding manifold with corners is useful for applying methods from geometric
microlocal analysis.

Recall that a manifold with corners X of dimension n is such that every point p 2 X
has a neighborhood U 3 p diffeomorphic to R

l
+ ⇥ R

n�l, for some l  n. In the case
where l  1, we obviously have a manifold with boundary. Observe that there exists
a decomposition of such a space into its interior and the union of all its boundary
components of different codimensions l. In particular, all these faces can be obtained
by intersecting those of codimension 1.

Roughly speaking, a manifold is said to have an iterated fibration structure if each
of its codimension 1 faces is equipped with a fibration (in a suitable sense) in which
both the base and the fiber are themselves manifolds with corners. Moreover, certain
compatibility conditions of these fibrations on the intersections of the faces and how
they restrict there are required (for more details, we refer again to [2, Section 2.2]).

Now, Propositions 2.3 and 2.5 govern the correspondence discussed above. Start-
ing from a compact manifold with corners with an iterated fibration structure eX, we
obtain a smoothly stratified space bX through a process of blowing down, or collapsing,
performed for each connected component of the fibers of each boundary hypersurface,
resulting in a blowdown map b : eX ! bX. Conversely, given a smoothly stratified space
bX, we obtain a manifold with corners with an iterated fibration structure eX, called the
resolution of bX, and a map b : eX ! bX through a blowup process. In particular, this
process ensures (see [2, Proposition 2.5]):

• the existence of a bijective correspondence between the strata of bX and the bound-
ary hypersurfaces of eX;

• the interior of eX and the regular set of bX are diffeomorphic via b;

• b is a smooth fibration over the interior of each boundary hypersurface, whose
base is the corresponding stratum Y and the fiber is the regular part of the link of
Y in bX.

As an example, which will be the case of our interest, consider a manifold eX with
boundary ∂ eX as the total space of a fibration with fiber F and base space Y, both
closed manifolds. Consider a collar neighborhood of the boundary ∂ eX ⇥ [0, 1), which
is equipped with a retraction onto ∂ eX and a fibration ∂ eX ⇥ [0, 1) ! Y, whose fiber is
F ⇥ [0, 2). If at this point we collapse F ⇥ {0} to a point, we obtain a fibration over Y
with fiber given by the cone C(F). The space and the quotient map thus obtained are
then the blowdown bX of eX and the blowdown map respectively. The image of the col-
lar neighborhood through this map realizes the tubular neighborhood of Y, which will
be the singular stratum of depth 1 of the resulting stratified space. Conversely, given a
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smoothly stratified space bX of depth 1, with depth-1 stratum Y and control data given
by {T, p, r}, one simply consider the manifold with boundary eX = bX \ r�1([0, 1)).
The restriction of p to gives the desired fibration on the boundary face r�1(1) with
fiber diffeomorphic to the link of the stratum Y.

4.1 Wedge metrics
Consider a manifold with boundary M such that its boundary is the total space of a
fibration p : ∂M ! Y. We have discussed that this can be an example of a space
obtained by blowup from a smoothly stratified space X of depth 1. In particular, the
fiber of p will be given by the link L of the depth-1 stratum Y of X. If the intention is
to study differential forms of X, while working on M, indicating by i∂ : ∂M ! M the
natural inclusion of the boundary, one considers the set:

{w 2 G(T⇤M) | i⇤∂w 2 p⇤(G(T⇤Y))}, (4.1)

that is, differential 1-forms such that, when restricted to the boundary, they originate
from forms defined on the stratum Y.

Definition 4.8. We call the wedge cotangent bundle wT⇤M the vector bundle over M
defined through the Serre-Swan theorem such that its sections are given by the finitely
generated projective C•(M)-module as shown in (4.1).

Given a point p 2 ∂M, it is always possible to find a coordinate system (r, y, l)
around p such that r represents a normal coordinate to the boundary, and (y, l) are
coordinates on V ⇥ L ⇢ Y ⇥ L, where V is a trivialization domain of the fibration p
around the point p(p). More precisely, r is a smooth non negative function on M such
that r = 0 on |dr| 6= 0 on ∂M and is often also called a boundary defining function on M.
In these coordinates, wT⇤M has a local basic of 1-forms given by:

{dr, rdlj, dyk}, j = 1, . . . , dim(L), k = 1, . . . , dim(Y).

Observe that the basis elements rdlj vanish as sections of T⇤M, but not as elements
of G(wT⇤M). Moreover, the map which sends a section of the wedge cotangent bundle
to the exact 1-form in T⇤M is an isomorphism on the interior of M.

By duality we can obtain the wedge tangent bundle wTM as a vector bundle over M.
This, using the same coordinate system as above, is locally spanned by the following
vector fields:

{∂r,
1
r

∂lj , ∂yk}, j = 1, . . . , dim(L), k = 1, . . . , dim(Y). (4.2)

Note that even in this case, there exists an isomorphism between the wedge tangent
bundle and TM over the interior of M, and that the frame (4.2) is globally well defined
when viewed as a frame in wT⇤M over M.

Now let’s proceed to introduce a new class of vector fields on M. Consider the
following set:

{V 2 G(TM) |V|∂M is tangent to the fibers of p} (4.3)

28



In particular, if we introduce the following subspace of smooth functions on M,
corresponding to those functions that are continuous on the corresponding stratified
space X:

C•
b (M) := { f 2 C•(M) | f |∂M 2 p⇤C•(Y)},

then (4.3) corresponds exactly to those vector fields that, when applied to elements of
C•

b (M), produce functions that vanish on the boundary.
Similarly as before, using the Serre-Swan theorem, we can define the edge tangent

bundle eTM as the vector bundle over M such that its sections are given by (4.3). Its
local basis is then given by:

{r∂r, ∂lj , r∂yk}, j = 1, . . . , dim(L), k = 1, . . . , dim(Y).

The universal enveloping algebra of (4.3) is the ring of edge differential operators
(see [26]), denoted as Di f f ⇤e (M), composed of all operators that can be locally written
as polynomials in elements of (4.3). This means that if we consider two vector bundles
E and F over M, then, in the usual local coordinate system near the boundary, an edge
differential operator of order k in Di f f k

e (M; E, F) is locally written as:

P = Â
|a|+|g|+jk

aj,a,g(r, y, l)(r∂r)
j(r∂y)

a(∂l)
g,

where each aj,a,g denotes a local section of Hom(E, F).

Definition 4.9. A differential operator P : G(E) ! G(F) of order k is a wedge differen-
tial operator if there exists an operator P0

2 Di f f k
e (M; E, F) such that:

P = r�kP0,

where r is a boundary defining function. The set of wedge differential operators be-
tween E and F is then called Di f f k

w(M; E, F).

Similarly to what happens for differential operators, it is possible to define a prin-
cipal symbol for this class of operators. In particular, the principal wedge symbol of
P 2 Di f f k

w(M) is defined as a smooth section of the bundle p⇤ (Hom(E, F)) ! wT⇤M,
where p⇤(Hom(E, F)) is the pullback bundle via the projection map of the wedge
cotangent bundle p : wT⇤M ! M. Locally, this means:

sw(P)(r, y, l, x) = Â
|a|+|g|+j=k

aj,a,g(r, y, l)(xr)
j(xy)

a(xl)
g.

Here, x = (xr, xy, xl) are coordinates on the fiber of the wedge cotangent bundle
wT⇤M. Such operator is said to be elliptic if its principal wedge symbol is invertible
whenever x 6= 0.

Keeping in mind the example just described for depth 1, we will now introduce a
special class of metrics, which will turn out to be simply metrics on the wedge tangent
bundle.

Let X be an smoothly stratified space of arbitrary depth. A Riemannian metric on
X is, by definition, a metric on its regular set, reg(X). To define this special class of
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metrics, it is observed that it is possible to construct an open covering of reg(X) by
recalling that each point pa 2 Ya admits a neighborhood Ua such that p�1

a (Ua) '

Ua ⇥ c(La). Since La is again a smoothly stratified space of depth equal to d(Ya)� 1,
then a point pa1 of a stratum Ya1 of La has again a neighborhood such that p�1

a1
(Ua1) '

Ua1 ⇥ C(La1). Continuining in this way, one can obtain open sets of the form:

Ua ⇥ C(Ua1 ⇥ C(Ua2 ⇥ . . . ⇥ C(Us)),

for s  d(Ya). Then one can choose coordinates yai on each Uai and radial coordi-
nates rai on the cones C(Lai). Of course, these constitute a covering of X and of reg(X).

Definition 4.10. A Riemannian metric g on X is called a wedge metric if there exists an
open covering of the form just introduced such that g in each of such sets:

g = dr2
a + ha + r2

a(dr2
a2
+ ha2 + r2

a2
(dr2

a3
+ ha3 + r2

a3
(. . . + r2

s�1has)),

where haj are metrics on Uaj . Moreover, it is required that the tangent spaces of
each stratum Yaj are lifted horizontally as subbundles of the tangent bundles of the
total spaces of the cone bundles (for example, by choosing some connections). This
implies that the metrics haj depends only on yai , for i  j.

Proposition 4.11 ([2], Proposition 3.1, 3.2). Let X be a smoothly stratified space, then:

• there always exists a wedge metric g on X;

• any two wedge metrics g, g0 on X are homotopic within the class of wedge metrics.

Let’s now consider again a stratified pseudomanifold X of depth-1. Recall that this
consists of a space X with a depth-0 stratum Xreg (dense in X) and a depth-1 stratum
Y. Moreover, supposed be fixed a closed manifold L (a depth-0 stratified space) as the
link of the stratum Y. We will indicate as TY the tubular neighborhood associated to
the stratum Y and p : TY ! Y, r : TY ! R�0 the associated mappings. Once L is fixed,
we refer to X as a pseudomanifold with fibered L-singularities.

To such a space there is associated its resolution, meaning a smooth manifold with
boundary Xr := X \ r�1([0, 1)) obtained by the blowup process described before: ob-
serve that there is an obvious diffeomorphism between its interior and the smooth
stratum Xreg. By construction, the boundary ∂Xr := r�1(1) is endowed with a fi-
bration pr : ∂Xr ! Y, which is the restriction of the fibration p and whose fibers are
diffeomorphic to the link L.

Now we describe more precisely wedge metrics in this setting. Fix a Riemannian
metric on both ∂Xr and Y, which are smooth manifolds, and call them g∂Xr and gY
respectively. We ask that the fibration pr : (∂Xr, g∂Xr) ! (Y, gY) is a Riemannian
submersion, i.e. (pr)⇤ : (Ker(pr⇤))? ! T(Y) is an isometric isomorphism, meaning
that we have chosen a connection on the tangent bundle T(∂Xr) inducing a splitting
T(∂Xr) = TH(∂Xr)� TV(∂Xr), i.e. in its horizontal and vertical part. In particular, we
obtain the following identifications for any y 2 Y:

TH(∂Xr) ' (pr)
⇤T(Y), TV(∂Xr)|p�1

r (y) ' TL.
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Then, consider a Riemannian metric on ∂Xr of the following form:

g∂Xr = (pr)
⇤gY � g∂Xr/Y,

where g∂Xr/Y means a metric on the vertical tangent bundle of pr, which restricts to a
Riemannian metric of L on each fiber. Similarly, by choosing a connection for the re-
striction to TY \Y of the bundle p, which therefore becomes a Riemannian submersion,
with open cones as fibers, we have that a wedge metric on X is a Riemannian metric
on Xreg such that on the tubular neighborhood TY the metric locally takes the form:

dr2 + p⇤(gY) + r2g∂Xr/Y + O(r),

where r stays for the radial coordinate on the cone and O(r) indicates a term vanishing
as r ! 0 (i.e. while approaching the singular stratum Y). Again, g∂Xr/Y indicated a
metric on the vertical tangent bundle.

Remark 4.12. Note that, by construction, the regular set of the stratified space X is
diffeomorphic to the interior of its resolution Xr. We can therefore use this diffeomor-
phism to induce a metric on the interior of Xr, suitably renaming the coordinate r so
that it corresponds to the boundary defining function for ∂Xr. In this way, we obtain
a metric that extends, in a non-degenerate manner, to a metric on the wedge tangent
bundle wTXr ! Xr. Observe that this metric will have a different behaviour around
the boundary ∂Xr. In particular, note that (4.2) constitutes an orthonormal frame for it.

The metric obtained is clearly incomplete: however, for a wedge metric g, one can
always associate a metric:

eg = r�2g,

which is an example of an edge metric and, in particular, turns out to be a complete
metric.

We say that a wedge metric is of positive scalar curvature if it has positive scalar
curvature as a Riemannian metric on the regular smooth stratum Xreg or, equivalently,
using what said in the above remark, on the interior of the resolution Xr.

The above definition extends similarly to the case of a smoothly stratified space
with boundary (X, ∂X). In that case, one requires that on a collar neighborhood U =
∂X ⇥ [0, 1] the metric is of the product-like form g = dx2 + g∂X, where x is the obvious
normal coordinate to the boundary and g∂X is an wedge metric of the stratified space
∂X.

4.2 The L-bordism groups

Now we will proceed to introduce some bordism groups for smoothly stratified spaces
of depth 1 endowed with wedge metrics. These, in particular, will play a key role in the
next section where the Stolz sequence in this setting will be introduced (recall section
2).
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First of all, we will need to introduce the concept of a spin pseudomanifold. Let
M be a smoothly stratified space of depth 1, and denote, changing a bit the notations
used before, its regular and singular strata by Mreg and bM, respectively. Furthermore,
assume that g is a wedge metric on M.

Definition 4.13. We say that (M, g) is a spin stratified (or simply a spin pseudomanifold)
if both its resolution Mr and the stratum bM are spin.

Remark 4.14. Fixing a spin structure on the resolution Mr fixes a a spin structure on
∂Mr too. Moreover, fixed a spin structure on the stratum bM fixes a spin structure on
the vertical tangent bundle of the fibration ∂Mr ! bM (see [23, Proposition 1.15]).

Fix a link L, which in our case will be a closed manifold, and let M, M0 be two com-
pact spin pseudomanifolds with fibered L-singularities with strata {Mreg, bM} and
{M0

reg, bM0
} respectively. Moreover, suppose that both have dimension n. We intro-

duce the following bordism groups.

• Wspin,L� f ib
n .

Cycles are given by compact n-dimensional spin pseudomanifolds with fibered
L-singularities. We say that M and M0 are equivalent if there exists a compact n+
1-dimensional smoothly spin stratified space with fibered L-singularities with
boundary (W, ∂W), where ∂W = M t M0. This means that W consists in two
strata {Wreg, bW} such that:

Wreg \ ∂W = Mreg t M0
reg bW \ ∂W = bM t bM0.

Moreover, the depth-1 stratum bW has a tubular neighborhood N(bW) and a fi-
bration N(bW) ! bW, whose fibers are cones C(L), which restricts to those of
bM and bM0 on the boundary. Finally, it is required W to be spin and that the
spin structures of its strata extend those of the strata of M and M0.
Note that a spin pseudomanifold with fibered L-singularities with boundary
(X, ∂X) represents a bordism in this group from its boundary to the empty set.
Thus, in particular ∂X, i.e. a boundary of a smoothly spin stratified space with
fibered L-singularities, represents the zero class, hence the identity element in
Wspin,L� f ib

n .

• Posspin,L� f ib
n .

In this group, cycles are required in addition to be endowed with wedge metrics
of positive scalar curvature.
Let M and M0 be as above, and suppose they are equipped with wedge metrics of
positive scalar curvature g and g0 respectively whose associated metrics on their
depth-1 stratum are gbM and g0bM0 .
We say that M and M0 are bordant if there exists a compact spin pseudomanifold
with fibered L-singularities with boundary (W, ∂W) such that ∂W = M t M0 and
W is endowed with a psc wedge metric h. In particular h is asked to be of product
type on a collar neighborhood of the boundary ∂W and to restrict there to g and
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g0. Denoting by p : N(bW) ! bW the fibration of the depth-1 stratum bW of W,
the above request implies the following data:

– a Riemannian metric gbW on its depth-1 stratum bW which is of product
type near ∂(bW) = bM t bM0 and restricting to gbM and g0bM0 ;

– a connection, say rW , on T(∂Wr) inducing a splitting in a vertical and hor-
izontal part restricting to the respective connections on the two boundary
components;

– on the tubular neighborhood N(bW), denoting by r the radial coordinates
on the cones C(L), the metric h takes locally the form:

dr2 + p⇤gbW + r2g∂Wr/bW + O(r).

Observe that two equivalent pseudomanifolds in such group are also equivalent
in Wspin,L� f ib

n .

• Rspin,L� f ib
n .

Assume now that M and M0 are with boundary ∂M and ∂M0 respectively. Sup-
pose such boundaries to be endowed with wedge metrics of positive scalar cur-
vature and call them g∂M and g∂M0 . Cycles in this group are given by spaces like
these.
A bordism between M and M0 will be represented by a compact spin pseudo-
manifold with fibered L-singularities with corners (W, ∂W, ∂2W), meaning that
W has two strata {Wreg, bW} and boundary:

∂W = ∂0W
[

∂2W

∂1W,

where:

– ∂0W = M t M0, i.e. it is a pseudomanifold with fibered L-singularities with
boundary ∂2W := ∂M t ∂M0;

– ∂1W is a pseudomanifold with fibered L-singularities with same boundary
∂2W. In particular, we ask that ∂1W realizes a bordism between ∂M and
∂M0, in the sense of Posspin,L� f ib

n�1 introduced before. This means that on ∂1W
there is a positive scalar curvature wedge metric which is of product type in
a collar neighborhood of the boundary and restricting to g∂M and g∂M0 .

– ∂2W represents the corner locus of the pseudomanifold. It is itself a stratified
pseudomanifold with L-fibered singularities of dimension n � 1, endowed
with a neighborhood V ⇢ W, which is stratified isomorphic to [0, 1]2 ⇥
(∂X t ∂X0) and its strata are then {(Mreg \ ∂M)t (M0

reg \ ∂M0), (bM\ ∂M)t
(bM0

\ ∂M0)}.

The bordism group Rspin,L� f ib
n associated to this relation will be called the n-

dimensional L-fibered Stolz group.
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Observe that in all three of the groups described above, it is required that the space
W realizing the bordism be spin stratified. In particular, its strata must be endowed
with spin structures that extend those of the strata of M and M0.

Remark 4.15. Observe that the L-bordism groups for which n  dim(L), meaning that
they are represented by pseudomanifolds of dimension less than that of the link L, it is
assumed that the singular stratum is empty.

Now, if X is a generic topological space, then we can extend all the above bordism
theories by requiring that all the spaces are endowed with continuous reference maps
with values in X. Then, a class in each of the above theories is given by specifying
a pair (M, f : M ! X), with M as above, and in the equivalence relations one sim-
ply requires that such reference maps are interpolated along the bordism. The above
bordism groups are then simply bordism groups whose reference space is a point.

4.3 The L-fibered Stolz sequence
Let us now proceed to explain in detail the maps that will constitute the Stolz sequence.
Recall from the previous section that a cycle [M] means:

• a pair (M, f : M ! X), if [M] 2 Wspin,L� f ib
n (X);

• a tuple of the form (M, g, gbM,rM, f : M ! X), if [M] 2 Posspin,L� f ib
n (X);

• (M, ∂M, g∂M, gb(∂M),r∂M, f : M ! X), when [M] 2 Rspin,L� f ib
n (X).

