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A B S T R A C T   

The interactions among distinct systems and components have attracted more attention recently due to safety 
concerns. Indeed, modern industrial plants could be regarded as complex socio-technical systems influenced by 
human, social, and organizational aspects. To model this level of complexity, System Theory (ST) and related 
frameworks, such as System-Theoretic Accident Model and Processes (STAMP) have been introduced. Despite 
their strengths and abilities, ST techniques are mainly qualitative and provide much information, eventually 
complicated to analyse and summarize. Fuzzy Set Theory (FST) and expert elicitation could be employed to cope 
with the former challenges. However, addressing the uncertainty arising from differences in expert opinions is 
necessary. To this end, this paper aims to develop a framework to conduct system safety assessments based on the 
integration of STAMP and FST. In this context, an improved version of the Similarity Aggregation Method is 
adopted to aggregate judgments. To demonstrate the application of the approach, a Natural Gas Regulating and 
Metering Station (NGRMS) is considered as the case study. The results show that the methodology is able to 
provide quantitative information by associating a level of criticality with each control action. Accordingly, 
managers could exploit the framework to identify priorities for directing efforts.   

1. Introduction 

Over recent years, adopting new digital transformation technologies 
(digitalization) and implementing modern automatization in the in
dustrial plant processes have demanded increasing attention towards 
the interactions and interconnections among the system components 
(Elmaraghy et al., 2012). Therefore, current industrial plants may be 
considered complex socio-technical since managerial decisions and 
technical design aspects involve human, social, and organizational fac
tors (Nakhal A, Patriarca et al., 2022). Moreover, the need for using 
analytical frameworks and management guidelines to deal with the 
complex nature of modern systems has progressively become more 
evident over time. Indeed, the complexity perspective has gained trac
tion in safety domains as it has provided insights into investigating ac
cidents and incidents casual factors (Dekker, 2019). Traditional risk 
assessment analysis and safety techniques methods (e.g., Fault Tree 
Analysis, Bow Tie, Failure Mode and Effects Analysis, etc.) are rooted in 

event chain modeling and looking for individual points of failure or 
faults as consequences or causes of the accidents. Hence, Safety Man
agement Systems (SMSs) seek to determine how the system design could 
be improved to avoid or prevent such undesired scenarios. One strategy 
to achieve these the former objective is the accident model analysis that 
supports the essential elements of the safety risk process (Li et al., 2017; 
Rasmussen and Svedung, 2000). However, modern risk assessment and 
safety analysis techniques must deal with large-scale systems constituted 
by a wide number of interactions among technical, social, and organi
zational elements. Therefore, due to the increase in systems complexity, 
many accidents do not result from a linear causal chain but are caused by 
non-trivial socio-technical interactions (e.g., human factors, mission 
profile, equipment, financial pressures, and information) that increase 
the normal operational variability of the system process (Rong and Tian, 
2015). 

Consequently, complex-oriented accident analysis models seem 
necessary, possibly relying on System Theory (ST) supported by fuzzy 
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logic to investigate accidents and prevent their occurrence of them. ST 
consists of three aspects (N. Leveson, 2004, 2011): (i) elements’ char
acteristics; (ii) interconnections among the elements; (iii) systems’ 
functional purpose. On these premises, systems theory can be applied 
within safety management to analyze interactions among system com
ponents and systems’ behaviors (Patriarca et al., 2022). In this context, 
one interesting stream of research is built around the System-Theoretic 
Process Analysis (STPA) technique, which is rooted in control theory and 
hierarchical safety control structures to identify the unsafe and inap
propriate control actions of the system process (Abdulkhaleq et al., 
2015; N. Leveson and Thomas, 2018). These items are meant to allow 
recognition of causes and prevent potential system failures as well as 
undesired events. In the STPA technique, undesired events are examined 
in terms of control system failure and how they may not allow the 
prevention or detection of hazards. Therefore, a detailed STPA usually 
leads to identifying several Unsafe Control Actions (UCAs), but it could 
be tough to provide them with suitable solutions to reduce their 
occurrence or impact. In this context, identifying the most critical ones 
could be useful to determine which UCAs should be prioritized (i.e., 
which are the UCAs that must be treated first, and which direct the most 
efforts) to reduce or prevent such conditions (Chaal et al., 2020). 
Another complex-oriented accident analysis is the Functional Resonance 
Analysis Method (FRAM) defined as a systemic approach used to un
derstand and analyze complex socio-technical systems and their resil
ience (Saurin and Werle, 2017). FRAM helps identify and analyze the 
functional dependencies within a system and how they contribute to 
system performance and resilience. It focuses on understanding how 
different functions in a system interact and how performance variability 
arises from these interactions. It aims to provide a systemic under
standing of how a system operates and adapts under varying conditions 
(Lundberg et al., 2008). 

