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Abstract

Microstructural imaging and connectomics are twaeegch areas that hold great potential for
investigating brain structure and function. Comibinithese two approaches can lead to a
better and more complete characterization of tlantkas a network. The aim of this work is
characterizing the connectome from a novel persgeasing the myelination measure given
by the g-ratio. The g-ratio is the ratio of theenmo the outer diameters of a myelinated axon,
whose aggregated value can now be estimated inugivay MRI. In two different datasets of
healthy subjects, we reconstructed the structuomnectome and then used the g-ratio
estimated from diffusion and magnetization transfiata to characterise the network
structure. Significant characteristics of g-ratieighted graphs emerged. First, the g-ratio
distribution across the edges of the graph didshotv the power-law distribution observed
using the number of streamlines as a weight. Seamrthections involving regions related to
motor and sensory functions were the highest inlimgentent. We also observed significant
differences in terms of the hub structure and fileb-club organization suggesting that
connections involving hub regions present higheelngtion than peripheral connections.
Taken together, these findings offer a characteomzaof g-ratio distribution across the
connectome in healthy subjects and lay the fouadatior further investigating plasticity and

pathology using a similar approach.

Keywords. g-ratio; connectome; myelin; graph theory; micnosture; structural

connectivity; diffusion weighted imaging.

Abbreviations: DWI. diffusion weighted imaging; NODDI: neurite entation dispersion

and density imaging; gMT: quantitative magnetizati@nsfer; NOS: number of streamlines.



1. Introduction

The characterization of the brain has been oné@tiggest challenges of the last century
and to this day developing a map of its complexcstire is a central goal of contemporary
neuroscience (Sporns, 2015). Among the in vivo riegkes for neuroimaging based on
magnetic resonance imaging (MRI), diffusion-weightenaging (DWI) has become an

essential tool for the characterisation of whitetteraat both, the micro-scale by supporting
the development of a number of microstructural imggechniques, and the macro-scale, by

enabling white matter pathways to be reconstrutttes mapping brain connections.

In the area of microstructural imaging, DWI haslded the development of mathematical
models that characterize the complex tissue ofbtlagn at a scale beyond the MRI native
resolution (Duval et al., 2016). One popular examigl neurite orientation dispersion and
density imaging (NODDI), which estimates neuriterptmlogical indices by means of multi-
shell diffusion imaging and compartmental modelli{@pang et al., 2012). Combining the
obtained microstructural information with other mmonventional MRI methods such as
guantitative magnetization transfer (MT) imagingloas an even more detailed
characterization of the underlying cellular struetuestimating the myelin distribution in
terms of the g-ratio, which is the ratio betweer thner and the outer diameter of the
myelinated axon (Stikov et al., 2015). Notably, tmeagion is a key feature for the rapid
signal propagation needed by motory, sensory aggittee functions (Nave and Werner,
2014), and measuring it in vivo allows further gigs in the understanding of plasticity,

aging and neuroinflammation.

At the macro-scale, DWI has been paramount for ectamics: the estimation of the
connectome, the map made of neural elements amdcibrenections (Sporns et al., 2005;

Hagmann, 2005), has become viable at the macroswale by means of DWI and



tractography, i.e. the reconstruction of white matstreamlines (Basser et al., 2000).
Inheriting its fundamentals from network sciendes tapproach offers an elegant model to
describe a complex system such as the brain by srefaan mathematical graph, reducing the
characterization of a map of the brain to the asialgf its topological features (Bullmore and
Sporns, 2009). This approach has shed light noy onl several aspects of the brain
organization (Collin et al., 2014), but also on gmital mechanisms of brain disorders
(Fornito et al., 2015; van den Heuvel et al., 2013)particular, the presence of hub regions
highly interconnected with each other has been rgbde forming the so-called rich-club