Then, define the following maps:

(i) The forgetful map:

j : Posspin,L� f ib
⇤ (X) �! Wspin,L� f ib

⇤ (X),
sends a class represented by (M, g, gbM,rM, f : M ! X) to the class represented
by M and f . This map simply forgets about the wedge psc metric.

(ii) The inclusion map:

i : Wspin,L� f ib
⇤ (X) �! Rspin,L� f ib

⇤ (X),
sends the class of (M, f ) to the class represented by M and f seen as a pseudo-
manifold with L-fibered singularities with empty boundary (and then with no
psc wedge metric metric).

(iii) The boundary map:

∂ : Rspin,L� f ib
⇤ (X) �! Posspin,L� f ib

⇤�1 (X),
sends a class [(M, ∂M, g∂M, gb(∂M),r∂M, f : M ! X)] to the class represented by
(∂M, g∂M, gb(∂M),r∂M, f |∂M : ∂M ! X)), i.e. acts by a restriction to the bound-
ary.
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We observe that the boundary map is well defined: in fact, consider [M] ⇠ [M0] 2

Rspin,L� f ib
⇤ (X) and W the n + 1-dimensional space which realizes the bordism. By the

definition of the equivalence relation in the R-group, the boundary component ∂1W of
W realizes a bordism between the boundaries of M and M0. Then we have that:

∂[M] = [∂M] ⇠ [∂M0] = ∂[M0] 2 Posspin,L� f ib
⇤�1 (X).

Definition 4.16. Let X be a topological space and L be a fixed compact smooth mani-
fold, then we have the following sequence of bordism groups:

. . . // Rspin,L� f ib
n+1 (X) ∂

// Posspin,L� f ib
n (X)

j
// Wspin,L� f ib

n (X) i
// Rspin,L� f ib

n (X) // . . . ,
(4.4)

which we call the L-stratified Stolz sequence.

It is not difficult to show that this sequence is in particular a complex of abelian
groups. In fact:

• j � ∂ = 0
Consider a class [M, f : M ! X] 2 Rspin,L� f ib

n+1 (X), then its image under the map
j � ∂ is represented by (∂M, f |∂M) in Wspin,L� f ib

n (X). Then M itself trivially rep-
resents a bordism between ∂M and the empty set. Hence we have that:

j � ∂([M]) ⇠ [∆] = 0

.

• ∂ � i = 0
This is straightforward since the image of i is given by all pseudomanifolds with
empty boundary. Then:

∂ � i[M] = [∂M] = [∆] = 0, 8 [M] 2 Wspin,L� f ib
n (X).

• i � j = 0
Let [M, f : M ! X] 2 Posspin,L� f ib

n (X), then the composition i � j first forgets
about the metric and then consider the space as a pseudomanifold with empty
boundary. Let W := M ⇥ [0, 1] (whose stratification is obtained from that of X by
simply taking the direct products of the strata of X with the closed interval [0, 1])
and f̃ : W ! X be the trivial extension of f .
W is a pseudomanifold with fibered L-singularities with boundary ∂W = M t M
and realizes a bordism in the R-group between M and the empty set. In fact,
using the same notation of the definition of the R-groups, we identify a copy
of M as ∂0W and the other one as ∂1W, with no intersection since both M and
the empty set have empty boundary. If ∂1W = M is equipped with the wedge
metric of positive scalar curvature of M defining [M], then this is a stratified
space without boundary, thereby realizing a bordism in Posspin,L� f ib

n (X) between
the empty set and the boundary of M.
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Theorem 4.17. The L-stratified Stolz sequence (4.4) is exact.

Proof. We have just shown that the sequence constitutes a complex, so what remains
is to show that the images of each map are included in the kernels of the subsequent
ones.

1. Ker(j) ✓ Im(∂)

Let [M, f : M ! X] 2 Posspin,L� f ib
n (X) be such that j([M]) = 0. Then there exists

a bordism between M and the emptyset, i.e. a spin pseudomanifold with fibered
L-singularities W with boundary ∂W = M and a mapping fW : W ! X extend-
ing f . Of course, M admits a wedge metric of positive scalar curvature, and then
W on its boundary too, hence W represents the required class in Rspin,L� f ib

n+1 (X)
such that ∂([W]) = [M].

2. Ker(∂) ✓ Im(i)

Let [M, f : M ! X] 2 Rspin,L� f ib
n (X) be such that ∂([M]) = 0. Then the boundary

∂M is bordant to the empty set, meaning that there exists a pseudomanifold with
fibered L-singularities W such that ∂W = ∂M, a wedge psc metric on W extend-
ing suitably that of ∂M and a mapping fW : W ! X extending the restriction
f |∂M.
Now, construct the following:

N := M [∂M W,

with the obvious map to X. This is a spin pseudomanifold with fibered L-singularities
without boundary whose stratification, following the previous notations, is given
by:

Nreg := Mreg
[

∂Mreg

Wreg, bN := bM
[

b(∂M)

bW.

Now, the product N ⇥ [0, 1], whose stratification is given as before, has boundary
N t N decomposable as:

N t N = (M [∂M W) t N = (M t N) [∂M W.

Identify ∂0N = M t N and ∂1N = W and observe then that, by construction, ∂1N
provides by construction a bordism in Posspin,L� f ib

n�1 (X) between ∂M and ∂N = ∆.
But then N ⇥ [0, 1] represents a bordism between M and N in Rspin,L� f ib

n (X) and
since N has no boundary, we have that [M] = i([X]).

3. Ker(i) ✓ Im(j)

Let [M, f : M ! X] 2 Wspin,L� f ib
n (X) be such that i([M]) = 0. This means that

there exists a spin pseudomanifold with fibered L-singularities W with empty
corners, boundary ∂W = M t ∂1W (we have identified ∂0W with M) and with a
mapping fW : W ! X extending f . Note that both M and ∂1W have no boundary,
then W can be also seen as a bordism in Wspin,L� f ib

n (X) between them, i.e. [M] ⇠
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[∂1W]. However, by construction, ∂1W realizes a bordism in Posspin,L� f ib
n�1 (X) be-

tween the emptyset and itself, hence an n-dimensional spin pseudomanifold with
fibered L-singularities without boundary endowed with a wedge metric of posi-
tive scalar curvature. Then [M] ⇠ j([∂1W]), with [∂1W] 2 Posspin,L� f ib

n (X) and
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5 Stratified Morse theory in the (L,G)-setting

5.1 Controlled vector fields
Observe that a generic smooth manifold M can be endowed with a (trivial) stratified
space structure with the only stratum M itself and control data given by:

{TM = M, pM = IdM, rM = 0}

Definition 5.1. Let X be a stratified space and M be a smooth manifold. Endow M with
the above trivial stratification, then a weak morphism F : X ! M is called controlled.

In particular, if the above weak morphism is such that its restrictions F|Ya to the
smooth strata of X are submersions, then we say that F is a controlled submersion.

Example 5.2. Consider a stratum Ya of a stratified space X, then both the restrictions
to K := Ta \ Ya:

(pa, ra)|K : K ! Ya ⇥ R>0, ra|K : K ! R>0

are controlled submersions.

This class of maps is of particular importance because the following result can be
proven, which allows, as in the smooth case, the definition of global objects by working
locally.

Lemma 5.3 ([47], Lemma 1.3). Let X be a stratified space. For each open covering U of X,
there exists a controlled partition of unity subordinated to U , i.e. made by controlled mappings.

As for the smooth case, the above lemma holds similarly in the case of stratified
spaces with boundary.

Definition 5.4. A stratified vector field x on a stratified space X with strata {Ya} is a
collection:

x = {x(x) 2 TxYa : x 2 Ya},

such that for each stratum Ya, the map:

xa : Ya ! TxYa, x 7! x(x),

defines a vector field on Ya. If the family {xa} is made by smooth (resp. Ck, with k 2 N)
vector fields, then x is said smooth (resp. of class Ck).

In the following, we will not make any distinction between xa and x|a.
Now we will introduce compatibility conditions for the vector fields defining a

stratified vector field. Indeed, the given definition does not guarantee anything about
the behavior of these fields in the neighborhoods of a stratum, and therefore, a priori,
no condition of ”continuity” can be assumed when transitioning from one vector field
of the family to another. These conditions, in particular, will allow us to conclude that
the flow generated by the vector field is locally continuous.
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Definition 5.5. A stratified vector field x is said controlled if for each pair of strata
Ya < Yb and x 2 Ta \ Yb, it satisfies the following:

• (pa)⇤(xb)(x) = xa(pa(x));

• (ra)⇤(xb)(x) = 0.

Proposition 5.6. Let X and M be as above. If F : X ! M is a controlled submersion, then for
each vector field c : M ! TM, there exists a controlled stratified vector field x on X such that
on each stratum Ya:

h � F|Ya = (F|Ya)⇤(xa).

In particular, we call the stratified vector field x of 5.6 a controlled lift of the vector
field c.

Remark 5.7. Observe that if one has a stratified space X with stratification given by:

X1 < X2 < . . . < Xn, dim(Xi) < dim(Xi+1),

then a vector field on the stratum X1 has a controlled lift on X (recall Example 5.2).

We now observe that the properties we will use later also hold for a weaker class
of stratified vector fields. In particular, we introduce the following two conditions
for a stratified vector field x = {xa}, valid for suitable pairs of strata Ya < Yb and
x 2 Ta \ Yb:

•
(pa)⇤(xb)(x) = xa(pa(x)) + r2

a(x)c(pa(x)), (5.1)

where c is a bounded stratified vector field;

•
|(ra)⇤(xb)(x)| < Ara(x), (5.2)

for some positive constant A.

With these weaker conditions, it can be shown that the stratified vector field still
produces a locally continuous flow, i.e. it is locally integrable (see [11, Proposition
2.5.1]).

Definition 5.8. Let Ya be a stratum of a stratified space X. A stratified vector field xr is
called radial with respect to Ya if:

• xr|Ya = 0;

• xr|Ta\Ya
is a controlled lift of the vector field �t ∂

∂t of R along the controlled sub-
mersion ra|Ta\Ya

in the sense of Proposition 5.6.

Notice that in the above definition, in particular for the second point, the weaker
version of controlled vector field is needed.
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Definition 5.9. Let xa be a vector field of a smooth stratum Ya of X, then we say that a
stratified vector field x on Ta is a radial extension of xa if:

x(x) = h(x) + xr(x), 8x 2 Ta

where xr is radial with respect to the stratum Ya while h is the sum of a controlled
lift of xa using the controlled submersion ra and a O(r2

a) term.

5.2 Morse pairs
We now introduce the concept of a Morse pair for a stratified space. In particular, this
will represent the analog of choosing a Morse function on a smooth manifold, with
which it can be established that the homotopy type of a stratified space is that of a
CW-complex.

From now on, we furthermore assume that the stratified space X is smoothly strat-
ified, compact and of depth 1.

Definition 5.10. A smooth function f : X ! R (resp. Ck, k � 0) on a stratified space X
is a continuous function on X such that its restrictions to all strata Ya of X are smooth
(resp. Ck) functions, i.e.:

f = { fa = f |Ya : fa 2 C•(Ya) (Ck(Ya))}.

It is clear that many concepts regarding smooth functions on smooth manifolds (in
particular, in this case, regarding Morse functions) can thus be adapted to the stratified
context by utilizing their respective restrictions on the smooth strata.

Definition 5.11. We say that x 2 X is a critical point for a smooth function f on X if it
is a critical point for the restriction fa, where Ya is the stratum containing x.

Definition 5.12. Consider a pair ( f , g) consisting of a smooth function and a wedge
metric on X. The gradient vector field rg f of f is defined as the stratified vector field
obtained by the following family:

{rga fa : ga(rga fa, v)(x) = (d fa)(v)(x), 8x 2 Ya, 8v 2 TxYa},

where ga denote the Riemannian metric on the stratum Ya induced by g.

We now need to introduce a suitable notion of non-degeneracy for a critical point
p 2 X. In particular, an extra condition on the behaviour of the gradient vector field in
the normal direction to the stratum containing a critical point along its tubular neigh-
borhood Ta is requested.

Definition 5.13. Let ( f , g) be a pair consisting of a smooth function f and a wedge
metric g on a stratified space X. Then a critical point p 2 Ya is non-degenerate if:

• p is a non degenerate critical point for the smooth function fa;

• on a neighborhood of p, the gradient vector field rg f is a radial extension of
rga fa.
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Definition 5.14. The pair ( f , g) is said to be a Morse pair if all the critical points are
non-degenerate and the negative gradient vector field �rg f satisfies the weak control
conditions (5.1) and (5.2) and:

(ra)⇤(�rg f ) < 0, 8 a.

A direct consequences of the definition is that the flow lines of �rg f go from larger
strata to smaller strata. Moreover, the condition (5.2) implies that they cannot reach the
smaller strata in finite time, as ra tends to zero as they approach them.

Definition 5.15. The index of a critical point p of a Morse pair ( f , g) as the index of
the restriction fa in the usual sense if p is contained in Ya, i.e. as the number of the
negative eigenvalues of the non singular Hessian of fa at p.

Lemma 5.16. On a compact stratified space X of depth 1 there always exists a Morse pair
( f , g).

Proof. Call Xreg and Y the strata of X of depth 0 and 1 respectively. T: Given the exis-
tence of a partition of unity, as mentioned in Lemma 5.3, it is sufficient to reason locally
and use this to define the object globally. Since both Xreg and Y are compact smooth
manifolds, they admit a Morse function: indicate by fY that on Y. Then, denoting by
(p, r) : TY ! Y ⇥ R�0 the mappings of its tubular neighborhood, we extend fY on T1
as the following:

f 0Y(x) = fY � p(x) + r2(x), 8x 2 TY.

Each critical point of f 0Y lies in Y and is a critical point of fY. It is easy to show
that the negative gradient vector field of f 0Y satisfies the control conditions requested
in Definition 5.14.

Observe that by construction, no critical points of such a Morse pair ( f , g) are con-
tained in TY \ Y. Moreover, analogously to the smooth case, we can suppose that f is
self-indexing, i.e. such that for each critical point p of index k one has that f (p) = k.

Remark 5.17. Lemma 5.16 can be generalized obtaining a pair ( f , x) of a smooth func-
tion on X and a stratified vector field satisfying suitble control conditions and with
particular classes of singular points. In that context, our case will thus represent an
example where x = �rg f . See [24, Proposition 6.2] for details.

Now, we want to extend this notion to the case of a space with non empty boundary.
In particular, we consider spaces which may represent a bordism between stratified
space.

Let (W, X1, X2) be a triple made by a compact depth-1 stratified space with bound-
ary (W, ∂W) such that ∂W = X1 t X2.

Definition 5.18. Given a triple (W, X1, X2) as above, we say that a pair ( f , g), with f a
smooth function and g a wedge metric on W respectively, is a special Morse pair if:

• f : W ! [a, b] ⇢ R and f�1(a) = X1, f�1(b) = X2;
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• all critical points of f are non degenerate and lying in the interior of W;

• �rg f satisfies the same conditions of Definition 5.14, except that (r1)⇤(�rg f ) 
0 and it vanishes on a neighborhood of the boundary.

Lemma 5.19. Let (W, X1, X2) be a triple as above, then there always exists a special Morse
pair ( f , g).

Proof. Let us call by {TY, p, r} its control datum associated to its stratification {Wreg, Y}.
Recall that the intersections of the strata of W with the boundary ∂W realize the strati-
fications of both the two boundary components X1 and X2. By construction, since Wreg
and Y are compact manifold with boundary Wreg \ ∂W and Y \ ∂W respectively, then
they both admit special Morse functions (see [28, Theorem 2.5]) such that:

1. they take arbitrary constant values on the two boundary components respec-
tively;

2. elsewhere, they take on values that are between those assumed on the boundary;

3. they admit critical points only in the interiors.

Observe that such functions can be defined by using a collar neighborhood of the
boundary and its defining function. We then consider a special Morse function on Y of
this kind which takes values a and b on its boundary components Y \ X1 and Y \ X2
respectively. We now need to find a suitable extension of the special Morse function fY
defined on Y along the tubular neighborhood TY.

Again, we know that there is a neighborhood of the boundary ∂Y containing no
critical points of fY. Now, take a non negative function f 2 C•(Y) such that the com-
plement of its support is contained in such a neighborhood. In particular, all critical
points of f are contained in its support.

Then, extend the function fY on TY as follows:

f (x) = fY(p(x)) + f(p(x))r2(x), 8x 2 TY (5.3)

Such extension is compatible with the weak control conditions requested in the
above definition and the flow lines of the negative gradient vector field goes from
larger to smaller stratum except for the neighborhood in which f = 0, where these
stay on a level set of the function r and then there:

(r)⇤(�rg f ) = 0.

Now, by taking into account the special Morse function on the stratum Wreg with same
values of fY taken on the boundary components, and a controlled partition of unity
Lemma 5.3, we obtain the requested special Morse pair.

Remark 5.20. Observe that in the above construction the function f can be chosen with
an additional property, i.e. that it has non vanishing gradient only in the neighborhood
of the boundary specified in the above proof. Moreover, one can suppose that there the
level surfaces of f are exactly the ones of f .
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Now, let ( f , g) be a Morse pair on a pseudomanifold with fibered L-singularities X.
Suppose f (X) ✓ [a, b] and take a regular value c 2 [a, b]. Then it is known that f�1(c)
is a stratified space whose stratification is given by the intersections of the strata of
X with f�1(c). In particular, the proof makes use of the weak control condition of the
gradient vector field of f and hence the result is also valid in the case of a special Morse
pair on a compact stratified space with boundary.

In the following proposition we want to extend this by saying more about the reg-
ular level set f�1(c) in the case of a pseudomanifold with fibered L-singularities.

Proposition 5.21. Let (W, X1, X2) be a triple as above with W a pseudomanifold with fibered
L-singularities. Then if c 2 [a, b] is a regular value of a special Morse pair ( f , g) on W, f�1(c)
is a pseudomanifold with fibered L-singularities.

Proof. Call Wreg and Y the depth-0 and depth-1 strata of W. As said before, f�1(c)
is a compact stratified space of depth 1 and its stratification is given by { f�1(c) \
Wreg, f�1(c) \ Y}. Moreover, let us denote its control datum by {TY, p, r}. We need
now to prove that f�1(c) is smoothly stratified and that its depth-1 stratum has link
diffeomorphic to L.

Assume ( f , g) has been extended along the tubular neighborhood TY of Y as in
(5.3). In a region U ⇢ Y \ f�1(c) such that p(U ) belongs to the zero locus of f, f is
trivially extended, meaning that the L-cones over U still belongs to the level set f�1(c),
then the control datum is obtained by restriction.

However, the observation made in Remark 5.20 ensures that the level surfaces of
f can be characterized by being completely contained in the support of f or in its
complement. Assume we are in the first, and hence non trivial, case.

By (5.3), for a fixed value of the radial map r, the function depends only on p(x): in
particular, it is constant on the link L. Moreover the function f increases while moving
from the vertex of the cone, since f is positive there. Then if p 2 f�1(c) ⇢ Y, except
for its vertex, the fiber c(L) over p will not lie in f�1(c).

