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Abstract
Boltzmann machines (BMs) are graphical models with interconnected binary units, employed for
the unsupervised modeling of data distributions. When trained on real data, BMs show the
tendency to behave like critical systems, displaying a high susceptibility of the model under a small
rescaling of the inferred parameters. This behavior is not convenient for the purpose of generating
data, because it slows down the sampling process, and induces the model to overfit the
training-data. In this study, we introduce a regularization method for BMs to improve the
robustness of the model under rescaling of the parameters. The new technique shares formal
similarities with the unlearning algorithm, an iterative procedure used to improve memory
associativity in Hopfield-like neural networks. We test our unlearning regularization on synthetic
data generated by two simple models, the Curie–Weiss ferromagnetic model and the
Sherrington–Kirkpatrick spin glass model. We show that it outperforms Lp-norm schemes and
discuss the role of parameter initialization. Eventually, the method is applied to learn the activity of
real neuronal cells, confirming its efficacy at shifting the inferred model away from criticality and
coming out as a powerful candidate for actual scientific implementations.

1. Introduction

Boltzmann machines (BMs) [1–3] are a class of graphical models, capable of modelling data distributions
through the learning of effective pairwise interactions between variables. Once properly trained e.g. through
gradient ascent of the likelihood, BMs can be used to generate new data configurations, which hopefully are
indistinguishable from the ones in the dataset [4]. Good generative performances are, in practice, hindered
by different limitations of the inferential problem.

While in theory BMs (with a sufficient number of hidden units) are universal approximators, in practical
applications one is limited by the incompatibility between the true unknown distribution of the training data
and the energy-based distribution that is employed to fit them. As a consequence, the training process cannot
converge to the best possible generative performance, and only selects a good approximate model among
many possible similarly good choices [5]. Hence, regularization can be used to push the training process to
yield specific desired properties, useful for particular applications of the data analysis. Standard schemes for
regularization include L2- and L1-norm penalties imposed on the pairwise interactions. However, these
regularization schemes have a tendency to decrease the values of the interactions, and introduce systematic
biases in the model.

Another limitation, which is intrinsic in inferential problems, is the limited availability of training data,
possibly leading to the overfitting phenomenon. Informally speaking, overfitting is an over-specialization of
the model, which is too focused on the details of the specific training set, rather than capturing the broader
statistical structure highlighted by the data. Overfitting is particularly concerning in the so-called high
dimensional setting, in which the size of the model (the dimension of the data configuration) is comparable
to the amount of available data. Regularization is also supposed to help in avoiding overfitting.
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Due to regularization, in a statistical physics language, the inferred interactions become smaller, and the
inferred model is implicitly at higher temperature. Correcting this bias requires introducing a temperature
parameter smaller than unity when generating new data. This procedure was used in [6] to generate new
viable protein sequences with BMs inferred from evolutionary sequence data. However, this approach is
purely empirical and somewhat uncontrolled. It is known from the statistical physics literature that rescaling
the energy function by a temperature factor, even close to one, can drastically alter the distribution
properties if the system is near a phase transition point [7, 8]. Hence, inferring models that are robust—i.e.
generate similar data—when the energy function is rescaled might be extremely advantageous.

The goal of this study, motivated by the practical issues described above, is to propose a new
regularization technique for BM learning that explicitly aims at increasing the robustness of the model under
rescaling of its parameters, i.e. the coupling matrix J= {Jij} and the local fields h= {hi}. This new tool, that
we named unlearning regularization, appears to be more effective than other techniques, approaching a
higher robustness performance of the neural network. The performance of the unlearning regularization is
evaluated from artificial data generated by both a Curie–Weiss (CW) and a Sherrington–Kirkpatrick (SK)
models. We initially consider a small number of variables: in this way the original parameters are known, the
fixed points of the learning equations are reached precisely and the useful quantities can be computed
exactly. In addition, higher-dimensional and more realistic cases are also considered to validate the results.

A particular limit of this type of regularization coincides with a thermal version of the traditional
Hebbian Unlearning algorithm (HU) [9–12]. We thus specifically consider this limit and conclude that HU is
able to infer the original data distribution with a very good accuracy. The performance shows an optimum in
time that scales with the control parameters, as it has been observed when the algorithm is implemented in
associative memory tasks [13]. We conclude that HU can be interpreted as a two-steps BM learning
procedure.

The structure of the article is the following. We first introduce generative modeling and BMs in section 2.
Some extensively employed regularization techniques (i.e. the Lp methods) are then described in section 2.2.
Section 3 briefly describes the HU algorithm and its traditional use in associative memory models. The new
unlearning regularization is then defined in section 3.2. Its performance is analyzed for two different data
sources in section 4: a CWmodel (section 4.1) and a SK model (section 4.2–4.5). In section 4.3–4.5 we
compare the new regularization method to the standard Lp regularization scheme, showing that it
substantially improves the robustness under rescaling of the parameters while preserving a high similarity to
the original model. The analysis is performed both at convergence of the regularization algorithm and in the
condition of highest similarity with the ground-truth model, obtained via early-stopping in the training,
either in the small and large N cases. The study of a particular limit of the regularization technique leading to
HU follows in section 5, which provides some insight on its behavior as a generic inference tool. Eventually,
the unlearning method is tested on real biological data in section 6, confirming in practice the validity of our
new regularization prescription.

2. Generative modeling

Generative models are a class of specific neural networks that are able to learn the probability distribution of a
data-set and generate brand new data that exhibit maximum coherence with the same statistics [3, 4].

Consider a collection of N variables in a vector S⃗= (S1, . . .,SN). Data areM realizations of such a vector
grouped into a set {⃗Sµ}Mµ=1 and we assume that they are sampled independently from a joint distribution

Ptrue(⃗S). GivenM data, we have access to the frequency of occurrence of a certain variable, i.e. the empirical
distribution

Pdata
(
S⃗
)
=

1

M

M∑
µ=1

N∏
i=1

δSµi ,Si . (1)

Generative modeling looks for a model distribution Pmod(⃗S|θ̂), where the parameters θ̂ are inferred from the
training data such that Pmod is the closest possible to Pdata. However, Pdata might still differ from the
ground-truth distribution Ptrue. As a remedy, it is useful to reduce the number of degrees of freedom of the
problem by designing the model taking into account some guess we might have about Ptrue. For instance one
might choose a graphical model, where variables are nodes of a graph [3] with interactions to be inferred.
Alternatively, one might add a prior distribution for the variables, such as a mixture of Gaussians of
unknown means and unit variances [14]. The generative approach is largely implemented across several
disciplines such as computational neuroscience [15, 16], bio-informatics [17], animal behavior [18], physical
simulations [19], image and text synthesis [20–22].
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2.1. BMs
We now describe a specific graphical model of generative neural networks, which will be particularly relevant
to the present work. It is inspired by equilibrium statistical mechanics and it is called Boltzmann machine
(BM) [1–3, 23].

Consider a fully connected network of N binary Ising variables S⃗ ∈ {−1,+1}N with the following energy
function

E
[⃗
S|J,h

]
=−

1,N∑
i,j>i

Si JijSj −
N∑

i=1

hi Si, (2)

where J ij are symmetric couplings and hi are the fields acting on each neuron site. Even if several types of
architectures are collected under the title of BMs, we will stick to the simplest model, the one endowed
exclusively with visible input neurons that interact reciprocally and are subjected to external fields. In fact,
our goal will be analyzing the evolution of the interactions between real neurons, which are not necessarily
present in other types of machines.