(van den Heuvel and Sporns, 2011). It is importarkkeep in mind that these studies heavily
rely on the streamlines reconstructed by meansagtdgraphy and typically use the total

number of streamlines connecting a pair of nodes mgasure of their connectivity. Such an
approach has some limitations related to falsetipesi detection and inaccurate streamlines
termination (Maier-Hein et al., 2016). The combimatof tractographic reconstruction with

microstructural imaging techniques has been prapase a possible way to improve it

(Daducci et al., 2016; van den Heuvel and Yeo, 2017

The advantages of this combination can work in bemplementary directions. On the one
hand, the integration of microstructural propertiesa network model can lead to a more
complete picture of the brain structure (Knéschatl aittgemeyer, 2011). Recent works
have attempted this by fusing together structusahectivity with NODDI and gMT data in
multiple sclerosis and epilepsy (Lemkaddem et28l14; Mancini et al., 2016; Pardini et al.,
2015), using microstructural measures to weightesigmated structural networks. On the
other hand, tractography algorithms can be imprdwedaking into account microstructural
information. An interesting example is given by rmgtructure informed tractography
(Daducci et al., 2015), which combines tractograghg tissue microstructure using a convex

optimization approach.



In this paper, we focus on the former of these peospectives. We propose to integrate
myelination measures in the connectome by meamngighting the graph edges using the g-
ratio. The rationale for this is that the g-rat®olielieved to be proportional to the axonal
speed of conduction, and therefore it may be usetharacterize the efficiency of any given
connection. To achieve this goal, we first recargtrd the connectome using the number of
streamlines as done in the current literature Wov tifferent datasets of healthy subjects.
Then, we integrated the g-ratio after the recownsitn process and we compared the
resulting properties with more conventional measwafestructural connectivity, with the aim
of characterizing the connectome taking into acteayelination. Our hypothesis was that
the g-ratio would show complementary aspects wioekihg at the global picture while

highlighting specific levels of organization in neadetails.

2. Materialsand Methods

2.1 Data acquisition

Two datasets were analysed for the purpose of atatigl the results by comparison. The
principal dataset included 16 subjects and wasecw@t at the Clinical Imaging Sciences
Centre, Brighton and Sussex Medical School, Brighf(site A), using a 1.5T Siemens
Magnetom Avanto. The replication dataset includ&dsiibjects and was collected at the
Neuroimaging Laboratory, Santa Lucia FoundationmRo(site B), using a 3T Philips

Achieva. The data were acquired as part of two issudpproved, respectively, by the
Herefordshire and the Santa Lucia Foundation Rekdzathics Committee. Details about the

two populations are available in the supplememaaserials.

2.1.1 Principal dataset



At site A, 16 healthy subjects (M/F: 6/10; mean &P): 25 (6.2)) were scanned using the
32-channel head coil for signal reception and tbdybcoil for transmission. The protocol
included: a magnetisation prepared rapid gradient €MPRAGE) sequence (TR=2730 ms,
TE=3.57 ms, TI=1000 ms, flip angle=7°, matrix=25602192, slice thickness=1 mm,
FoV=256x240 mr); 3-shell DWI sequence for NODDI (TE=99 ms, TR=84@ns,
matrix=96x96, FoV=240x240 minslice thickness = 2.5 mm, 10 b0 volumes; 9 dioest
with b=300 smrif; 30 directions with b=800 snifn 60 diffusion directions with b=2400
smni?); quantitative MT imaging based on balanced stesidte free precession (bSSFP)
using a 3D True Fast Imaging with Steady-stategagion (TrueFisp) sequence and 3D fast
low-angle shot (FLASH) volumes for T1-mapping (@iebf view (FOV)=240x180 mfy

matrix=256x96; slices=32; slice thickness=5 mm).
2.1.2 Replication dataset

At site B, images from 15 healthy subjects (M/F8;7ihean age (SD): 28.9 (4.8)) were
acquired using a 32-channel head coil. The proeetwolved: a 3D T1 fast field echo (FFE)
sequence (TR=11 ms, TE=5.3 ms, flip angle=8°, ma®56x228x190, slice thickness=0.9
mm, FOV=230x192x167 mij1 a multi-shell high angular resolution diffusidmaging

