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ABSTRACT
We consider the solid or hexatic non-equilibrium phases of an interacting two-dimensional system of active Brownian particles at high density
and investigate numerically and theoretically the properties of the velocity distribution function and the associated kinetic temperature.
We obtain approximate analytical predictions for the shape of the velocity distribution and find a transition from a Mexican-hat-like to
a Gaussian-like distribution as the persistence time of the active force changes from the small to the large persistence regime. Through a
detailed numerical and theoretical analysis of the single-particle velocity variance, we report an exact analytical expression for the kinetic
temperature of dense spherical self-propelled particles that holds also in the non-equilibrium regimes with large persistence times and discuss
its range of validity.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0029710., s

I. INTRODUCTION

Active matter at high density is becoming a subject of great
interest since it plays a crucial role to understand a broad range of
biological systems,1–4 such as bacterial colonies5–7 and cell mono-
layers.8 Experimental observations realized with cell monolayers
reveal large-scale collective motion, such as swirls and velocity align-
ment.8–12 In the spirit of minimal modeling, these systems have
been recently modeled using high-density interacting Active Brow-
nian Particles (ABPs),8,13 thus modeling the complex cells and cell–
substrate interactions through steric interaction and self-propulsion.
Depending on their density, interacting systems of ABP display
a variegate phenomenology. In particular, at moderate packing
fractions, a non-equilibrium phase-coexistence known as Motility-
Induce Phase-Separation (MIPS)14–18 occurs even in the absence of
attractive interactions.19–28 Depending on the active force and the
packing fraction, ABP can also attain homogeneous configurations,
such as active liquid, hexatic, and solid phases.29–35 With respect to
equilibrium systems of Brownian colloids, the active liquid–hexatic
and hexatic–solid transitions are shifted toward larger values of the
packing fractions, and the hexatic phase occurs for a broad range of
parameters.33,36–38 Moreover, the dense phases of interacting ABP
display a plethora of dynamical phenomena, making them quite
different as compared to passive dense phases. In particular, the

particle velocities spontaneously form ordered domains even in the
absence of explicit alignment interactions in phase-separated config-
urations19 and in active liquid, hexatic, and solid phases38 and give
rise to fascinating intermittency phenomena.38,39 The spontaneous
alignment mechanism makes the ABP models suitable to describe
the behavior of cell monolayers.

For systems of interacting ABP, several authors, searching for
an extension of equilibrium thermodynamic concepts, introduced
an effective “temperature” in the study of non-equilibrium sys-
tems of self-propelled particles. Following ideas from glassy sys-
tems, several authors introduce the dynamical effective temperature
by the ratio between the mean-square-displacement and the time-
integrated linear response function due to small perturbation, in the
context of active disks,40–49 dumbbells,50,51 and polymers,52 looking
both at active homogeneous (liquid, hexatic, and solid) configura-
tions and phase-separated regimes. In the homogeneous case, the
effective temperature increases as the propulsive speed increases and
decreases as the packing fraction grows. Instead, in the inhomoge-
neous case, i.e., when MIPS occurs, the net distinction between the
populations of the two coexistent phases, e.g., slow particles in the
dense clusters and fast particles in the disordered phase, allows us
to introduce two distinct effective temperatures.49 Mandal et al.53

focused on the kinetic temperature, i.e., the variance of the veloc-
ity distribution, for underdamped self-propelled particles, outlining
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that the temperatures in the two coexisting phases of MIPS are dif-
ferent. An alternative definition of the active temperature has been
also proposed in the context of stochastic thermodynamics to gener-
alize the Clausius relation to active systems, a program requiring the
introduction of a space-dependent temperature that depends on the
potential itself.54–56

In this work, we shall not discuss the concept of temperature in
non-equilibrium active systems,57 intended as an observable satis-
fying well-defined thermodynamic relations, an issue still a matter
of debate, but focus on the kinetic temperature of self-propelled
particles. We find its exact analytical expression as a function of
the model parameters for dense homogeneous configurations in the
non-equilibrium active solid and hexatic phases. We also obtain the
ABP single-particle velocity distribution in these highly packed con-
figurations as the persistence time of the self-propulsion varies. The
shape of this distribution obtained via numerical simulations is com-
pared with theoretical predictions both in the small and the large
persistence regimes. We find a crossover between the two regimes
that manifests itself in a qualitative change in the shape of the
velocity distribution.