We know, from statistical mechanics, that such a system at equilibrium at a temperature β−1 obeys the
following Gibbs–Boltzmann joint probability distribution

Pmod

(
S⃗|J,h,β

)
=

1

Zβ
exp
(
−βE

[⃗
S|J,h

])
, (3)

with

Zβ =
∑
S⃗

exp
(
−βE

[⃗
S|J,h

])
. (4)

Training a BM means finding the parameters J and h that minimize the distance between Pdata given by
equation (1) and Pmod given by equation (3). Note that as a consequence, β can be set to one in the training
without loss of generality. In practice, training can be achieved by minimizing the Kullback–Leibler
divergence between Pdata and Pmod, i.e.

L(J,h) =
∑
S⃗

Pdata
(
S⃗
)
log

 Pdata
(
S⃗
)

Pmod

(
S⃗|J,h

)
, (5)

which is equivalent to maximizing the cross-entropy of Pmod with respect to the empirical distribution Pdata.
Differentiating equation (5) with respect to J ij and hi, we obtain the gradient of the loss, i.e.

∇ijL= ⟨Si Sj⟩mod −⟨Si Sj⟩data, (6)

∇iL= ⟨Si ⟩mod −⟨Si ⟩data, (7)

where ⟨ · ⟩data and ⟨ · ⟩mod are the averages over the respective probability distributions. Therefore, the
parameters can be found by iterating the following gradient descent equations

δJ(t)ij =−λ∇ijL= λ
(
⟨Si Sj⟩data −⟨Si Sj⟩mod

)
, (8)

δh(t)i =−λ∇iL= λ(⟨Si ⟩data −⟨Si ⟩mod) , (9)

with λ being a small positive learning rate.
Note that the mean and covariance over the data can be computed upstream, because they only depend

on the training data-set; on the other hand, the moments of Pmod must be re-sampled at each step of the
training process, because their exact calculation would involve a sum over all possible S⃗. Sampling can be
performed by a sufficient number of Monte Carlo chains at equilibrium at β= 1, which requires an
algorithm time that is long enough to ensure ergodicity for each chain. Usually the number of chains should
be of the same order of magnitude ofM, the number of training data-points, in such a way that the statistical
errors on the two averages are comparable.

Once the process converges to the fixed points of equations (8) and (9) we obtain amoment matching
condition, i.e. the first and the second moments of the two probability distributions coincide. While, in
principle, the training of a BM is a convex problem that admits a unique solution [2], in practice there are

3
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Figure 1. Altimetric sketch of the typical loss function Lminimized by BM learning, as a function of two parameters of the
model. Level lines are relative to constant values of the loss. The bottom of the landscape, pointed out by the red star, is found by
the unique solution (here chosen to be such that L= 0, i.e. a perfect fit of the data). The dashed line signals all the solutions that
differ by a small error ε from the ground truth. Given the same distance from the bottom, colored circles indicate models found
by different regularization methods.

many flat directions such that some initial conditions can push the parameters closer to their optimal
configuration. A common choice is, for instance

J(0)ij = ⟨Si Sj⟩data −⟨Si ⟩data⟨Sj⟩data, (10)

and

h(0)i = atanh(⟨Si ⟩data) . (11)

In order to measure the quality of the training of a BM one can measure whether the moment matching
condition is met or not. This can be quantified by the Pearson coefficient between the moments of the Pmod

and Pdata distributions at the end of the training. Let us collect the two-points correlation matrices ⟨Si Sj⟩ in a
vector c⃗ where each entry runs over the indices i, j > i. Let us group the means ⟨Si ⟩ in a similar vector µ⃗
where each entry runs over the index i. Then the Pearson coefficients are defined as

ρJ =

∑
i c

mod
i cdatai√∑

i

(
cmod
i

)2√∑
i

(
cdatai

)2 , (12)

ρh =

∑
iµ

mod
i µdata

i√∑
i

(
µmod
i

)2√∑
i

(
µdata
i

)2 . (13)

2.2. Regularization in BMs
Since the loss in equation (5) is a convex function of the parameters [2], there is a unique Gibbs–Boltzmann
distribution that minimizes it. However, in most practical applications the data are limited and as a
consequences the moments ⟨·⟩data are only noisy estimates of the correct ones. Furthermore, the data are not
generated by a Gibbs–Boltzmann distribution themselves. Because of this, the loss landscape features many
almost flat directions, corresponding to the fact that many different models can fit the data equally well,
i.e. reach a loss L= Lmin + ε with ε a small KL distance from the ground-truth. This idea is sketched in
figure 1. Regularization methods can be used to select specific models in this region of comparable loss, thus
providing different inferred systems with different properties, depending on additional requirements
imposed on the inferential problem. For instance, some of these models can be sparse or even contain null
parameters (e.g. L0, L1-norm and information based regularization schemes [24]), others are fully connected
(e.g. L2-norm method). Past literature [7, 8, 25] highlighted that critical models, i.e. inferred systems being
highly susceptible to small changes in the parameters, can be attractive for BM learning. In fact, if we
consider training as an homogeneous sampling of the models that minimize L, critical models have a large
basin of attraction and are thus sampled most often [8]. Criticality can be problematic for data generation: it

4
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implies a long correlation time in the Monte Carlo dynamics, slowing down the sampling process; it makes
the model susceptible under rescaling of the parameters, reducing its predictivity in real data applications.
Hence, avoiding criticality might help increasing generalization.

To summarize, we define the performance of the model according to two properties: accuracy, i.e. the
capability of the model to be as similar as possible to the distribution that generated the data; robustness,
i.e. the tendency of the model not to change its typical configurations when slightly changing (e.g. rescaling
by a common temperature factor) the parameters. The goal of this work is to introduce a new type of
regularization in order to find a better compromise between these two requirements.

We now discuss some widely used regularization methods for BMs and the way we can benchmark their
accuracy and robustness. As mentioned above, Lp regularizations are certainly the most famous
regularization methods, also due to their intuitive interpretation. This approach penalizes high values of the
parameters by adding a Lp norm of the same variables in the expression of the loss function. As a
consequence, the sparsity of the graph is promoted: the redundant parameters are weakened with respect to
the relevant ones. The expression of the loss of a BM with L1 and L2 regularizations is given by the following
equations

L1 = LBM (J,h)+ γ1
∑
i,j>i

|Jij|+ γ1
∑
i

|hi|, (14)

L2 = LBM (J,h)+
γ2
2

∑
i,j>i

J2ij +
γ2
2

∑
i

h2i , (15)

where LBM is defined in equation (5) and γ1,γ2 are two regularization rates. This translates into new
updating rules for the parameters, i.e.

δJ(1)ij = δJBMij −λγ1sign
(
Jij
)
, (16)

δh(1)i = δhBMi −λγ1sign(hi) , (17)

δJ(2)ij = δJBMij −λγ2Jij, (18)

δh(2)i = δhBMi −λγ2hi. (19)

Accuracy can be quantified by the Kullback–Leibler divergenceDKL(true|mod) between the inferred model
and the original one. Though, this quantity is not symmetric under the exchange of the two distributions,
which can be inconvenient to define a distance. We can then adopt a symmetric version of the divergence as

sDKL (true,mod) = DKL (true|mod)+DKL (mod|true) . (20)

Even if numerical results do not show a significant difference between these two quantities, we will mainly
adopt sDKL in our analysis. Sometimes, the KL divergence is not sufficient to quantify accuracy, so one must
compare the model correlations and the data correlations. A detailed analysis of these will be provided in the
following.