In the context of accident analysis models based on ST, some works 
integrate Fuzzy Set Theory (FST) to develop the associations among 
various system components and the functional interaction among them 
(N. G. Leveson, 2017; Pasman, 2009; Patriarca et al., 2021). Therefore, 
the following section describes some works on how these topics have 
been previously applied in industrial processes, highlighting the ad
vantages of each one. Within the Natural Hazards Triggering Techno
logical Accidents (NATECH), a fuzzy-based technique has been used to 
simulate and quantify the failure magnitude in a Water System com
bined with the System Dynamics model (Milašinović et al., 2023). The 
methodology uses a causal approach where each subsystem’s failure 
depends on external disturbance and subsystem reliability, which are 
used as input variables for a fuzzy logic-based failure magnitude simu
lator (Milašinović et al., 2023). While FRAM primarily focuses on 
functional resonance and functional analysis representation, STAMP 
approaches safety as a control problem. As a result, STAMP generates a 
hierarchical control structure that is characterized by control and 
feedback loops (Adriaensen et al., 2022). 

Within accident investigation, the integration of Bayesian Network 
(BN) and Fuzzy Set Theory (FST) known as Fuzzy Bayesian Network 
(FBN) (Yazdi and Kabir, 2017; Zarei et al., 2019) has been adopted and 
combined with Similarity Aggregation Method (SAM). Indeed, SAM al
lows to consider the consensus degree, tackling the uncertainty arising 
from the different cognitive levels of individuals in the process of ag
gregation. A more recent study proposes an approach for risk assessment 
of storage tank accidents, combining an improved SAM and FBN to 
handle epistemic uncertainty caused by insufficient data and incomplete 
knowledge (Chen et al., 2006; Guo et al., 2021). The improved meth
odology better reflects expert judgments and reduces sensitivity to un
identifiable factors. Considering maritime applications, a study 
proposed a modified quantitative System-Theoretic Accident Model and 
Processes (STAMP) framework. Considering STAMP, it is possible to 
state that it is a subjective and qualitative approach rather than a 
quantitative analysis (one of its limitations). Therefore, previous 
research presents a modified quantitative methodology for complex 

process accident analysis based on a system engineering perspective to 
fill the mentioned gap using fuzzy theory (Ceylan et al., 2022; Zhang 
et al., 2019). Specifically, the former study proposes a novel quantitative 
approach based on the STAMP model and rule-based fuzzy technique to 
investigate complex process accidents. 