This manuscript is organized as follows: in Sec. II, we intro-
duce the model, while in Sec. III, we report the velocity dynamics
representing the starting point of our theoretical approach. Numeri-
cal and theoretical results of single-particle velocity distributions are
shown in Sec. IV, while the analysis of the first moments of the distri-
bution and the discussion about the kinetic temperature are reported
in Sec. V. Finally, we report some discussions and conclusions in the
Sec. VI.

II. INTERACTING SELF-PROPELLED PARTICLES
We consider a two-dimensional system of N self-propelled

disks, described by the Active Brownian Particle (ABP) model,
where inertial and hydrodynamic effects are neglected. The posi-
tion, xi, of each disk evolves by the following stochastic differential
equation:

γẋi = Fi + f ai . (1)

The constant γ is the solvent friction coefficient while the stochastic
force associated with the thermal agitation of the solvent has been
neglected. Indeed, for several experimental active particle systems,1

the thermal diffusivity is some orders of magnitude smaller than the
diffusivity associated with the self-propulsion force, fai . According to
the popular ABP model, fai is a time-dependent force given by the
following equation:

fai = γv0ni, (2)

where v0 is the constant modulus of the swim velocity induced by
fai and ni is the orientation vector of components (cos θi, sin θi)
evolving through a stochastic process. In particular, the orientational
angle, θi, performs angular diffusion,

θ̇i =
√

2Dr ξi, (3)

where ξi is a white noise with unit variance and zero average
and Dr is the rotational diffusion coefficient. We remark that the
inverse of Dr defines the correlation-time of the active force, namely,
τ = 1/Dr ,58 which will be assumed as a control parameter in the
numerical study performed in this manuscript.

The term Fi represents the repulsive force between particles due
to steric interactions. In particular, Fi = −∇iU tot where the poten-
tial, U tot , can be expressed as U tot = ∑i<jU(|xij|), with xij = xi − xj.
We choose U(r) as a shifted, truncated Lennard Jones potential as
follows:19,59

U(r) = 4ϵ[(
σ
r
)

12
− (

σ
r
)

6
] + ϵ, r ≤ 21/6σ (4)

and zero for r > 21/6σ. The constant ϵ is the typical energy scale of
the interactions, while σ is the nominal particle diameter. The short-
range nature of the potential allows us to consider only the force
contributions of first-neighboring particles even in the very packed
configurations considered in this paper. Both ϵ and σ are set to one
for numerical convenience.

We focus on high density regimes exploring the homogeneous
aggregation phases of self-propelled particles. In particular, we fix
v0 = 50 and the packing fraction, ϕ = N/L2σ2/4, to the value 1.1,
where the system attains active solid or hexatic configurations with-
out showing density inhomogeneities.38 In particular, the hexatic–
solid transition is controlled by τ and occurs approximatively at
τ = 0.1. Under these conditions, we study the single-particle velocity
distribution varying τ and its moments. We can distinguish between
two regimes:38 (i) the small persistence regime where τ < U′′(r̄)/γ
and (ii) the large persistence regime where τ > U′′(r̄)/γ, with r̄ being
the average distance between neighboring particles that is fixed by
the density in any homogeneous configurations. In case (i), the self-
propulsion fai is the fastest degree of freedom: in this regime, the
persistence time, τ, is smaller than the typical time of the potential
U′′(r̄)/γ so that the behavior of ABP resembles that of passive Brow-
nian particles and xi just display oscillations around their equilib-
rium positions. Considering the structural properties of the system,
this regime is indistinguishable from the passive solid-state. In case
(ii), the evolution of fai plays a relevant role and affects the dynam-
ics of xi, manifesting itself in several dynamical anomalies19,38 due to
the intrinsic non-equilibrium nature of active models.

III. THE VELOCITY DYNAMICS
As already reported in Refs. 19, 38, and 60, the study of the

velocity dynamics reveals the existence of hidden collective behavior
of self-propelled particles at high density in the regime of large per-
sistence times. Nevertheless, many single-particle properties, such
as the velocity distribution and its moments, have not been yet
explored.