Regarding robustness, it is known that the susceptibility of the system to small variations of temperature
can be measured through the specific heat [26], defined as

Cv (β) =−β
∂Sβ
∂β

= β2
(
⟨E2⟩β −⟨E⟩2β

)
, (21)

where Sβ is the entropy of the model at a given inverse temperature β. The fact that inferred neural networks
typically display a peak in Cv around the value of β used for training implies the vicinity of a critical point
(the finite size of the system impedes Cv to properly diverge and to show a real criticality). Therefore, since all
parameters naturally scale with β in equation (3), Cv is a measure of the sensitivity of the model to a small
perturbation of the parameters: high values of Cv imply a strong variation of the model entropy under a
small variation of the parameters, which suggests strong variations of the inferred statistics as well. Note that
other kind of susceptibilities can be defined by taking derivatives of observables with respect to model
parameters, but we will focus on the specific heat in the rest of our study.

5
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3. Unlearning regularization

3.1. Unlearning algorithm
We will now describe an unsupervised algorithm employed in the realm of associative memory models that
will be our main focus in the following. Inspired by the brain functioning during REM sleep [27], the
Hebbian Unlearning algorithm (HU) [9–11, 27–30] is a training procedure for simple associative models.
Consider a neural network having the same energy defined in equation (2). We assume the external local
fields to be null, i.e. hi = 0, ∀i. The associative memory task consists in retrieving a set of random neural
states {ξ⃗µ}αNµ=1, called patterns, through a zero temperature Monte Carlo dynamics [31] initialized on some
corrupted versions of them. Such a rule for the dynamics reads

S(t+1)
i = sign

∑
j

JijS
(t)
j

 . (22)

The control parameter α is the load of the model. Associativity is improved by achieving larger basins of
attraction of the patterns.

The training procedure starts by initializing the connectivity matrix in the Hebb’s fashion as in
equation (10), i.e. J0ij = ⟨Si Sj⟩data, ∀i, j, where ⟨·⟩data is the empirical average over the patterns. Then, the
following routine is iterated at each step t:

1. Initialize the network on a random neural state.
2. Run the zero temperature Monte Carlo dynamics, updating a randomly picked neuron at each time step

according to equation (22), until convergence to a stable fixed point S⃗∗.
3. Update couplings according to:

δJ(t)ij =− λ

N
S∗i S

∗
j , Jii = 0 ∀i . (23)

This algorithm was first introduced in [9] to prune the landscape of attractors from proliferating
spurious states, i.e. fixed points of the neural dynamics not coinciding with the patterns [32, 33]. This
pruning action stabilizes the patterns and increases the size of their basins of attraction. The numerical
analysis of [11] shows that HU approaches the memory performance of a maximally stable symmetric
perceptron, which is considered to be a very effective model, up to a critical capacity αc ≃ 0.6. Another
important aspect to underline is that HU performs at its best at a given amount of algorithmic iterations that
scales with N,α and λ [10, 11]. After this amount of steps the performance of the model, in terms of perfect
retrieval of the patterns and size of the basins of attraction, deteriorates. This implies the necessity of
applying an early-stopping criterion for the HU algorithm to perform optimally. We also note that HU is an
unsupervised algorithm, in the sense that it does not need to be provided explicitly with the patterns, and
only exploits the information encoded in the Hebbian initialization of the couplings.

3.2. Unlearning regularization
We now propose a new type of regularization that has the objective of imposing robustness under rescaling
of the parameters, i.e.

J−→ βJ , h−→ βh , with β ̸= 1. (24)

For the model to be robust under a redefinition of the parameters, we can add a regularization term to the
traditional BM loss function that shifts the peak of the specific heat (i.e. the critical temperature) away from
β= 1, where the data are generated. Hence, let us define the following loss function

L(J,h|a) = DKL (data|1)+
(
a− 1
a

)
DKL (data|a) , (25)

with

DKL (data|β) =
∑
S⃗

Pdata
(
S⃗
)
log

Pdata
(
S⃗
)

Pβ
(
S⃗
)
, (26)

being the Kullback–Leibler divergences between the data and the model inferred at an inverse temperature β.
Both the cases of positive and negative regularization factor (i.e. for a≶ 1) will be evaluated in this work. The
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motivation for using the asymmetric KL distance will become clear in a few lines. The gradient descent
equations for this loss function become

δJ(t)ij = λ
[
a
(
⟨Si Sj⟩data −⟨Si Sj⟩a

)
−
(
⟨Si Sj⟩1 −⟨Si Sj⟩a

)]
, (27)

δh(t)i = λ [a(⟨Si ⟩data −⟨Si ⟩a)− (⟨Si ⟩1 −⟨Si⟩a)] . (28)

When a= 1, equations (27) and (28) coincide with the original BM learning. In the limit a→ 0 one has
⟨Si Sj⟩a→0 → ⟨Si ⟩0⟨Sj⟩0 = 0 and equation (27) tends to a thermal version of the HU rule performed at β= 1,
i.e.

δJ(t)ij =−λ⟨Si Sj⟩1, (29)

δh(t)i =−λ⟨Si ⟩1. (30)

Equation (29) is similar to previous attempts in the associative memory literature [13]. On the other hand,
when a→∞, and the learning rate is redefined as λ= λ̃/a→ 0, the algorithm becomes

δJ(t)ij = λ̃
(
⟨Si Sj⟩data −⟨Si Sj⟩∞

)
, (31)

which also resembles the unlearning procedure: the sampling at a=∞ produces fixed points of the
zero-temperature dynamics, which gives back equation (23). At variance with the standard routine, there is
an additional Hebbian input term ⟨Si Sj⟩data which impedes the couplings to vanish at convergence.

At this point, the motivation for our choice of the loss function L(J,h|a) should be clear: we search for an
algorithm that interpolates between the BM learning algorithm and HU. In this way HU emerges as a
particular limit of a regularization method on BMs.

4. Results

In order to benchmark our proposed regularization scheme, we first consider a small sized network, i.e.
N= {18,20}, which allows us to consider the limit of infinite number of generated data, i.e.M→∞, and
compute exactly the moments ⟨·⟩data. We can then reach the fixed points of equations (27) and (28) precisely,
whenever such points are admitted, with no errors due to the finite sampling. We can then compute the
observables Cv or sDKL more easily, in order to determine the accuracy and robustness of the inference. It
must be underlined that our purpose in this framework is not to maximize the generalization properties of
the model, because this goal would be trivially reached by the standard BM learning: it is rather to find the
model that achieves the best compromise between accuracy and robustness. In the second instance, we
generalize our analysis to the case of larger N, where quantities cannot be computed exactly.

For simplicity of notation we rename

⟨Si Sj⟩data = cdij , ⟨Si Sj⟩β = cβij , (32)

where we will mainly deal with β = a and β= 1. The inverse temperature of the data generating model is
β = βd. For given βd, we can compute cdij exactly in the limitM→∞ by exact enumeration of the model
configurations. We consider two kind of data generating models: a mean field fully connected ferromagnetic
Ising network (i.e. the Curie–Weiss model) and a fully disordered spin glass network (i.e. the
Sherrington–Kirkpatrick model [34]), which both display a critical point in the thermodynamic limit,
manifested by a singularity of the specific heat at a given critical temperature. This singularity is smoothed in
finite size systems, thus appearing as a peak in specific heat. For both models we will choose βd to be smaller
than the real position of the peak of Cv(β) because sampling is more efficient in the paramagnetic phase.

