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Abstract

We discuss various limits of a simple random exchange model that can be used for the distribution
f wealth. We start from a discrete state space — discrete time version of this model and, under suitable
caling, we show its functional convergence to a continuous space — discrete time model. Then, we show
thermodynamic limit of the empirical distribution to the solution of a kinetic equation of Boltzmann

ype. We solve this equation and we show that the solutions coincide with the appropriate limits of
he invariant measure for the Markov chain. In this way we complete Boltzmann’s program of deriving
inetic equations from random dynamics for this simple model. Three families of invariant measures
or the mean field limit are discovered and we show that only two of those families can be obtained as
imits of the discrete system while the third is extraneous.
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1. Introduction

This study was originally motivated by a new approach to macroeconomics modelling based
n (1) continuous-time Markov chains to model stochastic dynamics interactions among agents
nd (2) combinations of stochastic processes and combinatorial analysis, called combinatorial
tochastic processes [35]. Such an approach was extensively presented in [1]. Those authors
rgue that, in case (1), the master equation describes how states of the models evolve
tochastically in time and, in case (2), combinatorial stochastic processes are applied to
escribe the random formation of clusters of agents as well as the distribution of cluster sizes.
athematically, the two approaches are so strictly related that it is not necessary to distinguish

etween them. This point was already implicitly made in Chapter 10 of [24]. Moreover, both
pproaches are related to kinetic equations of Boltzmann type used in statistical physics [34].

We previously worked on the class of Markov-chain models described below in [13] where
e focused on the existence and uniqueness of the invariant measures and on the stability of

he Markov chains. Some results in this article can be found in the expository chapter [12],
ritten with an eye for economists and with all the proofs omitted.
We explore the connection between combinatorial stochastic processes and kinetic equations

f Boltzmann type via functional limit theorems of properly scaled processes in the spirit
f [3,22,27].

In this article we study a simple discrete model for wealth dynamics using a coagulation —
ragmentation process. This is the same as the one in [12,13].

The discrete space, discrete time (DS-DT) model is a Markov Chain on the integers partitions
f n that have size N . In other words, the state space is comprised of all non-negative integer
ectors xn,N

= (x1, . . . , xN ) ∈ ZN
+

so that
∑N

i=1 xi = n. Note that in here the word “partition”
does not mean that the xi are ordered in a non-decreasing order but rather corresponds to what
is called“compositions” (for example see [35]).

The xi ’s represent the wealth of the i th individual and the superscripts are there to remind us
of the total wealth and number of agents. We denote the state space by S(n)

N−1 = n∆N−1 ∩ ZN ,
here

∆N−1 =

{
x = (x1, . . . , xN ) : xi ≥ 0 for all i = 1, . . . , N and

N∑
i=1

xi = 1
}
, (1.1)

s the N -dimensional unit simplex.
At every discrete time step, we choose an ordered pair of indices from 1 to N uniformly at

random (say (i, j)) and add the individual wealths xi + x j of the agents. After that, the first
chosen agent i receives a uniform portion of the total wealth between 0 and xi +x j and the rest
goes to the second agent j . Let Xn,N

t denote the wealth distribution at time t . The transition
probabilities for this chain are given by

P{Xn,N
t+1 = x′

|Xn,N
t = x} =

∑ ⎧⎨⎩ 1
N

1
N − 1

1
xi + x j + 1

δxi +x j ,x ′
i +x ′

j

∏
δxk ,x ′

k

⎫⎬⎭ . (1.2)

(i, j):i ̸= j k ̸=i, j

249
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By symmetry, the transition matrix for the chain is doubly stochastic, therefore the invariant
distribution is uniform on S(n)

N−1 which is also obtained as t → ∞ because of irreducibility and
aperiodicity.

After studying the discrete chain, it would be more realistic to allow the total wealth n to
ncrease, but in general that would only alter the state space. However, there is way to converge
o a continuous space, discrete time (CS-DT) model, if we alter the discrete model slightly. In
articular, instead of looking at the distribution of wealth, we look at the distribution of the
roportion of wealth, namely the process Yn,N

= n−1Xn,N which is a rescaling of the original
iscrete process by the total wealth. The state space for the Yn,N process is the meshed simplex

∆N−1(n) =

{
(q1, . . . , qN ) : 0 ≤ qi ≤ 1,

N∑
i=1

qi = 1, nqi ∈ N0

}
⊂ ∆N−1. (1.3)

hen in [13], it was shown (Proposition 3) that as n → ∞ one had the weak convergence of
ne-dimensional marginals

Yn,N
t H⇒ X∞,N

t as n → ∞, (1.4)

nder the mild assumption that the initial distributions of Yn,N , µ
n,N
0 converge weakly to some

istribution µ
∞,N
0 on ∆N−1. The process X∞,N

t is identified as a continuous space, discrete
ime Markov chain on ∆N−1. At each discrete time step t , an ordered pair of agents, say (i, j)
s selected uniformly at random, with total proportion of wealth xi + x j . Then an independent
niform random variable ut,(i, j) ∼ Unif[0, 1] is drawn and the new proportion of wealth for
gent i is ut,(i, j)(xi + x j ) while for agent j is (1−ut,(i, j))(xi + x j ). Note that the agents’ wealth
s an exchangeable random variable; while the description above needs ordered pairs of agents,
t has no bearing on the distribution of the eventual wealth, as both ut,(i, j) and 1 − ut,(i, j) are
niformly distributed on [0, 1].

For the CS-DT chain X∞,N
t , it was further shown that the invariant distribution of wealth

roportions as t → ∞ is uniform on ∆N−1.
Here, we go a few steps further. First, we show the process level convergence

Yn,N
H⇒ X∞,N as n → ∞, (1.5)

y showing convergence of the finite dimensional marginals of the process. Then, using the
oissonization trick [36], we will change time and consider a continuous-time version of our
ontinuous-space Markov chain. In an other appropriate scaling limit, this will lead to one-
imensional kinetic equations of Boltzmann type as studied e.g. in [2]. Stochastic mean-field
ynamics for interacting particle systems are well-studied; for example see [9] for models
here components are exchangeable, as in our model here.

.1. Kinetic equations for wealth models

A one-dimensional caricature of the three-dimensional Boltzmann equation for Maxwell
olecules is the Kac model. While simpler, it retains key properties of the original Boltzmann

quation, such as energy conservation in binary collisions. The Kac equation has been deeply
nalysed using Fourier analysis techniques, e.g. in [4,5]. This model also allows for a rigorous
assage from the kinetic model with binary interactions to a Fokker–Planck equation in the
razing collisions limit [39,43].
250
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In the last two decades, the mechanism of the binary interaction, originally developed for
he Boltzmann equation, has been fruitfully adapted to describe collective dynamics in many-
gent socio-economic systems. The basic idea is to describe the behaviour of a sufficiently
arge number of interacting agents in the socio-economic system by pairwise, microscopic
nteractions, similar to the physical models of rarefied gas dynamics, where molecules collide
nside a container. One can then study the long-time dynamics of the system and observe
he formation of macroscopic distributions, depending on the details of the microscopic
nteractions. This approach has been successfully followed to model wealth distribution in
imple market economies [8,16,19,20], wealth distribution under taxation [17,41], opinion
ormation [15,21,40], asset pricing [14], continuous models for ratings [18,26], and others.

.2. Kinetic equations as limits of discrete particle models

The derivation of kinetic equations from discrete particle models is classical in kinetic
heory. This is generally a hard problem that involves proving that ‘propagation of chaos’
olds for the system. This corresponds to showing that the particles become statistically
ndependent when their number grows large. Typically, proving propagation of chaos allows to
lose the BBGKY hierarchy, i.e., the hierarchy of equations giving the evolution of the marginal
istributions associated to the system [6,37]. In the case of the classical Boltzmann equation,
hich describes hard-sphere collision dynamics, the kinetic limit was shown in [30], though

here is still a proof missing for long times [23].
In this work we will use a probabilistic approach in order to obtain the kinetic equation

f the system under consideration. On this account, Sznitman [38] showed the kinetic limit
or McKean–Vlasov systems of Stochastic Differential equations using a coupling argument.
his argument has been further extended recently in [11] to a piece-wise deterministic Markov
rocess. Previous works also investigate the speed of convergence to the kinetic equation in
erms of the number of particles.

For our results, we must use a different approach, since we consider a pure jump process.
articularly, the methodology used is based on computing the limit of the martingale formu-

ation associated to the jump (Markov) process. The methodology used here has been applied
ith great success to the investigation of coagulation models and the Smoluchowski equation

n [32,33] and later to a system of instantaneous coagulation–fragmentation processes in [31].

.3. Content and structure

In Section 2, we introduce the three connected models of the evolution of wealth, and
resent our results. The first one is an alternative formulation of the discrete model (discrete
pace, discrete time) with conserved wealth. The state space of the process is a discrete
nite dimensional simplex. The dimension is the number of agents, and at each time step

wo agents interact (or collide). The Markovian evolution of the process is that of a discrete
oagulation–fragmentation process.

The second model is obtained as a scaling spatial limit of the first one and is effectively
he continuous space, discrete time analogue. Section 3 is dedicated to show process level
onvergence from the discrete to the continuous space model. Finally, the third model is the
ean-field continuous limit for the empirical distribution of wealth. Agents are viewed as

articles with binary interactions. In Section 4, by assuming the coagulation–fragmentation
251
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process jumps at the times of a Poisson process and letting the number of agents tend to
infinity while appropriately scaling time, we obtain the relevant kinetic equations.