However, current research is still missing information on how to 
employ judgments or expert opinions (e.g., operators, managers, re
searchers, etc.) to prevent or reduce undesired events identified through 
ST-based approaches. Moreover, there is a need to incorporate quanti
tative information into the former techniques to direct efforts towards 
the most critical CAs. Thus, this study aims to identify and prioritize the 
criticalities of a hazardous system by integrating a quantitative analysis 
and ST. Specifically, a combination of the STPA technique and FST is 
exploited to address safety concerns and prevent accidents in a system 
process. First, by adopting STPA, the present research aims to identify 
interactions and unsafe conditions within the system that could lead to 
accidents. Subsequently, FST and the improved SAM for expert opinion 
aggregation are employed. FST allows for the representation and anal
ysis of vague or imprecise information arising from the experts (Zhou 
and Thai, 2016). By integrating expert opinions into the STPA, it is 
possible to identify and prioritize inappropriate or unsafe conditions by 
assigning to each unsafe condition a priority index. Accordingly, the 
exploitation of FST and expert opinions could help to improve the 
exploration of conditions that could potentially lead to accidents. 
Indeed, the proposed novel approach leads to the development of SMSs, 
along with the identification of leading indicators related to hazards, to 
improve decision-making domains and strengthen accidents/loss ana
lyses. Indeed, the identification of priorities allows to direct efforts to
wards the most critical unsafe conditions, which could be targeted with 
appropriate countermeasures. To demonstrate the application of the 
proposed framework, a Natural Gas Regulating and Metering Station 
(NGRMS) has been chosen as a case study. A NGRMS is an industrial 
plant that reduces the pressure of the gas flow, adds a predefined 
quantity of odorizer, and tracks the mass flow of the natural gas. A 
particular focus will be devoted to the filtration stage of the plant. 

The remainder of this paper is organized as follows; Section 2 pre
sents the adopted tools and the developed framework arising from the 
integration of STPA and FST. In Section 3, the application of the 
developed framework to the NGRMS is illustrated, while, in Section 4, 
the discussions are presented. Finally, in Section 5, the conclusions, 
along with limitations and possible future research avenues are drawn. 

2. Methodology 

This section provides information on how FST supports the hazard 
analysis method using an extended model on accident causation as STPA 
to simplify the identification process of inadequate or inappropriate 
safety control in a design process. Therefore, the section defines the 
STPA technique and the FST as the basis of this novel safety analysis 
approach. Lastly, the section explains step by step the integration of both 
techniques. 

2.1. System-Theoretic Process Analysis (STPA) technique 

The STPA technique is rooted in STAMP. The technique aims to 
analyze the system and its interactions among different operational, 
social, and technological levels to identify safety issues and enforce them 
through safety recommendations and constraints (N. Leveson, 2004). 
Hence, the STPA method proposes four phases defined as follows (N. 
Leveson and Thomas, 2018): 

1. Define the purpose of the analysis: the technique requires the defi
nition of the scope of the analysis in terms of System Boundaries 
(processing system and corresponding parameters), Losses of 
concern (concerning stakeholders), and Hazards (the set of condi
tions with the potential to lead to a loss). 
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2. Model the Safety Control Structure (SCS): the core of the technique is 
a hierarchical control structure, as for the STAMP. The latter models 
socio-technical processes in terms of control loops: every process is 
intended as controlled through specific actions that are performed by 
controllers described via Process Model and Control Algorithms (for 
human controllers, this is the knowledge/understanding of the pro
cess, and for the automated controllers, this is a PID controller al
gorithm). The Process Model uses process feedback to determine the 
controller’s beliefs about the system’s state. The Control Algorithm 
determines the controller’s response to its beliefs.  

3. Identify UCAs: once the SCS has been developed, every control loop 
is studied to identify the possible ways it might lead to a loss. The 
STPA proposes some ways in which a control action might be inap
propriate or inadequate: (i) in terms of execution (the control loop is 
provided or not provided); (ii) in terms of timing o sequence (the 
control loop provides too early/too late or wrong/inappropriate/out 
of order); and (iii) in terms of duration (the control loop is stopped 
too soon or applied too long).  

4. Identify Causal Scenarios: once relevant UCAs have been recognized, 
the last step of the technique is to identify scenarios that could lead to 
them with the ultimate purpose of identifying safety 
recommendations. 