Since fY is a smooth Morse function on Y and c is a regular value for f , the gradient
vector field x := �rgY fY is non vanishing on f�1

Y (c) and normal to it. This means that
the flow line of x passing through p on time t0 = 0:

{pt := Fx,p(t), t 2 [�d, d], d > 0} ⇢ Y,

wil intersect f�1
Y (c) transversally. Clearly f (pt) = fY(pt) < c, for t > 0.

By what discussed in section 4, there is a open neighborhood Up ⇢ Y around p
whose preimage along p is domain of a trivialisation, meaning that:

p�1(Up) ' Up ⇥ c(L),

via a stratified isomorphism yp.
Therefore, let tp > 0 such that all the points pt are contained in such Up for 0  t <

tp. From (5.3) it is clear that for each t 2 [0, tp) there exist a unique rt � 0 and a set:

Kpt := {y 2 TY : p(y) = pt, r(y) = rt},
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both depending on t such that:

f (x) = c, 8x 2 Kpt .

In particular, rt is zero if and only if t = 0 (for which Kp0 is simply given by x =
p0 = p).

Using the above trivialisation one can observe that for a fixed value of t > 0, since
rt is a fixed value, the set Kpt is diffeomorphic to the link of the stratum Y, i.e. to L:

(p, r)�1(pt, rt) ' L, 8t 2 (0, tp]. (5.4)

Conversely, consider a point x 2 TY \ f�1(c) such that p(x) lies in a sufficiently
small neighborhood of f�1

Y (c) (we will be more precised later). Then we know that
p(x) must lie in a unique flow line for x, i.e. p(x) = pt, for some point p 2 f�1

Y (c) and
positive time t. Of course, if x lies in the stratum Y, and x coincides with p and t = 0.

Define the following:

pc(x) := Fx,p(x)(�t), rc(x) := t.

These are well defined continuous map and in particular pc is a continuous retrac-
tion from an open set of TY \ f�1(c) to Y \ f�1(c).

In particular, for a fixed a point p 2 f�1
Y (c) ⇢ Y, the set p�1

c (p) ⇢ TY consists of all
points x 2 TY such that f (x) = c, p(x) = pt and r(x) = rt, for some t, i.e. Kpt .

In particular, if 0 < t < tp we can restrict the trivialisation yp defined on p�1(Up)
and from (5.4) have that:

(pc, rc)
�1(p, t) = (p, r)�1(pt, rt) ' L,

while for t = 0 it is just the point p.
Then the fibre p�1

c (p) is identified to a cone c(L) with radial coordinate given by
the parameter t. In fact:

yp|p�1
c (p) : p�1

c (p) ! pt ⇥ L�
{p0}⇥ L '

[0, tp)⇥ L�
{0}⇥ L ' {p}⇥ c(L)

To each point p 2 f�1
Y (c) we associated a tp > 0 such that the flow line {pt : t 2

[0, tp)} is contained in a trivialisation domain. However, we would like to find a
unique tc > 0 for which the above is valid for each p. Consider a map l : f�1

Y (c) !

R�0 which assign to each p the largest tp. Of course l is strictly positive and in order
to find such tc it is sufficient to show the existence of e > 0 such that l(p) > e for all
p 2 f�1

Y (c). In that case, it suffices to fix tc := e.
Assume that such e does not exist: this means that:

8d > 0, 9 qd : l(qd) < d.

From this, we can then obtain a sequence {qn} ⇢ f�1
1 (c) associated to {dn = 1/n}.

By compactness of f�1
Y (c), then such a sequence admits a subsequence convergent

to a point, say q. Take a trivialisation domain Uq around q: there exists a subset Kq ⇢ Uq
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and a positive tq such that the evolution of Kq along the flow of x for the time 0  t < tq
is completely contained in Uq. But then, there exists n 2 N such that l(qn) > tq, for all
elements of the subsequence with n � n and this makes a contradiction.

Corollary 5.22. Let X be a spin pseudomanifold with fibered L-singularities, and let ( f , g)
be a Morse pair defined on it. Assume that a, b are two regular values of f with a < b, then
the preimage f�1([a, b]) is a spin pseudomanifold with fibered L-singularities with boundary
f�1(a) t f�1(b).

In particular, it realizes a bordism in Wspin,L� f ib
⇤ between the two level surfaces.

Let us consider a compact stratified space W of depth 1 and denote by Wa and W[a,b]
the sets of all points p of W are such that f (p)  a and f (p) 2 [a, b] respectively. (see
[24, Lemma 8.1])

Proposition 5.23. Let ( f , g) be a Morse pair on W.

• If the interval [a, b] does not contain any critical value for f , Wa and Wb are homotopy
equivalent.

• If p is a critical point of index k and the only one with critical value c, then Wc+d has the
homotopy type of Wc�e with a k � cell attached, where e, d > 0 are chosen in orden to
have an interval [c � e, c + d] with no critical values other than c.

Corollary 5.24. A compact stratified space X has the homotopy type of a CW-complex, whose
cells are in correspondence with the critical points of a Morse pair ( f , g) defined on X. In
particular, to a k-cell corresponds a critical point of index k.

Moreover, if f is self-indexing, one has the correspondence between its k-cells and the preim-
age of the critical value k.
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6 (L,G)-singularities
Let us proceed by introducing a class of stratified spaces that we will work with in the
following sections. These are introduced and discussed in detail in [7] and [8].

The idea is that, while working on a smoothly spin stratified space of depth 1, im-
posing extra conditions on the geometry of the link L associated to its depth-1 stra-
tum guarantees nice properties for the index associated to a Dirac operator similar to
those of the closed smooth case. For example, one obtains well defined mappings from
suitable bordism groups to KO-homology groups, i.e. involving suitable fundamental
classes of Dirac operators (see [7, Proposition 5.1]) or can extend metrics of positive
scalar curvature along spaces realizing such bordisms ([7, Theorem 4.5]). In particular,
in this section, this latter property will play a relevant role. Furthermore, alongside
these geometric conditions, an additional class of metrics adapted to this specific con-
text will be introduced. Here we will provide a summary of the main results contained
there.

Let us fix a compact, connected, semisimple Lie group G with an Ad-invariant met-
ric on its Lie algebra g. In this way, a bi-invariant metric on the whole group G is
obtained.

Remark 6.1. When G is a simple Lie group, an Ad-invariant metric on g is necessarily
a multiple of its Killing form. In particular, this metric has constant Ricci curvature
(meaning that the Ricci curvature is a multiple of the metric). In particular, up to scale
by a constant, one can obtain a metric with constant positive scalar curvature equal to
a fixed value (see [29, Lemma 7.6]).

Then, we ask L to be a homogeneous space G/K, as defined in 3.2. The tangent
bundle of L can be identified to G ⇥K g/k, where K acts on g via the adjoint action and
k is the Lie algebra of K (see, for example, [27, Section 18.16]).

A metric on g thus induces a metric on g/k and, consequently, on L. In particular,
the latter will clearly be G-invariant and have positive scalar curvature.

We now follow the notations already introduced in Section 4.3. Let M be a spin
stratified pseudomanifold of depth 1 with link L ' G/K. If bM is its compact depth-1
stratum, we assume that the fibration of the boundary of its resolution pr : ∂Mr ! bM,
with fibre diffeomorphic to L, comes from a principal G-bundle P over bM. More
specifically, assume that pr can be described as an associated bundle to P, that is:

pr : ∂Mr = P ⇥G (G/K) ! bM

A principal connection induces an associated connection on pr, which induces a
splitting of the tangent bundle of ∂Mr as:

T(∂Mr) = TV(∂Mr)� p⇤
r (T(bM)),

where the vertical tangent bundle is given by:

TV(∂Mr) = P ⇥G (TL) = P ⇥G (G ⇥K g/k) = P ⇥K g/k.

Similarly, the fibration of the tubular neighborhood p : N(bM) ! bM, with fiber
diffeomorphic to the cone c(L), can be described using the action of G on the cone that
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preserves the radial coordinate on it. In this way, a connection is also associated with
this bundle.

With such connection, if gL is a fixed Riemannian metric on L built as described
before, then one obtain on N(bM) a metric of the form (dr2 + r2g∂Mr/bM)� p⇤(gbM),
with gbM a Riemannian metric on bM. Observe that g∂Mr/bM, as already remarked in
Section 4.1, is a metric in the vertical tangent bundle of pr. However, in this case, we
assume that on each fiber it restricts to the same metric and then we are denoting it
with a small abuse of notation simply by gL. In this way, each vertical fiber of p is
totally geodesic and with scalar curvature:

kc(L) =
kL � kl

r2 , kl = l(l � 1), l = dim(L),

where r is a radial coordinate along the cone and kl is the scalar curvature of the stan-
dard l-sphere of radius 1.

Definition 6.2. A smoothly stratified space M of depth-1 is a pseudomanifold with
(L,G)-singularities if the link L is given by homogeneous space G/K and the fibration
on the boundary of its resolution pr is an associated bundle to a a principal bundle as
described above.

Definition 6.3. Let M be a pseudomanifold with (L, G)-singularities, then a well-
adapted wedge metric g is the following datum.

• A Riemannian metric gr on the resolution Mr which is of product type on a collar
neighborhood of the boundary;

• On the tubular neighborhood has the form described before, meaning that the
vertical metric g∂Mr/bM induces a fixed gL, suitably scaled such that it has con-
stant scalar curvature equal to kl = l(l � 1), with l = dim(L) (recall Remark
6.1);

• On a neighborhood of the boundary ∂Mr in N(bM), the metric transitions smoothly
to a product type metric:

dr2 + Cg∂Mr/bM � p⇤
r (gbM),

with C a positive constant.

If the second condition of the definition is omitted, thereby allowing the metric
g∂Mr/bM on the vertical tangent bundle to depend on the point of the stratum bM, then
g is simply said to be an adapted wedge metric.

Remark 6.4. The smooth transition of the above definition can be described as fol-
lows. Let ∂Mr ⇥ [0, e] be the neighborhood in N(bM), where ∂Mr is identified with
∂Mr ⇥ {e} and ∂Mr ⇥ {0} corresponds to those values in the cone bundle with radial
coordinate equal to R. Then we ask the metric to be locally expressed by:

dr2 + f (r)2g∂Mr/bM + p⇤gbM,

for a suitable smooth function f defined on r 2 [0, e] such that around 0 it has the form
R + r, while it is equal to the constant R + e/2 on a neighborhood of e.
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Given these choices, in [7, Proposition 3.4] is described a result concerning the scalar
curvature of a space X, equipped with a Riemannian submersion X ! B with fiber a
totally geodesic space F, in terms of the scalar curvature of B, F, and the O’Neill T-
tensor of the fibers. Since this tensor, under our hypotheses, vanishes, the following
result is proven.

Theorem 6.5 ([7], Theorem 3.5). Let L = G/K be a homogeneous space, where G is a
connected, semisimple Lie group, and equip it with a G-invariant metric with scalar curvature
kL = l(l � 1), where l = dim(L). Then, if M is a stratified pseudomanifold with (L, G)-
singularities, the conical fibres c(L) are scalar flat. Moreover:

• ∂Mr always admits a well-adapted wedge metric of positive scalar curvature;

• if its depth-1 stratum bM admits a metric with positive scalar curvature, then its tubular
neighborhood N(bM) has a well-adapted wedge metric of positive scalar curvature;

• it N(bM) has a well-adapted wedge metric of positive scalar curvature, then bM has a
metric of positive scalar curvature.

Observe, in particular, that the normalization chosen for the metric gL is necessary
in order to prove the second point of this theorem, while the first point is proven by
making a choice for the value of the radius of cones R (see Remark 6.4).

6.1 The (L,G)-fibered Stolz groups
In this section, we proceed to adapt the contents of the previous chapter to the newly
introduced context and thus define a bordism theory for spaces with (L, G)-singularities.
To do this, we will make some modifications to the definitions given in Sections 4.2 and
4.3, requiring that the links be homogeneous spaces of the form just discussed and that
the wedge metrics be well-adapted.

Firstly, all cycles are given by compact spin pseudomanifolds with (L, G)-singularities,
i.e., the link L = G/K is fixed. Referring to the bordism group Wspin,L� f ib

⇤ introduced
in 4.2, what needs to be added is that the fibrations of the tubular neighborhoods of the
strata of depth 1 must be described as associated bundles. We make this requirement
by recalling that any G-principal bundle P can be described via a classifying map f
from the base space to a universal space BG: then the bundle will be isomorphic to
the pullback bundle of a universal bundle EG ! BG, i.e. P ' f ⇤(EG). Similarly, the
associated bundles with fiber L have a universal bundle. In particular, any associated
bundle E ! B with fiber L is simply described via a map f : B ! BG as:

f ⇤(EG ⇥G L) ' E EG ⇥G L

B BG
f

(6.1)

Observe that if, instead of considering fibers L, we consider the cones C(L) with a
G-action that preserves the radial coordinate, then associated bundles are obtained by
pulling back from the universal bundle EG ⇥G C(L) ! BG.
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In the cases of our interest, that is, those where the fibrations with fibers C(L) and
L are that of the tubular neighborhood and its restriction to the boundary of the reso-
lution, it is clear that they determine each other reciprocally.

Consequently, we will define the group Wspin,(L,G)
⇤ simply by adding the condition

that a bordism between M and M0 is realized by a space W whose tubular neighbor-
hood N(bW) ! bW is described by a map fW : bW ! BG such that this restricts on
the boundary (given by the disjoint union of the two depth 1 strata of M and M0) to
the maps that classify the fibrations of the tubular neighborhoods of M and M0.

Now we move on to the case of the bordism groups Pos and R, which involve the
metric structure in their description. In this case, we want the wedge metrics to be
well-adapted, and thus, we first fix the metric gL on the link L so that it has scalar
curvature equal to that of the l-dimensional sphere of radius 1, with l = dim(L).

In this situation, a well-adapted wedge metric is thus fully described by a met-
ric gMr on the resolution, which we recall to be product-like in a neighborhood of its
boundary, a metric gbM on the depth 1 stratum, and a principal connection. In this

sense, in order to define the groups Posspin,(L,G)
⇤ and Rspin,(L,G)

⇤ , it is sufficient to addi-
tionally require that a bordism between M and M0 is realized through a space equipped
with a well-adapted wedge metric such that these three objects determining the metric
restrict on the boundary to those of M and M0. Thus, we obtain the following result,
which is a straightforward adaption of Theorem 4.17.

Theorem 6.6. Let X be a topological space and L be as before. Then the (L,G)-stratified Stolz
sequence:

. . . // Rspin,(L,G)
n+1 (X) ∂

// Posspin,(L,G)
n (X)

j
// Wspin,(L,G)

n (X) i
// Rspin,(L,G)

n (X) // . . . ,
(6.2)

is exact.

6.2 Invariance of the (L,G)-R-groups under 2-connected maps
We now are going to state a result similar to Theorem 3.16 for the just introduced
R-groups. In its proof, we will use the results concerning the Morse theory for strati-
fied spaces obtained in the previous sections (in particular regarding the CW-complex
structure that follows) and the Gromov-Lawson theorem stated below in a formulation
that, along with Theorem 6.5 on well-adapted wedge metrics, will allow us to extend
a metric along a bordism (see [12]).

Theorem 6.7. Considering a Riemannian manifold (M, g), where g is a positive scalar curva-
ture metric, then if M0 is another manifold obtained from M by surgeries of codimension � 3,
then:

• one can construct a psc metric on M’;

• in particular, one can construct a psc metric on the bordism between M and M’ (the trace
of the surgery) which reduces to a product metric on the boundary.
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Recall that a continuous function f : X ! Y is called n-connected if it induces iso-
morphisms for all homotopy groups of order k < n, while it induces a surjective map
for the n-th homotopy group. Furthermore, remember that the introduced bordism
groups behave functorially with respect to their reference spaces, in the sense that if
f : X ! Y, then there exists a map:

f⇤ : Wspin,(L,G)
n (X) ! Wspin,(L,G)

n (Y),

obtained simply by composing the reference map of a bordism class with f (the
same for Pos and R groups).

Theorem 6.8. Let X, Y be two CW-complexes such that f : X ! Y is a continuous, 2-
connected map. Then the functorially induced map on the R-groups:

f⇤ : Rspin,(L,G)
n (X) ! Rspin,(L,G)

n (Y),

is an isomorphism.

Proof. The proof will proceed in a manner very similar to that of Theorem 3.16.
Assume, without loss of generality, that both X and Y are connected and Y =

Bp1(X). We recall that, since p1(X) is a discrete group, Bp1(X) has the homotopy
type of an Eilenberg-MacLane space K(p1(X), 1), i.e.:

(
pk(Bp1(X)) ' 0, k 6= 1
p1(Bp1(X)) ' p1(X)

(6.3)

Moreover, Bp1(X) is a final object, in the sense that for each space Z with funda-
mental group p1(X), it is the target of a unique 2-connected map fZ : Z ! Bp1(X) up
to homotopy.

Now we prove the surjectivity of ( fX)⇤.
Let [M] = (M, ∂M, g(∂M)r , gb(∂M),r∂M, f : M ! Bp1(X)) 2 Rspin,(L,G)

n (Bp1(X)).
Proving the surjectivity of ( fX)⇤ is equivalent to find a map h : M ! X giving the
following factorization:

M
f
//

h
✏✏

Bp1(X)

X

fX
::

Let us consider M as a bordism in Rspin,(L,G)
n�1 (Bp1(X)) between ∂M and the empty

set: then take a self-indexing, special Morse pair (j, h) (recall Definition 5.18) on M
seen as a triple (M, ∂M, ∆). A regular value t0 2 R allows us to split M in two bor-
disms:

M1 := j�1({t  t0}), M2 := j�1({t � t0}),

such that M = M1 [ M2 and S = M1 \ M2 ⇠= j�1(t0). In particular, since j is self-
indexing, we can choose t0 suitably such that M1 consists only on cells up to dimension
2.
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In this way, we can apply the second point of the Gromov-Lawson Theorem 6.7,
which allows us to extend the psc metric gb(∂M) along the depth-1 stratum of M2 and
then obtaining a well adapted wedge metric of positive scalar curvature on its tubular
neighborhood using Theorem 6.5. Then one can extend the psc-metric on the inte-
rior of the resolution (∂M)r, obtaining a well-adapted wedge metric of positive scalar
curvature on M2.

It follows that S = ∂M1 gets a psc well-adapted wedge metric and that M ⇥ [0, 1]
provides a bordism between M and M1 in Rspin,(L,G)

n (Bp1(X)).
Consider then f |M1 , i.e. the reference map which defines the class [M1]. f , by

construction is a mapping from a space consisting only on cells up to dimension 2
attached to the empty set, i.e. homotopy equivalent to a 2-dimensional CW-complex.

Then, we can apply the arguments cited in the proof of 3.16, simply adapting them
to our situation, thereby first obtaining the following factorization:

M1 Bp1(X)

Bp1(X)(2)

f |M1

k
i

and then, since fX is a 2-connected map, we obtain the following:

M1 Bp1(X)

(Bp1(X))(2) X(2)

f |M1

k

V

i fX |X(2)

Finally, the composition V � k provides the required factorization proving the sur-
jectivity of ( fX)⇤.