(HARDI) scheme, optimized for NODDI protocol (TR=2.5 s, TE= 91 ms, isotropic
resolution= 2.3 mrh) 9 b0 volumes; first shell: 30 gradient directiophs711 smrif; second

shell: 60 directions, b=2855 srifin a series of 12 MT-weighted FLASH sequences (TE=7
ms, TR=35 ms, flip angle=7°, matrix=128x96x28, FQ88x172.5x140 mr) with variable

flip angle and offset frequency of the Gaussian Milses (Giulietti et al., 2012); three 3D
FLASH sequences collected for mapping the obsefdedf the system (TE=4.8 ms, TR=15
ms, flip angles=5°, 7°, 15°, same matrix and FOMhes MT sequence); three 3D FLASH
sequences collected for B1 mapping (TE=4.8 ms, BRm2, flip angles=155°, 180°, 205°,

matrix=64x64x40, FOV=220x220x160 mm



2.2 Anatomical and diffusion data pre-processing

The processing pipeline used to obtain the corwigctmatrices from the data is briefly
illustrated in figure 1. T1 images were pre-proeelsssing FreeSurfer for grey/white matter
tissue classification and parcellation by meanshef Desikan-Killiany atlas, obtaining 14
subcortical and 68 cortical regions (Desikan ef 2006). Diffusion data were first co-
registered to the respective average pfdlumes in order to minimize artifacts (Cercignani
et al., 2012). Then, streamlines were determiralljiceconstructed using tensor fitting and
the fiber assignment by continuous tracking (FA@Igorithm (Mori et al., 1999) by means
of Diffusion Toolkit (Wang et al., 2007). In pantilar, for every voxel within the grey matter
tissue mask, streamlines within the white mattesue mask were started from eight seeds
and terminated when the trajectory either entemesivoxel with a fractional anisotropy (FA)
less than 0.1 or made a turn sharper than 45°.ntih#er of seeds, randomly distributed
within the voxel, was chosen as a trade-off betweeicing network variance and avoiding
spurious results (Cheng et al., 2012). Streamhvigs origins in grey matter tissue mask that
exceeded the white matter tissue mask were distaAte additional set of streamlines was
obtained using more conservative thresholds (FAstiold=0.2; degree threshold=30°). The
reconstructed streamlines were then co-registardtie anatomical space using an inverse

linear transformation estimated using FSL FLIRT.

Please insert Figure 1 about here

2.3 Parametric maps and g-ratio estimation



Quantitative MT data for both sites were analysethg in-house software in order to
estimate the macromolecular proton pool size rgEp voxel-wise. First, all the MT-

weighted volumes (bSSFP for site A and FLASH fée 8) and T1 mapping volumes were
spatially realigned to the 25° flip angle FLASH wwile using rigid-body registration by
means of FSL FLIRT (Jenkinson et al., 2002). TIlpsnavere obtained by fitting the 3
FLASH volumes to theoretical voxel values for tipmited gradient echo for the three flip
angles (Venkatesan et al., 1998). The MT parameters then obtained by performing a
voxel-wise nonlinear least-squares fitting (Levagblarquardt method) to the appropriate
binary spin bath model: Gloor's model (Gloor et 2D08) for site A, and Ramani’'s (Ramani

et al., 2007) model for site B.

Multi-shell diffusion data were analysed using eitthe NODDI (site A) or the AMICO (site
B) toolboxes (Zhang et al., 2012; Daducci et a1%) to compute the intra-cellular water
compartment and the isotropic component volume napand Vs, respectively). Then, MT

and NODDI data were non-linearly co-registered g2dNTs to a common MNI space.

Maps of the aggregate g-ratio were obtained agitbescby Stikov and colleagues (Stikov et
al., 2015). From the maps, the g-ratio was compag=iiming that the g-ratio is constant

within the voxel, using the equation:
MVF MVF\"!
_ 1= — 1)
g I FVF (1 * AVF)

where g is the g-ratio, MVF is the myelin volumadtion, FVF is the fiber volume fraction,
and AVF is the axon volume fraction (Stikov et aD15). According to this model, MVF can
be derived from any MRI modality that is sensitteemyelin. Following Stikov et al, we

used the pool size ratio, F, derived from quariaiT.



We then set:

MVF = kF (2)

where k is a proportionality constant not knownr@am which was derived using a simple
approach already described in previous works (@eetii et al., 2016; Cercignani et al.,
2017). Briefly, using the JHU white-matter tractaginy atlas (available with FSL) the
unbiased masks of the forceps major and minor wgtected for the F,ivand v, maps

(appropriately co-registered to the JHU templaidle g-ratio values estimated from these
maps were evaluated as a function of k in ordedémtify the value corresponding to g-

raticc0.7. The procedure was repeated independentiyéo? datasets.