2.2. Fuzzy set theory and expert opinion aggregation 

FST is a mathematical tool that deals with uncertainty and impre
cision. It is widely used in risk assessment and decision-making pro
cesses, especially in cases where the data is incomplete, ambiguous, or 
vague (Langari, 1996; Markowski et al., 2009). The theory defines a 
fuzzy set as a set that allows partial membership of elements. It allows 
the possibility of having an element in a set with varying degrees of 
membership, unlike classical set theory, where elements are either in or 
out of a set. Therefore, expert opinion aggregation is a method of 
combining expert judgments to obtain a more accurate assessment (Guo 
et al., 2021). It is commonly used when the problem is complex and the 
available data is insufficient or uncertain. FST can be used to aggregate 
expert opinions by representing the expert judgments as fuzzy sets. The 
degree of membership of an element in a fuzzy set represents the ex
pert’s confidence in their judgment. Hence, the FST using Expert 
Opinion Aggregation proposes six steps to perform the analysis (Dutta 
Majumder and Majumdar, 2004; Gentile et al., 2003): 

1. Define the purpose of the analysis: the theory requires the identifi
cation of the problem and the definition of the scope of the analysis. 
Therefore, identify the input data: Identify the data that will be used 
as input for the FST analysis (e.g., expert opinions, survey data, or 
historical data) and define the output that will be generated by the 
analysis, i.e., probability estimates, decision recommendations, or 
predicted outcomes. In addition, it is important to determine the 
level of detail required for the analysis. Moreover, the granularity of 
the input data, the complexity of the fuzzy logic operators, or the 
resolution of the output.  

2. Define fuzzy scales: the fuzzy scale is the measurement that allows 
for degrees of membership or uncertainty. To define a fuzzy scale, it 
is essential to determine the variable to be measured and its range of 
values. Then, divide the range into intervals or categories and assign 
a degree of membership or degree of certainty to each category. The 
degree of membership specifies how closely a value matches the 
idealized description of that category.  

3. Collect the experts’ judgments: to collect expert judgments it is 
essential to identify the experts and develop the information neces
sary to ask to cover the domain of the problem. Later, collect the 
responses, analyze them, and develop the fuzzy sets for the linguistic 
variables. Statistical methods can be used to analyze the responses 
and determine the degree of agreement or disagreement. Expert 
judgments play a crucial role in fuzzy logic, as they reflect the 

knowledge and experience of the experts in the field and ensure that 
the system accurately represents the problem domain.  

4. Aggregate the experts’ judgments: due to different experiences, 
backgrounds, and education levels, experts may express diversified 
judgments on the same subject. Accordingly, it becomes pivotal to 
properly aggregate the judgments coming from different experts, 
considering both the credibility of each expert and the overall 
consensus. The SAM allows for aggregating experts’ opinions, 
considering both individual credibility and overall consensus levels. 
Recently, a proposed an improved SAM, less sensitive to a user- 
defined parameter than the original SAM, and able to consider ex
perts’ weights during the calculation of the degree of consensus (Guo 
et al., 2021). For this reason, this paper adopts the SAM (Almeida 
et al., 2023; Azadeh et al., 2014; Soltanali et al., 2021), considering 
an improved version of the former approach (Guo et al., 2021), 
summarized hereafter. 

Given two trapezoidal fuzzy numbers Ã = (a1, a2, a3, a4) and B̃ =

(b1, b2, b3, b4) arising from two distinct experts (Ea and Eb), the sim
ilarity or Agreement Degree (SD) can be estimated through Eq. (1). 

SD(Ã, B̃) = 1 −
1
4
*
∑4

i=1
|ai − bi| (1)  

where the greater SD
(

A
̌
,B
̌ )

, the more similar the judgments of the 

two experts and vice versa. The next step of aggregation requires 
calculating the Weighted Absolute Agreement (WAA) of each expert 
according to Eq. (2). 

WAA(Ei) =

∑n
j=1,j∕=iW

(
Ej
)
SD
(
Ãi, Ãj

)

∑n
j=1,j∕=iW

(
Ej
) (2)  

where n identifies the number of experts, while W
(
Ej
)

denotes the 
weight associated with the j-th expert. The weight can be estimated 
as shown in Eq. (3). 