Now let’s proceed to prove the injectivity of ( fX)⇤.
Let us take a class [N] = (N, ∂N, g(∂N)r , gb(∂N),r∂N, f : N ! X) 2 Rspin,(L,G)

n (X)

such that f⇤([N]) = 0 in Rspin,(L,G)
n (Bp1(X)). This means that there exists a stratified

(n + 1)-pseudomanifold with (L, G)-singularities with corners (W, ∂W, ∂2W) with:

∂W = N [ N0, ∂2W = ∂N.

In particular, N0 realizes a bordism in Posspin,(L,G)
n�1 between ∂N and the empty set.

Moreover, a well-adapted wedge metric of positive scalar curvature is defined on the
whole N0 extending that of ∂N.

On W there is a mapping F : W ! Bp1(X) which restricts to f on N. Therefore, F
factorizes to X on N. What will allow us to prove the injectivity of ( fX)⇤ is finding a
bordism of N with the empty set or, equivalently, to a space representing the zero ele-
ment in Rspin,(L,G)

n (Bp1(X)), realized by a space in which this factorization is achieved
everywhere.

Let us now consider the space W as a triple (W, N, N0) with vertical boundary
given by a collar neighborhood ∂N ⇥ [0, 1]. Then, a self-indexing, special Morse pair
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(j, h) defined on it will have only critical points defined on the interior, meaning that
each regular level set will be a stratified pseudomanifold with (L, G)-singularities with
boundary ∂N.

Similarly as before, choose a suitable regular value t0 of j which splits the bordism
W in two bordism:

• W1, from N to S := j�1(t0);

• W2, from S to N0.

In particular, the latter will have critical points associated to surgeries of codimen-
sion � 3. Therefore, we can apply the second point of the Gromov-Lawson theorem
6.7 to push the well-adapted wedge metric of positive scalar curvature to S.

Then, we observe that W1 is realized as the pushout of the inclusions of N and the
union of all its closed cells up to dimension 2 attached on its interior, say Z. Since, by
construction, Z is homotopy equivalent to a 2-dimensional CW-complex, we can apply
to F|Z the same argument used to prove the surjectivity obtaining a factorization:

Z Bp1(X)

X

F|Z

fX

Finally, by the universal property of the pushout, there exists a unique map on W1
which factorizes over fX : X ! Bp1(X).

Then, W1, with this map, realizes a bordism to the zero class in RL,G� f ib
n (X) and

then [N] = 0 2 Rspin,(L,G)
n (X) proving the injectivity of ( fX)⇤
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7 Mapping (L,G)-Stolz to Higson-Roe

7.1 Dirac operators
Let us now recall, following [23], the basic notions about Cln-linear Dirac operators,
and subsequently propose an extension of these to the case of smoothly stratified
spaces.

Firstly, if (V, q) is a pair consisting of a vector space V over a commutative field
and its quadratic form q, then the Clifford algebra Cl(V, h) is given by the quotient of
the tensor algebra TV = Âk

Nk V with respect to an ideal, that is:

Cl(V, q) := TV/hv ⌦ v + h(v)1, v 2 Vi

This algebra has a natural Z2-graded algebra structure:

Cl(V, q) = Cl0(V, q)� Cl1(V, q),

where Cli(V, q) are given by the eigenspaces of the involutive automorphism in Cl(V, h)
induced by the sign change in V.

Remark 7.1. In the case where V = R
p+q and h is in standard form with signature

(p, q), we will refer to the corresponding Clifford algebras as Clp,q. In this situation,
Clp,q is the algebra generated by an orthonormal frame {e1, . . . , ep+q} subject to the
relations:

eiej + ejei =

(
�2dij, if i  p
2dij, if i > p

Within the Clifford algebra, it is possible to define its spin group Spin(V, q) as the
subgroup of the group of invertible elements with respect to the product of the algebra,
consisting of elements in Cl0(V, q) and generated by v 2 V such that q(v) = ±1.

The spin group can be also defined as the double universal cover of the special
orthogonal group SO(V). This introduces the definitions of a spin structure associated
to the oriented orthonormal frame bundle of a (Riemannian, oriented) vector bundle
E ! M as an equivariant lift of it via the covering map.

In particular, if Pspin(E) ! M denotes such a spin structure, then the Clifford bundle
Cl(E) can be defined as:

Cl(E) := Pspin(E)⇥Ad Cln ! M
where n is the rank of E and Ad denotes the action of the spin group Spinn =

Spin(Rn) on Cln made by Adg(j) = gjg�1. Observe that the grading of Cln induces
one on Cl(E).

In case M is a Riemannian manifold, then the Clifford bundle associated to its tan-
gent bundle is also denoted by Cl(M). Then, any bundle of left module over Cl(M)
(whose action is fiberwise) endowed with a Riemannian metric and a connection r

such that the action of unit vectors in TM (seen as sections of Cl(M)) is orthogonal
and its covariant derivative is a module derivation, is called a Dirac bundle. The action
of Cl(M) on a Dirac bundle is called Clifford multiplication, denoted by c.
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Definition 7.2. Consider a Dirac bundle S over a Riemannian manifold M, then we
define the Dirac operator as the operator D : G(S) ! G(S) given by:

Ds := Â
i

c(ei) ·rei s,

where {ei} is an orthonormal frame of TM, · denotes the Clifford multiplication.

Now, consider an n-dimensional spin manifold M and Pspin(M) its spin structure.
Then, given l : Spinn ! Hom(Cln) defined by left multiplication, the following associ-
ated bundle is defined:

/S(M) := Pspin(M)⇥l Cln ! M

This has a structure of a right module bundle of rank 1 with respect to Cln, with
the operation of obvious right multiplication, since it commutes with l. Moreover, an
obvious action of Cl(M) commuting with that of Cln is defined on /S(M). Since it is an
associated bundle of Pspin(M), it carries a canonical Riemannian connection: it can be
proven that /S(M) is then an example of Dirac bundle over M.

The action of Cln is parallel with respect to the connection, so in particular, the
Z2-grading of Cln induces one on /S(M), namely /S(M) = /S0(M)� /S1(M) such that:

/Si(M) · Clj
n ✓ /Si+j(M), Cl(M)i

· /Sj(M) ✓ /Si+j(M)

The Dirac operator on /S(M) is, by construction, an odd operator with respect to
such grading which commutes with the right Cln-action.

Definition 7.3. The Dirac operator just discussed on the Dirac bundle /S(M), denoted
/D, is called the Cln-linear Atiyah-Singer operator of M.

Remark 7.4. It can be shown that, with respect to the inner product on G(S) induced
by the Riemannian metric on S, the Dirac operator is formally self-adjoint for sections
with compact support. If we consider the space of L2 sections of S, denoted by L2(S)
and defined as the completion, with respect to the above mentioned inner product, of
the space Gc(S) of compactly supported sections of S, we can initially consider D as
a symmetric operator on Gc(S), and then take its closure in L2(S). This results in an
unbounded operator on L2(S). It is a standard fact that if M is a complete Riemannian
manifold, then the closure of the operator D in L2(S) is self-adjoint, i.e. D is essentialy
self-adjoint (see [23, Theorem 5.7]).

It is a well-known fact that for operators on Hilbert spaces H, it is possible to define
the so-called Borel functional calculus. Given an unbounded self-adjoint operator on H,
this allows for the definition of a bounded operator f (T) on H for any bounded Borel
function f on R, such that the correspondence f ! f (T) is a ring homomorphism that
respects the involutions. In particular, by elliptic regularity, the following holds.

Proposition 7.5. For a Dirac operator D on a compact (and therefore complete) manifold, if f
is a continuous function vanishing at infinity, that is f 2 C0(R), then the operator f (D) is
compact.
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This allows us to define the index of a Dirac operator. The notion of index is
abstractly defined for Fredholm operators, which are bounded operators on Hilbert
spaces that are invertible modulo compact operators. For a Fredholm operator T, both
Ker(T) and Coker(T) are finite-dimensional, and thus the index is defined as

ind(T) = dim(Ker(T))� dim(Coker(T)) 2 Z

Choosing an appropriate continuous function c, called a chopping function, it is
shown that on a compact manifold, c(D) is a Fredholm operator, and this is inde-
pendent of the choice of c up to compact operators. However, since c(D) is a self-
adjoint operator and its index would consequently be zero (in fact, dim(Coker(T)) =
dim(Ker(T⇤))), the grading of the bundle on which it is defined and the fact that D
is an odd operator with respect to this grading are used. Therefore, the index of D is
defined as the index of the restriction of the operator c(D) to the even component.

Unfortunately, and this will be our case, on a non-compact manifold, Proposition
7.5 does not hold. However, it can be shown that the operator f (D) is locally com-
pact. Moreover, in our context, we cannot even be sure of dealing with essentially
self-adjoint operators due to the presence of incomplete metrics.

7.2 Roe algebras
Let X be a smoothly stratified space of depth 1 and g be a wedge metric on X. Recall
that such metric is Riemannian in the regular set of X: however, each stratum has a
metric and all those fit together continuously. In particular, X can be topologized as
a metric space with distance given by the infimum over all rectificable curves joining
two points. With such distance, X becomes a complete proper metric space in the sense
of Pflaum ([31, Theorem 2.4.17]).

Now, let G be a discrete group and consider an arbitrary Galois cover p : XG ! X.
Since p is a local homeomorphism, on XG a stratification is induced by the covering
considering the preimages of the strata of X. In particular, XG becomes a smoothly
stratified space of the same depth, whose link over a point p 2 XG is diffeomorphic to
the one over p(p) 2 X.

With the aim of introducing the Higson-Roe sequence, we will define some C*-
algebras of operators, specifically the Roe algebras, defined on suitable modules with
respect to functions on a proper metric space.

Let C0(Y) be the C⇤-algebra of continuous functions on a locally compact space
which vanish at infinity. Of course, we can consider C0(XG) since p is a local homeo-
morphism and then locally compactness is preserved.

Definition 7.6. A covariant XG-module is a Hilbert space H with a ⇤-representation
of C0(XG), i.e. a ⇤-homomorphism r : C0(XG) ! L(H) and a representation of G by
unitaries on H compatible with r in the following sense:

r( f � g) = gr( f )g�1, 8g 2 G, 8 f 2 C0(XG)

Moreover, we require that the module H is ample, in the sense that the ⇤-representation
r is non degenerate and r( f ) is not a compact operator except for f = 0 2 C0(XG). In
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the following definitions, we will simply denote by f the operator induced by the rep-
resentation r, omitting the notation r( f ).

Definition 7.7. Let T 2 L(HX, HY) be a linear, bounder operator between an XG-
module HX and a YG-module HY.

(i) The support of T is the subset supp(T) ⇢ XG ⇥ YG such that:

(x, y) /2 supp(T) () gT f = 0 2 L(HX, HY),

for some f 2 C0(XG) and g 2 C0(YG) such that f (x) 6= 0 and g(y) 6= 0.

(ii) The propagation of an operator T 2 L(HX) is the minimum value R � 0 such
that supp(T) is contained in an R-neighborhood of the diagonal in XG ⇥ XG.

(iii) T 2 L(HX) is said locally compact if the operators f T and T f are compact oper-
ators, while it is pseudolocal if [ f , T] is compact, for any f 2 C0(XG).

(iv) Given a closed subset Z ⇢ XG, we say that T 2 L(HX) is supported near Z if
supp(T) ✓ BR(Z)⇥ BR(Z), where BR(Z) denotes an R-neighborhood of Z in XG,
for some R � 0.

Having introduced the necessary nomenclature, we will now proceed to define the
Roe algebras.

Definition 7.8. Consider an ample, covariant XG-module HX and a closed, subset Z ⇢

XG, then we define:

• D⇤
c (XG, HX) as the C⇤-subalgebra of L(HX) made by pseudo-local operators of

finite propagation;

• C⇤
c (XG, HX) as the C⇤-algebraic ideal in D⇤

c (XG, HX) of operators which are locally
compact.

• D⇤
c (Z ⇢ XG, HX) and C⇤

c (Z ⇢ XG, HX) as the respective ideals in the above C⇤-
algebras given by operators which are supported near Z.

These algebras are not complete; therefore, their norm closures are considered.
These closures are denoted by omitting the subscript ”c”, thus D⇤(XG, HX), C⇤(XG, HX),
D⇤(Z ⇢ XG, HX) and C⇤(Z ⇢ XG, HX)

Remark 7.9. Certainly, all these definitions are valid for any X-modules with respect
to proper metric spaces X endowed with a proper, free action of a discrete group G
by isometries. Moreover, observe that we haven’t used yet the G-action in the above
definitions. In fact, the above can be defined also when G is the trival group.

However, it is possible to define the corresponding equivariant algebras. The uni-
tary representation of G on HX induces an adjoint representation on both D⇤

c (XG, HX)
and C⇤

c (XG, HX). Then, we define D⇤(XG, HX)G, C⇤(XG, HX)G, D⇤(Z ⇢ XG, HX)G and
C⇤(Z ⇢ XG, HX)G (where now Z is required to be also G-invariant) as the closure of the
G-invariant parts of the above algebras with respect to this action.
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These algebras are functorial with respect to the class of continuous and coarse
functions. Recall that a function f : X ! Y between two proper metric spaces is called
coarse if for every R > 0 there exists an S > 0 such that the image of every R-ball is
contained in an S-ball, and furthermore, the preimage of any bounded set is bounded.

Functoriality on algebras is given by conjugation with respect to an isometry which
suitably covers the map between the two metric spaces.

Refering to the G-equivariant case, a continuous, G-equivariant (for the standard
case simply consider G = {e}), coarse map f : XG ! YG induces mappings:

D⇤(XG, HX)
G
! D⇤(YG, HY)

G, C⇤(XG, HX)
G
! C⇤(YG, HY)

G,

for HX and HY ample modules as above. In particular, such maps become canonical
on the K-theory level and then the K-theory groups do not depend on the choice of
the modules (see [20, Lemma 3]). Because of this, we will denote the above algebras
omitting the module H.

Another application of functoriality appears when Z ⇢ XG is a closed G-subset, and
then the inclusion Z ,! XG induces the following isomorphisms.

Lemma 7.10 ([20], Section 5, Lemma 1). In the above hypothesis, the inclusion functorially
induces isomorphisms on the K-theory level, i.e.:

K⇤(D⇤(Z)G) ' K⇤(D⇤(Z ⇢ XG)
G), K⇤(C⇤(Z)G) ' K⇤(C⇤(Z ⇢ XG)

G)

Since C⇤(XG)G is by construction an ideal, we obtain the following short exact se-
quence:

0 C⇤(XG)G D⇤(XG)G D⇤(XG)G/C⇤(XG)G 0

The associated long exact sequence in K-theory is the well-known Higson-Roe surgery
sequence. However, assuming that the action of G is free, then K⇤(D⇤(XG)G/C⇤(XG)G) '
KG
⇤�1(XG), where KG

⇤�1(XG) is the equivariant K-homology of XG (see [34, Lemma 5.15])
and one can obtains the following.

. . . Kn(C⇤(XG)G) Kn(D⇤(XG)G) KG
n�1(XG) Kn�1(C⇤(XG)G) . . .

µ

(7.1)
where µ : KG

n�1(XG) ! Kn�1(C⇤(XG)G) is the coarse assembly map.
If X/G is a finite complex, i.e. the quotient is compact, one can use the K-homology

of X/G instead of KG
⇤�1(X).

Remark 7.11. All the above can certainly be generalized to the context in which Hilbert
A-modules (with A a C⇤-algebra) instead of Hilbert spaces and adjointable, Hilbert
module maps (which, in particular, are A-linear with respect to the A-action) instead
of bounded, linear operators are considered obtaining a description of Roe algebras
with coefficients in A. In this way, it is also possible to give a ”real-analogue” of the
description above, i.e., for real Hilbert spaces. The corresponding Roe algebras with
coefficients in A will subsequently be denoted as C⇤(XG; A)G, D⇤(XG; A)G...
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7.3 KO-homology index class in the wedge setting

We now describe how an index class in equivariant KO-homology can be defined in
the context of spin stratified pseudomanifolds. In partcular we will focus on the case
of (L, G)-singularities, introduced in Section 6.

First of all, we need to clarify what kind of Dirac type operator we can consider
starting from a wedge metric. In particular, we will follow the treatment contained in
[1].

Let then M be a spin stratified pseudomanifold of depth 1, endowed with a wedge
metric g. Consider its resolution Mr as its blowup with the induced metric g (see
Remark 4.12) denote by wTMr its wedge tangent bundle. Recall that a wedge metric
g can be considered a bundle metric on the wedge cotangent bundle. Thus, we can
construct the wedge Clifford bundle wT⇤M associated to this metric :

wCl(Mr, g) = Â
k
⌦

k (wTMr) /hv ⌦ w + w ⌦ v + 2g(v, w)i

i.e. by taking the Clifford algebra on each fiber of wTMr. Now, the orthonormal frame
bundle of wTMr gives an extension of the orthonormal frame bundle of the interior
of Mr to the boundary (recall what said about the frame (4.2) in Section 4.1), then
denote by /Sg(Mr) := PSpin(n)(Mr) ⇥l Cln the bundle already introduced in Section
7.1, where PSpin(n) is the spin structure of the resolution of Mr, Cln ⌘ Cln,0 denotes
the real Clifford algebra and l : Spin(n) ! Hom(Cln, Cln) the representation given by
left multiplication. Again, /Sg(Mr) is Z2-graded and it has a canonical fiberwise right
Cln-action which makes it a bundle of rank-1 right Cln-modules.

The Clifford multiplication extends smoothly to sections of wTMr, meaning that:

c : G(wTMr) ! G(End(/Sg(Mr))),

Moreover, in [1, 2.1] performed a detailed study of the behaviour of the Levi-Civita
connection of g on wTMr, especially on a collar neighborhood of the boundary of Mr.
In particular, if r denotes the spin connection induced by this, we get the Cln-linear
Atiyah-Singer operator /Dg, acting on sections of /Sg(Mr) defined as usual as:

/Dg = Â
i

c(ei) ·rei

Remark 7.12. We recall that /Dg is odd, commuting with the right Cln-action on /Sg(Mr).
In particular, for this operator the Schrödinger-Lichnerowicz formula holds:

(/Dg)2 = r
⇤
r+

1
4

kg,

where kg denotes the scalar curvature of g and r
⇤
r is the connection Laplacian in

which r
⇤ denotes the formal adjoint of r ([23, Theorem 8.8]).

Observe that the wedge metric g induces a splitting on the fibration at the boundary
of Mr given by T(∂Mr/bM)� p⇤

r (T(bM)), there T(∂Mr/bM) is the vertical tangent
bundle, which consequently induces the following decomposition:
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/S(∂Mr) ' /S(∂Mr/bM)b⌦/S(bM)

In particular, omitting the metric g in the notation, [1, Lemma 2.2] states that on a
collar neighborhood of the boundary (i.e. equivalently near the singular stratum) this
operator has the following form:

/D = c(∂r) ·

✓
∂r +

l
2r

◆
+

1
r

/D∂M/bM b⌦Id + Idb⌦/DbM +B, (7.2)

where r is a boundary defining function of ∂Mr, B indicates an endomorphism of
/S(Mr), i.e. an element of G(End(/S(Mr))) and /D∂M/bM denotes the family of vertical
Atiyah-Singer operators.