4.1. CWmodel
We first consider the problem of inferring a CWmodel, that is defined by the following energy function

ECW
[⃗
S|J
]
=−

∑
i,j>i

Si JijSj , Jij =
J

N
,∀i, j . (33)

7
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This model can be fully treated analytically in the finite size case, and the procedure to compute the main
quantities is reported in the following. Since fields are zero, by construction of the model, we are interested in
the evolution equation for the couplings, i.e.

J̇= λ [a(cd − ca (t))− (c1 (t)− ca (t))] , (34)

where we used the fact that all elements of the matrices are identical, because each node receives the same
fields from its neighbors. The fixed point equation for the correlation functions from equation (34) is

c∗a =
c∗1

1− a
− a

1− a
cd , (35)

where the star indicates the value of the correlations at convergence. Moreover we know that

ZβJ =
∑
m

(
N

N
2 (1+m)

)
exp

(
βJ

2

(
Nm2 − 1

))
, (36)

wherem ∈ [−1,−1+ 2
N , ..,1−

2
N ,+1] and we used

ECW
[⃗
S|J
]
=− J

2

N( 1

N

∑
i

Si

)2

− 1

=− J

2

(
Nm2 − 1

)
. (37)

From now on, we will make use of the following notation for the correlation functions: cβ = c(βJ),
cd = c(βdJ). The second moment of the magnetization with respect to the Gibbs–Boltzmann measure ⟨m2⟩β
can be written as

I(2)N (βJ) =

∑
mm

2
( N

N
2 (1+m)

)
exp β

2 J
(
Nm2 − 1

)∑
m

( N
N
2 (1+m)

)
exp β

2 J(Nm
2 − 1)

=
1+(N− 1) c(βJ)

N
. (38)

Thus

c(βJ) =
NI(2)N (βJ)− 1

N− 1
. (39)

The fourth moment of the magnetization ⟨m4⟩β can be written as

I(4)N (βJ) =

∑
mm

4
( N

N
2 (1+m)

)
exp β

2 J
(
Nm2 − 1

)∑
m

( N
N
2 (1+m)

)
exp β

2 J(Nm
2 − 1)

=
1+

(
N3 − 1

)
k(βJ)

N3
, (40)

where k(βJ) is the fourth-order correlation among spins. Equation (35) then becomes

c(aJ) =
c(J)

1− a
− a

1− a
c(βdJ) , (41)

or equivalently

I(2)N (aJ) =
I(2)N (J)

1− a
− a

1− a
I(2)N (βdJ) , (42)

that has be to solved for J, given a and βd.
In the following, we first choose βd = 1 in order to generate data from the paramagnetic phase of a

network of N = 20 spins slightly above the critical point, since the specific heat peak of the model at N = 20
appears to be at β > 1. Then, we solve equation (42) to obtain the coupling J(a) of the inferred model in
presence of the unlearning regularization. Once this is done, we analyze the resulting model by computing
quantities from the Gibbs–Boltzmann distribution with parameter βJ(a) rescaled by an additional
temperature β. The specific heat of the inferred model is computed as

Cv (β) =

(
βNJ(a)

2

)2(
I(4)N (βJ(a))− I(2)N

2
(βJ(a))

)
. (43)

Results are reported in figure 2(a) and show that the specific heat has a peak slightly after β= 1 that shifts
progressively when a is decreased as well as increased away from unity. In figure 2(b) we compare c1 and ca
with the data correlations cd as functions of a. There is no value of a where c1 = cd or ca = cd, signaling that
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Figure 2. Thermodynamic quantities computed for a small network trained on the configurations of the Curie–Weiss model with
N= 20 spins at a given βd. (a) The specific heat of the inferred model for βd = 1 is reported as a function of the inverse
temperature β, at different values of the regularization parameter a. Recall that a= 1 corresponds to standard BM learning that
reproduces the original model exactly. (b) A comparison between c1, ca and the empirical data correlation cd when inferred at
different values of a. The only point where c1 = ca = cd, i.e. a= 1, is marked by a red circle. (c) Inferred coupling multiplied by
a/βd as a function of a at different values of βd. The point a= 1 where c1 = ca = cd is marked by a red circle.

the inferred model never reproduces exactly the original system, except for the trivial case of a= 1. Moreover,
c1/cd and ca/cd swap when crossing a= 1, as one could guess by the fact that the regularization factor in
equation (25) passes from being negative to positive. Furthermore, in figure 2(c) we compute J(a) for
different values of βd and plot the quantity aJ(a)/βd as a function of a: when a lies in between 0 and 1 the
lines are approximately linear, signaling that J(a) is nearly constant in a. The inferred model thus changes
slowly upon varying a and this property improves when N is increased.

4.2. SKmodel: training
Next, we consider the problem of inferring a SK model, i.e.

ESK
[⃗
S|J
]
=−

∑
i,j>i

Si JijSj , Jij ∼N
(
0,N−1/2

)
. (44)

We consider a network of N = 18 spins with a data generation temperature βd = 0.4. For clarity of the
results, we will use only one realization of the parameters for the SK, having a peak in the specific heat at a β
slightly larger than βd. The parameters are initialized as J(0) = cd and h(0) = 0∀i.

The fixed points of the gradient descent equations (27) and (28) is such that the inferred model does not
exactly reproduce the original system, due to the regularization. In fact, when a≪ 1 the stable fixed point of
the equations is c1 ≃ acd and ca ≃ 0; when a≫ 1, one has ca = cd and c1 ≃ 0. In both scenarios the inferred
model (at a= 1) does not show a good accuracy. Note that even if for a≫ 1 the model scaled by a fits well
the data, we do not consider this as a good inferred model because it is not robust upon further lowering the
temperature.

For this reason, we also consider an early-stopping criterion for the training, such that the unlearning
regularization reaches the best compromise between accuracy and robustness. Let us compute the symmetric
KL divergence between the original SK model and the inferred one at different number of training steps.
Figure 3(a) shows the resulting curve for a model regularized via the unlearning scheme with a= 0.3 and

compares the standard Hebbian initialization of the couplings with two other initializations: J(0)ij = 0 and

J(0)ij ∼N (0,N−1/2)∀i, j. All the three curves reach the same final performance, by convexity of the loss
function. Nevertheless, only the Hebbian initialization displays a local minimum in sDKL during the initial
transient, which signals a high resemblance of the inferred network to the data-generating model.

To compare the correlation matrices c1 and cd, a non-weighted fit of the elements of cd versus the
corresponding elements of c1 provides the slope ω(c1,cd), while the Pearson coefficient ρ(c1,cd)measures the
degree of correlation between the two matrices. A high accuracy is reached when both ρ and ω are close to
unity. Note that the estimation of ω and ρ carry the same computational cost, in fact at each algorithm time
step we have

ω(t) (c1,cd) =
ρ(t) (c1,cd)−µd ·µ1 (t)

s21 (t)−µ1 (t)
2 , (45)
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Figure 3. (a) Symmetric KL divergence (in log scale), as a function of time tλ, between the inferred Gibbs–Boltzmann
distribution at unitary temperature and the one describing a SK model at βd = 0.4. (b) Slope ω obtained from the linear fit of the
elements of cd versus the elements of c1, as a function of time t. (c) Pearson coefficient ρ between the correlation matrix c1 and
the data correlation matrix cd as a function of time t. The full line reports the case of Hebbian initialization of the couplings; the
dotted line corresponds to a random initialization; the dashed line represents the initialization to J(0) = 0. The gray vertical line
signs the location of the minimum of sDKL for the Hebbian initialization. Choice of the parameters: N= 18, a= 0.3, λ= 0.06.