Section 5 is concerned with invariant distributions for the kinetic equation. While we
nd at least three potential invariant measures for the limiting empirical wealth (a delta, an
xponential and a family of truncated exponential distributions) we show that from the particle
ystem description only two of these are acceptable limits (the delta and the exponential). This
ighlights the power of the probabilistic approach, as a purely analytical one would not be
ble to a priori exclude that family. Similar laws of large numbers for empirical measures of
article systems can be found for a huge class of processes in the literature, e.g. [25].

To make the paper as self-consistent as possible, we have included an appendix on functional
imit theorems for stochastic processes.

. The models and results

We briefly describe the various models we are using, and collect the main results for an
rganised reference.

We consider N agents (originally N is fixed) and wealth WN (originally fixed to be and
nteger denoted by n).

.1. Equivalent construction of the DS-DT process.

For any n ∈ N the process Y(n) is defined on ∆N−1(n) given by (1.3), and we emphasise
hat for every n, ∆N−1(n) ⊂ ∆N−1, given by (1.1). ∆N−1(n) is treated as the meshed simplex

N−1; the mesh size is n−1, which is precisely the reciprocal of the total wealth Wn = n.
Let Pn denote the law of the process Y(n)

= (Y(n)
0 , Y(n)

1 , . . . , Y(n)
k , . . .) ∈ (∆N−1(n))N0 ⊂

∆N−1)N0 . The measure for k + 1-th dimensional marginal (Y(n)
0 , Y(n)

1 , . . . , Y(n)
k ) is denoted by

Pn
k {·} = Pn{(Y(n)

0 , Y(n)
1 , . . . , Y(n)

k ) ∈ ·
}
. (2.1)

imilarly, denote by P∞ and P∞

k the corresponding quantities for X∞. The law of Y(n)
0 , X(∞)

0
re denoted by µ

(n)
0 = P (n)

0 and µ
(∞)
0 = P (∞)

0 respectively.
Starting from an initial distribution µ

(n)
0 we construct the process Y(n) using an i.i.d. sequence

f uniform random variables

U (n)
i, j (k) ∼ Unif[0, 1], 1 ≤ i, j ≤ N , i ̸= j, k ∈ N0, n ∈ N. (2.2)

hese random variables from (2.2) suffice to construct the whole process. The variable k plays
he role of time index, and (i, j) is the ordered pair of agents that are selected. We assume

and use without a particular mention – that random variables (2.2) are independent of the
nitial distribution µ

(n)
0 .

For any x ∈ R+ we define

[x]n =
a
n
, so that

a
n

≤ x <
a + 1

n
, a ∈ N0,

nd use this symbol for notational convenience when we define the evolution of the process
irectly on ∆N−1(n).

Let Y(n)
k = (y1(k), . . . , yN (k)) ∈ ∆N−1(n) be the vector of discrete wealths, normalised so
hat the total wealth is 1. Then, if indices i. j were chosen to interact at time step k, the total

252
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Fig. 1. Commutative diagram demonstrating the various limiting measures, depending on the order limits are taken,
when the total wealth remains constant. Measures µ

n,N
∞ and µ

∞,N
∞ denote the invariant distributions for the two

arkov chains respectively.

ealth at time k + 1 would become

Y(n)
k+1 = (y1(k), . . . , [U (n)

i, j (k)(yi (k) + y j (k))]n  
yi (k+1)

, . . . , yi (k) + y j (k) − yi (k + 1)  
y j (k+1)

, . . . , yN (k))

= gi, j (yk, U (n)
i, j (k)).

heck to see that the coordinate [U (n)
i, j (k)(yi (k) + y j (k))]n is uniformly distributed on the set

0, n−1, . . . , (yi (k) + y j (k) − n−1) ∨ 0}, and therefore this procedure gives the same process as
escribed in [13]. The function gi, j is a measurable function that depends on the value of the
urrent state and the new uniform random variable, and the last display acts as the definition
f gi, j .

We prove the following theorem, which guarantees process-level convergence.

heorem 2.1. Assume the weak convergence of measures

µ
(n)
0 H⇒ µ

(∞)
0 , as n → ∞. (2.3)

urthermore, assume the weak convergence (as n → ∞) of the i.i.d. sequence

{U (n)
i, j (k)}i, j,k H⇒ {U (∞)

i, j (k)}i, j,k, (2.4)

o that the limiting sequence {U (∞)
i, j (k)}i, j,k is a sequence of i.i.d. uniform [0, 1] random

ariables, chosen in such a way that are also independent from µ
(∞)
0 .

Then

Pn
H⇒ P∞, as n → ∞.

The theorem gives that the order in which we take limits in the diagram of Fig. 1 is
mmaterial and the diagram is commutative. This will be proven in Section 3. Horizontal arrows
n the diagram of Fig. 1 denote weak convergence, but the top one can be upgraded to almost
ure convergence if we are concerned with finite sample paths (see also Remark 3.1). Note
hat assumption (2.4) is merely an implicit definition of the limit sequence and it does not
253
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impose any restriction in the theorem. When we only seek weak convergence (as stated), the
limit sequence can be any i.i.d. uniform sequence, and the condition is automatically satisfied.

Moreover, we will investigate the mean field limit of the CS-DT process, as N → ∞. In
rder to do this using kinetic theory, it is useful to switch to a continuous time Markov chain,
here jump times coincide with those of a rate 1 Poisson process, which is why it is called a

Poissonisation trick”. It is standard to argue that the long time behaviour of the discrete time
rocess is the same as that of the Poissonised one when N is fixed, irrespective of the rate of
he Poisson process. The finite time distribution of the proportions of wealth for the CS-CT
oissonised process, which we momentarily denote by XPois

t , can also be rigorously obtained
y standard conditioning on the number of Poisson events up to time t , using the following
quation

P{XPois
t ∈ A} =

∞∑
ℓ=0

P{X∞,N
ℓ ∈ A}P{Nt = ℓ} =

∞∑
ℓ=0

P{X∞,N
ℓ ∈ A}

e−t/N tℓ

ℓ! N ℓ
. (2.5)

Nt is the background Poisson process with rate 1/N and A is any Borel subset of the simplex.
e omit the argument that the limiting distribution is still uniform on the simplex.

emark 2.2. The coagulation–fragmentation process is very versatile and it is therefore well-
tudied in other contexts. For example it can be viewed also as a process on integer partitions
f integers. To be precise, for any fixed N ∈ N we have that

∑
i X i,N

t = WN . If we assume
WN is an integer, we can interpret the vector XN

t as a random (real) partition of the integer WN

nd the process {XN
t }t≥0 can be viewed as a Markov chain on these partitions. Most recently,

version of the process (with deterministic binary interactions at discrete time steps) has been
tudied in [7] in terms of its rate of convergence to the equilibrium.

.2. Martingale formulation for the CS-DT model.

In general, it is not necessary to restrict to a case where the total wealth is 1 for all N , the
ame models can be studied when the total wealth is a function of N ; here we do so for the
inetic model. Let us first introduce some notation. The total wealth in a system of N agents
s denoted by a value WN ∈ R+ (which we also allow to be 0). The state of the process at
ime t is a vector of non-negative real numbers

XN
t = (X1,N

t , . . . , X N ,N
t )

ith state space

∆WN :=

{
(x1, . . . , xN ) : xi ≥ 0 for all 1 ≤ i ≤ N and

N∑
i=1

xi = WN

}
.

he dynamics on ∆WN are given by binary interactions, where an ordered pair of two agents
i, j) is chosen uniformly at random. The interactions are assumed to happen at constant rate
/N , at the events of a background Poisson process. After the interaction, the wealth of the
air (X i,N , X j,N ) is changed to ((X i,N )′, (X j,N )′) with

(X i,N )′ = r (X i,N
+ X j,N ),

j,N ′ i,N j,N
(X ) = (1 − r )(X + X ),
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where r is a random variable with uniform law on [0, 1] that is drawn at time t , independently
f the past of the chain. Interactions preserve the total mass,

WN :=

N∑
i=1

X i,N , (2.6)

nd, therefore, the dynamics take place on ∆WN . We will consider two cases:

(i) Absolute wealth: X i,N represents the wealth of agent i and WN represents the total wealth
of the system;

(ii) Relative wealth: in this case X i,N represents the proportion of wealth of agent i and
WN = 1 for all N .

We are interested in studying the case when the number of agents grows large, i.e., N → ∞.
he first thing to observe is that agents are exchangeable by virtue of the non-preferential
ynamics. Questions of interest also reflect that, in the sense that we want to know how much
ealth the richest agent has, rather than who is the richest agent, since they all have the same
robability of being the most rich. For this reason, we will focus our study on the empirical
istribution

µN
t (x) =

1
N

N∑
i=1

δX i,N
t

(x). (2.7)

The empirical distribution µN
t is a random probability measure on R+ that depends on the

realisation of the Markov chain. For any interval [a, b],

µN
t ([a, b]) =

1
N

N∑
i=1

δX i,N
t

[a, b] =
1
N

N∑
i=1

1{a ≤ X i,N
t ≤ b}

=
card{i : agent i’s wealth ∈ [a, b]}

N
.