AVF can be derived from the intracellular volumadiion estimated from NODDI(),
adjusted for MVF and for the volume of the isotmpomponent of diffusionvg, — also

derived from NODDI) (Stikov et al, 2015).

AVF = (1= MVF)(1 = Vi) Vic ®3)

MVF and AVF were computed voxel-wise and then useéstimate the g-ratio maps. These
were finally co-registered to the anatomical spaseng an inverse non-linear warping.

Further details on the g-ratio computation candamél elsewhere (Cercignani et al., 2017).

2.4 Connectome reconstruction

2.4.1 Structural brain networks

Structural networks were modelled by means of weidhgraphs, where n nodes are
connected by unique edges and each edge has atwasggitiated that reflects its strength.

The structural connectome was reconstructed foh eabject counting the number of



streamlines (NOS) between every possible pair gibres, and arranging such values into an
adjacency matrix. We used the set of streamlingsnated for the less conservative
thresholds (FA threshold=0.1; degree threshold=48% checked for the absence of
substantial differences when using the strictersoiée assessed the presence of outliers in
both datasets using a simple approach based omtérguartile range. Briefly, for each
subject we calculated the average number of stirag)lthe average FA and g-ratio values,
and the prevalence of connections and disconnectibor each of those measures, we
calculated the first and the third quartile as vaslithe interquartile range (respectively Q;

and IQR) and used:€1.5IQR and @+1.5IQR as thresholds for identifying outliers.

In order to avoid spurious connections, we considl@s connected only regions with at least
two estimated streamlines between them, and we msed conservative thresholds (at least
four and at least six streamlines) to test how sbltkie results were. Furthermore, to avoid
false positives, we selected only the edges preseat least 50% of the subjects of each
dataset (de Reus and van den Heuvel, 2013). NO&ibstsength distribution for all the
regions was computed in order to characterize triuetsiral networks. We then looked at the
hub organization: hubs have been defined as th e#gions with the highest strength values
in line with the literature (van den Heuvel and 80 2013), using therefore NOS measures
as weights. To assure the reliability of the resulie repeated our analysis using alternative
hub definitions. In particular, we defined hub e first considering the top twelve regions
in terms of strength (instead of the top eight)d @imen as a further criterion we selected
regions with strength greater than the average @hesstandard deviation. The connections
have been then classified on the basis of the nauesconnected and in light of the
estimated hub structure (connection between two regiions: rich-club (RC); connection
between a hub region and a peripheral one: feéd®), Connection between two peripheral

regions: local (LC)). In this way, we were ablectwaracterize the hub organization without
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focusing specifically on hub-hub connections (vaan dHeuvel et al., 2013). The
classification has been repeated for all the huimitien criteria for reliability purposes. In

order to take into account different perspectiaber classification criteria were explored:
the connections were classified on the basis ofstifeortico-cortical (subcortical (SUB);
subcortico-cortical (SC); cortico-cortical (CORTgihd the inter-/intra-hemispherical (intra-

hemispheric, left; intra-hemispheric, right; integmispheric) organization levels.

2.4.2 G-ratio weighted networks

G-ratio weighted networks were modelled using ghsly different approach. Rather than
using the average g-ratio of the streamlines batvaegiven pair of regions, the g-ratio values
for all the streamlines were taken into accountdetiong the network as a multigraph
(Shafie, 2015), where multiple edges (instead sihgle one) connect the nodes (one for each
streamline), and every edge has its own weighhisicase the g-ratio itself. Although it may
sound cumbersome, this approach is naturally sémmigrain structural connectivity, since it
gives us the chance of characterising individutdly different white matter fibers estimated
between a given pair of regions. This choice wamiypaue to avoid biased results as in the
Simpson’s paradox (Kievit et al., 2013): using altigtaph, the average weight (e.g. the g-
ratio) of a node’s connections is given by the mefall the weights of its streamlines rather

than subdividing those streamlines by specificgafiregions.