Figure 4. (a) Symmetric KL divergence (in log scale), as a function of time tλ, between the Gibbs–Boltzmann distribution at
unitary temperature, inferred via L1 and L2 regularizations, and the one describing a SK model at βd = 0.4. (b) Slope ω obtained
from the linear fit of the elements of cd versus the elements of c1, as a function of time tλ. (c) Pearson coefficient ρ between the
correlation matrix c1 and the data correlation matrix cd as a function of time tλ. The full line reports the case of Hebbian
initialization of the couplings; the dotted line corresponds to a random initialization; the dashed line represents the initialization
to J(0) = 0. Light blue and red vertical lines sign the locations of the minima of sDKL for the Hebbian initialization, respectively in
the L1 and L2 methods. Choice of the parameters: N= 18, βd = 0.4, λ1 = λ2 = 0.001, γ1 = 0.15, γ2 = 1.

where µd is the average over the off-diagonal elements of cd and µ1(t), s21(t) are, respectively, the average of
the off-diagonal elements and the average of the off-diagonal squared elements of c1 at
time t.

Figures 3(b) and (c) report the evolution of ω and ρ during training. As one can notice, there is a clear
correspondence between the local minimum of the symmetric KL divergence and the point where ω= 1 and
ρ approaches a local maximum. It is therefore interesting to consider stopping the training at this point
(defined in practice by ω= 1), in order to achieve the best accuracy. We note that this is only possible with a
Hebbian initialization of the parameters; while a null initialization never reaches ω= 1, a random one
reaches it but with a much lower Pearson coefficient ρ, resulting in poor accuracy. Note that the
correspondence between the local minimum of sDKL and the best match of cd and c1 is not valid for the entire
range of a. Specifically, for the rest of our analysis we will avoid values of a that are close to unity, because for
this value the correspondence does not hold and we cannot define a good early-stopping criterion.

We also observe that Lp regularizations do not converge to the best network in terms of accuracy: even
though ρ≃ 1 at convergence, we find ω ̸= 1. Nevertheless, we found that L1 and L2 regularization schemes
with a Hebbian initialization also display the same correspondence between a minimum in sDKL and the
point where ω approaches unity and ρ admits a local maximum in time, as shown in figure 4.
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Figure 5. Comparison at convergence of the performance of the unlearning, L1 and L2 regularization methods. (a) Symmetric
Kullback–Leibler divergence sDKL and specific heat at unitary temperature Cv(1) for different values of the slope ω. (b) Distance
from origin of the points in panel (a) as a function of ω. Choice of the parameters: N= 18, βd = 0.4, a ∈ [0.1,1], γ1 ∈ [0,0.4],
γ2 ∈ [0,7], λ= 0.01, λ1 = λ2 = 0.001.

4.3. SKmodel: results at convergence
Before discussing the early-stopping results, we now compare the generalization performance of the
unlearning regularization with the L1 and L2 regularizations described in section 2.2, at convergence. Data
are generated by the same SK model with βd = 0.4, as in section 4.2.

The couplings are optimized until convergence of the training for the three types of regularizations.
Three quantities are measured after training: the symmetric Kullback–Leibler divergence sDKL(1,d) between
the model at unitary temperature and the original SK model, the specific heat at unitary temperature Cv(1)
and the slope ω defined as in equation (45). One should keep in mind that ω= 1 is reached only by the trivial
choice of the regularization parameters a= 1 and γ1 = 0, γ2 = 0; any other choice of these parameters leads
to a reduced accuracy, by definition of regularization. Measures are repeated for different choices of the
regularization parameters {a,γ1,γ2} and results are reported in figure 5. Specifically, figure 5(a) is a color
plot showing the performance of the network in the plane (sDKL,Cv(1)), where each point is colored
according to the slope ω. The three lines correspond to the three regularizations: the unlearning line is
generally closer to the origin than the L1 and L2 ones, suggesting a better compromise between accuracy and
robustness. All the lines converge to the ground-truth when sDKL = 0, corresponding to absence of
regularization (a= 1 or γ1 = 0 or γ2 = 0).

To better compare the three regularization methods, figure 5(b) reports the distance of the points
reported in figure 5(a) from the origin directly as a function of the slope ω. Consistently with figure 5(a), the
plot shows that the set of points relative to unlearning always stands below the L1 and L2 ones, while all
regularizations tend to the ground truth when ω approaches unity. Different experiments with different data
and temperatures βd show very similar results.

One can repeat the analysis by comparing the three regularization schemes at constant standard deviation
of the couplings σJ instead of constant slope ω. The results are reported in figure 6, and the unlearning
regularization once again reaches a better compromise between accuracy and robustness compared to the
other regularization methods. Note that the U and L2 curves tend to coincide when σJ → 0, i.e. when all
inferred couplings are small. This can be explained through a weak coupling expansion of the gradient
equations for U and L2. When σJ ≪ 1 the two-point correlation functions can be Taylor expanded as

cβij (t) = βJ(t)ij +O
(
J(t)ij

2)
. (46)

The expansion of equation (27) leads to

δJ(t) = λ
(
acd − (1− a) J(t) +O

(
a2
))

. (47)

Since σJ is small when a≪ 1, in this limit we obtain

δJ(t) ≃ λ
(
acd − J(t)

)
, (48)
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Figure 6. Comparison at convergence of the performance of the unlearning, L1 and L2 regularization methods. (a) Symmetric
Kullback–Leibler divergence sDKL and specific heat at unitary temperature Cv(1) for different values of the standard deviations of
the couplings σJ . (b) Distance from origin of the points in panel (a) as a function of σJ . Choice of the parameters: N= 18,
βd = 0.4, a ∈ [0.1,1], γ1 ∈ [0,0.4], γ2 ∈ [0,7], λ= 0.01, λ1 = λ2 = 0.001.

which at the fixed point becomes

J= acd −→ σJ = aσd, (49)

where σd is the standard deviation of the empirical correlation matrix. By repeating the same procedure with
equation (18) one obtains

δJ(t) = λ
(
cd +(1− γ2) J

(t)
)
, (50)

which at the fixed point becomes

J=
cd

γ2 − 1
−→ σJ =

σd

γ2 − 1
, (51)

for γ2 > 1, which is justified by the fact that σJ is small when γ2 is sufficiently large. Numerics support the
fact that, when σJ ≪ 1 and σJ is the same in figure 5 for both U and L2, then a(γ2 − 1) = 1. Our results show
that the HU algorithm, which derives from the unlearning regularization when a→ 0, can also be obtained
via a L2 regularization with a large γ2.