Following Ref. 19, we eliminate f ai in favor of vi = ẋi, i.e., the
velocity of the particle, which does not coincide with the swim veloc-
ity, v0ni, since the modulus of vi is not fixed and its orientation
is not parallel to ni. This statement is true when particles interact
and, thus, at high densities, in particular. Transforming the dynam-
ics from the variables (xi, fai ) to the new variables (xi, vi) (without any
approximations), the equations of motion read

ẋi = vi, (5a)

τγv̇i = −γ
N

∑
j=1

Γij(xi − xj)vj + Fi + τγki, (5b)

where each Γij is two-dimensional matrix with components
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Γαβij (rij) = δijδαβ +
τ
γ
∇iα∇jβU(∣rij∣). (6)

Greek indices are used to denote the spatial components α, β = x,
y, while Latin indices identify the particle number i, j = 1, . . ., N.
Finally, the term ki is a noise vector that reads

ki = v0

√
2
τ
ξi ×

γvi +∇iUtot

γv0
, (7)

where ξi is a vector with components (0, 0, ξi) and normal to the
plane of motion, (x, y, 0). The vector ki is a multiplicative noise
depending both on vi and Fi and is perpendicular to ni, i.e., the ori-
entation of the active force. Its amplitude scales simply as ∼ v0

√
2/τ

since ni is a unit vector.
The dynamics (5b) resembles the evolution of underdamped

passive particles that are out from equilibrium because of the occur-
rence of space-dependent friction forces (e.g., the diagonal terms
of the matrix Γ) and effective forces depending on positions and
velocities of neighboring particles (e.g., the non-diagonal terms of
Γ). Equation (5b) resembles the dynamics of the Active Ornstein–
Uhlenbeck particle (AOUP),61–68 an alternative model used to study
the behavior of self-propelled particles, such as the accumulation
near walls63,69,70 and MIPS.71,72 Upon a suitable mapping of the self-
propulsion parameters,73,74 the difference between AOUP and ABP
dynamics is represented by the noise term ki, which in the former is
a white noise vector with independent components.61,71

IV. PROBABILITY DISTRIBUTION FUNCTION
OF THE VELOCITY

We numerically study the distribution of the velocity in the
steady-state to evaluate the effect of the persistence time, τ. As illus-
trated in Figs. 1(a) and 1(b), the distinction between large and small
persistence regimes produces different shapes in the probability dis-
tribution function of the velocity, p(vx, vy). In the small-τ config-
urations shown in panel (a) [case (i)], p(vx, vy) has a pronounced
non-Gaussian shape: the probability of finding a particle with v ≈
0 is negligible, and the velocity of the particles is peaked around a
circular crown with radius ≈v0. Instead, in the large-τ configura-
tions reported in panel (b) [case (ii)], p(vx, vy) presents a Gaussian-
like shape quite similar to the case of passive Brownian particles.
Intuitively, in case (i), the self-propulsion changes rapidly without
producing any appreciable change in the particle positions giving
rise only to very small fluctuations. The net steric force exerted
by the neighboring particles on a tagged particle almost cancels
out and has a little effect on the particle velocity that, in practice,
only experiences the influence of the active force. This explains why
the distribution of v is very similar to the one of fa. On the con-
trary, in the large τ regime, this is no longer true. The direction
of the active force before appreciably changing need an interval ∼τ
much larger than the relaxation time associated with the interpar-
ticle potential, τp = U′′(r̄)/γ. Now, the resultant of the active and
steric forces nearly vanishes, and [see Eq. (1)] as a consequence, the
average velocity is almost zero and the single-particle kinetic energy
decreases.

FIG. 1. Probability distribution of the velocity. Panels (a) and (b): map of the two-dimensional probability distribution function, p(vx , vy), for two different values of τ = 10−5

[panel (a)] and τ = 10−2 [panel (b)]. Panels (c) and (d): marginal probability distribution function, p(vx), for several values of τ (colored lines). The dashed black lines in panel
(d) are obtained by numerical fits, obtained with Gaussian distributions. Panels (e) and (f): probability distribution of the velocity modulus, p(|v| = v), for different values of τ.
In particular, in panel (f), v is rescaled by τ so that v→ vτ2/5, showing the collapse of the p(v). Panels (c) and (e), and (d) and (f) share the captions. Numerical simulations
are obtained with v0 = 50, ε = σ = 1 = γ = 1.
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The transition from regime (i) to regime (ii) is quantitatively
evaluated in Figs. 1(c) and 1(d) where the marginal probability dis-
tribution of the velocity along one component, p(vx) = ∫dvyp(vx, vy),
is studied for different values of τ. For smaller values of τ, p(vx) dis-
plays two symmetric peaks near vx ≈ v0. When τ grows, the peaks
shift toward smaller values of vx and their heights decrease with
respect to the p(vx) value around the origin. For τ ≳ 2 × 10−4, the two
peaks merge and the bimodality of the distribution is suppressed,
while for further τ-values, a single pronounced peak placed at
vx ≈ 0 occurs. The deviation between p(vx) and a Gaussian distribu-
tion is not very pronounced as revealed in Fig. 1(d), as shown by the
comparison with the best Gaussian fit. To provide another perspec-
tive, we study the probability distribution of the velocity modulus,
p(v = |v|), in Figs. 1(e) and 1(f). In the small-τ regime [panel (e)], the
distribution is peaked around v = v0 displaying a quite symmetric
shape fairly described by a Gaussian centered in v = v0,