However, it must be kept in mind that the aim a$ thaper is the characterization of the g-
ratio weighted network in relation to the NOS-weegh structural network. The
characterization of the g-ratio distribution wile khen given in terms of average across
connection classes and brain regions, avoidinghéurassumptions on concepts such as
distance and motifs. As a result, the use of suctehwill not present any further difference

compared to simple graph-based approaches.
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As a first characterization, we calculated for eaebion the average g-ratio for all the
connected streamlines and compared it to NOS-wailgktrength distribution. As a second
step, we sorted the obtained average g-ratio ligton in ascending order, since given the
axon diameter the g-ratio is inversely proportiot@lthe myelin volume and also to the
electrostatic energy cost (Paus et al., 2014). Thaneach connection class previously
identified, we calculated the median of the relage@tio distribution. For each classification
criteria, we tested the median values to identdyificant differences. Sign test was used for
assessing the significance of the difference betweeanection classes, therefore testing non-
parametrically the hypothesis that the differenetwieen each pair of classes had zero
median under the assumption of continuous disiobst(Whitley and Ball, 2002). Given the
number of comparisons performed (three for eacssiflaation criterion, three classification
criteria) and in order to avoid the multiple compans problem, we corrected the p-values
with the Bonferroni correction as appropriate. hdey to show further elements of the hub
structure, we used the s-core decomposition (van Hieuvel and Sporns, 2011): for an
increasing range of strength thresholds, the cdmomecwith a lower strength value were

removed and the median g-ratio of remaining stregslwas computed.

2.4.3 Additional analyses

In order to provide further elements to characterihe datasets in terms of NOS
distributions, we compared the connection classeshe NOS-weighted networks and
provided for comparison purposes a brief charaagan for FA-weighted networks.

Moreover, for further assessments of relationsk@wben the NOS- and G-ratio-weighted
networks, we examined the correlation of those osksr and characterised them as a
function of the streamline length. Details aboutsth additional methods and the related

results are available in the supplementary material
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3. Results

Good quality g-ratio maps were obtained for alltipgrants. The scaling factors k were,
respectively, 2.4 and 2.5 for sites A and B. Figdreshows the networks respectively
reconstructed using NOS and g-ratio values andigtegram of the g-ratio distribution for

the reconstructed streamlines, averaged over thpda. Apart from some differences in
terms of number of reconstructed tracts, it carobgerved that the most frequent g-ratio

value is 0.76 for the main dataset and 0.71 fordipécation one.

Please insert Figure 2 about here

As expected, the strength distribution in term&NGIS for both the datasets shows the trend
of a power law distribution (figure 3). Among thedes with the highest strength, there are
the superior frontal gyrus, the precentral one,singerior parietal gyrus (dataset A) and the
putamen (dataset B). The corresponding averagaayehatribution does not follow the same
trend. Sorting such distribution by ascending gpratalues, the regions with the lowest
values in both datasets are given by the preceatrdlthe paracentral gyri as well as the

superior frontal gyrus.

Please insert Figure 3 about here
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In terms of the hub structure, there is a significaend which is consistent in both the
datasets (figure 4): the rich-club and feeder cotioes show a significantly lower g-ratio
than the local ones (dataset A, RC-LGsp0.036; FD-LC: por =0.0027; dataset B, RC-LC:
Pcor=0.00054; FD-LC: g,=0.00054). Although the rich-club connections shaiso a
significantly lower g-ratio than the feeder onesthe replication dataset, this result is not
consistent with the main dataset (dataset A, RCHf; =0.18; dataset B, RC-FD: .
=0.0081). As a further confirmation of this tremtitk median g-ratio decreases as the strength

increases in the s-core decomposition in both thasets.

From the subcortico-cortical point of view, in bothe datasets there are significant
differences comparing all the connection classesagét A, SUB-SC: 5~=0.00027; SUB-
CORT: Ror=0.0045; SC-CORT: $=0.00027; dataset B: SUB-SC,p=0.00054; SUB-
CORT: por=0.00054; SC-CORT:~=0.00054). However, while the subcortical connetwio
showed consistently and significantly higher valdlean the others in both the datasets,
subcortico-cortical and cortical connections gaweflicting results when comparing the 2

datasets.

Finally, from the inter-intrahemispheric point olew, again in both the datasets there are
several significant differences comparing the caotina classes, with the intrahemispheric
connections of the left hemisphere showing consilstea higher g-ratio than the others
(dataset A, L-I: p=0.00027; L-R p,=0.00027; dataset B, L-I: .#=0.00054; L-R:
Pcor=0.00054). The other comparisons did not match éetwthe main and the replication

datasets (dataset A, I-Rsp=0.63; dataset B, I-R:;p~=0.0081).