4.4. SKmodel with early-stopping
The early-stopping criterion described in section 4.2 is now employed to improve the performance of the
inferred model. The training is stopped when ω ≃ 1. For the unlearning regularization, we consider a range
of values for a such that there is a good correspondence among the minimum of sDKL and ω,ρ reaching
unity: outside the considered interval these three quantities might not behave consistently, and we could not
define a good early-stopping criterion. Measures of the symmetric Kullback–Leibler divergence sDKL(1,d),
the specific heat at unitary temperature Cv(1) and the standard deviation of the couplings σJ are repeated for
different choices of the regularization parameters {a,γ1,γ2} and results are reported in figure 7 by a color
plot showing the performance of the network in the plane (sDKL,Cv(1)), where each point is colored
according to the standard deviation σJ .

The specific heat of the original SK model is reported as a dashed line in the plot. The figure shows three
lines relative to the three regularizations: at equal value of sDKL, the unlearning regularization has much
lower Cv(1) than the L1 and L2 regularizations, signaling a higher robustness at comparable accuracy. We
observe a range of values of γ1 and γ2 for which the L1 and L2 regularizations reduce the specific heat in
β= 1, while the remaining choices for the regularizers do not allow to obtain a higher robustness with
respect to the original SK model, i.e. Cv(1) is increased. Different calculations with different data and
temperatures βd produce very similar results.

Finally, we show that the unlearning regularization helps generating new data. Since the inferred model is
less critical than the original one, the correlation between network configurations sampled at different time
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Figure 7. Comparison at early-stopping of the performance of the unlearning, L1 and L2 regularization schemes. Each point has
two coordinates: the symmetric Kullback–Leibler divergence sDKL and specific heat at unitary temperature Cv(1). The colorbar
relates each point to the standard deviation of the couplings σJ . Arrows display the increase in the regularization rates of the
algorithms. The dashed line indicates the specific heat of the original SK model that generated the data. Choice of the parameters:
N= 18, βd = 0.4, a ∈ [0,0.63] in the U upper branch and a ∈ [1.9,3] in the U lower branch, γ1 ∈ [0.5,0.4], γ2 ∈ [0.3,4],
λ= 0.01, λ1 = λ2 = 0.001.

Figure 8. Time correlation between network configurations sampled by a MCMC at unitary temperature when a= 0.4 and a= 1
(i.e. the original SK model), in semi-log scale. Errorbars are the propagated standard deviations of the measures. The parameters
are found by the early-stopping procedure described in the text. The sub-panel reports the specific heat obtained for the same
choices of a. Choice of the parameters: N= 18, βd = 0.4, λ= 0.01.

steps of a Monte Carlo chain at unitary temperature are smaller. Figure 8 shows a comparison between the
time-correlation functions corresponding to the inferred system at a= 0.4 and the original SK model. The
inset displays the behavior of the specific heat Cv for the same two models.

4.5. SKmodel withN ≫ 1
In this section, we test the method on an instance with larger number N of variables, showing a good
efficiency of the Unlearning method, both run until convergence and early-stopped.

A numberM= 104 of data-points are sampled from a SK model with N = 200 spins in equilibrium at a
temperature βd = 0.4 (i.e. in the paramagnetic phase). The network is then initialized in Hebbian fashion,
i.e. J(0) = cd and h(0) = 0. The model is trained via Unlearning, L1 and L2 regularization methods and the
specific heat Cv(1), the slope ω(c1,cd) and the Pearson coefficient ρ(c1,cd) are measured through MCMC
sampling at unitary temperature. Two different training prescriptions have been adopted for the study: the
algorithm is executed until convergence of equations (27), (28); training is early-stopped as soon as ω ≃ 1.
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Figure 9. Comparison of the performance of the unlearning with L1 and L2 regularization methods after training withM= 104

configurations of a SK model with N= 200 spins and inverse temperature βd = 0.4. (a) The Pearson coefficient ρ(c1, cd) is
plotted as a function of ω(c1, cd) for different values of specific heat at unitary temperature Cv(1). The dashed lines represent the
best (i.e. unitary) values for ρ and ω, that meet in the non-regularized performance. Choice of the parameters:
λ= λ1 = λ2 = 10−2a ∈ [0.45,1], γ1 ∈ [0,0.09], γ2 ∈ [0,4.5]. (b) Cv(1) as a function of ρ(c1, cd) when the algorithm is early
stopped at ω ≃ 1. Measures are derived from one training instance, since they resulted stable enough over different repetitions.
Choice of the parameters: λ= λ1 = λ2 = 10−3,a ∈ [0.45,0.9], γ1 ∈ [0.01,0.18], γ2 ∈ [0.5,9].

Figure 9 depicts the values of ρ as a function of ω and Cv(1) as achieved through the three regularization
methods for various values of the control parameters a,γ1,γ2. At convergence (see figure 9(a), the
Unlearning algorithm appears to approach a better accuracy performance (i.e. in terms of both ρ and ω)
together with a lower value of the specific heat. Even after early-stopping (see figure 9(b) the same behavior
emerges: there is a range in a where, given the same degree of accuracy, the model achieves a smaller specific
heat with respect of the other regularization methods. We also stress that, by contrast with the rest of our
analysis, this experiment provides for a specific heat Cv(1) obtained at early-stopping which is lower than the
one reached at convergence. This aspect might be due to the Hebbian initialization of the parameters in a
regime which is very far from the perfect-sampling one that we considered before.

It should be noted that the standard deviation σJ of the couplings is chosen to have the same order of
magnitude, across all three regularization methods. Both in the converged and early-stopped scenario, the
Unlearning algorithm is superior to the Lp regularizations, confirming the results obtained at smallN (i.e. the
perfect sampling framework). Moreover, the early-stopping technique used in this work, which relies on the
Hebbian initialization of the network, results handily applicable for larger dimensions due to its reduced
computational cost, hence providing an effective training recipe in terms of both accuracy and robustness.

5. The Hebbian unlearning limit

We will now study the specific limit of the unlearning regularization that leads to an algorithm which strongly
resembles the HU routine. The inferential performance of the learning procedure is examined by measuring
the distance between the inferred model and the original one at different training steps. Results show, for the
first time, that HU can be employed as an inferential tool, due to the beneficial effect of the Hebbian
initialization of the couplings. We advance an explanation for its performance that is supported by further
numerical evidence. In the limit a→ 0 the updating rules for the parameters transform into equations (29)
and (30). As mentioned before, equation (29) strongly resembles the traditional HU algorithm of [9]. By
contrast with the original rule, the new regularization samples configurations at β= 1 instead of stable fixed
points of the neural dynamics, and makes use of a thermal average, rather than summing each contribution
each time. We will keep dealing with small networks so that, given the initial conditions for the parameters,
the loss function of the problem can be minimized exactly. As a numerical experiment, we train a BM with
N = 18 neurons to learn a SK model at βd = 0.4. The unlearning regularization is applied with a= 0 and the
usual initial conditions for the parameters, i.e. J(0) = cd and h(0) = 0.