p(v) ≈ Nv exp [−
α
2
(v − v0)

2
], (8)

where N is a normalization factor and α is a parameter. We observe
that p(v) becomes narrow as τ grows, in the small-τ regime, but for
further values of τ, the peak of the distribution shifts toward smaller
values. After a crossover regime, occurring for intermediate values of
τ, the distribution p(v) approaches a Gaussian-like shape such that

p(v) ≈ v exp (−v2
/β), (9)

where 1/β = ⟨v2
⟩, consistently with the observations of panel (d)

of Fig. 1. Interestingly, in panel (f) of Fig. 1, we show that the v-
distribution collapses for v → vτ2/5 for a large range of τ between
(10−3, 10−1). Thus, 1/β, which plays the role of an effective temper-
ature, decreases as τ is enlarged. We remark that the scaling of p(v)
ceases to hold for values τ ≳ 10−1 when the homogeneous active
solid phase breaks down. These observations will be clarified in
Sec. IV A.

A. Theoretical predictions
From the set of stochastic equation (5), we derive the Fokker–

Planck equation for the probability distribution function, p = p({x},
{v}) (where the symbol {⋅} has been introduced to denote all the
space-components of the N particles),

∂

∂t
p = −vi ⋅ ∇xip +

1
τ
(Iij +

τ
γ
∇xi∇xjU)∇vi ⋅ (vjp)

+
∇xiU
τγ
⋅ ∇vip +

v2
0

τ
∇vi∇vj(Dijp), (10)

where Iij is the identity matrix and each element Dij is a 2 × 2
symmetric matrix of the form

Dij = δij

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n2
yi −nxinyi 0
−nxinyi n2

xi 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

We remark that each Dij is a non-diagonal matrix as a consequence
of the complex noise structure in Eq. (5) and of the fact that nx(y) is
a function of the particle velocity and position through Eq. (1). We

point out that Eq. (10) has the same form as the AOUP Fokker–
Planck equation except for the diffusion-like term [i.e., the term
containing Dij in Eq. (10)]. However, in the AOUP equation, the
non-diagonal matrix Dij is replaced by a diagonal one, D̃ij, with
components

D̃ij = δij

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

We observe that D̃ij can be obtained from Dij just by replacing
n2
x(y) and nxny by their averages, i.e., ⟨n2

x(y)⟩ = 1/2 and ⟨nxny⟩
= 0, respectively (with the addition of an extra factor 2 needed
for consistency between the parameters of the two models73). We
remark that even in the simplified AOUP case, the solutions of
Eq. (10) for τ > 0 and generic potential are only known in the
regime of small persistence, in particular, as an expansion in pow-
ers of τγ around a Gaussian distribution.68,71,75 On the contrary,
in the case of interacting ABP, there are neither asymptotic nor
approximated results for the probability distribution function of the
velocity.

Being the general solution of Eq. (10) unknown, we will employ
suitable approximations supported by numerical observations. In
Fig. 2, we report ⟨|F|⟩ and ⟨|v|⟩ as a function of τ. In the small-
persistence regime, v0 ≈ ⟨|v|⟩≫ ⟨|F|⟩, while in the large-persistence
regime, the opposite relation holds, namely, v0 ≈ ⟨|F|⟩ ≫ ⟨|v|⟩,
confirming the physical explanation mentioned before. Such an
observation will be crucial in the following to derive approximate
analytical solutions of p(v).