Factoring out r�1 in (7.2), it emerges that /D = r�1 /De, with /De being an edge dif-
ferential operator. Thus, in particular, /D turns out to be a wedge differential operator
of order 1, which can be considered initially with domain equal to the compactly sup-
ported smooth sections Gc(/S(Mr)) restricted to the interior M̊r. In particular, /D can be
seen as an unbounded operator in Gc(/S(Mr))|M̊r

⇢ L2(/S(Mr)).
The following result gives sufficient conditions to the existence of a self-adjoint

extensions of this operator in L2(/S(Mr)).

Theorem 7.13. [[7], Theorem 3.5] Let M be a spin stratified pseudomanifold of depth 1, Mr
be its resolution and g be a wedge metric on M. Using the notations above, let /DL indicate the
generic operator induced on each fiber over each point of bM by the vertical family /D∂M/bM.
Then the following hold:

• If for each fiber L of the fibration ∂Mr ! bM,

specL2(/DL) \ (�1/2, 1/2) = ∆, (7.3)

then the operator /D with domain Gc(/S(Mr))|M̊r
⇢ L2(/S(Mr)) is essentialy self-adjoint

and its unique self-adjoint extension defines a Cln-linear Fredholm operator;

• If the vertical metric g∂M/bM induces a metric of positive scalar curvature on each verti-
cal fiber L, then:

specL2(/DL) \ (�e, e) = ∆, (7.4)

meaning that, up to rescaling the wedge metric g on the vertical tangent bundle of the
boundary fibration, one can achieve condition (7.3).

Definition 7.14. Let (M, g) be a spin stratified pseudomanifold of depth 1 with a
adapted wedge metric. We say that M is geometric Witt if (7.3) holds, while it is
psc-Witt if the vertical metric g∂Mr/bM induces psc metrics on the vertical fibers of
the boundary of the resolution, and then satisfying condition (7.4).

Remark 7.15. The main observation here is that, when dealing with spin pseudomani-
folds with (L, G)-singularities, a well-adapted wedge metric always matches condition
(7.4) and then we can always assume the existence of such unique self-adjoint exten-
sion.
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Recall that these are in particular smoothly stratified spaces of depth 1 where both
the resolutions and the depth-1 stratum are spin manifolds such that the link over such
stratum is a fixed homogeneous spaces L = G/K, with G a connected, semisimple Lie
group.

We recall briefly the definition of KO-theory groups for a real unital C⇤-algebra.
Firstly, one define the following monoid:

V(A) := {[p] | p = p⇤ = p2
2 M•(A)},

where M•(A) denotes the C⇤-algebra of square matrices with values in A of infinite
order, i.e. M•(A) :=

S
n2N Mn(A) and [p] denotes an equivalence class of projections

as follows. Two projections p, q 2 M•(A) are equivalent if there is a v 2 M•(A) such
that p = v⇤v and q = vv⇤. The addition operation in V(A) is given by:

[p] + [q] := [diag(p, q)],

where diag(p, q) denotes the block diagonal matrix made by p and q.

Definition 7.16. Let A be a real, unital C⇤-algebra. The group KO0(A) is defined as the
Grothendieck group of the monoid V(A). The n-th KO-theory group of A is defined
as:

KOn(A) := KO0(A ⌦ Cln),

where Cln denotes the real Clifford algebra.

Remark 7.17. An element in the KO0-group can be seen as a formal difference of equiv-
alence classes of projections in the real C⇤-algebra A ⌦ K.

Now let p : MG ! M be a Galois G-cover of a spin pseudomanifold with (L, G)-
singularities as discussed in Section 7.2. MG is automatically spin, and endow it with
the lifted G-equivariant metric gG of a well-adapted wedge metric g on M, which is
G-equivariant, and consider the G-equivariant, Cln-linear (wedge) Atiyah-Singer oper-
ator /DG.

Proposition 7.18. Let p : MG ! M be a Galois G-covering as before, with M a spin pseudo-
manifold with (L, G)-singularities of dimension n. Then there is a well defined fundamental
class associated to /DG, i.e. a G-equivariant real K-homology class [/DG] 2 KOG

n(MG).

Proof. Note, in particular, that since /DG is the G-equivariant lift of /D, the induced op-
erators on the vertical fibers are the same. Consequently, since M is psc-Witt by con-
struction, Theorem 7.13 can be applied to MG: thus we assume the existence of a unique
self-adjoint extension of /DG in L2(/S((MG)r)).

Next, we can consider L2(/S((MG)r)) as an ample, covariant MG-module using the
⇤-representation of C0(MG) given by:

C0(MG) C0((MG)r) L(L2(/S((MG)r))),
r

where the first arrow is simply the restriction of a function f 2 C0(MG) to (MG)r,
while r is the usual representation of C0((MG)r).
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Then, let j 2 C0(R) and c : R ! [�1, 1] be a chopping function, i.e. an odd
continuous function such that c(x) ! 1 as x ! •. From [35, Lemma 3.1], it turns
out that j(/DG) and c(/DG), defined by using the functional calculus, are elements of
C⇤(MG; Cln)G and D⇤(MG; Cln)G respectively. As reported in [35, Lemma 3.1], c(/DG)
defines an element in:

KO1(D⇤(MG; Cln)G/C⇤(MG; Cln)G) ' KOn+1(D⇤(MG; R)G/C⇤(MG; R)G)

Finally, one uses the isomorphism (see for example [35, Lemma 2.2]):

KOn+1(D⇤(MG; R)G/C⇤(MG; R)G) ' KOG
n(MG),

to obtain the desired fundamental class [/DG].

Definition 7.19. In the above context, we define the coarse index class associated to
/DG, as the image of [/DG] under the coarse assembly map of the (real) Higson-Roe
surgery sequence (7.1):

Ind(/DG) := µ([/DG]) 2 KOn(C⇤(MG; R)G)

Remark 7.20. Note that the fundamental class just introduced, relative to the Atiyah-
Singer operator in the wedge context, is equally well-defined when considering spin
pseudomanifolds of depth 1 equipped with wedge metrics that are geometric Witt, i.e.,
satisfying the first condition of Theorem 7.13. As a special case of [8, Theorem 2.17],
if g(t), for t 2 [0, 1], is a family of geometric Witt metrics for every t 2 [0, 1], then
both the fundamental class and the coarse index class remain invariant (and the same
for well-adapted wedge metrics). Therefore, since such a part can always be found
between two well-adapted wedge metrics, the classes above in the (L, G) context do
not depend on the particular metric chosen, which is why we have omitted g in the
notation.

7.4 Graded Real C⇤-algebras
In this section, we proceed to introduce a new category of C⇤-algebras, specifically
those that are Real and equipped with a grading, for which we will subsequently define
the respective K-theory groups. The advantage of working with these algebras lies in
their greater generality and the fact that they allow us to work in both the complex
and real cases simultaneously. Specifically, Real C*-algebras, as described below, are
complex C*-algebras in the usual sense but endowed with an additional involution.
With respect to this involution, the subalgebra given by the fixed points is a real C*-
algebra, while the complexification of a real C*-algebra naturally admits a structure of
a Real C*-algebra. In this way, the two categories are equivalent. A version of K-theory
for Real C*-algebras will be introduced so that, by means of the forgetful functor that
disregards the Real structure, it yields the usual K-theory for complex C*-algebras,
while by restricting to the fixed points, it yields the KO-theory for real C*-algebras. For
a more general introduction to the theory of Real C⇤-algebras, we refer to [41].
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Definition 7.21. Let A be a complex C⇤-algebra:

(i) A is a Real C⇤-algebra if it carries a ⇤-isometric, antilinear, involutive automor-
phism � : a 7! a.

(ii) A ⇤-morphism j : A ! B between two Real C⇤-algebras is said Real if it pre-
serves the Real-structures, meaning that j(a) = j(a), for each a 2 A.

(iii) A Z2-grading on a Real C⇤-algebra A is a Real, involutive ⇤-automorphism a.

Observe that the involution defining the Real structure preserves the order of mul-
tiplication. Moreover, a Z2-grading induces a decomposition:

A = A(0)
� A(1), A(i)A(j)

⇢ A(i+j),

where i, j 2 Z2. In particular, a(a) = (�1)ia if a 2 A(i).
A mapping j : A ! B between two graded C⇤-algebras is graded if preserves the

grading, i.e. j(A(i)) ⇢ B(i).

Definition 7.22. If A is a Real C⇤-algebra, then its fixed point subalgebra with respect
to this automorphism is naturally a real C⇤-algebra, called the realification of A.

Remark 7.23. Most examples of Real C⇤-algebras are given by complexification of real
C⇤-algebras B, i.e. B ⌦R C with involution given by complex conjugation. Of course,
the realification in this case coincides with the real C⇤-algebra B. Then one obtains that
the category of real C⇤-algebras and of Real C⇤-algebras are equivalent.

Definition 7.24. Given two graded C⇤ algebras A and B, their maximal graded tensor
product Ab⌦B is defined as the completion of their tensor product, but with product,
grading, ⇤-involution and Real-structure, given by:

(a1 b⌦b1)(a2 b⌦b2) = (�1)ija1a2 b⌦b1b2, b1 2 B(i), a2 2 A(j),

ab⌦b 2 (Ab⌦B)(i+j), a 2 A(i), b 2 B(j),

(ab⌦b)⇤ = (�1)ija⇤ b⌦b⇤, a 2 A(i), b 2 B(j),

ab⌦b = ab⌦b.

Definition 7.25. The Real Clifford algebra Clp,q (here, with a small abuse of notation,
we are using the same notation used for the real Clifford algebra in Section 7.1 because
of the following remark) is the unital, complex algebra generated by the real generators
{e1, . . . , ep, e1, . . . , eq} satisfying the relations:

e2
i = �1, e2

j = 1,

eiej = �ejei, eiej = �ejei, if i 6= j,
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eiej = �ejei, 8i, j.

This become graded, Real C⇤-algebras by assuming all generators are in Cl(1)p,q , i.e.
they are odd, and the ⇤-involution is:

e⇤i = �ei, e⇤j = ej, 8i, j

Moreover, the Real structure is given by requiring that the involution � is the iden-
tity on the real generators and it is extended compatibly with the complex conjugation.

Remark 7.26. Observe that Clp,q corresponds, without considering the Real structure,
to the complex Clifford algebra Clp,q := Cl(Cp+q, h), where h is the quadratic form:

h =
p

Â
i=1

x2
i �

p+q

Â
j=p+1

x2
j .

However, if p + q = n, all quadratic forms on C
n are equivalent, then it suffices to

consider Clp+q,0, which can be identified:

Clp+q,0 ' Cln,0 ⌦R C.

Then, by choosing different Real structures, i.e. different involutions �, one can
obtain the real Clifford algebra Clr,s, where r + s = n as its realification. In partic-
ular, with the involution defined in Definition 7.25, one gets exactly the real Clifford
algebras Clp,q.

Definition 7.27. A complex Hilbert space H is called Real if it is equipped with a C-
antilinear involution �. The complex C*-algebra L(H) of bounded operators on H
inherits an involution from that of H by requiring that, if T 2 L(H):

T(h) := T(h), 8h 2 H.

Remark 7.28. As reported in [19, Appendix B], the K-theory groups of a Real C*-
algebra A are defined as the K-theory groups of A (considered as a complex C*-algebra)
where only the elements fixed by the Real structure � of A are considered.

In a similar manner, one can define the K-homology groups for a Real C*-algebra
A by considering Fredholm modules (r, H, F), where r is a representation of A, H is a
Real Hilbert space, and F is an operator satisfying the usual conditions, along with the
requirement that F = F.

7.5 Localization algebras

Now, we introduce a variant approach to the Roe algebras following [51] and in [52]:
the localization algebras. These make easier to prove the next results.

We need firstly to replace the Hilbert space in the definition of XG-module with a
graded Real Cln-Hilbert module (recall also Remark 7.11), where Cln is the Real Clif-
ford algebra of Definition 7.25.
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Remark 7.29. If A is a Real C⇤-algebra, we mean by a Real A-Hilbert module a A-
Hilbert module H such that it is endowed with a C-antilinear involution � compatible
with that of A (denoted again �) in the following sense:

w · a = w · a, (v, w · a) = (v, w) · a,

for all v, w 2 H and a 2 A, where · denotes the right A-module operation and (�,�)
the A-valued product of H

Moreover, we require that all the representations are by even, Cln-linear, bounded,
adjointable operators. We call such a module a covariant (XG, Cln)-module. It follows
that all the above defined Roe algebras of Section 7.2 have an analogue in this context
(see also Remark 7.11): we denote them D⇤(XG, H; Cln)G, C⇤(XG, H; Cln)G, . . . Observe
that, as specified in Definition 7.27, such algebras become Real with involution induced
by that of H.

Definition 7.30. Let H be an ample, covariant (XG, Cln)-module. We introduce the
following localization algebras.

(i) C⇤

L(XG, H; Cln)G is the C⇤-subalgebra of the continuous functions from [1, •) to
C⇤(XG, H; Cln)G generated by bounded and uniformly continuous functions L
such that the propagation of L(t) is finite and tends to 0 as t ! •.

(ii) If Z ⇢ XG is a G-invariant closed subset, then C⇤

L(Z ⇢ XG, H; Cln) is the ideal in
C⇤

L(XG, H; Cln)G made by all the functions L(t) such that supp(L(t)) ⇢ BR(t)(Z ⇥

Z), where R : [1, •) ! R+ goes to zero as t ! •.

(iii) There is a well defined surjective map

ev1 : C⇤

L(XG, H; Cln)G
! C⇤(XG, H; Cln)G, L(t) 7! L(1).

We denote:

C⇤

L,0(XG, H; Cln)G := ker (ev1), C⇤

L,Z(XG, H; Cln)G := (ev1)
�1 (C⇤(Z ⇢ XG, H; Cln))

All these are Real C⇤-algebras with the obvious involutions induced by the local-
ization algebras. Similarly, definitions for the localization algebras D⇤

L(XG, H; Cln)G are
obtained. As for the case of Roe algebras, these algebras are functorial with respect to
uniformly continuous and coarse maps. This means again that, at the K-theory level,
such induced mappings become canonical (see [51, Lemma 3.4], [52, 3.2] for details).
Therefore, we won’t specify the choice of the ample module.

Remark 7.31. All the above definitions still hold without a Clifford algebra. This means
that instead of a Cln-Hilbert module, one consider a Hilbert space, real or complex. In
that case one simply denotes the above algebras omitting Cln. The definitions still
remain the same, except that the localization algebras are defined in terms of functions
with values to the Roe algebras with the respective coefficients.

For example, take a complex Hilbert space H, which is also an ample covariant XG-
module. Then, the respective localization algebras are defined in terms of Roe algebras
defined in 7.2 and are denoted C⇤

L(XG)G, C⇤

L,0(XG)G, . . .
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Complex conjugation in H defines a Real structure, and H is isomorphic to the
complexification of the real HIlbert space HR given by fixed point of this involution.
The operators fixed by the induced involution, i.e. the elements of the realification,
are exactly the real operators on HR, and then one obtains that the realification of the
complex localization algebras are exactly those with real coefficients.

The Yu’s localization algebras introduced offer in particular an alternative approach
to K-homology. In particular, refering to the complex case, there exists an isomorphism
IndG

L : KG
⇤(XG) ' K⇤(C⇤

L(XG)G) which is compatible with the coarse assembly map in
the sense that the following diagram commutes ([51, Section 4]):

K⇤(C⇤

L(XG)G) K⇤(C⇤(XG)G)

KG
⇤(XG)

(ev1)⇤

µ

⇠ IndG
L

(7.5)

The above localization algebras fit into the following short exact sequence:

0 C⇤

L,0(XG)G C⇤

L(XG)G C⇤(XG)G 0.
ev1 (7.6)

The long exact sequence in K-theory associated to it can be identified to the Higson-
Roe surgery sequence (7.1) by using the diagram (7.5) and the fact that the K-theory
group K⇤(C⇤

L,0(XG)G) is isomorphic to K⇤+1(D⇤(XG)G). One then obtains the following
commutative diagram (see [50, Proposition 6.1]):

. . . Kn+1(C⇤(XG)G) Kn(C⇤

L,0(XG)G) Kn(C⇤

L(XG)G) Kn(C⇤(XG)G) . . .

. . . Kn+1(C⇤(XG)G) Kn+1(D⇤(XG)G) KG
n(XG) Kn(C⇤(XG)G) . . .

d (ev1)⇤

'

µ

⇠ IndG
L

(7.7)

Remark 7.32. The same results are obtained in KO-theory for real C⇤-algebras consid-
ering the Roe algebras (and consequently the localization algebras) with real coeffi-
cients.

7.6 K-theory of graded Real C⇤-algebras
Now we will describe an alternative, and equivalent, approach to the K-theory (KO)
of a complex (real) C⇤-algebra due to Trout (see [46]), which is alternative to the usual
one in terms of projections and unitaries. This approach will simultaneously take into
account any Z2-grading and Real structure of a C⇤-algebra. Recall that a C⇤-algebra
is Real if it is complex and equipped with an involution (which plays the role of a
”complex conjugation”): it is clear then that where this structure is trivial, what we
consider are simply C⇤-algebras over C.

First of all, in order to define the K-theory groups, it is necessary to introduce the
following graded, Real C⇤-algebras.

65



Definition 7.33. Define the following:

• the graded, Real C⇤-algebra K of compact operators acting on a graded, Real,
countably infinite dimensional Hilbert space H = H

(0)
� H

(1) with grading
given by the decomposition into diagonal and off-diagonal matrices and Real-
structure given as in Definition 7.27;

• the graded, Real C⇤-algebra S of functions in C0(R, C) with grading given by
even and odd functions and Real-structure by complex conjugation.

If B and C are two graded, Real C⇤-algebras, then we denote by Hom(B, C) the set
of homotopy classes of Real, graded, ⇤-homomorphisms f : B ! C with the point-norm
topology, meaning that fa ! f if and only if fa(b) ! f(b), for each b 2 B, in the norm
topology of Ab⌦K.

Definition 7.34. We define the K-theory groups of a graded, Real C⇤-algebra A by:

bKn(A) := pn(Hom(S , Ab⌦K)), 8n � 0,
where pn(Hom(S , Ab⌦K)) denotes the n-th homotopy group of Hom(S , Ab⌦K) with
respect to the point-norm topology and with zero map as base point.

Remark 7.35. Observe that any graded, Real, ⇤-homomorphism j : S ! A defines an
element in the group bK0(A). In fact, one can consider the element [j] represented by
jb⌦e1,1, where e1,1 denotes the even, rank-1 projection in K.

For each n � 0, bKn(A) have an abelian group structure by considering the direct
sum of two mappings and the identifications (Ab⌦K) � (Ab⌦K) ' Ab⌦(K � K) '

Ab⌦K. These agree with the homotopy groups operations for n � 1.

Remark 7.36. Observe that for complex C⇤-algebras, i.e. without a Real-structure, one
can simply ignore all the Real structures and the Real condition on the Hom set obtain-
ing a complex analogue of the above definition.