In general, for any measure µ on R+, and any µ-measurable function g, we define the brackets
⟨·, ·⟩ by

⟨g, µ⟩ :=

∫
R+

g(x)µ(dx). (2.8)

When µ is a probability measure, the bracket notation is just another way to denote the expected
value Eµ(g). With this definition, when the measure is NµN

t (x0) for some fixed x0, the bracket
⟨1, Nµt (x0)⟩ gives the number of agents with wealth precisely x0 at time t . Equivalently, keep
the empirical measure as µN

t (x) and set g(x) = N
∑N

i=1 1{X i,N
t = x0} in order to obtain the

ame interpretation.
The total wealth in the system represented by WN at time 0 as in Eq. (2.6), and we can

rite this fact in terms of the empirical distribution as

WN = N ⟨x, µN
0 ⟩. (2.9)

he total wealth at time t is given by N ⟨x, µN
t ⟩ and it remains fixed for all t ≥ 0 if we assume

conserved total wealth. Notice that if WN /N → m as N → ∞ then we also have that

lim
N→∞

⟨x, µN
0 ⟩ = m. (2.10)

f µN
0 H⇒ µ0 weakly for some probability measure µ0 and m = 0, Eq. (2.10) would imply

hat µN (x) H⇒ δ (x), as the measure has no support on the negative reals.
0 0
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For a fixed t , the empirical measure µN
t is an element of the space of probability measures

M1 on R+ and it only changes whenever an interaction event occurs. It is a function of the
Markov chain XN

t and it is also a Markov chain.
In order to describe its generator G, we define the measure µ(x,y,r ),N after an interaction

between an agent of wealth x (chosen first) and one of wealth y (chosen second) to be

µ(x,y,r ),N
= µN

−
1
N

δx −
1
N

δy +
1
N

δr (x+y) +
1
N

δ(1−r )(x+y).

inally, we define the pair-measure µ(2,N ) on rectangles that generate the Borel σ -algebra
B(R × R) to be

µ(2,N )(A × B) = µN (A)µN (B) −
1
N

µN (A ∩ B), A, B ∈ B(R). (2.11)

his is a natural choice of the pair measure, as it is a simplified version of the joint empirical
easure for a pair of variables. Note that it is not a probability measure, but this does not
atter, as we will only use it as N → ∞. For more clarification and details see Remark 2.4

t the end of the section.
The generator for the evolution of µN

t , considering an interaction rate of 1/N , is given by

GF(µN ) =

∫ 1

0

∫
R+

∫
R+

{F(µ(x,y,r ),N ) − F(µN )}1{x+y≤WN }Nµ(2,N )(dx, dy) dr. (2.12)

n the equation above, function F belongs to Cb(M1), i.e., bounded measurable functions
n the space of probability measures M1. Note that the evolution of the empirical measure
nder the law of the microscopic process is Markovian. We impose the term 1{x+y≤WN } in
he generator to ensure that the two masses created after the jump fulfil r (x + y) ≤ WN and
1 − r )(x + y) ≤ WN .

emark 2.3. In this manner, we could consider that µN
t ∈ P([0, WN ]). However, to avoid

aving a functional space depending on the value of N , we will just consider that µN
t ∈ P(R+).

otice that the generator can be also interpreted as representing a N -particle system with values
n R+ where only pairs of values interact as long as their sum is below WN .

Given the generator in (2.12), we have that the quantity M F
t defined by

M F
t = F(µN

t ) − F(µN
0 ) −

∫ t

0
GF(µN

s ) ds (2.13)

s a martingale [29, Appendix], for any F ∈ Cb(M1). In particular, for any function g ∈ Cb(R+)
measurable bounded functions in R+), we define Fg ∈ Cb(M1) by Fg(µ) = ⟨g, µ⟩ :=

g(x)µ(dx). Expression (2.13) can now be re-written as

Mg,N
t = ⟨g, µN

t ⟩ − ⟨g, µN
0 ⟩ −

∫ t

0
⟨g, Q(N )(µN

s )⟩ ds, (2.14)

here we are denoting G(⟨g, µN
⟩) by

G(⟨g, µN
⟩) =

∫ 1

0

∫
R+

∫
R+

(
g(r (x + y)) + g((1 − r )(x + y)) − g(x) − g(y)

)
× 1{x+y≤WN }µ

(2,N )(dx, dy) dr

= ⟨g, Q(N )(µN )⟩. (2.15)
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Fig. 2. Commutative diagram demonstrating the various limiting measures, depending on the order limits are taken,
when the total wealth remains constant. There are two parameters that scale; the number of agents N and the
ime t . Time is discrete for the left down-arrow, but continuous in the right down-arrow. There is an intermediate
tep missing from the diagram in which discrete time events are changed with time events arising from a Poisson
rocess of rate 1/N which simultaneously scales with N . That is called the Poissonisation step, and when the
ean-field limits (M-F) are taken, the rate of the Poisson process also scales with N .

he last line in fact allows us to define Q(N )(µ) implicitly via its brackets with bounded
ontinuous functions g.

In the following sections we will see that µN
t converges in probability as N → ∞ to a

measure µ which is solution of the following kinetic equation in weak form:

µt = µ0 +

∫ t

0
Q(µs) ds, (2.16)

r equivalently, for any g ∈ Cb(R+)

⟨g, µt ⟩ = ⟨g, µ0⟩ +

∫ t

0
⟨g, Q(µs)⟩ ds. (2.17)

he operator Q is defined as follows: for any g ∈ Cb(R+)

⟨g, Q(µ)⟩ =

∫
[0,1]

∫
R+

∫
R+

(g(r (x + y)) + g((1 − r )(x + y)) − g(x) − g(y))

× 1{x+y≤w0}µ(dx)µ(dy) dr, (2.18)

ith w0 = limN→∞ WN . We will also investigate the limit t → ∞ and obtain different families
f limiting invariant measures, in the process verifying the following commutative diagram of
ig. 2 in the simple case of fixed wealth WN = c for all N .

In Fig. 2, the left down-arrow was obtained in [13]. The lower horizontal arrow is obtained
n the present article in Proposition 2.8, and the remaining arrows in Sections 5 and 4.

emark 2.4. Eq. (2.11) is a natural choice for the pair measure, as the following calculation
emonstrates. We begin from the joint empirical measure

νN
t (x, y) =

1
N (N − 1)

∑
δ(X i,N

t ,X j,N
t )(x, y).
(i, j):i ̸= j
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On general product events A × B the measure can be computed as

νN
t (A × B) =

1
N (N − 1)

∑
(i, j):i ̸= j

1{X i,N
t ∈ A, X j,N

t ∈ B}

=
1

N (N − 1)

∑
(i, j):i ̸= j

1{X i,N
t ∈ A}1{X j,N

t ∈ B}

=
1

N (N − 1)

∑
i

1{X i,N
t ∈ A}

∑
j

1{X j,N
t ∈ B}

−
1

N (N − 1)

∑
i

1{X i,N
t ∈ A ∩ B}

=
N

N − 1
µN

t (A)µN
t (B) −

1
N − 1

µN
t (A ∩ B) =

N
N − 1

µ
(2,N )
t (A × B).

As N → ∞ the prefactor N/(N − 1) → 1 and the limiting measure has the same asymptotic
properties. We choose to use the simplest form (2.11) without loss of generality.

We can now state our main theorem.

Theorem 2.5 (Mean-Field Limit). Suppose that WN is a non-decreasing sequence converging
to w0 ∈ (0, ∞] as N → ∞. Suppose that for a given measure µ0 it holds that

⟨x, µN
0 ⟩ ≤ ⟨x, µ0⟩ < ∞, (2.19)

nd that as N → ∞

µN
0 H⇒ µ0 weakly, as N → ∞. (2.20)

hen the sequence of random measures (µN
t )t≥0 converges in probability in D([0, ∞);

1(R+)), as N → ∞. The limit (µt )t≥0 is continuous in t and it satisfies the kinetic
quation (2.16). In particular, for all g ∈ Cb(R+) the following limits hold in probability,
or any time t

(A) limN→∞ sups≤t ⟨g, µN
s − µs⟩

P
= 0,

(B) limN→∞ sup0≤s≤t |Mg,N
s |

P
= 0,

(C) limN→∞

∫ t
0 ⟨g, Q(N )(µN

s )⟩ ds P
=

∫ t
0 ⟨g, Q(µs)⟩ ds.

s a consequence, Eq. (2.16) is obtained as the limit in probability of (2.14) as N → ∞.

Some observations from Theorem 2.5 follow. From Eq. (2.9) we have that N ⟨x, µN
0 ⟩ = WN .

f we now assume that limN→∞ N−1WN = m ∈ (0, ∞) then we see that WN grows linearly in
N and condition (2.19) implies

m ≤ ⟨x, µ0⟩.

Now if WN grows superlinearly, i.e. limN→∞ N−1WN = ∞, then condition (2.19) in
heorem 2.5 is violated and the theorem does not necessarily hold.

Finally, if either limN→∞ WN = w0 for some absolute constant w0 or WN → ∞ as N → ∞,
ut limN→∞ N−1WN = 0, we can actually study the asymptotic behaviour (N → ∞) of the
easures µN

t and show that the limiting measure is a δ mass as N → ∞. This is discussed in

ection 4.
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Example 1. Assume WN → ∞, but so that

lim
N→∞

WN

N
= ∞.

As we mentioned above, when the wealth grows superlinearly, the theorem does not necessarily
apply. However there is a way to scale using a random approximation to WN so that the theorem

orks by renormalising the wealth, and so that we can verify its conditions.
Consider an i.i.d. sequence of geometric random variables {G i (p)}i∈N with mass function

P{G i = k} = p(1 − p)k, k = 0, 1, 2, . . . (2.21)

n this case we fix

pN =
N

WN
,

as the success probability of each independent geometric (so the sequence refreshes with every
N ). To denote this dependence we write G(N )

i for each geometric. Then define

(X N
1 , . . . , X N

N ) =

⎧⎨⎩(1, . . . , 1), when
∑N

i=1 G(N )
i = 0,

N
(

G(N )
1∑N

i=1 G(N )
i

, . . . ,
G(N )

N∑N
i=1 G(N )

i

)
, otherwise.