1. Large persistence regime
Using the observation v0 ≈ ⟨|F|⟩ ≫ ⟨|v|⟩, holding in the large

persistence regime, we have ni ≈ ∇iU, and the diffusive matrix can
be approximated as follows:

Dij ≈ δij
1

v2
0γ2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(∇yiU)
2

−∇yiU∇xiU 0
−∇yiU∇xiU (∇xiU)

2 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

FIG. 2. ⟨|v|⟩ (yellow data) and ⟨|F|⟩ (green data) as a function of τ. The black
dashed line is drawn in correspondence to v0 that is chosen as v0 = 50 in the
numerical simulations. The other parameters are ε = σ = γ = 1.
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In the active solid phases, where the defects of the crystalline
arrangement are negligible, the sum of the forces exerted by neigh-
boring particles cancel out, and we can assume ∇xi(yi)U = 0. In
other words, our approximation consists in replacing ∇xi(yi)U with
⟨∇xi(yi)U⟩ = 0. This is true only in the high-density regime where
we can approximate the gradient of the potential expanding the dis-
tance between neighboring particles around r̄. Since ⟨∇xiU∇yiU⟩
= ⟨∇xiU⟩⟨∇yiU⟩ = 0 and ⟨∇xiU∇xiU⟩ = v

2
0 , we obtain that Dij ≈ D̃ij,

proving that at very high density in the large persistence regime, the
ABP velocity dynamics is well approximated by the AOUP dynam-
ics. Even with this simplification, an exact solution is not known,
and we shall employ an approximation for the many-body velocity
distribution as follows:61

p({v}∣{x})∝ exp
⎛

⎝
−

1
2v2

0
∑
ij
vi ⋅ Γij ⋅ vj

⎞

⎠
. (11)

p({v}|{x}) is a multivariate Gaussian coupling the whole set of veloc-
ities through the space dependent matrix Γij. We remark that the
prediction (11) is not the exact solution of the Fokker–Planck equa-
tion associated with the AOUP interacting dynamics, but it is a suit-
able approximation that works in the large persistence regime. This
prediction has been tested in several cases, even under the action of
external potentials.55,76

In the active solid phase, the matrix Γij, which depends on parti-
cles’ relative positions, simplifies due to the hexagonal structure and
the short-range nature of the interaction potential. Thus, the condi-
tional probability distribution of vi (i.e., knowing the velocity of the
other particles) is given by Eq. (11) where the sum is restricted to
the first six neighbors of the target particle. Integrating out all the
velocity degrees of freedom except vi, we still obtain a Gaussian dis-
tribution with zero average, confirming the shape reported in Fig. 1
in the small persistence regime,

p(v)∝ exp(−
β
2
v2
), (12)

where β is the variance of the distribution or the inverse of the kinetic
temperature. Its exact expression as a function on the active force
parameters will be derived in Sec. V.

2. Small persistence-regime
In the small persistence regime, the AOUP approximation is

no longer valid, as numerically shown in Fig. 1. Indeed, according to
the AOUP model, the shape of p(vx, vy) should always be Gaussian
(with asymptotic corrections) at variance with our numerical results
obtained with ABP simulations. As shown in Fig. 2, we simplify the
noise matrix assuming v0 ≈ ⟨|v|⟩≫ ⟨|F|⟩, obtaining

Dij ≈ δij
1
v2

0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v2
y −vyvx 0

−vyvx v2
x 0

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (13)

The Fokker–Planck equation (10) with the matrix (13) (in the small
τ limit) turns to be

∂

∂t
p ≈ −vi ⋅ ∇xip +

1
τ
∇vi ⋅ (vjp)

+
∇xiU
τγ
⋅ ∇vip +

v2
0

τ
∇vi∇vj[Dijp]. (14)

Neglecting the term ∝ ∇xiU because the forces almost cancel out
in the solid phase (and their modulus is smaller than the velocity
modulus, as shown in Fig. 2), we can easily check that Eq. (14) admits
a solution of the form

p(vx, vy)∝ exp [−
α
2
(∣v∣ − v0)

2
]. (15)

The shape of Eq. (15) corresponds to the Cartesian version of the
velocity distribution shape numerically observed, i.e., Eq. (8).