Further details on the results as well as indiVidigia for the subjects are available in the

supplementary materials.

14



Please insert Figure 4 about here

4. Discussion

In this paper, we proposed the integration of thenectome with myelin content measures
using network modelling and g-ratio computatiomc®i the white matter is practically a
transport system (Paus et al., 2014), in ordess$ess its structure and function it is necessary
to have information about the transport processeerms of speed and delay. Therefore, we
characterized NOS-weighted structural connectiwviiyh the related g-ratio data in two

different datasets in order to describe the my&ith@onnectome in healthy subjects.

Our results can be summed up in three points; finstaverage g-ratio for the connections of
each region does not follow the trend of the relatgength distribution; second, a myelin
blueprint can be observed looking at the hub stre¢tthird, the anatomical organization

follows patterns consistent with existing literatur

Several papers in the last years have started atkarang the g-ratio distribution in vivo
using MRI (Campbell et al., 2017), both in the Kkealadult (Cercignani et al., 2017,
Mohammadi et al., 2015) and developing brains (Detag., 2016; Melbourne et al., 2016).
To the best of our knowledge, this is the firsempt to characterize the variability of this
measure in the streamlines used to reconstruadheectome. As a first step, then, we have
focused on the strength distribution used to chiaree most real-world networks and
compared it to the average g-ratio of each node.ckar from figure 3, the g-ratio
distribution does not resemble the strength onewdver, sorting the distribution by
ascending g-ratio values, the regions with lowenatyp and therefore with higher myelin

proportion are the ones involved in motor and sos®tsory functions as one would expect

15



(Nave and Werner, 2014). This observation confithes fact that the g-ratio can provide
complementary information to that provided by toacaphy, generating interesting

perspectives for the study of structure-functionplng.

A second important result is that the rich-club dedder connections have significantly
lower g-ratio values than local connections, sutiggghat the connections that involve the
hubs have higher myelin content than the otherspré&liminary result by Collin and
colleagues showed a similar trend using magnetizatransfer ratio while taking into
account only a reduced number of hubs and onlgrimg of hub-hub connections (Collin et
al., 2014). Using the g-ratio, we were able to aemore general trend in both datasets
involving all the hub connections, both the onethwither hubs and the ones with peripheral
regions, and using different hub definition criégerAs a consequence, rich-club and feeder
connections are capable of faster and more eftipespagation than the local ones. At the
same time, the energetic cost for oligodendrocytesntenance outweighs savings in
propagation (Harris and Attwell, 2012), making thgher myelin content another one of the

high-cost features of the brain (Collin et al., 20dan den Heuvel and Sporns, 2013).

Regarding anatomical classifications, the subooitiartical results suggest less myelinated
fibers between the subcortical structures tharhen dortical case. This result is consistent
with g-ratio values measured in rats, where thenaxconnecting the brainstem and the
internal capsule showed higher g-ratio than thesdnethe anterior commissure and the
corpus callosum (Chomiak and Hu, 2009). Insteaalinter-intrahemispheric results show a
less clear picture, although confirming the ideaasymmetry between the hemispheres
(Cercignani et al., 2017). It must be noticed ttnat largest commissural fiber bundle, the
corpus callosum, contains axons of variable cadibler particular, those in the splenium are

known to have very large diameter and thin myeheath (Hildebrand and Hahn, 1978;

16



Stikov et al., 2015). In light of this observatiarharacterizing interhemispheric streamlines

as a whole may offer a too general view that iscooisistent and hard to interpret.

It is worth having a deeper look at comparisonhef @-ratio with other possible weights for a
network. The NOS-weighted results included in tbpptementary materials showed good
agreement with previous literature (van den Heawel Sporns, 2011; Collin et al., 2014) but
they were not indicative of the ones based on ig-rAvhen looking at the correlation
between NOS and g-ratio, the relationship was ratteglest and the related plot qualitatively
different from a linear relationship. Examining tipessible relationships with the fiber
lengths, we did not again observe strong relatigsstising neither the g-ratio or the NOS as
a weight. In the latter case, we could in any daisénguish differences in light of the hub
structure. As a further analysis, we used FA-weadhtetworks as an additional comparison.
Although we obtained trends comparable with thesgmeviously described (Collin et al.,
2014), we did not observe shared patterns withgthetio-weighted ones (as detailed in the
supplementary materials). This result highlightesttbe g-ratio do not rely only on diffusion-
based measures and that the use of both magnaizatd diffusion data is necessary for the

chosen model.