(2.22)

his is a distribution on the simplex N∆N−1. Conditional on the value of
∑N

i=1 G(N )
i = wN , this

istribution is uniform on the discrete simplex with mesh N/wN . As N grows, the geometric
andom variables are sharply concentrated around their mean N−1WN , so distribution (2.22)
pproximates the uniform distribution (as N grows) on the simplex since

∑N
i=1 G(N )

i ≈ WN .
Let (X N

1 , . . . , X N
N ) be distributed as in (2.22), and define the empirical measure µN

0 =
1
N

∑N
i=1 δX N

i
. Then

µN
0 H⇒ µ0 ∼ Exp(1), P − a.s. (2.23)

he details of showing this can be found in the first version of this article which is available
n Arxiv, along with a longer discussion on integer partitions. As it turns out, the limiting

easure in (2.23) is an invariant measure for the mean field limit. These results might be
ublished separately in the near future. □

emark 2.6. Note that our initial sequence of measures in the example is not uniform on the
equence of simplexes N∆N , in contrast with Theorem 2 and Corollary 2 of [42]. However, as
he geometric random variables are concentrated around their mean, the initial measures can
e viewed as approximation of discrete uniform measures on mesh 1/WN for ∆N . Or, one can
iew them as measures on partitions of the random number

∑N
i=1 G(N )

i .

2.3. Invariant measures for the mean field limit

In general, a measure µ̃ is invariant (or stationary) for (2.16) if and only if when µ0 = µ̃

then we have that µt = µ̃ for all t > 0.
One way to obtain invariant measures is to actually make some educated ansatz for µ0 and

show that it remains unchanged under the kinetic Eq. (2.16). It is immediate to check that for
any value of w0 (bounded or unbounded), the measure

µ̃(x) = δ0(x) (2.24)

is invariant for (2.16).
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A more natural way to find invariant measures originates from the Markov chain perspective,
here (limiting) equilibrium measures µ̄ are obtained by taking the limit (in the appropriate

weak sense) of the measures µt as t → ∞, i.e.

µ̄ = lim
t→∞

µt .

If such a limit exists then the measure µ̄ will be invariant. A sequence of measures however,
may have many limit points; it is always an important and difficult task to decide whether those
limits that are obtained include all possible equilibria for the system or are invariant probability
measures. Moreover, the limiting measure(s) will depend on the initial measure µ0 and other

arameters of the evolution.
In this subsection, we discuss several invariant measures that can be obtained as equilibria.

e begin with the case where WN grows sublinearly and we show that under Theorem 2.5,
0 is the only possible candidate for invariant equilibrium measure. Proposition 2.7 indeed
sserts that result, under the assumptions of Theorem 2.5, and Proposition 2.8 argues that the
ssumptions of Theorem 2.5 hold when the total wealth w0 = 1 and we start from a uniform
ensity on the simplex. Together, these propositions verify the commutativity of the diagram
n Fig. 2.

roposition 2.7 (Sub-linear Growth for WN ). Suppose the same assumptions on the initial
ata as in Theorem 2.5. If it holds that

⟨x, µN
0 ⟩ =

WN

N
→ 0, as N → ∞,

(which is in particular true if w0 < ∞), then, we have that limN→∞ µN
t

P
= δ0 in probability

or all times t.

roposition 2.8 (Mean Field Limit of the Empirical Wealth Under Equilibrium Measures.).
uppose µ

∞,N
0 ∼ Unif[∆N−1] (therefore we assume the total wealth is fixed and equal to 1)

or each N ∈ N and consider the empirical measure on R+

µN
0 =

1
N

N∑
i=1

δX i,N
0

, (X1,N
0 , . . . , X N ,N

0 ) ∼ µ
∞,N
0 .

Then as N → ∞,

µN
0 H⇒ δ0, a.s.

In particular the assumptions of Theorem 2.5 hold and, since w0 = 1, Proposition 2.7 is in
effect.

Remark 2.9. Propositions 2.7 and 2.8 interpreted in the context of wealth, imply that if the
wealth in the system does not grow proportional to the number of agents, there will be a
condensation phenomenon. In that case, all the wealth of the system is accumulated to a single
(or small number) of agents.

Corollary 2.10. Let limN→∞ WN = w0 ∈ (0, ∞]. Assume that µt is a solution of (2.16)
which has a density f for all t . Then
t
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(1) If w0 = ∞, the exponential distributions

f̃ (x) =
e−x/m

m
, (2.25)

are equilibria for the operator Q and remain invariant under (2.16). In particular, if f0
is of the form (2.25) with ⟨x, f0⟩ = m0 > 0, then the distribution (2.25) with m = m0
is a stationary solution of (2.16).

(2) If 0 < w0 < ∞, then the following distributions are compactly supported on [0, w0]
and are equilibria for the operator Q

f̃ (x) =
e−x/m

m(1 − e−w0/m)
1{x≤w0}. (2.26)

(3) (Uniqueness of the invariant family at w0 = ∞) Moreover, under the extra assumption
that the density ft is differentiable on R+, then measures with density (2.25) are the
unique equilibria.

Remark 2.11. Equilibria with exponential tails like (2.25) have been observed in several
wealth models. For example, in the model of [8] where the mean wealth is conserved, slim tail
equilibria can be observed when the market risk is low. Sometimes this is called “socialistic
behaviour” because this is what actual wealth distributions in socialistic countries looked like.
Tuning the risk parameter can also lead to delta equilibria or even equilibria with Pareto tails.
Moreover, in the case of heavy tailed equilibria, all agents have a portion of the wealth, but
it is just much more unevenly distributed and there is no small “upper class” which holds
proportionally large fraction of the wealth. All these behaviours can be observed in real data
and it is comforting that they can also be captured by this simple exchange model.

Uniqueness of equilibrium is also not surprising. In [16] one can find quantitative estimates
about rates of convergence to the unique equilibrium of several wealth models.

The next proposition tells us that invariant distributions (2.26) cannot be obtained as limits
of the discrete measures when the wealth remains bounded, therefore they are extraneous, while
invariant distributions of the form (2.25) are possible.

Proposition 2.12. Let limN→∞ WN = w0 ∈ (0, ∞].

(1) (w0 = ∞) Consider an infinite i.i.d. sequence {X i }i≥1 of Exp(1/m0) variables. For every
N ∈ N, define

WN =

N∑
i=1

X i , and µN
0 (x) =

1
N

N∑
i=1

δXi (x),

i.e. the initial wealth of each agent is an independent exponential random variable as we
increase the number of agents, but always fixed across the N index. Then as N → ∞,
µN

0 H⇒ µ0 where µ0(x) =
1

m0
e−x/m0 dx and therefore Theorem 2.5 holds. Then by

Corollary 2.10, µ0 remains invariant in time.
(2) (w0 < ∞) There does not exist a sequence of measures {µN

0 }N∈N so that µN
0 H⇒ µ0

with µ0 having a density (2.26).

emark 2.13. To see that (2) above is enough to guarantee that equilibria with density (2.26)
annot be obtained, apply Proposition 2.7. It is possible that equilibria (2.26) correspond to a
etastability of condensates; conceivably they could occur when WN → ∞ (at some speed)

ut most of the wealth is concentrated by a single (or finitely many) agent(s). Whether this
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heuristic can be made rigorous merits further investigation and it is left as an open question
for the moment.

3. Process level convergence to a discrete-time continuous space model

This section is dedicated to proving the process level convergence of the DS-DT model
o the CS-DT model, thus completing Proposition 7.3 in [13] where convergence of the one
imensional marginals was shown. We need an equivalent, alternative description of the DS-DT
odel, so we begin this section with it. The number of agents N remains fixed throughout this

ection, so we will omit it from the notation, and we will write Y(n), X(n) and X(∞) instead of
n,N , Xn,N and X∞,N respectively.

roof of Theorem 2.1. Since we may embed the sequence of processes {Y(n)
}n∈N in (∆N−1)N,

hich is compact, the collection of their induced measures {Pn
}n∈N is tight. Therefore, for

rocess-level convergence, it suffices to show that finite dimensional marginals converge
eakly. See the Appendix for references on convergence in the Skorokhod space and [3]

or a general reference. We show this for vectors of the form (Y(n)
0 , Y(n)

1 , . . . , Y(n)
k ) with law

enoted by (2.1). In the calculation below, we denote by νU the law of the random variable
. For any generic measure µ, we denote by Eµ the expectation operator with respect to that
easure.
For any bounded continuous function f

EPn
k
( f (Y(n)

0 , Y(n)
1 , . . . , Y(n)

k )) =

∑
y0

· · ·

∑
yk

f (y0, . . . , yk)Pn
k {Y(n)

0 = y0, . . . , Y(n)
k = yk}

=

∑
y0

· · ·

∑
yk

f (y0, . . . , yk)Pn
k−1{Y

(n)
0 = y0, . . . , Y(n)

k−1 = yk−1}

× P{Y(n)
k = yk |Y(n)

k−1 = yk−1}

=

∑
y0

· · ·

∑
yk−1

Pn
k−1{Y

(n)
0 = y0, . . . , Y(n)

k−1 = yk−1}

×

∑
yk

f (y0, . . . , yk)P{Y(n)
k = yk |Y(n)

k−1 = yk−1}

=

∑
y0

· · ·

∑
yk−1

Pn
k−1{Y

(n)
0 = y0, . . . , Y(n)

k−1 = yk−1}

×
1

N (N − 1)