On the contrary, if the Real structure is considered, the groups just introduced cor-
respond to the KO-theory groups of real C⇤-algebras in the following sense. Recalling
what is meant by the realification of a Real C⇤-algebra (see Definition 7.22), it is ob-
served that if one considers the fixed points of S with respect to its Real structure, one
obtains the C⇤-algebra C0(R, R) of real-valued functions that vanish at infinity. Since
Real morphisms preserve the Real structures, and therefore the fixed point spaces with
respect to them, one can consider their restrictions to the corresponding realifications
of the algebras. Consequently, the K-theory group of a Real C⇤-algebra A considered
will correspond to the KO-theory group of the realification of the C⇤-algebra A.

Remark 7.37. Recall that every C⇤-algebra can be considered Z2-graded when paired
with the trivial grading. Then, the definition above applies to any C⇤-algebra. How-
ever, when A is ungraded, its K-theory groups will be denoted simply by K⇤(A).

Observe that, when A is trivially graded and unital, then Ab⌦K ' M2(A ⌦K) with
grading given induced by K, i.e. that given by diagonal and off-diagonal matrices.
Consequently:

bKn(A) = Kn(A) = pn(Hom(S , A ⌦ K)), 8n � 0
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It can be verified that bKn(A) ' bK0(Sn A) where Sn A denotes the n-th suspension of
A defined by Sn A := C0(Rn)b⌦A, with C0(Rn) is considered with trivial grading.

The C⇤-algebra S is characterized by the presence of a ⇤-homomorphism D : S !

S b⌦S which gives to S a coalgebra structure (see [18, Section 1.3] for details). We
mention it because it induces an external product in K-theory:

bKn(A)⌦ bKm(B) ! bKn+m(Ab⌦B).

This is defined by firstly making explicit what happens in the case when n = m = 0.
Consider two classes [f] 2 bK0(A) and [y] 2 bK0(B) and define their product as the
following class expressed in terms of their representatives and the above comultiplica-
tion:

[f]⇥ [y] := [(fb⌦y) � D] 2 bK0(Ab⌦B).

This product is associative, commutative and functorial, meaning that j : A ! A0

and c : B ! B0 are Real, graded ⇤-homomorphisms, then:

(jb⌦c)⇤([f]⇥ [y]) = j⇤([f])⇥ c⇤([y]).

Finally, the product for each n, m is induced by this ([18, Section 1.7]).

Example 7.38. Consider an unbounded, odd, self-adjoint operator D on a graded Hilbert
space H, i.e.:

D =

✓
0 D�

D+ 0

◆

Assuming that D has a compact resolvent, then the functional calculus applied to
D defines a mapping yD : S ! K, hence an element of bK0(C). For example, D can be
any Dirac operator on a compact manifold.

Under the isomorphism bK0(C) ' Z, to yD is associated the Fredholm index of D+.
Now, if A = B = C and yD1 , yD2 are defined as above, then their product [yD1 ]⇥

[yD2 ] is the functional calculus associated to the self-adjoint operator D1 b⌦1 + 1b⌦D2,
which is an operator whose Fredholm index is exactly the product of the indices of D1
and D2.

Let us consider C0(Rn)b⌦Cl0,n, i.e. the graded, C⇤-algebra of continuous functions
vanishing at infinity from R

n to Cl0,n. The natural inclusion of R
n in Cl0,n is, of course,

a function non-vanishing at infinity, but by applying the functional calculus using a
function in S , one gets for each f 2 S the following mapping:

R
n
3 v 7! f (v) 2 Cl0,n, (7.8)

giving an element in C0(Rn)b⌦Cl0,n: (7.8) then defines an element in Hom(S , C0(Rn)b⌦Cl0,n).
In this way one obtains the so called Bott element bn 2 bK0(C0(Rn)b⌦Cl0,n) (recall Remark
7.35). The Bott element is of particular interest because of the following (see [18, Theo-
rem 1.14]).
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Theorem 7.39. For any graded, Real, C⇤-algebra A and for each n 2 N, the following is an
isomorphism:

b : bK0(A) ! bK0(Ab⌦C0(R
n)b⌦Cl0,n), x 7! x ⇥ bn

where ⇥ denotes the external product defined previously.

In particular, from this Theorem and the fact that Cln,0 b⌦Cl0,n ' Cln,n ' M2n(C),
one obtains the following identifications:

bK0(Ab⌦Cln) ' bK0(Ab⌦C0(R
n)b⌦Cln b⌦Cl0,n) ' bK0(Sn A) ' bKn(A). (7.9)

Considering the Real structures, this corresponds to the usual 8-periodicity of KO-
theory of real C⇤-algebras (recall Remark 7.26 and 7.37), while it corresponds to the
2-periodicity of K-theory in the complex case without considering them.

Now, let us focus on the case of the localization algebras introduced in 7.5. An
element in bK0(C⇤

L(XG; Cln)G) will be given by a homotopy class of a morphism:

j : S ! C⇤

L(XG; Cln)G b⌦K

Since the localization algebras are Real, j has to be considered Real too and its
restriction to the fixed point set induces a mapping between the realifications. It then
defines an element in the KO-theory of the realification of C⇤

L(XG; Cln)G.
Recall that localization algebras are functorial with respect to G-equivariant, coarse

maps. This implies that there is no dependence on the choice of the module. Then, let
H be a real Hilbert space and suppose that H is an ample, covariant real XG-module.
Of course, HC = H ⌦R C is a complex analogue, with Real structure given by com-
plex conjugation, while HC

b⌦Cln is an ample, covariant (XG, Cln)-module whose Real
structure is given by combining those of HC and Cln (recall Definition 7.24).

This module makes explicit that C⇤

L(XG; Cln)G = C⇤

L(XG)G b⌦Cln and its realification
is the graded tensor product of the localization algebra with real coefficients and the
real Clifford algebra Cln (recall Remark 7.26 and 7.31).

Then, by using (7.9), we obtain that:

bK0(C⇤

L(XG; Cln)G) ' Kn(C⇤

L(XG)
G), (7.10)

which corresponds to KOn(C⇤

L(XG; R)G) by restricting to fixed points sets (recall
Remark 7.36).

7.7 The local index class of /DG and the rG secondary invariant
We now consider again the setting already introduced in Section 7.3 with a minor mod-
ification, namely that we use instead of the real Clifford algebra, its Real counterpart.
We denote again the bundle obtained /S(Mr).

When p : MG ! M is a Galois G-cover, observe that the space of L2 sections of
the bundle /S((MG)r) over (MG)r, namely L2(/S((MG)r)), thanks to its right Cln action,
can be turned into a Hilbert Cln-module. Moreover, since Cln denotes the Real Clifford
algebra of Definition 7.25, then it becomes a Real Hilbert Cln-module. More specifically,
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this is an ample, covariant (XG, Cln)-module with graded and Real structures, with
obvious Real structure induced by that of Cln.

We now introduce the local index class associated to the Atiyah-Singer operator /DG,
following [52, Chapter 4]. This will be given by a homomorphism j/DG

which makes
use of the functional calculus to define the following mapping:

S 3 f 7! f (
1
t

/DG), t 2 [1, •)

By well known results (see, for example, [19, Sections 5.3, 5.5]), the operator f (1
t /DG)

is locally compact for each f 2 S and its propagation goes to zero as t goes to infin-
ity. Moreover, by general properties of the functional calculus and since /DG is an odd
operator, we obtain the following Real, graded, ⇤-homomorphism:

j/DG
: S ! C⇤

L(MG; Cln)G.

Definition 7.40. The local index class IndG
L(/DG) associated to the operator /DG is the

K-theory element associated to j/DG
, i.e.:

IndG
L(/DG) := [j/DG

] 2 bK0(C⇤

L(MG; Cln)G)

In particular, using the correspondence (7.10), we obtain:

IndG
L(/DG) 2 KOn(C⇤

L(MG; R)G)

Remark 7.41. The map induced in K-theory by the evaluation at 1, namely (ev1)⇤,
sends IndG

L(/DG) to the class Ind(/DG) 2 KOn(C⇤(MG; R)G) of Definition 7.19, accord-
ingly to the diagram (7.5). In fact, the mapping f 7! f (/D) corresponds the to the
equivariant coarse index (see [46, Proposition 5.3]).

Now, we introduce the localized analogue of the secondary invariant r associated
to a metric of uniformly positive scalar curvature (see [32, Section 1.3]).

Firstly, if Z ⇢ MG is a closed G-invariant subset, we say that a Riemannian metric
g (in our case,a well-adapted wedge metric g) has uniformly positive scalar curvature
outside Z if there exists # > 0 such that the scalar curvature of g is bounded by below
by # on MG \ Z.

Now, by [36, Lemma 2.3], if the Riemannian metric g has uniformly positive scalar
curvature with # = 4t2, for some t > 0, then the restriction of the homomorphism j/DG
to those functions in S such that their support are contained in (�t, t) takes value in
C⇤

L,Z(MG; Cln)G.
By [52, Lemma 2.3], the inclusion i of the set of functions supported in (�r, r) into S

is an homotopy equivalence of graded algebras (unique up to homotopy) for all r > 0.
Then, we set r = t and we choose an homotopy inverse i�1 to such inclusion, obtaining
the following definitions.

Definition 7.42. Let Z ⇢ MG, g a well-adapted wedge metric on MG with uniformly
positive scalar curvature outside Z by a certain #. Then the partial secondary local
index class of the Atiyah-Singer operator /Dg

G associated to g is defined as:
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IndG
L,Z(/Dg

G) := [j/DG
� i�1] 2 bK0(C⇤

L,Z(MG; Cln)G) ' KOn(C⇤

L,Z(MG; R)G).

In particular, if Z = ∆, i.e. g is of uniformly positive scalar curvature, then the
partial secondary local index class takes value in C⇤

L,∆(MG; Cln)G, which corresponds
to C⇤

L,0(MG; Cln)G. In this case, we define the r-invariant of g as:

rG(g) := IndG
L,∆(/Dg

G) 2 KOn(C⇤

L,0(MG; R)G).

Remark 7.43. Observe that the local index class and its partial secondary counterpart
are related as follows. Let j : C⇤

L,Z(MG; R)G ,! C⇤

L(MG; Cln)G be the inclusion, then the
induced map between their KOn-groups sends exactly IndG

L,Z(/Dg
G) to IndG

L(/DG).
This is quite obvious since, by construction:

j⇤(IndG
L,Z(/Dg

G)) = [j � j/DG
� i�1] = [j/DG

] = IndG
L(/DG),

since i�1 is homotopic to the identity on S .

Remark 7.44. Note that in the definition of both the partial secondary index class and
the rho invariant, we have emphasized the metric g. This is because the argument
made for the coarse index class, discussed in Remark 7.20, cannot be repeated since
it is not guaranteed that two metrics with uniformly positive scalar curvature outside
a closed subset Z can be connected by a continuous path of metrics with the same
curvature condition.

7.8 The mapping theorem

We are now finally able to describe the main result of this chapter, i.e. how the (L, G)-
Stolz sequence of Theorem 6.6 can be mapped to the Higson-Roe surgery sequence in
terms of localized algebras, as in 7.7.

If G is a countable, discrete group, then any proper, complete metric space XG with
a free, cocompact G-action admits a coarse map into a universal space EG for free
G-actions (a contractible CW-complex with free G-action). In particular, this map is
unique up to G-homotopy of coarse maps. Then, one defines the following universal
algebras:

KO⇤(C⇤

G) := lim
�!

XG⇢EG
KO⇤(C⇤(XG; R)G) ' KO⇤(C⇤

r,RG),

where C⇤

r,RG is the real reduced C⇤-algebra of the group G, and the limit is per-
formed along the family of all the spaces XG with the hypothesis above. The isomor-
phism easily follows from [34, Lemma 5.14] (which extends to the real case), which
implies that this direct limit is obtained along canonical isomorphisms.

Remark 7.45. The real C⇤-algebra C⇤

r,RG is defined exactly as in the complex case. In
particular, it is defined as the norm closure of the real group algebra:
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RG :=

(

Â
g2G

rgg | g 2 G, rg 2 R, rg = 0 for all but finitely many rg

)
,

which is viewed as a real operator on the real Hilbert space l2(G) acting by left
multiplication.

Similarly, one obtains the following objects:

KO⇤(C⇤

L;G) := lim
�!

XG⇢EG
KO⇤(C⇤

L(XG; R)G),

KO⇤(C⇤

L,0;G) := lim
�!

XG⇢EG
KO⇤(C⇤

L,0(XG; R)G).

Observe that the mappings in the Higson-Roe surgery sequence (and its localized
version) (7.7) commute with all those of the direct family used to construct the above
direct limits. Therefore, there is an induced canonical universal exact sequence:

. . . KOn+1(C⇤

r,RG) KOn(C⇤

L,0;G) KOn(C⇤

L;G) KOn(C⇤

r,RG) . . .

(7.11)

Theorem 7.46. Denoting by BG = EG/G the classifying space for Galois G-coverings, then the
(L, G)-Stolz sequence 6.6 with BG as reference space maps to the universal, localized Higson
Roe surgery sequence (7.11). This means that the following diagram is commutative:

. . . Rspin,(L,G)
n+1 (BG) Posspin,(L,G)

n (BG) Wspin,(L,G)
n (BG) Rspin,(L,G)

n (BG) . . .

. . . KOn+1(C⇤

r,RG) KOn(C⇤

L,0;G) KOn(C⇤

L;G) KOn(C⇤

r,RG) . . .

i ∂

IndG
rel

j

rG

i

IndG
L

∂

IndG
rel

(7.12)

Before proving the theorem, we now describe what are the vertical maps appearing
in the above diagrams.

• Let [M] = [M, ∂M, g∂M, f : M ! BG] 2 Rspin,(L,G)
n+1 (BG), where g∂M is a well-

adapted wedge metric of positive scalar curvature defined on the boundary ∂M.
Firstly, extend g∂X to a well-adapted wedge metric g on M (which is, of course,
not necessarily of positive scalar curvature). Then, let p : MG ! M be the Galois
G-cover classified by f with the G-equivariant lift of g. Define:

M•
G := MG [∂MG (∂MG ⇥ [0,+•)),

which is a non compact spin pseudomanifold with (L, G)-singularities without
boundary of dimension n + 1.
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Since the metric on ∂MG, i.e. the G-invariant lift of g∂M, is of positive scalar cur-
vature, then by extending it along the cylinder ∂MG ⇥ [0,+•), one gets a met-
ric gG on M•

G which of uniformly positive scalar curvature outside the closed
G-invariant subset MG (by construction and by how the G-action is trivially ex-
tended on M•

G ).
Then, we get a well defined partial secondary local index class of Definition 7.42
associated to it:

IndG
L,MG

(/DgG
G ) 2 KOn+1(C⇤

L,MG
(M•

G ; R)G)

Now, we define:

IndG
MG

(/DgG
G ) := (ev1)⇤

⇣
IndG

L,MG
(/DgG

G )
⌘
2 KOn+1(C⇤(MG ⇢ M•

G ; R)G), (7.13)

which can be also seen as an element in the KO-theory of the real Roe C⇤-algebra
of MG since by Lemma 7.10 we have the following isomorphism:

KOn+1(C⇤(MG ⇢ M•
G ; R)G) ' KOn+1(C⇤(MG; R)G)

Finally, using the mapping bf : MG ! EG which cover the classifying map f of the
G-cover, we finally define:

IndG
rel([M]) := bf⇤(IndG

MG
(/DgG

G )) 2 KOn+1(C⇤

r,RG). (7.14)

Remark 7.47. Note that the class (7.14) just introduced can be more generally
defined whenever the metric has positive scalar curvature outside a closed subset
and the space is equipped with a proper map to BG.

The bordism invariance of the class (7.14) can be traced back to standard results in
the literature. For example, the index classes introduced in the coarse context can
be related to Mishchenko-Fomenko index classes (see [8, Theorem 2.11]) defined
for spaces with cylindrical ends. The general idea is to apply the results contained
in [10], and in particular its K-theoretic relative index theorem [10, Theorem 1.2]
(see also the proof of Proposition 8.11, where these results are discussed more
in detail). Following the notation of Section 4.2, where we firstly introduced the
R-groups for pseudomanifolds with fibered L-singularities, consider a bordism
W between two cycles, say [M, g∂M] and [M0, g0∂M0 ]. Its boundary ∂W is made
by a bordism Z between ∂M and ∂M0, equipped with a positive scalar curvature
metric, with M (respectively M0) attached along ∂M (respectively ∂M0). Then ∂W
clearly has positive scalar curvature outside a compact set (in particular, outside
M t M0). One can proceed by applying the K-theoretic relative index theorem,
cutting this space along the hypersurface made by ∂M t ∂M0 and to the cylinder
constructed on ∂M t ∂M0, with the obvious extended metric, noting that the in-
dex of the latter space is zero as it is equipped with a psc metric. Finally, since
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∂W has a vanishing local index class by the bordism invariance of the index class,
which is still valid in the context of pseudomanifolds with (L, G)-singularities
(see [8, Theorem 2.17]), one obtains that

IndG
rel([M]) = IndG

rel([M
0])

Observe that this idea is exactly the same used to prove [10, Theorem 1.17]

• Let [M, g, f : M ! BG] 2 Posspin,(L,G)
n (BG), where g is a well-adapted psc metric.

Then, considering the G-covering p : MG ! M classified by f and endowed with
the lifted metric gG, we can then defined the r-invariant associated to gG since it
has positive scalar curvature on all MG:

rG(gG) 2 KOn(C⇤

L,0(MG; R)G)

Again, via the mapping bf covering f , we get:

rG([M, g, f : M ! BG]) := bf⇤(rG(gG)) 2 KOn(C⇤

L,0;G)

For the discussion regarding the well-definedness of this map, see the Remark
7.50 below.

• Let [M, f : M ! BG] 2 Wspin,(L,G)
n (BG) and p : MG ! M be the Galois cover

classified by f . Then consider a well adapted metric g on M and its G-invariant
lift gG on MG: as discussed in the previous section, we have a well defined local
index class IndG

L(/DG) 2 KOn(C⇤

L(MG; R)G).
Finally, via the mapping bf covering f , one obtains:

IndG
L([M, f : M ! BG]) := bf⇤(IndG

L(/DG)) 2 KOn(C⇤

L,G).

Once defined the vertical mappings appearing in the diagram (7.12), it remains to
show that all the three squares there are commutative. In particular, the commutativity
of the first square will be given directly by a corollary of an important result which we
are going to state.

Let [M, ∂M, g∂M, f : M ! BG] 2 Rspin,(L,G)
n+1 (BG), p : MG ! M and M•

G be endowed
with the extended, G-invariant metric gG, which is of psc outside XG, as discussed in
the above definition of IndG

rel.
Since the G-action on MG is cocompact and preserving the boundary by construc-

tion, then the inclusion i∂ : ∂MG ,! MG is a coarse equivalence, hence inducing isomor-
phism in KO-theory. Then, considering the class IndG

MG
(/DgG

G ) introduced in (7.13), we
get:

(i∂)
�1
⇤

⇣
IndG

MG
(/DgG

G )
⌘
2 KOn+1(C⇤(∂MG; R)G).