V. THE KINETIC TEMPERATURE
In Fig. 3, we show the first two moments of the velocity modu-

lus distribution as a function of τ, namely, ⟨|v|⟩ and ⟨v2
⟩. The latter

coincides by definition with the kinetic temperature of a system of
ABP, and for this reason, we will denote ⟨v2

⟩ simply as “kinetic
temperature” in the rest of this paper. For τ ≲ 10−4, the system is
in the small persistence regime [case (i)] and both ⟨|v|⟩ and ⟨v2

⟩

are roughly constant with τ, being approximatively ⟨|v|⟩ ≈ v0 and
⟨v2
⟩ ≈ v2

0 . We recall that in this regime, the interparticle forces
almost balance and the velocity displays the same statistical proper-
ties of the self-propulsion in such a way that the kinetic temperature
does not display any τ-dependence. Upon increasing τ, the values
of ⟨|v|⟩ and ⟨v2

⟩monotonically decrease reaching very small values.
The more persistent is the particle motion, the slower it becomes,
and as a consequence, the kinetic temperature decreases mono-
tonically with τ. After a crossover regime occurring for 10−4

≲ τ
≲ 10−3, a clear power-law scaling with τ appears for 10−3

≲ τ ≲ 10−1

in both the moments. In particular, we have ⟨|v|⟩ ∼ v0(γτ)−2/5 and
⟨v2
⟩ ∼ v2

0(γτ)−4/5, as clearly shown in Fig. 3. The validity of these
scalings ceases approximatively at τ = 10−1, i.e., near the solid–
hexatic transition. Starting from this value of τ, both ⟨|v|⟩ and ⟨v2

⟩

decrease slower than ∼τ−2/5 and ∼τ−4/5 as the persistence time is
increased without showing any clear power-law scaling with τ.

In what follows, we develop an exact, analytical prediction
valid in the active solid-state for the kinetic temperature, which will
explain the scaling with τ numerically observed, shedding light also

FIG. 3. ⟨v2
⟩ (red data) and ⟨|v|⟩ (blue data) as a function of τ. The colored dashed

lines are plotted as guides to the eye, while the solid red line represents the theo-
retical prediction, Eq. (20). Numerical simulations are realized with v0 = 50 and ϵ
= σ = γ = 1.
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on the role of the other parameters. Indeed, the periodicity of the
almost-solid structure and, in particular, its hexagonal order sug-
gests switching in the Fourier space to perform calculations.38,60 As
reported in the Appendix, the velocity correlation in the Fourier
space reads

⟨v̂q ⋅ v̂−q⟩ =
v2

0

1 + τ
γω

2
q

, (16)

where v̂q is the Fourier transform of the velocity vector v and q = (qx,
qy) is a vector of the reciprocal Bravais lattice. The factor ω2

q has the
following form:

ω2
q = −2 K[cos(qx r̄) + 2 cos(

1
2
qx r̄) cos(

√
3

2
qy r̄) − 3], (17)

where the dimensional constant K reads

2K = U′′(r̄) −
U′(r̄)
r̄

(18)

and r̄ is the average distance between neighboring particles. To
obtain the variance of the velocity, we need to go back to the real
space calculating the inverse Fourier transform in the origin as
follows:

⟨v2
⟩ =

v2
0

N2 ∑
q

1
(1 + τ

γω
2
q)

. (19)

Taking the continuum limit in the q-sum and accounting for the
periodicity of the lattice, we restrict the integral to the first Brillouin
zone,

⟨v2
⟩ ≈ v2

0I[
τ
γ
], (20)

where

I[ τ
γ
] =

r̄2

∣B∣ ∫B
dq

1
(1 + τ

γω
2
q)

, (21)

and ∣B∣ is the area of the Brillouin region associated with the hexag-
onal lattice. We remark that it is not possible to approximate ω2

q for
small q truncating at the quadratic order since the integral diverges
at q = 0. To the best of our knowledge, Eq. (20) is the first analytical
expression for the kinetic temperature of interacting self-propelled
particles that does not require fitting parameters. We observe that
our expression increases quadratically with v0 in agreement with
the previous results,49 while the dependence on packing fraction
and persistence time is contained in the integral I[ τγ ]. As shown
in Fig. 3 (see the comparison between red points and the solid red
line), Eq. (20) is in fair agreement with numerical data when the
system attains solid configurations for τ ≲ 10−1. On the one hand,
I[0] ≈ 1 for small values of τ, while on the other hand, the numer-
ical integration of I confirms both the crossover regime and the
scaling ∼(τ/γ)−4/5 in the large persistence regime. For τ ≳ 10−1,
Eq. (20) underestimates the values of ⟨v2