∑
(i, j):i ̸= j

∫ 1

0
f (y0, . . . , yk−1, gi, j (yk−1, u)) du

=
1

N (N − 1)

∑
y0

· · ·

∑
yk−1

Pn
k−1{Y

(n)
0 = y0, . . . , Y(n)

k−1 = yk−1}

×

∑
(i, j):i ̸= j

Eν
U (n)

i, j (k−1)

(
f (y0, . . . , yk−1, gi, j (yk−1, U (n)

i, j (k − 1)))
)

=
1

N (N − 1)
EPn

k−1

( ∑
(i, j):i ̸= j

Eν
U (n)

i, j (k−1)

(
f (Y(n)

0 , . . . , Y(n)
k−1, gi, j (Y(n)

k−1, U (n)
i, j (k − 1)))

))
=

1
N (N − 1)

∑
(i, j):i ̸= j

EPn
k−1⊗ν

U (n)
i, j (k−1)

(
f (Y0, . . . , Yk−1, gi, j (Yk−1, U (n)

i, j (k − 1)))
)
.
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At this point, we have to deal with a small technical issue. The function gi, j is not immediately

ontinuous on its arguments, since it can create jumps of order 1/n ≥ U (n)
i, j (k)(yi (k) + y j (k)) −

U (n)
i, j (k)(yi (k) + y j (k))]n for all k. However f is a bounded continuous function on a compact

pace ∆k+1
N−1, and it is uniformly continuous in the last coordinate. Then define on ∆N−1×[0, 1]

he bounded continuous function

gcont
i, j (y, u) = (y1, . . . , u(yi + y j ), . . . , (1 − u)(yi + y j ), . . . , yN ).

ix a δ > 0 and let n = n(δ) be large enough so that

sup
y∈∆N−1(n)

sup
u∈[0,1]

sup
(i, j)

∥gcont
i, j (y, u) − gi, j (y, u)∥∞ < δ.

ix an ε > 0 and choose δ so that for any ∥(z1, . . . , zk) − (y1, . . . , yk)∥∞ < δ

∥ f (z1, . . . , zk) − f (y1, . . . , yk)∥∞ < ε(k N )−2.

hen we proceed with the computation for n large enough:

EPn
k
( f (Y(n)

0 , Y(n)
1 , . . . , Y(n)

k ))

=
1

N (N − 1)

∑
(i, j):i ̸= j

EPn
k−1⊗ν

U (n)
i, j (k−1)

(
f (Y0, . . . , Yk−1, gi, j (Yk−1, U (n)

i, j (k − 1)))
)

=
1

N (N − 1)

∑
(i, j):i ̸= j

EPn
k−1⊗ν

U (n)
i, j (k−1)

(
f (Y0, . . . , Yk−1, gcont

i, j (Yk−1, U (n)
i, j (k − 1)))

)
+ O(ε)

=
1

N (N − 1)

∑
(i, j):i ̸= j

EPn
k−1⊗ν

U (n)
i, j (k−1)

(
f̃i, j (Y0, . . . , Yk−1, U (n)

i, j (k − 1))
)

+ O(ε).

bove, f̃i, j is a bounded continuous function. By iterating the same argument using the Markov
roperty iteratively, we conclude, for n large enough that

EPn
k
( f (Y(n)

0 , Y(n)
1 , . . . , Y(n)

k )) =

(
1

N (N − 1)

)k

×

∑
(i0, j0)
i0 ̸= j0

· · ·

∑
(ik−1, jk−1)
ik−1 ̸= jk−1

E
µ

(n)
0

⨂k−1
ℓ=0 ν

U (n)
iℓ, jℓ

(ℓ)

×

(
f̃(i0, j0),...,(ik−1, jk−1)(Y0, U (n)

i0, j0
(0), . . . , U (n)

ik−1, jk−1
(k − 1))

)
+ O(ε).

he sums above are finitely many, so the accumulated error is bounded by Cε. Each
ultiindexed f̃ is a bounded continuous function on all its arguments. Finally, the assumptions

f the theorem imply the joined weak convergence

(Y0, U (n)
i0, j0

(0), . . . , U (n)
ik−1, jk−1

(k − 1)) H⇒ (X(∞)
0 , U (∞)

i0, j0
(0), . . . , U (∞)

ik−1, jk−1
(k − 1)).

he limiting vector can be used to uniquely construct the CS-DT process using the indices of
he associated function f̃ . By reversing the decomposition above, therefore⏐⏐ lim

n→∞
EPn ( f (Y(n)

0 , Y(n)
1 , . . . , Y(n)

k )) − EP∞ ( f (X(∞)
0 , X(∞)

1 , . . . , X(∞)
k ))

⏐⏐ = O(ε). (3.1)

et ε → 0 to finish the proof. □
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Remark 3.1 (Almost Sure Convergence for Finite Sample Paths). Assume that the initial
istributions satisfy Y(n)

0 → X(∞)
0 a.e. as n → ∞ and that we use common uniforms for

each time step k, i.e.

Ui, j (k) ≡ U (n)
i, j (k) = U (m)

i, j (k) = U (∞)
i, j (k), for all n, m ∈ N,

while maintaining the independence across the time index. Then for any fixed k ∈ N

(Y(n)
0 , . . . , Y(n)

k )
a.s.
−→ (X(∞)

0 , . . . , X(∞)
k ),

provided the same indices (i, j) are selected at each step. This is because of the compact state
space for these processes. For any fixed n, the construction using now the common (in n)
uniform random variables U (n)

i, j (ℓ) creates an error of at most 2/n per step in the supremum
norm of the state space, so the total error is 2k/n, which vanishes as n → ∞.

4. Kinetic equations as thermodynamic limit of the Markov chain with continuous state
space

In this section we prove that Eq. (2.16) is obtained as the limit in probability of (2.14) as
N → ∞, (see Theorem 2.5). Before stating the result rigorously, we need to mention some
terminology and basic facts.

Definition 4.1 (Solutions). We say that a measure (µt )t<T is local solution if it satisfies (2.17)
for all functions g which are bounded and measurable. If T can be taken to be +∞, then we
say we have a (global) solution of (2.17).

It is important to ascertain that solutions do exist, and this is the content of the next
proposition. The proof of it follows the same arguments as in the proof for Smoluchowski’s
equation in [32, Proposition 2.2], and it is omitted from this manuscript.

Proposition 4.2 (Existence and Uniqueness of Solutions). Suppose that µ0 ∈ M1(R+). The
inetic Eq. (2.16) has a unique solution (µt )t≥0 with initial data µ0.

Above we introduced M1(R+) as the space of probability measures with support on the
on-negative reals. In general, M1(K ) denotes the set of probability measures on the set K . We
ave already discussed how the empirical measure µN

t is an element of M1(R+). In particular,
or any t ≥ 0, µN

t is a random element of M1(R+), and its distribution is solely dictated by
he distribution of the Markov chain at time t .

The next proposition states the two main conservation properties that we are using through-
ut the manuscript. First we show that the support of the initial measure dictates the support
f all µt without exiting the class of probability measures, and the second property is the
onservation of total wealth. Recall the notation introduced in Section 2.2.

roposition 4.3. Suppose that w0 < ∞. Assume that µN
0 ∈ M1([0, w0]), then µN

t ∈

1([0, w0]) for all times. Moreover, if ⟨x, µN
0 ⟩ = m0 ∈ R+, then ⟨x, µN

t ⟩ = m0 for all times.

roof. To check the proposition one just needs to notice that

⟨1{x ≤ w0}, Q(µ)⟩ = 0,

or any measure µ. Therefore, by (2.16), we have that

⟨1{x ≤ w0}, µ
N
t ⟩ = ⟨1{x ≤ w0}, µ

N
0 ⟩ = 1,

N N
nd so µt ({x ; x ≤ w0}) = 1. This implies we can write µt ∈ M1([0, w0]) for any t .
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The second statement can be proven analogously substituting g(x) = x1{x ≤ w0} in
2.15). □

The symbol D(K , S) denotes the space of càdlàg (right continuous with left limit) functions
rom K to S, called the Skorokhod space. We wish to study the process of the empirical
easures {µN

t }t≥0 as a sequence in N . For any fixed N , the sequence {µN
t }t≥0 is an element

f D([0, ∞);M1(R+)). All necessary background information for Skorokhod spaces that will
e used in the section can be found in Appendix.

With the notation set, we can now proceed and prove Theorem 2.5. Technical proofs are left
o the end of the section to not mar the exposition. Again, recall the notation from Section 2.2.

.1. Proof of Theorem 2.5

The main idea for the proof is to take the limit as N → ∞ in the martingale formulation
2.14) by following the methodology presented in [32].

The theorem can be proven directly from the following three propositions. We do that right
fter these propositions are proven.

roposition 4.4 (Martingale Convergence). For any g ∈ Cb(R+), t ≥ 0, it holds that

lim
N→∞

sup
0≤s≤t

|Mg,N
s | = 0 in L2(R),

here Mg,N
t is defined in (2.14). In particular, the limit also holds in probability.

roposition 4.5 (Weak Convergence for the Measures). The sequence of laws PN of the
lements {µN

t }t∈R+
is tight. Therefore there exists a weakly convergent subsequence (µNk )k∈N

n D([0, ∞);M1(R+)) as k → ∞.

roposition 4.6 (Convergence for the Trilinear Term). For any converging subsequence
µNk }k∈N (and particularly for those established in Proposition 4.5), it holds that∫ t

0
⟨ f, Q(Nk )(µNk

s )⟩ ds →

∫ t

0
⟨ f, Q(µs)⟩ ds weakly,

s k → ∞.