However, since the lifted metric on the boundary gG
∂M is of psc, there is also defined

a r-class associated to it:

rG(gG
∂M) 2 Kn(C⇤

L,0(∂MG; R)G).
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From [19, Proposition 6.4.3], a suitable distance function can be defined on the cylin-
der ∂M•

G := ∂MG ⇥ [0,+•) ⇢ M•
G in order to have that KO⇤(C⇤(∂M•

G ; R)G) = 0.
Again, since in this case the inclusion of the boundary is a coarse equivalence, this

implies KO⇤(C⇤(M•
G ; R)G) = 0. Therefore, by exactness of the Higson-Roe surgery

sequence in terms of (real) localization algebras, there exists a unique class

(i)�1
⇤ (IndG

L(/DG)) 2 KOn+1(C⇤

L,0(M•
G ; R)G),

where i⇤ : KOn+1(C⇤

L,0(M•
G ; R)G) ! KOn+1(C⇤

L(M•
G ; R)G) is induced by the inclusion

C⇤

L,0(M•
G ; R)G ,! C⇤

L(M•
G ; R)G.

Finally, we define:

rG(MG) := ∂MV � (i)�1
⇤ (IndG

L (/DG)) 2 KOn(C⇤

L,0(∂MG; R)G),

where ∂MV : KOn+1(C⇤

L,0(MG; R)G) ! KOn(C⇤

L,0(∂MG; R)G) is the boundary map
of the Mayer-Vietoris exact sequence associated to the decomposition of M•

G into the
union of MG and ∂M•

G along the common boundary ∂MG, which represents their inter-
section. For a detailed discussion on the Mayer-Vietoris sequences in the localization
algebra settings and their properties, we refer entirely to [52, Chapter 5].

Theorem 7.48 (Delocalized APS Index Theorem). Let MG, M•
G = MG

S
∂MG

∂M•
G and

gG
∂M be as above. Then:

d � (i∂)
�1
⇤

⇣
IndG

MG
(/DgG

G )
⌘
= rG(gG

∂M)� rG(MG) 2 KOn(C⇤

L,0(∂MG; R)G), (7.15)

where d : KOn+1(C⇤(∂MG; R)G) ! KOn(C⇤

L,0(∂MG; R)G) is the boundary map in the
long exact sequence in KO-theory associated to:

0 C⇤

L,0(∂MG; R)G C⇤

L(∂MG; R)G C⇤(∂MG; R)G 0.
ev1

By applying to (i∂)⇤ to (7.15), one obtains in particular the following.

Corollary 7.49. In the above hypothesis, one gets:

d
⇣

IndG
MG

(/DgG
G )

⌘
= (i∂)⇤

⇣
rG(gG

∂M)
⌘
2 KOn(C⇤

L,0(MG; R)G), (7.16)

where d : KOn+1(C⇤(MG; R)G) ! KOn(C⇤

L,0(MG; R)G) is the boundary map of the long exact
sequence in KO-theory associated to (7.6).

These results are treated in [52, Theorem 6.5] (see also [32] for a different approach)
in the smooth case. However, all the arguments adapt to our context. Observe that
in (7.16) there is only one term on the right: in fact, (i∂)⇤(r

G(MG)) is vanishing by
construction since the Mayer-Vietoris sequence associated to M•

G is exact.
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Remark 7.50. We have postponed the discussion regarding the well-definedness of
the map rG, and in fact its bordism invariance, as we require the just stated Delocal-
ized APS Index Theorem for localization algebras.
In fact, a bordism in the group Posspin,(L,G)

n (BG) is represented by a compact, spin pseu-
domanifold with (L, G)-singularities whose boundary is the disjoint union of two rep-
resentatives of the bordism class. Then, since the r-invariant is additive with respect to
disjoint union and changes sign for reverse spin structures, one gets that the difference
between the two rG of the boundary components is zero using 7.48 and the fact that
the localized index class of the bordism is zero since it has positive scalar curvature
everywhere.

We can now proceed and prove Theorem 7.46.

Proof. As said above, it remains only to show that the three squares in (7.12) are com-
mutative.

Let [M] = [M, ∂M, g∂M, f : M ! BG] 2 Rspin,(L,G)
n+1 (BG) and d be the boundary map

of Corollary 7.49: call dG : KOn+1(C⇤

r,RG) ! KOn(C⇤

L,0;G) the induced map induced be-
tween the respecive direct limits by universality.

Remark 7.51. We make the following specification about the induced map between di-
rect limits, taking dG as an example. As we said above, the universal KO-theory groups
are defined via a direct limit construction, i.e. passing through direct families and a
universality condition. In our case, direct families are given by the KO-theory groups
of localization algebras of proper, complete metric spaces with a free cocompact G-
action for a discrete group G and inclusion maps as G-cocompact subsets.

Assume XG and YG to be two such spaces and iX,Y : XG ! YG a map of the family.
Then, using the naturality property of the maps induced on KO-theory, meaning the
fact that the following diagram commutes:

KOn+1(C⇤(XG; R)G) KOn(C⇤

L,0(XG; R)G)

KOn+1(C⇤(YG; R)G) KOn(C⇤

L,0(YG; R)G)

(iX,Y)⇤

d

(iX,Y)⇤

d

(7.17)

together with the universal property of the direct limit, to have an induced map dG
which commutes with each universal map sending an element of the family to the
direct limit.

By all the above definitions, we have that:

dG � IndG
rel([M]) = dG � bf⇤

⇣
IndG

MG
(/DgG

G )
⌘
= bf⇤ � d

⇣
IndG

MG
(/DgG

G )
⌘

,

Therefore, we can apply Corollary 7.49 in order to obtain:

bf⇤ � d
⇣

IndG
MG

(/DgG
G )

⌘
= bf⇤ � (i∂)⇤

⇣
rG(gG

∂M)
⌘
= ( bf |∂MG)⇤

⇣
rG(gG

∂X)
⌘
2 KOn(C⇤

L,0;G)
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However, recalling that ∂([M]) = [∂M, g∂M, f |∂M : ∂M ! BG] 2 Posspin,(L,G)
n (BG),

we have obtained that:

dG � IndG
rel ([M]) = rG

� ∂ ([X]) ,

which gives exactly the commutativity of the first square.
Let [M] = [M, g, f : M ! BG] 2 Posspin,(L,G)

n (BG).
Denoting by j : KOn(C⇤

L,0(MG; R)G) ! KOn(C⇤

L(MG; R)G), and by jG : KOn(C⇤

L,0;G) !
KOn(C⇤

L;G) the canonical, universal induced map, observe that by functorality:

jG � rG([M]) := jG � bf⇤
⇣

rG(gG)
⌘
= bf⇤ � j

⇣
rG(gG)

⌘
.

However, observe that by the definition 7.42 of the partial secondary local index
class, the inclusion j maps the r-invariant to the local index class. Then the commuta-
tivity of the second square follows by the following, when we also use what observed
in Remark 7.43:

bf⇤ � j
⇣

rG(gG)
⌘
= bf⇤

⇣
IndG

L(/DG)
⌘
= IndG

L � j([M]).

Let [M] = [M, f : M ! BG] 2 Wspin,(L,G)
n (BG), and recall that i([M]) = [M, ∆, 0, f : M !

BG], i.e. includes M with empty boundary.
Denoting by (ev1)G the universal mapping induced by (ev1)⇤:

(ev1)G � IndG
L([M]) := (ev1)G � bf⇤

⇣
IndG

L(/DG)
⌘
= bf⇤ � (ev1)⇤

⇣
IndG

L(/DG)
⌘

.

Since M has empty boundary, the space M•
G coincides with MG, which implies that

the partial secondary local index class lies in KOn(C⇤

L,MG
(MG; R)G) ' KOn(C⇤

L(MG; R)G)

(the isomorphism follows by the obvious C⇤(MG ⇢ MG; R)G
' C⇤(MG; R)G).

In particular, this means that IndG
L,MG

(/DgG
G ) ⌘ IndG

L(/DG).
Finally, recalling the definition of the mapping IndG

rel, we get:

bf⇤ � (ev1)⇤
⇣

IndG
L(/DG)

⌘
= IndG

rel (i([M])) ,

which proves the desired commutativity of the third square.
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8 An estimate for the (L,G)-Pos groups
In this section, we will address an application of the results achieved in the previous
sections, particularly Theorem 7.46, which provided a way to map the Stolz sequence
into the Higson-Roe sequence in the context of spaces with (L, G) singularities. Specif-
ically, the aim is to provide a lower bound estimate on the rank of the bordism groups
Posspin,(L,G)

⇤ . To proceed, we will need to introduce some spaces of metrics, particularly
those of well-adapted wedge metrics, and the index-difference homomorphism in its
formulation adapted to the wedge context.

8.1 The space of well-adapted wedge metrics
We now consider the space R(M) of all Riemannian metrics on a smooth manifold M.
Recall that when M is compact this is a convex subspace of the Fréchet space of smooth
symmetric 2-tensors on the tangent bundle TM. In particular, we are interested in the
subspace R

+(M) ⇢ R(M) of all Riemannian metrics with positive scalar curvature.
In the case in which M has non empty boundary ∂M 6= ∆, one can consider metrics

compatible with a collar neighborhood of ∂M. Recalling that a collar neighborhood
is an open subset ∂M ⇥ [0, 1) ⇢ M, then for some c 2 (0, 1), we ask R(M, ∂M)c to
be the space of all Riemannian metrics on M which, on a collar neighborhood of the
boundary ∂M ⇥ [0, c], is of the form g∂ + dx2, where g∂ is a Riemannian metric on the
boundary ∂M. Again, R+(M, ∂M)c will denote its subset of positive scalar curvature
Riemannian metrics (and observe that also g∂ will be of psc).

Remark 8.1. The dependence on c can be eliminated easily observing that if b > c,
R

+(M, ∂M)b
⇢ R

+(M, ∂M)c and these inclusion maps are homotopy equivalences.
Then one can perform a direct limit, obtaining the space R

+(M, ∂M).

Remark 8.2. There is an obvious restriction of a metric which product near the bound-
ary to the boundary itself, which then gives rise to a map

res : R+(M, ∂M) ! R
+(∂M)

As stated in [12, Theorem 1.1], this map is in particular a Serre fibration (meaning
that it satisfies the homotopy lifting property for each CW-complex), but obviously not
a surjective map.

Similarly, we now proceed to introduce spaces of metrics in the singular context,
particularly in the (L, G)-singular context with well-adapted wedge metrics.

Definition 8.3. Let us denote as Rw(M) the space of well-adapted wedge metrics as
defined in 6.3 on a compact pseudomanifold M with (L, G)-singularities and its sub-
space R

+
w (M) of positive scalar curvature metrics.

Remark 8.4. In particular, using also Theorem 6.5, recall that g 2 R
+
w (M) consists of a

triple (gbM, gMr ,r), where:

• gbM and gr are Riemannian metrics of psc on the depth-1 stratum bM and on the
resolution Mr;
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• r is a G-connection on the G-principal bundle over bM inducing a splitting on
the tangent bundle of the tubular neighborhood N(bM);

• gr is a product metric near the boundary of the resolution ∂Mr;

• on the tubular neighborhood N(bM), g takes the form of:

(dr2 + r2g∂Mr/bM)� p⇤(gbM),

where g∂Mr/bM is a metric on the vertical tangent bundle inducing on each fiber
a fixed metric gL with scalar curvature kL = l(l � 1), with l = dim(L).

The particular structure of these well-adapted wedge metrics allows us to immedi-
ately obtain the following maps.

(i)
iL : R+(bM) ! R

+(∂Mr),

which assings to each psc metric gbM the lifted Riemannian submersion metric
, on the total space of pr : ∂Mr ! bM. In particular, as already discussed in
Section 6, this is performed thanks to the associated connection to r (which gives
a splitting on the tangent bundle of ∂Mr), by imposing on the vertical tangent
bundle the metric that restricts to the fixed metric gL on each fiber.
With a small abuse of notation regarding the vertical metric, then g takes the
form:

iL(gbM) = gL + p⇤
r gbM

Observe that iL(gbM) is uniquely determined by gbM, hence iL is an injective map.

(ii)
resMr : R+

w (M) ! R
+(Mr, ∂Mr),

which assigns to a well-adapted metric g its restriction to the resolution Mr.

(iii)
resbM : R+

w (M) ! R
+(bM),

which, similarly to the above, is a restriction map assigning to g its restriction to
the depth-1 stratum bM.

Remark 8.5. As previously noted, we observe here that we will associate to the resolu-
tions of smoothly stratified spaces metrics that are obtained by restriction from wedge
metrics. This should not be confused with the consideration that leads to considering
a metric on the resolution (viewed as a blowup) starting from a wedge metric, using
the diffeomorphism between the interior of the resolution and the regular stratum.
Obviously, the two metrics in question are distinctly different.
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Recall that since M is a compact pseudomanifold with (L, G)-singularities, then its
resolution Mr is a compact smooth manifold with boundary. Therefore we can consider
its spaces of Riemannian metrics introduced in the beginning of this section.

Let us denote by:

R
+(Mr, ∂Mr)g∂

:= res�1(g∂)

R
+
w (M)gbM := res�1

bM(gbM)

the preimages of two restriction maps above, and assume that iL(gbM) = g∂. In this
situation, we obtain the following commutative diagram:

R
+
w (M)gbM R

+
w (M) R

+(bM)

R
+(Mr, ∂Mr)g∂

R
+(Mr, ∂Mr) R

+(∂Mr)

resMr

resbM

iL

res

(8.1)

We now make the following important observations.
Assume that a psc-metric gbM 2 R

+(bM) is such that iL(gbM) 2 R
+(∂Mr) lies

in the image of res. This means that there is a positive scalar curvature metric on the
resolution Mr extending it on its interior.

Applying the second point of Theorem 6.5, then a well-adapted wedge metric on
the tubular neighborhood is obtained. More precisely (check the proof of that Theorem
for details), one may need to scale the metric gbM by a constant factor to obtain it.
Therefore, we conclude that one can obtain a lift in R

+
w (M) of a rescaled metric from

gbM.
Similarly, each continuous path in gbM(t) of psc-metrics in R

+(bM), with the prop-
erty that gbM(0) = resbM(g0) for some metric g0 2 R

+
w (M), can be lifted to a path g(t)

in R
+
w (M) such that resbM(g(t)) = gbM(t), for each t.

Now take into account the vertical arrow on the left, i.e. the map:

R
+
w (M)gbM ! R

+(Mr, ∂Mr)g∂
, (8.2)

which assigns to g = (gbM, gr,r) the metric gr with the property that on the boundary
∂Mr is equal iL(gbM), i.e. it takes the form

CgL � p⇤
r (gbM). (8.3)

Obviously, this map has an inverse, since a metric in R
+(Mr, ∂Mr) which on the

boundary takes the form (8.3) can be extended to a psc metric on the tubular neigh-
borhood N(bM) by construction. In particular, the map (8.2) is an homeomorphism,
hence a homotopy equivalence, inducing for each q � 0 the following isomorphisms
on the homotopy groups:

pq

⇣
R

+
w (M)gbM

⌘
⇠= pq(R

+(Mr, ∂Mr)iL(gbM)). (8.4)
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8.2 The wedge-index-difference homomorphism
We now want to introduce a wedge analogue of the index difference homomorphism,
which we are going to define below. This, in particular, can be seen as an obstruction
for two metrics of positive scalar curvature on a smooth compact manifold to be con-
cordant (recall Definition 2.5). We start then by reviewing the results of our interest in
the smooth case.

Let M be a compact manifold, possibly with non-empty boundary ∂M. Since the
index-difference is defined on homotopy groups, we need to fix a base point in the
spaces of metrics introduced in the previous section by which the homomorphism will
depend. Let g0 be a psc-metric on M and h0 be its restriction on the boundary ∂M.

If ∂M 6= 0, we assume that g0 is collared on the boundary for h0, i.e. of the form
dt2 + h0 on a collar neighborhood of ∂M, meaning that g0 2 R

+(M, ∂M)h0 , follow-
ing the notations introduced before. Now, let us consider both cases, with or without
boundary.

Definition 8.6. Let M be a closed spin manifold and g0 be a fixed psc-metric on M.
Assuming that G is a discrete group, and that there exists a proper map f : M ! BG.
Then by index-difference we mean the homomorphisms:

Inddi f f G
g0

: pq(R
+(M)) ! KOn+1+q(C⇤

r,RG),

defined below for each q � 0.
If M is a compact manifold with boundary ∂M, fix as before an element g0 2

R
+(M, ∂M)h0 , and then one obtains for each q � 0:

Inddi f f G
g0

: pq
�
R

+(M, ∂M)h0

�
! KOn+1+q(C⇤

r,RG).

In both cases, the spaces of Riemannian metrics are considered as pointed spaces
with basepoint g0.

We now sketch how these homomorphisms are constructed. However, observe that
for our purposes we will only need the case where q = 0. Consider for simplicity the
case when ∂M = ∆.

A class in [j] 2 pq(R+(M)) is represented by a continuous map j : Sq
! R

+(M)
from the q-sphere Sq with base-point p0. This means that j defines a continuous family
gp of psc-metrics on M, depending continuously on the parameter p 2 Sq, such that
gp0 = g0.

Next, consider the product Sq
⇥ M with the product metric on (p, x) 2 Sq

⇥ M
given by (gS(p), gp(x)), where gS denotes the standard metric on the sphere (flat for
q  1 and round for q � 2). By [15, Theorem 3], this metric can be assumed to be of
positive scalar curvature up to homotopy, hence without changing the class [j].

We now extend the metric on the q + 1 disk, whose boundary is identified with Sq,
in a way that a metric on Dq+1

⇥ M which is collared on the boundary is obtained. Of
course, such extension will not have in general positive scalar curvature. Then, attach
a cylinder along the boundary, obtaining:

(Dq+1
⇥ M) [Sq⇥M (Sq

⇥ M ⇥ R+) ' R
q+1

⇥ M.
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By trivially extending the psc metric defined on Sq
⇥ M along the cylinder, we have

then obtained a space with a metric which is psc outside the compact set Dq+1
⇥ M.

Then, in a similar way of Definition 7.42, by passing to the G-covering classified by
f , this defines a partial secondary local index class and then an index in KOn+1+q(C⇤

r,RG)
(see (7.14)).

Observe that the above can be extended to the case of a manifold with boundary:
however, it is necessary to ask for a class [j] to be in pq(R+(M, ∂M)h0), hence to fix a
psc metric h on the boundary ∂M, in order to get a psc metric on the cylinder attached
to Dq+1

⇥ ∂M. This provides again a psc metric outside the compact set Dq+1
⇥ M ⇢

R
q + 1 ⇥ M, thence an index class in KOn+1+q(C⇤

r,RG).
Now, let us focus on the case q = 0: fixed the base point g0, a class in p0(R+(M))

is represented by a psc metric g1 2 R
+(M). Then, consider the interpolation:

(1 � t)g0 + tg1, t 2 [0, 1]

which lies entirely in R(M) by convexity. By identifying the parameter t with the co-
ordinate on [0, 1], this gives a Riemannian metric on the cylinder M ⇥ [0, 1] of product
type near the boundary and restricting to g0 on M ⇥ {0} and to g1 on M ⇥ {1}.

Attaching cylinders along the two boundary components and trivially extending
the metric gives M ⇥ R with a Riemannian metric which is of psc outside the compact
set M ⇥ [0, 1]: in particular, this metric is equal to g0 + dt2 on M ⇥ (�•, 0] and to
g1 + dt2 on M ⇥ [1, •).