⟩ with respect to numer-
ical data because for these values of τ, the structure of the system
is no longer a solid without defects. Thus, a fundamental hypoth-
esis behind the derivation of the prediction is violated, and thus,
Eq. (20) is no longer valid. In particular, it has been already shown
that, in the proximity of defects, active particles have kinetic energies

much larger than the ones in the absence of defects, as occurring in
active solid configurations.38 This is a clue to understanding why the
decrease in ⟨v2

⟩ with τ in active hexatic phases is slower than the
decrease for active solids. We remark that the kinetic temperature
contains also the dependence on the packing fraction through the
constant K [see Eqs. (17)–(19)]. Indeed, K is mainly determined by
the second derivative of the potential calculated at r̄ that is uniquely
fixed by the packing fraction in any homogeneous configurations.
The larger the ϕ, the larger theK and, thus,ω2

q. Therefore, the growth
of ϕ induces the decrease in the kinetic temperature through the
non-linear derivatives of the function U(x̄). The explicit depen-
dence on the potential shape is in agreement with the previous
studies based on temperature definitions derived in simpler cases,
namely, a one-dimensional particle confined through an external
potential.54,55

A. Higher-order moments and non-Gaussianity
Despite that the equilibrium-like Gaussian prediction is a good

approximation of the velocity distribution, at least in the large per-
sistence regime, even from Fig. 1(d), clear deviations from the Gaus-
sian theory are evident in its tails. To get a quantitative analysis
of the non-Gaussianity, we report the behavior of the higher-order
moments in Fig. 4. In particular, we show the kurtosis of the vx-
distribution, namely, ⟨v4

x⟩/⟨v
2
x⟩

2. This observable is rather small
(around ∼1) in the small-τ regime as a result of the non-Gaussianity
of the distribution [Fig. 1(c)]. On the contrary, in the Gaussian-
like regime, for τ ≳ 10−3, the kurtosis shows just small departures
from the Gaussian prediction corresponding to ⟨v4

x⟩/⟨v
2
x⟩

2
= 3. In

particular, our numerical observations reveal that ⟨v4
x⟩/⟨v

2
x⟩

2
≥ 3,

meaning that the tails of the distribution are a little fatter than the
Gaussian prediction. Finally, for larger values of τ, i.e., for τ > 10−1

at the solid–hexatic transition point, the kurtosis abruptly increases,
and the system departs from the Gaussian-like regime. As already
mentioned, this is consistent with the occurrence of intermittency

FIG. 4. ⟨v4
x⟩/⟨v

2
x⟩

2 (blue data) and ⟨v2
xv

2
y ⟩/⟨v

2
x⟩

2 (red data) as a function of τ.
The colored solid lines are guides to the eye, while the dashed black lines are
marked in correspondence to ⟨v4

x⟩/⟨v
2
x⟩

2
= 3 and ⟨v2

xv
2
y ⟩/⟨v

2
x⟩

2
= 1, i.e., at

the expected values for a velocity following the Gaussian statistics. Numerical
simulations are realized with v0 = 50 and ε = σ = γ = 1.
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phenomena in the hexatic phase38 that manifest themselves also in
high and non-Gaussian peaks in the time-trajectory of the single-
particle kinetic energy. As a further confirmation, a similar scenario,
consistent with the observation regarding the kurtosis, occurs for the
observable, ⟨v2

xv
2
y⟩/⟨v

2
x⟩

2. In particular, ⟨v2
xv

2
y⟩/⟨v

2
x⟩

2
≲ 1 in the small

persistence regime, 1 for regime with 10−3
≤ τ ≤ 10−1 (as expected

in Gaussian regimes), and ≳1 when the hexatic phase occurs.

VI. DISCUSSION AND CONCLUSIONS
In this paper, we have studied the velocity properties of highly

packed systems of self-propelled particles (active hexatic and solid
phases) to understand the influence of the activity. A transition from
Mexican-hat-like velocity distribution (i.e., peaked in the proximity
of a circular crown with a radius larger than zero) to Gaussian-like
velocity distribution is observed going from the small persistence to
the large persistence time regime. Analyzing the velocity dynamics,
we derive suitable approximations to predict the functional form of
the probability distribution function of the velocities in both these
regimes. Concerning the active solid, we derive by a Fourier-space
method a theoretical expression for the variance of the velocity dis-
tribution, giving the kinetic temperature of ABP in this phase. Thus,
on the one hand, we have derived new approximate analytical results
concerning the velocity distribution of ABP particles holding both
near and far from equilibrium, and on the other hand, we have pro-
vided the analytical expression for the active kinetic temperature in
the solid phase.