.1.1. Proof of Proposition 4.4
Keep in mind that Mg,N

t is a martingale. From Proposition 8.7 in [10] (a consequence of
oob’s L2 inequality) we have that for any finite T ,

E
[

sup
s≤T

|Mg,N
s |

2
]

≤ 4E
∫ T

0
αg,N (µ(2,N )

s )ds, (4.1)

here in this case

αg,N (µ(2,N )
s ) =

∫
[0,1]

∫
R2

+

(
1
N

(
g(r (x + y)) + g((1 − r )(x + y)) − g(x) − g(y)

))2

× 1{x+y≤WN } Nµ(2,N )
s (dx, dy) dr

≤
N
N 2

N − 1
N

16∥g∥
2
∞

≤
16
N

∥g∥
2
∞

. (4.2)
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Use this estimate in (4.1) to obtain

E
[

sup
s≤T

|Mg,N
s |

2
]

≤
1
N

64∥g∥
2
∞

T . (4.3)

This gives the convergence of the supremum towards 0 in L2 as N → ∞, which implies also
the convergence in probability. □

4.1.2. Proof of Proposition 4.5
The results stated in the proposition will be proven at the end of this subsection, and they

follow from two lemmas.

Lemma 4.7. Fix an f ∈ Cb(R+). Then the sequence of laws of (⟨ f, µN
⟩)N∈N on D([0, ∞);

+) is tight.

roof of Lemma 4.7. We use Theorem A.8 in Appendix. Thus, we need to verify the two
onditions of the Theorem.

To prove condition (i) of the Theorem we use that for any fixed f ∈ Cb(R+)

|⟨ f, µN
t ⟩| =

⏐⏐⏐⏐⏐ 1
N

N∑
i=1

f (X i,N
t )

⏐⏐⏐⏐⏐ ≤
1
N

N∑
i=1

| f (X i,N
t )| ≤ ∥ f ∥∞

o for all t ≥ 0, ⟨ f, µN
t ⟩ ∈ [−∥ f ∥∞, ∥ f ∥∞]. To directly see the connection with Theorem A.8,

et Λη,t = [−∥ f ∥∞, ∥ f ∥∞] (fixed for any η) and X N (t) = ⟨ f, µN
t ⟩.

The verify the second condition (i i) of Theorem A.8 we make use of the following
nequalities:

E

[
sup

r∈[s,t)
|M f,N

r − M f,N
s |

2

]
≤

1
N

64∥ f ∥
2
∞

(t − s) (4.4)

and

E

[
sup

r∈[s,t)

(∫ r

s
⟨ f, Q(N )(µN

u )⟩ du
)2

]
≤ 16∥ f ∥

2
∞

(t − s)2. (4.5)

To see inequality (4.4) recall that since M f,N
t is an Ft -martingale, then M̃ f,N

t = M f,N
t+s − M f,N

s

is an F̃t = Ft+s martingale. Therefore

E

[
sup

r∈[s,t)
|M f,N

r − M f,N
s |

2

]
= E

[
sup

r∈[0,t−s)
|M̃ f,N

r |
2

]
≤

1
N

64∥ f ∥
2
∞

(t − s),

just like in Eq. (4.3). Inequality (4.5) follows from (2.15) and a bound similar to the one used
in (4.2).

Eqs. (4.4) and (4.5) together give the bound

E

[
sup

r∈[s,t)
|⟨ f, µN

r − µN
s ⟩|

2

]
≤ A

(
(t − s)2

+
(t − s)

N

)
(4.6)

for some A > 0 depending only on ∥ f ∥∞. With these estimates the proof follows as in [31]
where further details can be found. □
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Lemma 4.8. The sequence of laws {PN }N∈N of the elements (µN
t )t∈R+

∈ D([0, ∞);M1(R+))
s tight.

roof of Lemma 4.8. We will use Theorem A.6 in the Appendix to prove this result. To
heck condition (i), we find a suitable compact set W ∈ M≤1(R+), where M≤1(R+) is the
et of all sub-probability measures on R+, which is a separable, compact metric space, and
herefore a completely regular topological space. Any closed subset W of M≤1(R+) will be
ompact with respect to the topology induced by the weak convergence of measures, and it
ill be metrisable as a subset of a metric space.
We define for some positive constant C the set

WC :=

{
τ ∈ M1(R+) :

∫
R+

x τ (dx) ≤ C
}

,

hich is closed (and therefore compact). Assume that {τn}n∈N is a sequence of measures in
WC that converge weakly to τ . Then for any M ∈ R+∫

R+

xτ (dx) = lim
M→∞

∫
R+

(x ∧ M)τ (dx) = lim
M→∞

lim
n→∞

∫
R+

(x ∧ M)τn(dx)

≤ lim
n→∞

∫
R+

xτn(dx) ≤ C,

nd therefore the limit point τ is also in WC .
In our case, from the conservation of the total mass (wealth) and the fact that we can find

c1 so that WN < c1 N , for all N ∈ N, we have for any t ∈ R+∫
R+

xµN
t (dx) =

1
N

N∑
i=0

X i,N
t =

1
N

N∑
i=0

X i,N
0 =

∫
R+

xµN
0 (dx) ≤ c1 a.s.

onsider (PN )N∈N the family of probability measures in M1(D([0, ∞); Wc1 )) which are the
aws of (µN

t )t∈R+
. For any T > 0, the above discussion and Remark 4.5 in [28] give

PN (D([0, ∞); Wc1 )) = PN (D([0, T ]; Wc1 )) = 1, for all N ∈ N.

his verifies condition (i) of Theorem A.6.
In order to check condition (i i) we will use the family of continuous functions on M≤1(R+)

efined as

F = {F : M≤1(R+) → R : F(τ ) = ⟨ f, τ ⟩ for some f ∈ Cb(R+)}.

his family is closed under addition since Cb(R+) is, it is continuous in M≤1(R+), and
eparates points in M≤1(R+): if F(τ ) = F(τ̄ ) for all F ∈ F then∫

R+

f (x)d(τ − τ̄ )(x) = 0 ∀ f ∈ Cb(R+)

ence τ ≡ τ̄ , since we can approximate indicator functions for any Borel set A using functions
rom Cb(R+). So we are left with proving that for every f ∈ Cb(R+) the sequence {⟨ f, µN

⟩}N∈N
s tight. This was proven in Lemma 4.7. □

Now Proposition 4.5 follows immediately.

roof of Proposition 4.5. The result follows from Lemma 4.8 and Prokhorov’s theorem. □

To prove Proposition 4.6 we need the following three lemmas. Throughout we are assuming
hat {µNk } is a converging sequence in the space D([0, ∞);M (R )).
1 +
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Lemma 4.9 (Continuity of the Limit). The weak limit of (µNk
t )t≥0 as k → ∞ is continuous in

ime a.e.

roof of Lemma 4.9. We have that for any f ∈ Cb(R+)

|⟨ f, µNk
t ⟩ − ⟨ f, µNk

t− ⟩| ≤
4

Nk
∥ f ∥∞,

when a jump happens in the process only the wealth of two individuals is altered. Then we may
apply Theorem A.9 of the Appendix to obtain that ⟨ f, µt ⟩ is continuous for any f ∈ Cb(R+)
nd this implies the continuity of (µt )t≥0. □

emma 4.10 (Uniform Convergence). For all f ∈ Cb(R+), and finite t ≥ 0 we have

sup
s≤t

|⟨ f, µNk
s − µs⟩| → 0 weakly

s k → ∞.

roof of Lemma 4.10. By Lemma 4.9, the limit of (µNk
t )N∈N is continuous in time. The

tatement is consequence of the Continuous Mapping Theorem in the Skorokhod space and
he fact that g(X )(t) = sups≤t |X | is a continuous function in this space. □

emma 4.11. For all f ∈ Cb(R+), and finite t ≥ 0 we have

sup
s≤t

|⟨ f, Q(Nk )(µNk
s ) − Q(µs)⟩| → 0 weakly

s k → ∞.

roof of Lemma 4.11. We abuse notation and denote by (µN
t )N∈N the convergent subsequence.

he result will manifest itself when we show that for all f ∈ Cb(R+):

(i) sups≤t |⟨ f,
(
Q − Q(N )

)
(µN

s )⟩| → 0 as N → ∞,
(ii) sups≤t

⏐⏐⟨ f, Q
(
µN

s

)
− Q (µs)⟩

⏐⏐ → 0 as N → ∞.

e will use the fact that the product measures also converge weakly, i.e. µN
t ⊗µN

t H⇒ µt ⊗µt .
Item (i) is then a consequence of

|⟨ f,
(
Q − Q(N )) (µN

s )⟩|

≤

⏐⏐⏐⏐∫
[0,1]

∫
R+

∫
R+

[ f (r (x + y)) + f ((1 − r )(x + y)) − f (x) − f (y)]

× d(µN
s ⊗ µN

s − µ(2,N )
s )dr

⏐⏐⏐⏐
≤ 4∥ f ∥∞

⏐⏐⏐⏐⏐
∫
R2

+

d(µN
s ⊗ µN

s − µ(2,N )
s )