The class Inddi f f G
g0
([g1]) 2 KOn+1(C⇤

r,RG) can be regarded as an obstruction for g0
and g1 to be concordant psc metrics. In fact, if g0 and g1 are concordant, then there
is a psc-metric on the cylinder M ⇥ [0, 1] restricting to g0 and g1 on the two boundary
components. Then, we have that this metric is of psc outside the emptyset and then its
partial secondary local index class is zero.

For more details about the index-difference construction and the proof of the fol-
lowing result, we refer to [6] and [13, Theorem C].

Theorem 8.7. Let M be a compact spin manifold with boundary ∂M with dim(M) = n � 6
and assume g0 2 R

+(M, ∂M)h0 6= ∆. Moreover, assume that M admits a mapping f : M !

BG, for G a discrete group, such that the induced map on fundamental groups f⇤ : p1(M) ! G
is split-surjective.

Then, if:

• G satisfies the rational Baum-Connes conjecture;

• G is torsion free and has finite rational homological dimension d;

Inddi f f G
g0
⌦ IdQ : pq

�
R

+(M, ∂M)h0

�
⌦ Q ! KOn+1+q(C⇤

r,RG)⌦ Q

is surjective whenever q � d � n � 1, meaning that it generates the target as a Q-vector
space.

Now, assume that M is a compact spin pseudomanifold with (L, G)-singularities of
dimension n and f : M ! BG is a proper map.
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If g0 and g1 are two well-adapted wedge metrics of positive scalar curvature in
R

+
w (M), then we can follow similarly the construction in the case of a closed manifold

and obtain a index-difference homomorphism also in the wedge case.
In fact, consider M⇥ [0, 1]: as already discussed, this is a spin pseudomanifold with

(L, G)-singularities with boundary M t M: we can of course define a well-adapted
metric (not in general of psc) which is collared near the boundary and restricting to g0
and g1 on M ⇥ {0} and M ⇥ {1} respectively.

As before, by attaching cylinder along the two boundary components, one obtains
the non compact pseudomanifold with (L, G)-singularities M ⇥ R. In particular, the
trivial extension on this cylindrical end gives a well-adapted wedge metric on M ⇥ R

which is of psc outside the compact M ⇥ [0, 1]. Then, by considering the Galois G-
covering of over M classified by the map f , one associates to M⇥R with such extended
metric its partial secondary local index class of Definition 7.42, and then in particular
the class in KOn+1(C⇤

r,RG) as in (7.14).

Remark 8.8. The same construction given before for the closed case and q > 0 can
be adapted similarly in the context of pseudomanifolds with (L, G)-singularities and
well-adapted wedge metrics. In any case, since the treatment presented here will not
use the case with q > 0, we will not report the details.

Definition 8.9. In the hypothesis above, we define the wedge-index-difference homo-
morphism as the following homomorphism, defined up to a choice of a well-adapted
wedge psc-metric g0 2 R

+
w (M) as base-point:

wInddi f f G
g0

: pq
�
R

+
w (M)

�
! KOn+1+q(C⇤

r,RG),

which works as just discussed.

Now we state the following straightforward result.

Lemma 8.10. Let M be a compact, spin stratified pseudomanifold with (L, G) singularities and
f : M ! BG be a proper map. Once fixed g0 2 R

+
w (M), then there exists a homomorphism

lg0 : p0(R+
w (M)) ! Rspin,(L,G)

n+1 (BG) such that the following diagram is commutative:

p0(R+
w (M)) KOn+1(C⇤

r,RG)

Rspin,(L,G)
n+1 (BG)

wInddi f f G
g0

lg0
IndG

rel , (8.5)

where IndG
rel indicates the homomorphism already introduced in Theorem 7.46.

Proof. We define lg0 as the mapping which sends a class [g1] 2 p0(R+
w (M)) to the class

[M ⇥ [0, 1], M t M, g0 t g1, f : M ⇥ [0, 1] ! BG], where f (x, t) = f (x).
Then, it is an immediate consequence of the definition of the IndG

rel map defined in
the previous section to check that:
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IndG
rel

�
lg0 [g1]

�
= wInddi f f G

g0
([g1]),

which is exactly the commutativity property we wanted to prove.

For what follows, it suffices to consider a restriction of the wedge-index-difference
to a fiber of the map resbM : R+

w (M) ! R
+(bM) defined previously. We indicated it as

R
+
w (M)gbM , which means that here we are restricting to those psc well-adapted wedge

metrics which induces on the depth-1 stratum bM the psc metric gbM. If one chooses
g0 2 R

+
w (M)gbM,0 as a base point, then in the same way as as before one obtains:

wInddi f f G
g0

: pq(R
+
w (M)gbM,0) ! KOn+1+q(C⇤

r,RG). (8.6)

Observe that in this particular case the interpolation can be always chosen such that
the metric on the stratum bM is kept fixed, and hence also on the tubular neighborhood
and on the boundary of the resolution Mr.

What we want want to prove now is an analogue of Theorem 8.7 in the wedge
context, i.e. about the rational surjectivity of the wedge-index-difference map (8.6). In
particular, this can be easily achieved by reducing (8.6) to a composition of a homotopy
equivalence and the ordinary index-difference for manifolds with boundary. This is
contained in the following result.

Proposition 8.11. Let M be a compact, spin stratified pseudomanifold with (L, G)-singularities,
Mr be its resolution and f : M ! BG as above. Then, if g0 2 R

+
w (M)gbM,0 is fixed, the map-

ping wInddi f f G
g0

factors as:

p0(R+
w (M)gbM,0) KOn+1(C⇤

r,RG)

p0(R+(Mr, ∂Mr)g∂,0)

wInddi f f G
g0

⇠

Inddi f f G
g∂,0

, (8.7)

where g∂,0 = iL(gbM,0) 2 R
+(∂Mr).

For the proof of this Proposition we will need the following result which relates
the index associated to a well-adapted wedge metric on M and the indices of the re-
strictions to the resolution Mr and to the tubular neighborhood N(bM). This is based
crucially on the K-theoretic relative index theorem due to Bunke in [10].

Assume that M is a compact spin stratified pseudomanifold with (L, G)-singularities
with boundary ∂M and f : M ! BG is a proper map. We know that M can be consid-
ered as:

M = Mr
[

∂Mr

N(bM),

i.e. as the union of its resolution Mr, which is a smooth manifold with corners, and the
tubular neighborhood N(bM) of its depth-1 stratum bM. Moreover, assume that g is
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a well-adapted wedge metric, such that on both ∂M and ∂Mr restricts to a psc metric
(recall that g is of product type near them).

We begin by attacching a cylinder on the boundary of M and extending trivially the
metric, i.e. obtaining:

M• := M
[

∂M
(∂M ⇥ [0, •)).

Then, observe that in particular this is a non compact spin stratified pseudomani-
fold with (L, G)-singularities without boundary, with a well-adapted wedge metric of
positive scalar curvature outside the compact M.

Moreover, M• can be considered as the union of the following spaces with cylin-
drical ends, i.e.:

M• = M•
r

[

∂M•
r

N•,

where:

M•
r := Mr

[
((Mr \ ∂M)⇥ [0, •)) ,

N• := N(bM)
[

((N(bM) \ ∂M)⇥ [0, •)) .

In particular, both are non compact spaces with equal boundary:

∂M•
r = ∂Mr

[
((∂Mr \ ∂M)⇥ [0, •)) .

By construction, both M•
r and N• have a psc metric of product type near their

boundary ∂M•
r . Then, by attaching two cylinders on both these spaces and extending

the psc metric trivially, one obtains M•
r,cyl and N•

cyl and call the respective metrics g•
r

and g•
N , which are both of psc outside a compact set. Observe that the first is a non

compact, complete manifold without bundary, while the second is still a non compact
pseudomanifold with (L, G)-singularities without boundary.

Proposition 8.12. Let M, M•
r,cyl and N•

cyl as just discussed. Then:

IndG
rel(M•, f ) = IndG

rel(M•
r,cyl, f |Mr) + IndG

rel(N•
cyl, f |N(bM)) 2 KOn(C⇤

r,RG), (8.8)

where the above indices are the ones as defined in (7.14) and where we emphasized the
mappings used to define the above classes.

Proof. The idea is to strictly follow the proof of [10, Theorem 1.2], see also [3, Propo-
sition 6.6]. In particular, following the notations there, we call W1 := M•

r , V1 := N•

which implies that:

M1 := M• = M•
r

[

∂M•
r

N•,

i.e. the union of W1 and V1 along their common boundary. Moreover, let W2 :=
∂M•

r ⇥ [0, •) and V2 := ∂M•
r ⇥ (�•, 0] and similarly:
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M2 := ∂M•
r ⇥ R.

Both spaces have metric with positive scalar curvature outside a compact set by
what discussed above: in particular, M2 has psc everywhere. Moreover, observe that
M2 is smooth, while M1 is stratified with (L, G)-singularities and both are non com-
pact.

Now, define:
M3 := W1

[

∂M•
r

V2 = M•
r,cyl,

M4 := W2
[

∂M•
r

V1 = N•
cyl.

In [10] it is required that all these Mi, for i = 1, . . . , 4, are partitioned by a compact
hypersurface. However, in our case this hypersurface is ∂M•

r for both M1 and M2,
which is non-compact, but by construction, since it is the product of a compact space
and the real line, a suitable tubular neighborhood can be determined inside all Mi.

Then one obtains the thesis by direcly applying [10, Theorem 1.2] substituting the
spaces Hl, l � 0, with the respective self-adjoint domains of the Atiyah-Singer oper-
ators of each spaces. As also remarked in [3, Proposition 6.6] (in the context of the
signature operator on stratified spaces), the assumption of the existence of a positive,
smooth, compactly supported function f such that (D2 + f )�1 exists, is satisfied since
(D2 + Id) is invertible by positivity of the operator D2 and approximating the con-
stant function one by suitable non negative, smooth functions compactly supported in
the respective regular parts (D in our case will be the Atiyah-Singer operators on the
spaces above).

Finally, formula (8.8) is obtained observing that the index for the space M2 vanishes
since M2 the metric is of positive scalar curvature everywhere.

Now we are ready to proceed to the proof of 8.11.

Proof of Proposition 8.11. First of all, we observe that the vertical homotopy equivalence
p0(R+

w (M)gbM,0) ! p0(R+(Mr, ∂Mr)g∂,0) in the diagram is simply given by taking the
class represented by the restriction of a representative to Mr.

By definition of the wedge-index-difference of [g1] 2 p0(R+
w (M)gbM,0), one firstly

construct the stratified space M⇥ [0, 1], endowing it with a well-adapted wedge metric
of product type near the two boundary components and restricting there to g0 and g1
respectively.

In particular, by construction such metric is induced by an interpolation gt between
g0 and g1 which keeps fixed gbM,0 on bM, i.e. such that for each t 2 [0, 1], resbM(gt) =
gbM,0.

Then, for each t, this path keeps fixed the metric g∂,0 = iL(gbM,0) on ∂Mr and on the
tubular neighborhood N(bM) too.

Therefore, M ⇥ [0, 1] is a compact, spin, stratified pseudomanifold with (L, G)-
singularities with boundary, whose resolution is obviously given by Mr ⇥ [0, 1], hence
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endowed with a metric which on its boundary ∂Mr ⇥ [0, 1] restricts to the psc metric
g∂,0 + dt2.

Then we are exactly in the situation of Proposition 8.12. However, by what dis-
cussed before, on the tubular neighborhood of the depth-1 stratum of M ⇥ [0, 1], the
metric is of psc everywhere. Then, there is no index contribution due to it, implying
that:

IndG
rel(M ⇥ R, f ⇥ Id) = IndG

rel((M ⇥ [0, 1])•
r,cyl, f |Mr ⇥ Id) 2 KOn+1(C⇤

r,RG).

Looking at this equation, the term on the left is by construction the KO-theory class
of wInddi f f G

g0
([g1]), while the term on the right is exactly Inddi f f G

g∂,0
([g1|Mr ]).

We emphasize that, to prove the previous proposition, the particular structure of
the well-adapted wedge metrics near the boundary of the resolution is necessary, namely
that there they are product-like.

8.3 Main result
As already pointed out, our goal was to present an analogue of Proposition 8.7 for the
index-difference in the wedge setting. This can be easily done in virtue of Proposition
8.11, since there is proved that the wedge-index-difference of a pseudomanifold re-
duces to that of its resolution, i.e. for a smooth, compact, spin manifold with boundary
for which 8.7 holds. Then, we summarize this in the following result.

Proposition 8.13. Let M be a compact, spin stratified pseudomanifold with (L, G)-singularities,
with link L simply connected. Moreover, let dim(M) = n � 6 and g0 2 R

+
w (M) 6= ∆. As-

sume that:

• there is a mapping f : M ! BG, G a discrete group, such that f⇤ : p1(M) ! G is
split-surjective;

• G satisfies the rational Baum-Connes conjecture;

• G is torsion-free and has finite rational homological dimension d.

Then:

wInddi f f G
g0
⌦ IdQ : p0

�
R

+
w (M)

�
⌦ Q ! KOn+1(C⇤

r,RG)⌦ Q

is surjective whenever d  n + 1.

Proof. As discussed above, this follows from 8.7, by applying Proposition 8.11. The
only point which needs to be discussed here regards the split surjectivity of the map
f |Mr , which is needed in order to apply Proposition 8.7 for the index-difference map of
the resolution.

This justifies the simply connectedness assumption on the link L: in this case, the
fibration ∂Mr ! bM induces an isomorphism between the fundamental group of the
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boundary of the resolution and the one of the depth-1 stratum bM, while by construc-
tion the tubular neighborhood has a deformation retract to bM.

Then, by Van Kampen’s Theorem:

p1(M) ' p1(Mr) ⇤p1(bM) p1(bM) ' p1(Mr),

and in particular the inclusion of the resolution Mr into M induces an isomorphism on
the fundamental groups. Therefore, the induced map ( f |Mr)⇤ of the restriction of f to
Mr is a composition of an isomorphism and f⇤, which is by hypothesis split surjective,
and then is a split surjective map too.

Finally, by Proposition 8.7 the mapping Inddi f f G
g∂,0

⌦ IdQ is surjective, and then by
(8.7) the surjectivity of the restriction of the wedge-index-difference to

p0

⇣
R

+
w (M)gbM,0

⌘
⌦ Q, where: gbM,0 = resbM(g0),

is obtained.

Corollary 8.14. With the same hypothesis of proposition 8.13, the map:

IndG
rel ⌦ IdQ : Rspin,(L,G)

n+1 (BG)⌦ Q ! KOn+1(C⇤

r,RG)⌦ Q

is surjective whenever d  n + 1.

Proof. The surjectivity of the rational wedge-index-difference map of proposition 8.13
implies the thesis using the commutativity of the diagram of lemma 8.10.

Now, let M be a compact, spin stratified pseudomanifold with (L, G)-singularities
of dimension n, and assume p1(M) = G be a discrete group. It is well known that M
admits a canonical map f : M ! BG up to homotopy, classifying its universal cover,
say M̃.

By general properties, this map is 2-connected, which we recall this means that f
induces isomorphisms on the i-th homotopy groups for i = 0, 1, while it induces a
surjective map for i = 2. Then, we know that f functorially induces maps:

f⇤ : Rspin,(L,G)
k (M) ! Rspin,(L,G)

k (BG),

which are isomorphisms for all k � 0 from Theorem 6.8.
Moreover, we have shown in 8.14 that under certain hypothesis on the group G,

the map IndG
rel is rational surjective. In particular, if G is a torsion-free group satisfying

the rational Baum-Connes conjecture, with rational homological dimension d such that
d � n � 1  0, then one obtains the following diagram, in which each map is assumed
to be tensorialized with the identity on Q:
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. . . Wspin,(L,G)
n+1 (M)⌦ Q Rspin,(L,G)

n+1 (M)⌦ Q Posspin,(L,G)
n (M)⌦ Q . . .

. . . Wspin,(L,G)
n+1 (BG)⌦ Q Rspin,(L,G)

n+1 (BG)⌦ Q Posspin,(L,G)
n (BG)⌦ Q . . .

. . . KOn+1(C⇤

L;G)⌦ Q KOn+1(C⇤
r G)⌦ Q KOn(C⇤

L,0;G)⌦ Q . . .

KOn+1(M)⌦ Q KOn+1(BG)⌦ Q

j i

f⇤

∂

f⇤⇠

j

f⇤

j i

IndG
L

∂

IndG
rel

j

rG

⇠

f]

µ⇠

(8.9)
Observe that the curved vertical arrow on the left represents the fact that the com-

position IndG
L � f⇤, can be thought as the composition:

Wspin,(L,G)
n (M)⌦ Q KOn+1(M)⌦ Q KOn+1(BG)⌦ Q,

f]

where the first arrow associated to a bordism class the pushforward of the funda-
mental class in KO-homology (see proposition 7.18) along the map with range in M of
the bordism class, while the second arrow is the one functorially induced by f . More-
over, observe that since all the objects here are abelian groups, hence Z-modules, by
tensorizing with Q one annihilates the torsion and obtains a Q-vector space.

We now state and prove the following theorem, which is inspired by a result due to
Schick and Zenobi (see [39, Theorem 1.1]).

Theorem 8.15. Let M be a compact, spin stratified pseudomanifold with (L, G)-singularities
of dimension n � 6 with link L simply connected. Assume that G = p1(M) satisfies all the
hypothesis of proposition 8.13 and denote by f : M ! BG the 2-connected classifying map of
the universal cover of M.

If:

k := dim
�
Coker

�
f] : KOn+1(M)⌦ Q ! KOn+1(BG)⌦ Q

��
,

then the following estimate holds:

rk
⇣

Posspin,(L,G)
n (M)

⌘
� k

Proof. As already remarked, all the hypothesis are needed to obtain a diagram like
(8.9). We want to show that using its properties, the rational bordism group Posspin,(L,G)

n (M)
is large at least as the Cokernel of f].

Take a non zero element of c 2 Coker( f]) ⇢ KOn+1(BG)⌦ Q and consider its image
under the assembly map µ(c) 6= 0 (recall that µ is an isomorphism since G is required
satisfying the rational Baum-Connes conjecture).
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Since both IndG
rel and f⇤ are surjective, we can consider the preimage of µ(c) along

their composition r 2 Rspin,(L,G)
n+1 (M) ⌦ Q. Now, we want to show that r is mapped

injectively in Posspin,(L,G)
n (M) using the boundary map ∂. This happens because r /2

Im(i). In fact, if r lies in the image of i, then take a preimage of r in Wspin,(L,G)
n+1 (M)⌦

Q: its image under the composition IndG
rel � f⇤ � i is by consturction µ(c), but then

by commutativity of (8.9), this would imply that c is in the image of f], which is a
contradiction.

Then, since Im(i) = Ker(∂) by exactness, r is mapped injectively in Posspin,(L,G)
n (M)⌦

Q.
Finally, the thesis is obtained by repeating this argument for all basis elements of

Coker( f]) and by recalling that the rank of an abelian group G (i.e. a Z-module) coin-
cides with the dimension of the Q-vector space G ⌦ Q.
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