Even if training is performed over both the couplings and the fields, according to the rules (29) and (30),
the fields h do not appear in the energy of the original model, hence we will focus exclusively on the
evolution of the interactions J. Figure 10(a) displays the standard deviation of the couplings: as we can see
the general trend shows an exponential decay of the interactions, as one typically observes in the HU
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Figure 10. Three relevant observables to benchmark the inferential performance of the unlearning regularization in time with
a= 0: the standard deviation of the couplings σJ , the Kullback–Leibler divergence between the original SK model and the inferred
one at β= 1, the Pearson coefficient between the data correlation matrix cd and c1, i.e. the correlation matrix for the model at
β= 1. Choice of the parameters: N= 18, λ= 0.06, βd = 0.4.

algorithm [10]. The decay to zero is implied by the fact that the fixed point of the gradient descent equations
for equation (29) corresponds to c1 ≡ 0. Figure 10(b) depicts the symmetric Kullback–Leibler divergence
between the Gibbs–Boltzmann distribution of the original SK model, from which data were sampled, and the
inferred model with β= 1. The sDKL is high at the beginning, then decreases until reaching a global
minimum signaling an optimum in the inferential performance, then it increases again and stabilizes at a
plateau. The minimum is sufficiently low to indicate a good statistical consistency between the model and
data. The Pearson coefficient between the correlation matrix of the data cd and the one of the inferred model
at unitary temperature c1 is measured step-by-step in the learning process and reported in figure 10(c): as
one can notice, there is a global maximum near the position of the global minimum of the sDKL. The inset in
figure 10(c) displays the good agreement between the two matrices, the inferred c1 and cd, at the position of
the peak.

This analysis suggests that the unlearning regularization with a= 0 displays two algorithmic regimes: a
transient regime where the model at β= 1 shows a good statistical agreement with the generating model;
another regime where c1 → 0, and the total performance deteriorates. The first transient regime is the most
important one, because it suggests that HU can be considered as an inferential tool, aside of its associative
memory use. We know from section 2.1 that in BM learning data are shown to the model each time-step of
the algorithm and this imposes the moment matching. The co-existence of a positive Hebbian term and a
negative unlearning one in the traditional BM learning has already been pointed out in [1, 35]. In fact, the
variation of each pair of couplings J ij is given by

δJij = δHJij + δUJij, (52)

where we neglected the dependence on time, and

δHJij = ⟨Si Sj⟩data, (53)

δUJij =−⟨Si Sj⟩mod. (54)

We can interpret each step in the minimization of L as the result of two contributions, one constant quantity
deriving from the data, and another one deriving from the evolving model. While a standard BM can start
wherever in the space of the parameters and ends up at the fixed point of equation (52), in the HU case the
update is performed by using only the negative unlearning contribution. Nevertheless, the data have been
seen by the model, specifically through the Hebbian choice of the initial conditions. This observation
suggests that HU approaches the minimum of the loss function in two temporally separated steps: by first
descending along the data direction and then, progressively, along themodel one. As a consequence, we can
assume that such a two-step minimization is similar to standard BM learning as long as

|⟨Si Sj⟩mod| ≫ |⟨Si Sj⟩data| (55)

for most of the pairs i, j. To test whether this condition holds while training a BM regularized with a= 0, and
initialized with J(0) = cd, we measure the standard deviation of the ratio between the elements of c1 and cd as
a function of time.
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Figure 11. (a) Standard deviation of the ratio between the elements of c1 and cd as a function of the normalized time tλ; the
subplot reports the values of tλ associated to global minima of the symmetric Kullback–Leibler divergence (sDKL) between the
generating model and the inferred one for different choices of λ; both the vertical and horizontal gray dotted lines report the
mean of the points in the inset. (b) Global minimum of the symmetric Kullback–Leibler divergence between the generating model
and the inferred one as a function of λ in log-scale. Choice of the parameters: N= 18, a= 0, βd = 0.4.

Results are presented in figure 11(a) for the usual data-set sampled by a SK model. The standard
deviation of the ratio of the elements of the two matrices c1 and cd is plotted as a function of tλ for different
choices of λ. The curves collapse well from λ smaller thanO(10−2). The system starts with c1 generally being
much larger than cd, which satisfies the condition (55). Around t∼ 0.2λ−1 the curves reach a local
minimum, then increase until a local maximum at t∼ 0.29λ−1, to start a slow decay right after. Both these
two stationary points are located where c1 and cd share the same order of magnitude, i.e. where the condition
for the two-steps minimization of the loss ceases to hold. However, only the second stationary point is
associated to the minimum of the sDKL between the original SK and the model, as reported in the inset of
figure 11(a). Moreover, figure 11(b) reports the values assumed by sDKL at its global minimum for various
choices of λ. As one can notice, the generalization of the model increases when λ is small: we can imagine
that the smaller is λ the stronger is the effect of the initial overshoot along the data direction.

Different parameter initializations can now be compared. Specifically, we run the standard BM learning
(i.e. the unlearning regularization with a= 1) after a Hebbian, random, and all-to-zero initialization of the
couplings. The Hebbian and the random initializations have the same initial standard deviation of the
couplings σJ . At this stage we measure the evolution in time of the standard deviation of the ratio c1/cd and
the value of the loss. In addition to these two quantities, we introduce another observable that quantifies the
degree of alignment of the gradient δ⃗J(t) =−∇⃗L(t) to the direction connecting the initial state of the
couplings, i.e. J(0), and the convergence state Jd = βdJ

SK. Such quantity is defined as

cos
(
θ̂
)
=

δ⃗J ·
(
J⃗d − J⃗(0)

)
|δ⃗J||J⃗d − J⃗(0)|

. (56)

The evolution of these observables are reported in figure 12. Note that, for the random initialization,
measures are averaged over fifteen realizations of the initial matrix. As one can observe from figure 12(a), the
highest dispersion of the elements of c1/cd is obtained through the Hebbian initialization; the random
initialization also begins with the elements of c1 being on average larger than the empirical data correlations.
Yet, as one can see from figure 12(b), the loss decays generally faster in the Hebbian case, with respect to the
random case. Figure 12(c) allows to interpret the behavior of the learning dynamics in terms of the gradient
descent: the Hebbian initialization points the gradient δ⃗J towards the minimum of the loss, located in Jd; on
the other hand, the random initialization does not start well in its descent, and progressively adjusts the
trajectory. The wrong start of training after random initialization can be also visualized in the inset of
figure 12(b), displaying a projection of the trajectory over the first two components of the J matrix, with
arrows indicating the direction of the gradient descent. Only one experiment is reported for the random
initialization since the others showed very similar behavior. Conversely, when the system learns from zero
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Figure 12. Confronting different initializations of the parameters. (a) Standard deviation of the ratio between the elements of c1
and cd as a function of the normalized time tλ in a standard BM learning scenario (i.e. unlearning regularization with a= 1). (b)
Loss function L as a function of the normalized time tλ in a standard BM learning scenario. (c) Cosine of the angle between the
gradient of J and the direction connecting the initial state of the parameters J(0) and the model to be inferred Jd. The curve for
the unlearning regularization with a= 0 is indicated in all panels for comparison. The curve relative to the random initialization
is averaged over fifteen starting matrices and the halo represents the standard deviation of the measures. Choice of the parameters:
N= 18, βd = 0.4, λ= 0.01.

initial couplings, both the positive and negative contributions to the learning appear to be small and
comparable in value, which implies that the implementation of pure unlearning is ineffective in this case; the
descent of the loss is slower with respect to the Hebbian initialization; the trajectory is already sufficiently
pointing to the bottom of the landscape, and progressively adjusts itself.

We conclude by stating another important remark. The unlearning trajectory and the standard BM
learning look very similar in the first stage of training, in terms of the gradient descent, as predicted by
equation (55). After a certain amount of iterations that we have identified above, the unlearning trajectory
deviates towards J= 0, while the BM finally converges to the final target. The abrupt change of direction that
is visible from both the two-dimensional projection of the trajectory and the evolution of the gradient might
be related to the choice of the data-set. We have thus showed that, when the network is initialized in the
Hebbian fashion, the dominant contribution to the BM learning is the unlearning one, and the gradient of J
points towards the minimum of the loss function. Hence we showed that the HU algorithm works as well as
an inferential device than as a training procedure for associative memory models.