⏐⏐⏐⏐⏐ = 4∥ f ∥∞

⏐⏐⏐⏐ 1
N

∫
R+

dµN
s

⏐⏐⏐⏐ ≤
4
N

∥ f ∥∞. (4.7)

he bound is true for any s and therefore for the supremum up to a finite time as well. Now
for (ii), we compute

sup
s≤t

⏐⏐⟨ f, Q(µN
s ) − Q(µs)⟩

⏐⏐
≤ sup

∫ ∫
2

| f (r (x + y)) + f ((1 − r )(x + y)) − f (x) − f (y)|

s≤t [0,1] R

+
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⏐⏐1{x+y≤WN }µ
N
s (dx)µN

s (dy) − 1{x+y≤w0}µs(dx)µs(dy)
⏐⏐ dr

≤ 4∥ f ∥∞ sup
s≤t

∫
R2

+

⏐⏐1{x+y≤WN }µ
N
s (dx)µN

s (dy) − 1{x+y≤w0}µs(dx)µs(dy)
⏐⏐

≤ 4∥ f ∥∞ sup
s≤t

∫
R2

+

⏐⏐1{x+y≤w0}µ
N
s (dx)µN

s (dy) − 1{x+y≤w0}µs(dx)µs(dy)
⏐⏐

≤ 4∥ f ∥∞ sup
s≤t

∫
R2

+

⏐⏐µN
s (dx)µN

s (dy) − µs(dx)µs(dy)
⏐⏐ . (4.8)

e conclude (i i) with an argument analogous to Lemma 4.10 applied to the function
f = 1. □

roof of Proposition 4.6. By Lemma 4.11 we can pass the limit inside the time integral. □

We are now in position to prove Theorem 2.5:

roof of Theorem 2.5. The weak form of item (A) is proven in Lemma 4.10, item (B) is
roven in Proposition 4.4, and item (C) is the content of Proposition 4.6. Since all those weak
onvergences in the previous propositions were to 0, they can be upgraded to convergence in
robability.

Then (and also by using the assumptions of the theorem) we have that for any f ∈ Cb(R+)
nd any converging subsequence of measures,

0 D
= lim

N→∞

Mg,N
t

= lim
N→∞

⟨g, µN
t ⟩ − ⟨g, µN

0 ⟩ −

∫ t

0
⟨g, Q(N )(µN

s )⟩ds D
= ⟨g, µt ⟩ − ⟨g, µ0⟩ −

∫ t

0
⟨g, Q(µs)⟩,

nd therefore the limit of the subsequence of measures must satisfy Eq. (2.16). Using the
niqueness of the kinetic Eq. (2.16), we have that all the convergent subsequences from
roposition 4.5 converge to the same limit. Hence the whole sequence converges (if a tight
equence has every weakly convergent subsequence converging to the same limit, then the
hole sequence converges weakly to that limit [3]).
Now, we have that the weak limit of (µN

t )N∈N satisfies the kinetic Eq. (2.16) (thanks to Prop.
.4, 4.6), so it is deterministic. Therefore, we actually have convergence in probability. □

. Invariant measures for the mean field limit

In this section we discuss the invariant measures.

roof of Proposition 2.7. If ⟨x, µN
0 ⟩ → 0 as N → ∞, by positivity of the support of the

easures and conditions (2.19)–(2.20), it follows that

⟨x, µ0⟩ = 0.

n the other hand, µ0 is a probability measure, so the above implies that µ0(x) = δ0(x). Then
t follows that µt (x) = δ0(x) since we already argued that the delta distribution is an invariant
olution of Eq. (2.16). □

roof of Proposition 2.8. This proof does not need the technicalities associated with

artingales, as the initial distributions of the process are invariant, and every time an interaction
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event occurs their distribution remains unchanged. The theorem can be proven in a direct way,
without even the Poissonisation trick.

Consider a continuous function g on [0, 1] and assume that ∥g∥∞ ≤ B. Let ε > 0 and select
δ > 0 so that δ < ε/2 ∧ B. Furthermore assume that N is large enough so that for a fixed
, 0 < β < 1 we have that

sup
x∈[0,N−β ]

|g(0) − g(x)| < δ.

n order to prove the result we just need to show that ⟨g, µN
0 ⟩ → g(0) as N → ∞. We

will show that this happens P- a.s., when P = ⊗
∞

N=2µ
∞,N
0 the product measure on the space

⊗
∞

N=2∆N−1.
We have that ⟨g, µN

0 ⟩ = N−1 ∑N
i=1 g(X N0

i ), so for the P− a.s. convergence we estimate

P
{⏐⏐⏐ 1

N

N∑
i=1

g(X i ) − g(0)
⏐⏐⏐ > ε

}
= P

{⏐⏐⏐ N∑
i=1

(g(X i ) − g(0))
⏐⏐⏐ > Nε

}
≤ P

{ N∑
i=1

⏐⏐g(X i ) − g(0)
⏐⏐ > Nε

}
≤ e−εNE

(
exp

{ N∑
i=1

⏐⏐g(X i ) − g(0)
⏐⏐})

= e−εNE
(

exp
{ N∑

i=1

⏐⏐g(X i ) − g(0)
⏐⏐}

×

∑
I⊆[N ]

1{X i ≥ N−β, i ∈ I }1{X i < N−β, i /∈ I }
)

= e−εNE
( ∑

I⊆[N ]

e
∑

i∈I |g(Xi )−g(0)|1{X i ≥ N−β, i ∈ I }

× e
∑

i /∈I |g(Xi )−g(0)|1{X i < N−β, i /∈ I }
)

≤ e−εNE
( ∑

I⊆[N ]

e2B|I |1{X i ≥ N−β, i ∈ I }e(N−|I |)δ1{X i < N−β, i /∈ I }
)

≤ e−εN
N∑

k=0

(
N
k

)
e2Bk+(N−k)δE

(
1{X i ≥ N−β for k indices}

)
.

The last line has the simplified sum index because of exchangeability of the coordinates, and it
is an upper bound, because we dropped the second indicator function. Before proceeding with
the calculation, we just bound the last expectation when k is not zero. Note that if k > [N 1−β],
the indicator inside is identically zero, otherwise the total wealth cannot be one. We also restrict
the index of summation to [N 1−β] as the indicator vanishes otherwise.

P
{⏐⏐⏐ 1

N

N∑
i=1

g(X i ) − g(0)
⏐⏐⏐ > ε

}
≤ e(δ−ε)N

[N 1−β ]∑
k=0

(
N
k

)
e(2B−δ)k

≤ e−εN/2 N 1−β

(
N

[N 1−β]

)
e(2B−δ)N 1−β

. (5.1)
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The last line follows because eventually δ will vanish and the exponent (2B − δ) will be
eventually positive. therefore the maximum term in the sum is the last one, when k = [N 1−β]
as combinations are also increasing until around N/2. Finally, one can use Stirling’s formula
to see that asymptotically there exists a constant c so that(

N
[N 1−β]

)
∼ ecN1−β

.

Therefore the upper bound in Eq. (5.1) is summable over N . A final application of the
Borel–Cantelli lemma completes the proof. □

In the remaining part of this subsection, we discuss invariant measures that are absolutely
continuous with respect to the Lebesgue measure on R+. The blanket assumption is that for
each t ≥ 0, there exists a probability density function ft so that

µt (x) = ft (x) dx,

nd we can find invariant measures with this property. We will show that one family of such
easures can be obtained as limits of the empirical measures and (it is therefore a true invariant
easure) that the other family cannot and therefore the kinetic Eq. (2.16) does give extraneous

olutions.
The first step is to find the restriction of the operator Q to the class of absolutely continuous

easures, which we will call Q̄. Using Q̄, we can formally write an equation for the evolution
f the assumed densities ft . Assume that limN→∞ WN = w0 ∈ (0, ∞]. For any value of w0

we will denote the restricted operator by Q̄w0 , and Q̄w0 acts on probability densities f on R+.
In other words, for any g ∈ Cb(R+)

⟨g, Q(µ)⟩ = ⟨g, Q̄w0 ( f )⟩, whenever µ(x) = f (x) dx .

First notice that when the measure µ has a density f we can write∫ 1

0

∫
R+

∫
R+

g((1 − r )(x + y))1{x+y≤w0} f (x) f (y)dx dy dr

=

∫ 1

0

∫
R+

∫
R+

g(r (x + y))1{x+y≤w0} f (x) f (y)dx dy dr

with a change of variables r ↦→ 1 − r . Therefore, expression (2.18) can be rewritten as

⟨g, Q(µ)⟩ =

∫
[0,1]

∫
R2

+

[2g(r (x + y)) − g(x) − g(y)]1{x+y≤w0} f (x) f (y)dx dy dr. (5.2)

Now it follows that∫
[0,1]

∫
R2

+

g(r (x + y))1{x+y≤w0} f (x) f (y)dx dy dr

=

∫
[0,1]

∫
R2

+

g(u + p)1{u+p≤rw0} f (u/r ) f (p/r )du dp
dr
r2

=

∫
[0,1]

∫
R2

+

g(z)1{z≥p}1{z≤rw0} f ((z − p)/r ) f (p/r )dz dp
dr
r2

=

∫
[0,1]

∫
R2

+

g(x)1{x≥y}1{x≤rw0} f ((x − y)/r ) f (y/r )dx dy
dr
r2
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where in the first equality we made the change of variables r x = u, r y = p; in the second
quality we made the change of variables z = u + p; in the last equality we just changed the
ame of the labels z = x , p = y. With similar computations, we obtain that∫

R+

∫
R+

g(x)1{x+y≤w0} f (x) f (y)dx dy =

∫
R+

g(x) f (x)
(∫ (w0−x)+

0
f (y)dy

)
dx,

here (w0 − x)+ = (w0 − x)1(w0−x)≥0.
Combine these calculations into (5.2) to obtain that Q̄w0 is given by

Q̄w0 ( f ) := 2
∫ 1

x/w0

∫ x

0
f
( y

r

)
f
(

x − y
r

)
dy

dr
r2 − 2 f (x)

∫ (w0−x)+

0
f (y)dy, (5.3)

imilarly, the evolution of the density functions can be obtained (in a weak sense) from

ft = f0 +

∫ t

0
Q̄w0 ( fs) ds. (5.4)

ote that when w0 < ∞ and x > w0, then Q̄w0 ( f )(x) = 0. When w0 = ∞ the operator Q̄∞

eads

Q̄∞( f ) = 2
∫ 1

0

∫ x

0
f
( y

r

)
f
(

x − y
r

)
dy

dr
r2 − 2 f (x), (5.5)

ince f (x) is a probability density. In order to prove Corollary 2.10, it suffices to show that
he proposed equilibria annihilate Q̄. We re-state the corollary, using this observation.

orollary 5.1. Let limN→∞ WN = w0 ∈ (0, ∞]. Assume that µt is a solution of (2.16) which
has a density ft for all t , satisfying Eq. (5.4) Then

(1) If w0 = ∞, the exponential distributions

f̃ (x) =
e−x/m

m
, (5.6)

are equilibria for the operator Q̄∞, (i.e. Q̄∞( f̃ ) = 0) and remain invariant under (5.4).
In particular, if f0 is of the form (2.25) with ⟨x, f0⟩ = m0 > 0, then the distribution
(2.25) with m = m0 is a stationary solution of (5.4).