At least in homogeneous solid configurations, the analyti-
cal expression for the kinetic temperature reported in this work
increases quadratically with the swim velocity of the self-propelled
particles (that is proportional to the Peclet number). This quadratic
scaling has been also observed by means of different definitions
of temperature, such as the active effective temperature.50,52 Our
expression of the kinetic temperature also displays a monotonic
decrease as a function of the packing fraction in agreement with Ref.
49 where the effective temperature has been considered. Our results
show that the kinetic temperature contains a strong dependence on
the shape of the interacting potential in agreement with another tem-
perature definition obtained in the case of a single-particle confined
through an external potential.54,55 Thus, the concavity of the poten-
tial plays a fundamental role not only for confined non-interacting
active particles76 but also for interacting systems, being relevant to
determine the velocity variance (and, thus, the kinetic temperature)
in both cases. While the kinetic temperature does not show a depen-
dence on τ in the small persistence regime, a power-law decay with
τ is numerically observed and theoretically predicted in the large
persistence regime. We remark that our predictions are valid in the
active solid-state while does not work where orientational and/or
positional orders are broken (i.e., active hexatic and liquid state,
respectively). In those cases, the occurrence of large non-Gaussianity
and intermittency phenomena in the time-trajectory of the kinetic
energy is consistent with the failure of the theoretical predictions.38
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APPENDIX: THE KINETIC TEMPERATURE OF ACTIVE
PARTICLES IN THE SOLID-STATE

To develop a prediction for the kinetic temperature of self-
propelled particles in the active solid state, we shall employ two
approximations to simplify the dynamics, Eq. (1). (i) The dynam-
ics of each component of fai is replaced by independent Ornstein–
Uhlenbeck processes with equivalent persistence time, τ = 1/Dr , and
variance v2

0 in such a way that ⟨|fa|⟩ = v0 consistently with the ABP
model. (ii) Each particle oscillates around a node of a hexagonal lat-
tice so that the total interparticle potential is approximated as the
sum of quadratic terms. With these two assumptions, the original
dynamics, Eq. (1), becomes

ẋi(t) = f a(t)i −
n.n

∑
j

∇iU(∣xj − xi∣)
γ

, (A1)

τḟai (t) = −f
a
(t)i + v0

√
2τ ξi(t), (A2)

where the sum involves the nearest neighbors of the lattice node i
and the symbol ∇i is the gradient with respect to xi. Introducing
the displacement ui of the particle i with respect to its equilibrium
position, x0

i , namely,

ui = xi − x0
i , (A3)

we obtain

u̇i(t) = f a(t)i +
K
γ

n.n

∑
j
(uj − ui), (A4)

τḟai (t) = −f
a
(t)i + v0

√
2τ ξi(t), (A5)

with K being the strength of the potential in the harmonic approxi-
mation, i.e., U ≈ K

2 (uj − ui)
2, that explicitly reads

2 K = (U′′(r̄) +
U′(r̄)
r̄
),

where r̄ is the lattice constant. Because of the linearity of the sys-
tem, it is useful to switch to normal coordinates in the Fourier space
representation,

ûq =
1
N ∑i

ui e−iq⋅x
0
i , (A6)

η̂q =
1
N ∑i

ηi e
−iq⋅x0

i , (A7)

where ûq and η̂q are the Fourier transform of u and f a, respectively.
The dynamics in the Fourier Space reads

d
dt
ûq(t) = −

ω2
q

γ
ûq(t) + η̂q, (A8)

τ
d
dt
η̂q(t) = −η̂q + v0

√
2τ ξ̂q, (A9)
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where

ω2
q = −2 K[cos(qx r̄) + 2 cos(

1
2
qx r̄) cos(

√
3

2
qy r̄) − 3],

where q = (qx, qy) are vectors of the reciprocal Bravais lattice. Defin-
ing v̂q as the Fourier transform of the velocity v that satisfies v̂q
= d

dt ûq, we can easily calculate the steady-state equal time correla-
tions in the Fourier space, that is,

⟨v̂q ⋅ v̂−q⟩ =
2v2

0

1 + τ
γω

2
q

. (A10)

Equation (A10) is the final expression for the spatial velocity corre-
lation in the Fourier space and corresponds to Eq. (16).
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