6. A real-world application

This section is dedicated to the testing of the performance of the Unlearning regularization on real data. We
train a BM on a data-set available from [16], reporting the activity of N = 40 retinal ganglion neurons
reacting to visual stimuli. We firstly binarize each data vector by discretizing a time interval of 0.1s into bins
∆τ = 20ms, as done in [7, 16]. As a consequence, each data-point is a sequence of Si units, representing the
instance where the ith neuron has fired (Si =+1) or not fired (Si =−1) in given time bin. Each time bin is
thus associated to a data-point of our binary data-set. We are provided with several repetitions of the
experiment over the same population of neurons, so that we can train the model withM= 105 data-points
in total.

The model is trained as a BM and regularized over couplings and fields through the Unlearning method
with different choices of the parameter a. The profile of the specific heat Cv is measured as a function of β
and reported in figure 13. Lines with dots represent a machine trained until convergence of the algorithm.
The curve obtained at a= 1, corresponding to pure BM learning, appears consistent with the one reported in
[7]. For each a< 1 the peak of the specific heat shifts away from unit, and its value in β= 1 is lowered by the
regularization, suggesting a higher stability of the inferred network under a rescaling of couplings and fields.
The small dots report the specific heat measured under the usual early-stopped prescription when couplings
and fields are initialized as in equations (10) and (11): even when N becomes large there is an optimum
amount of iterations where the Pearson coefficient between cd and c1 is high and the slope ω reaches unity.
As underlined by the figure, at this state of the network the specific heat is still significantly lower than the
one obtained with no regularization, corroborating the importance of a Hebbian initialization for reaching
the optimal level of accuracy and robustness of the model.
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Figure 13. Specific heat of a model inferred from the activity of N= 40 real neurons as a function of the inverse temperature β.
The circles report the measure at convergence of the Unlearning regularization; the dots report measures when the algorithm is
initialized in a Hebbian fashion and early-stopped when ω ≃ 1. Error bars are neglected for clarity purposes. Choice of the
parameters: N= 40,M= 105, λ= 10−3.

7. Conclusions

In this study we have shown that:

• In the context of BMs, and specifically for what concerns the robustness under rescaling of the parameters of
the inferred network, the standard L1 and L2 regularization techniques are outperformed by the unlearning
regularization. This result is valid for both cases where training is stopped earlier, to maximize the similarity
between the inferred model and the ground-truth, and at convergence of the algorithms.

• A particular case of the unlearning regularization (i.e. for a vanishing parameter a) reproduces a thermally
averaged Hebbian Unlearning rule, that shows good inferential capabilities when initialized in the standard
Hebbian fashion. Hebbian Unlearning can be interpreted as a two-steps Boltzmann-Machine learning and
it is well reproduced by a L2 regularization with a high regularization rate. In this case, our study stresses the
necessity of early-stopping the training procedure after a specific amount of iterations where the perform-
ance reaches its optimum.

The goal of this article was thus to show the effectiveness of unlearning as a form of regularization in BMs.
The analysis has been carried out on both small networks, that allowed to compute all quantities without
error by exact enumeration, and large networks, generally affected by statistical noise. For the most part of
our work the ground-truth distribution was defined by one of two models, either the CW or the SK models,
which are known to show a phase transition at a critical temperature. As a result, we could not only test the
proximity of the inferred model to the original one, but also the susceptibility of the network under
variations of the parameters, by comparing the trend of the specific heat of the ground truth model with
respect to the inverse temperature, with the trend obtained after inference with regularization. In addition to
this controlled framework, a real-world case, with data sampled from real neuronal activity, has been
considered to confirm the results. Both heuristic and empirical arguments support the idea that models
inferred via BM learning tend to be pathologically critical [7, 8, 16], i.e. less effective in sampling new
examples. On the other hand, the regularized model is much less critical than the one originally learned in
[16] from the same data-set. Furthermore, we have displayed that even in the high-dimensional case one can
characterize the performance of the algorithm in time by tracking two quantities: the Pearson coefficient and
the slope of the empirical covariances versus the thermal correlations. These two observables are fast to
compute and allow to establish an early stopping criterion that, combined with a Hebbian initialization of
the parameters, reaches a greater generalization and robustness performance. We conclude that, given a high
consistency between the model and the ground-truth distribution, the stability of the model under rescaling
of the parameters is enhanced by the unlearning regularization. As an alternative strategy to the unlearning
regularization presented here, we also evaluated the minimization of the KL distance between the models at
β= 1 and β = a. Even if the gradient descent equations look similar to the current case, they contain the
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contribution of four-point correlations among spins, resulting in a significant increase of the computational
cost of the training.

We also analyzed the particular limit of the regularization that gives as learning rules the ones expressed
in equations (29) and (30). The resulting procedure strongly resembles the traditional Hebbian Unlearning
routine, but with a thermal two-point correlation computed at β= 1 replacing that computed on the
zero-temperature fixed points of the dynamics. Previous work [13] supports the fact that the associative
memory performance of such a thermal unlearning does not deviate much from the original rule.
Unlearning is not new to be mentioned in the statistical inference realm [35–37], yet we are the first to
consider the original rule proposed by Hopfield in [9]. As a new contribution to the characterization of
unlearning, we tested its inferential power, i.e. the capability of learning the original model. So far, to the best
of our knowledge, the original unlearning algorithm was exclusively tested in an associative memory
framework, where data are actually patterns, that are sub-dominant in number with respect to the entire set
of possible configurations. Our results show a good inferential performance of the algorithm. The
explanation for this success relies on the choice of the initialization of the parameters. A Hebbian
initialization of the network has two implications. First, the contribution to the gradient of the loss deriving
from the data (i.e. the positive Hebbian contribution in the BM learning in equation (8)) is much smaller
than the contribution deriving from the cross-entropy of the model given the data (i.e. the negative
unlearning contribution in the BM learning). This condition holds until an optimal amount of iterations that
can be estimated from the numerical simulations. Second, we showed that a Hebbian initialization of the
couplings points the gradient of the parameters towards the correct direction, i.e. the one of the
ground-truth of the inferential problem, at variance with other kinds of parameter initialization. The
beneficial effects of a Hebbian initialization for these type of machines has already emerged in the very recent
literature [12, 38]. Yet, the topological properties of the Hebbian free energy landscape that make them such
a good starting point for training have not received due attention.

We conclude that BM learning can be performed in two steps: an initial overshooting along the direction
of the data and then a gradual adjustment along the direction of the model with increments being updated at
each step of the algorithm. The effectiveness of a two-step training for a BM encourages a biological
interpretation of this kind of training, in agreement with the hypothesis that synapses in the brain could be
fine tuned through the alternation of daily online experience and offline sleep [39, 40]. Such a conjecture is
inspiring members of the A.I. community in the development of training procedures for deep neural
networks that might substitute the slow and non-biological back-propagation techniques [35, 41]. These
observations, together with the importance of the Hebbian initialization of the network, appear to be
consistent with previous results in literature concerning the unlearning algorithm and its implementation in
associative memory modeling [10–12, 38].
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