These results could serve as a starting pointrfeestigating other scenarios. The potential
applications of this approach span several topite first one is the study of plasticity
mechanisms beyond synaptic ones: one of these meoi& is believed to rely on the
possibility of changing conduction velocity throughanges in myelin (Fields, 2015; Seidl,
2014; Wang and Young, 2014). In this context, algtan rats showed that an enriched
environment induces significant increases in teomsyelin content compared to a standard
one (Yang et al., 2013). Promisingly, estimating ¢iaratio in vivo and observing it through
the lenses of connectomics could lead to new itsigh activity-dependent myelination in

humans.
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A further perspective related to plasticity is namasive brain stimulation: recent works have
used network modelling to investigate the mechasisimtranscranial magnetic stimulation
(TMS) given the structural connectivity and therstlation site (Cocchi et al., 2016; Gollo et
al., 2017). This approach has provided interestisgghts in how brain dynamics respond to

focal perturbations that could be extended intéggeahe g-ratio.

Another important application would be the studyetiroinflammation, with a special focus
on multiple sclerosis (MS), where demyelination amdhyelination phenomena are key
elements to evaluate pathophysiology and the respém treatment. A few studies have
given a glimpse of the possible application in ipatar looking at the g-ratio in lesion sites
(Cercignani et al., 2015; Stikov et al., 2015). Koer, it would certainly be interesting to
investigate whole-brain potential early signs o thisease evolution. In any case, attention
should be paid to some challenging issues whilenasing the g-ratio in MS (Campbell et

al., 2017; Stikov et al., 2015).

Despite all the potential applications, it is neagy to briefly present some methodological
points as well as some limitations of this work. #mportant choice in network modelling
regards how to weight the connections between ele(€ornito et al., 2016). In this work,
we used the g-ratio value as estimated from NODml gMT data in order to provide a
straightforward reference for future studies. Altgb it would be tempting to obtain and use
directly conduction velocity as a weight, there segeral elements that need to be taken into

thorough consideration (Fornito et al., 2013).

The first point is the mathematical expression arfiduction velocity itself as a function of
the g-ratio. For the peripheral nervous system (PNGch an expression has been clearly
defined and some papers used it for the centrabnersystem (CNS) as well (Melbourne et

al., 2014). However, it is known that such an egpi@n needs to be adjusted because of the
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different physical aspects of the brain comparegketgpheral nerves (Chomiak and Hu, 2009;
Pajevic and Basser, 2013). Indeed, it is importentbe careful with computing the
conduction velocity: as shown in a computationatkM@ajevic et al., 2014), small changes
in its value can have profound effects on neuréviédg in terms of synchrony and signal
propagation. This consideration leads to an impotissue: in order to properly estimate the
conduction velocity in the CNS, it is necessaryhve an estimate of the diameter of the
fibers (Chomiak and Hu, 2009). Such information basn measured ex-vivo for specific
bundles and there are some attempts to estimateiio for the corpus callosum (Barazany
et al., 2009), but its integration in the describetivork model goes beyond the scope of this

work.

Another element worth mentioning is the choice efiwork measures. In this paper, in order
to compare the g-ratio weighted networks with th@S\weighted ones we restricted our
analysis to average and median values of the toddtgerest and used classification criteria
based on NOS and anatomy to characterize the commedn terms of g-ratio. We did not
calculate canonical measures such as the clustedefiicient and the path length for the
sake of interpretability: these measures rely om @élssumption that the connections are
weighted proportionally to their information traestapability. In the case of the g-ratio, the
relationship with information transfer is not sgfaiforward, since neither directly or
inversely proportional to it. Again, using condwctivelocity as a weight would certainly
allow to use and interpret properly more measunbsrited from graph theory. However, as
already pointed out, the estimation of the condunctielocity in the CNS requires knowledge
about both the g-ratio and the axonal diameterh@vit knowing the axonal diameter, the g-
ratio itself does not offer clear information fdret definition of distance and motifs in a