(2) If 0 < w0 < ∞, then the following distributions are compactly supported in [0, w0] and
are equilibria for the operator Q̄w0

f̃ (x) =
e−x/m

m(1 − e−w0/m)
1{x≤w0}. (5.7)

(3) (Uniqueness of the invariant family at w0 = ∞) Moreover, under the extra assumption
that the density ft is differentiable on R+, then measures with density (2.25) or,
equivalently, (5.6) are the unique equilibria of Q̄∞.

Proof of Corollary 2.10. It is straightforward to check that Q̄w0 ( f̃ ) = 0 for both w0 = ∞

nd w0 < ∞. Also, if f0 = f̃ with ⟨x, f0⟩ = m0 this implies that f0 is stationary solution of
(5.4) with m = m0. It remains to show item (3). Select any invariant f and for that, recall that
Q̄∞( f ) = 0. Let X, Y be independently distributed with density f , and U a uniform r.v. on
[0, 1]. Start from Eq. (5.2), and observe that a different way to write it is

¯
0 = ⟨g, Q∞( f )⟩ = ⟨g, Q(µ)⟩ = 2E(U,X,Y )[g(U (X + Y ))] − 2EX [g(X )],
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and therefore, the distribution of U (X + Y ) is the same as the distribution of X . If we now
condition on the value of X +Y := S = s, we have that the conditional distribution of X given
S = s is that of a uniform r.v. on [0, s]. Let fS denote the density of the sum X + Y and fX |S
the conditional density of X given S = s. We can write

f (x) =

∫
∞

x
fX |S(x |s) fS(s) ds =

∫
∞

x

1
s

fS(s) ds.

ow use the fundamental theorem of calculus to differentiate both sides with respect to x in
rder to obtain

f ′(x) = −
1
x

fS(x) ⇐⇒ x f ′(x) = − fS(x).

Take the Laplace transform of the equation above; denote by ḡ(t) the Laplace transform of
g(x) and use basic properties on the equation in the last display, to argue that

L H S = x f ′(x) = −
d
dt

f ′(x)(t) = −
d
dt

(t f̄ (t)) = − f̄ − t
d f̄
dt

,

hile the Laplace transform of the convolution that gives the density of S is

RH S = −( f̄ )2.

These give rise to the differential equation

d f̄
f̄ ( f̄ − 1)

=
dt
t

.

The solution to the differential equation, for some constant m, is

log
⏐⏐⏐⏐ f̄ − 1

f̄

⏐⏐⏐⏐ = log mt.

Keep in mind that since t > 0 and f̄ (t) < 1, we can solve

f̄ (t) =
m−1

m−1 + t
,

where we identify the Laplace transform of an exponential distribution with mean m. □

roof of Proposition 2.12. Here is the proof of the two points.

(1) We only need to show the convergence of the initial measures. Consider a function
g ∈ Cb(R+) and compute

⟨g, µN
0 ⟩ =

1
N

N∑
i=1

g(X i ) −→ EExp(1/m0)g(X1) =

∫
∞

0
g(x)µ0(dx),

by the law of large numbers. This verifies the definition of weak convergence µN
0 H⇒

µ0.
(2) Assume the contrary, and consider a sequence of converging initial measures. Since

w0 < ∞, Proposition 2.7 gives that µN
0 should converge to δ0, which does not have a

density (2.26). This gives the desired contradiction. □
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ppendix. Some properties of the Skorokhod space

heorem A.1 (Prohorov’s Theorem [22], Chapter 3). Let (S, d) be complete and separable,
nd let M ∈ M1(S). Then the following are equivalent:

(1) M is tight.
(2) For each ε > 0, there exists a compact K ∈ S such that

inf
P∈M

P(K ε) ≥ 1 − ε

where K ε
:= {x ∈ S : infy∈K d(x, y) < ε}.

(3) M is relatively compact.

Let (E, r ) be a metric space. The space D([0, ∞); E) of càdlàg functions taking values in
E is widely used in stochastic processes. In general we would like to study the convergence
f measures on this space, however, most of the tools known for convergence of measures
re for measures in M1(S) for S a complete separable metric space. Therefore, it would be
ery useful to find a topology in D([0, ∞); E) such that it is a complete and separable metric
pace. This can be done when E is also complete and separable; and the metric considered is
he Skorokhod one. This is why in this case the space of càdlàg functions is called Skorokhod
pace.

Some important properties of this space are the following:

roposition A.2 ([22], Chapter 3). If x ∈ D([0, ∞); E), then x has at most countably many
oints of discontinuity.

heorem A.3 ([22], Chapter 3). If E is separable, then D([0, ∞); E) is separable. If (E, r )
s complete, then (D([0, ∞); E), d) is complete, where d is the Skorokhod metric.

heorem A.4. The Skorokhod space is a complete separable metric space.

heorem A.5 (The a.s. Skorokhod representation theorem, [22], Theorem 1.8, Chapter 3).
et (S, d) be a separable metric space. Suppose Pn , n = 1, 2, . . . and P in M1(S) satisfy

imn→∞ ρ(Pn, P) = 0 where ρ is the metric in M1(S). Then there exists a probability space
Ω ,F , ν) on which are defined S- valued random variable Xn , n = 1, 2, . . . and X with
istributions Pn , n = 1, 2, . . . and P, respectively such that limn→∞ Xn = X almost surely.

heorem A.6 (Tightness Criteria for Measures on the Skorokhod Space). See [28] Remark
.5, and Theorem 4.6 Let (S, T ) be a completely regular topological space with metrisable
ompact sets. Let G be a family of continuous functions on S taking values in R. Suppose
hat G separates points in S and that it is closed under addition. Then a family {Ln

}n∈N of

robability measures in M1(D([0, ∞); S)) is tight iff the two following conditions hold:
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(i) For each T > 0 and ε > 0 there exists a compact set KT,ε ⊂ S such that

Ln(D([0, T ]; KT,ε)) > 1 − ε, n ∈ N.

(ii) The family {Ln
}n∈N is G-weakly tight, i.e., for any g ∈ G the family {Ln

◦ (g̃)−1
}n∈N of

probability measures on D([0, ∞);R) is tight; where g̃ is defined as follows:

g̃ : D([0, ∞); S) → D([0, ∞);R)

with [g̃(ν)](t) = g(ν(t)) for ν ∈ D([0, ∞); S) (so that ν(t) ∈ S).

emark A.7. [28] only states the results when the time index is in [0, 1] (i.e. in a compact
et) and the space is D([0, 1]; S). However, when the sequence of measures is tight, the result
f [3] allows the result to generalise when the space is D([0, ∞); S).

heorem A.8 (Criteria for Tightness in Skorokhod Spaces ([22], Corollary 7.4, Chapter 3)).
et (E, r ) be a complete and separable metric space, and let {Xn} be a family of processes with
ample paths in D([0, ∞); E). Then {Xn} is relatively compact iff the two following conditions
old:

(i) For every η > 0 and rational t ≥ 0, there exists a compact set Λη,t ⊂ E such that

lim inf
n→∞

P{Xn(t) ∈ Λη,t } ≥ 1 − η.

(ii) For every η > 0 and T > 0, there exists δ > 0 such that

lim sup
n→∞

P{w′(Xn, δ, T ) ≥ η} ≤ η.

here we have used the modulus of continuity w′ defined as follows: for x ∈ D([0, ∞) × E),
> 0, and T > 0:

w′(x, δ, T ) = inf
{ti }

max
i

sup
s,t∈[ti−1,ti )

r (x(s), x(t)),

here {ti } ranges over all partitions of the form 0 = t0 < t1 < . . . < tn−1 < T ≤ tn with
in1≤i≤n(ti − ti−1) > δ and n ≥ 1

heorem A.9 (Continuity Criteria for the Limit in Skorokhod Spaces ([22], Theorem 10.2,
hapter 3)). Let (E, r ) be a metric space. Let Xn , n = 1, 2, . . ., and X be processes with

ample paths in D([0, ∞); E) and suppose that Xn converges in distribution to X. Then X is
.s. continuous if and only if J (Xn) converges to zero in distribution, where

J (x) =

∫
∞

0
e−u[J (x, u) ∧ 1] du

or

J (x, u) = sup
0≤t≤u

r (x(t), x(t−)).
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