network.
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This work has also some limitations. Estimating gheatio relies in first instance on the
assumption that its value is constant within theetoHowever, these results could be tested
using approaches that do not rely on this assumiidest et al., 2016) or in light of the
recent observations on FA (Chang et al., 2017).tlAeroaspect to take into account is that
since the g-ratio estimation relies on gqMT and NODDinherits all the pitfalls of these
modalities in terms of assumptions and errors. drtigular, while F has been shown to
correlate with myelination (as in Turati et al.,13), MT is also sensitive to other factors,
such as oedema, inflammation and pH (Stanisz et28D4, Vavasour et al.,, 2011). In
addition, the proportionality between MVF and F astablished through an empirical
procedure which may be seen as arbitrary. It iomant to reiterate that a wrong calibration
could lead to the computed g-ratio having some niégecy on FVF (Campbell et al., 2017).
The consequences of this on topological measunegedefrom graph theory remain to be
explored. Finally, the values of andvis, used to compute AVF are derived from NODDI,
which makes some strong assumptions about the@liingar diffusivity which do not always

hold true (Lampinen et al., 2017).

A further limitation lies in the connectome estifoat it has been shown that using diffusion
data to estimate the connectome inevitably leadalse positive (Maier-Hein et al., 2016).
This is an issue mainly of reconstruction algorishamd to this day there are no other viable

solutions to avoid this problem.

We used two distinct datasets to cross-validatefiodings. While overall the main results
are replicable between datasets, there are of emmse important differences that deserve
discussing. First, there seems to be a systemdtereshce in the most represented g-ratio
between A and B. It is possible that this is a egunence of procedure used to calibrate the
factor k. k can vary depending on the specific Matlmod or model used (Stikov et al., 2015;

Campbell et al.,, 2017) and ideally requires higadal validation. We should reiterate,
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however, that the data were collected at diffefiehd strengths, and using very different MT
acquisitions and modelling, and the effects of @aasd field uniformity are expected to

affect g-ratio measurement.

Despite this, most of the results on the propentieg-ratio-weighted graphs show good
agreement overall between the two datasets. Thygesis that g-ratio computation is robust

enough for more applications in experimental stadie
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Figurelegends

Figure 1 Schematic overview of the pre-processing pipeloreobtaining NOS- and g-ratio-
weighted connectivity matrices from the data. Strtad data were processed and parcellated
using FreeSurfer, while diffusion data were useddterministically reconstruct white matter
streamlines. NODDI and qMT parametric maps werenstucted as detailed in the methods
in order to compute the g-ratio voxel-wise. Appiaf@ co-registration was applied to
represent both the streamlines and the g-ratio nmatie anatomical space, in order to count
the number of streamlines between each pair obnsg{NOS-weighted) or evaluating the
average g-ratio of each streamline (g-ratio-weightkn this way, NOS-weighted and G-ratio

weighted networks were obtained.

Figure 2 NOS-weighted (left) and g-ratio-weighted (centre)works with the related g-ratio

histograms (right) for the two datasets (top roatadet A; bottom row: dataset B) averaged
across subjects. The networks were averaged takiogonsiderations only the connections
showed by at least the 50% of the subjects in datdset and computing the average without
the null elements as described from de Reus anddeanHeuvel (de Reus and van den

Heuvel, 2013). The histograms show the g-ratiaithistion across the streamlines.

Figure 3 NOS-weighted strength distribution (in blue) andated average g-ratio

distribution (in red) for the two datasets. Therage g-ratio distribution was sorted first
according to the NOS-weighted strength distribufiead dots) and then in ascending g-ratio
order (red bars) including the related standardiadiew. More details about those

distributions are available in the supplementaryemals.
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Figure 4 Distribution of the g-ratio across connectionsssis with the related standard
deviation (rich-club: top-left; subcortico-cortichlottom-left; inter-intrahemispheric: bottom-
right) and using the s-core decomposition using\&s-weighted strength (top-right). A star
mark was used for indicating specific significamimparisons while two star marks were
used for highlighting where all the comparisons evesignificant (p<0.05, Bonferroni

corrected).
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