W(Ei) =
Scorei
∑n

j=1
Scorej

(3)  

where Scorej is the total score related to the j-th expert, computed as 
the sum of the score obtained by the j-th expert on different cate
gories (e.g., education, age, experience, etc…). After estimating the 
WAA for each expert, the Relative Agreement (RA) and the 
Consensus Coefficient (CC) are calculated in Eq. (4) and Eq. (5) 
respectively. 

RA(Ei) =
WAA(Ei)

∑n
j=1WAA

(
Ej
) (4)  

CC(Ei) = βW(Ei)+ (1 − β)RA(Ei) (5)  

where ∈ [0,1], and it is named the relaxation factor. Next, the 
aggregated fuzzy number can be obtained through Eq. (6). 

Ãagg = CC(E1)*Ã1 +CC(E2)*Ã2 +…+CC(En)*Ãn

= (aagg1, aagg2, aagg3, aagg4) (6)  

Finally, the defuzzification is conducted according to Eq. (7) 
(Allahviranloo and Saneifard, 2012). 

DÃi =
1
3

(

aagg1 + aagg2 + aagg3 + aagg4 −
aagg4aagg3 − aagg1aagg2(

aagg4 + aagg3
)
−
(
aagg1 + aagg2

)

)

(7)  

where DÃi refers to the defuzzied number. 
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Within this context, it is worth mentioning that a triangular fuzzy 
number can be treated as a trapezoidal fuzzy number where a2 = a3.  

5. Estimate the Priority Number (PN): a PN is a value assigned to each 
rule, evaluation, or variable to indicate its level of importance or 
relevance in the study. Therefore, the number is used to resolve 
conflicts that arise when multiple evaluations or opinions apply to a 
given input value, and higher priority rules are given more weight in 
the decision-making process. Indeed, it is fundamental to define an 
indicator based on which system components can be ranked. The 
aforementioned PN bears similarities to the well-known risk priority 
number used in Failure Modes, Effects, and Criticality Analysis. 
However, the present study focuses on unsafe CAs rather than failure 
modes. Thus, a different name is chosen for the priority indicator to 
prevent any confusion or misunderstanding.  

6. Define the priority and the criticalities: based on the PN associated 
with each variable or evaluation, it is possible to rank them and 
define appropriate thresholds. It is pivotal to identify the critical path 
or element in the system, otherwise, to prioritize a zone or section in 
the process. 

2.3. System-Theoretic Process Analysis (STPA) technique supported by 
aggregated fuzzy experts’ opinions 

A graphical representation of the developed methodology is shown 
in Fig. 1, which shows how FST is integrated with the STPA technique 
for evaluating and prioritizing UCAs (black arrows in Fig. 1). First, S1 
and F1 have been combined to define the problem and identify the 
boundaries of the systems. Later, the fuzzy scales are defined (F2 in 
Fig. 1). Then, the information is gathered to build the control structure 
and collect expert opinions (S2 & F3 in Fig. 1). Next, the opinions arising 
from different experts are aggregated, and a priority number is esti
mated for each action (F4 and f5 in Fig. 1). Therefore, the methodology 
identifies the UCAs, the causal scenarios, and the criticalities of the 
system (S3, S4 & F6 in Fig. 1). In Fig. 1, the steps to perform an STPA are 
represented in blue rectangles, while the steps related to FST are re
ported in red rectangles. 

Initially, the methodology follows the first step to perform the STPA 
technique (S1) and FST (F1) by defining the purpose of the analysis and 
the system to study. Later, the research plans to define and identify the 

fuzzy scale to evaluate and rank the criticalities of the systems (F2). 
Next, a collection of information and data is required to build the SCS 
according to the STAMP principles (S2). Accordingly, the CAs and 
related FBs are identified for the different levels of the hierarchical 
structure, along with studying the interactions among the different SCS 
levels. On the other hand, the experts should evaluate each in terms of 
frequency and severity of each element. Specifically, the CAs and FBs are 
evaluated based on the three categories of inadequacy listed in Section 
3.1 (i.e., action provided or not provided, error of timing or sequence, 
wrong duration). 

It is at this stage that the integration of FST comes to enhance the 
traditional STPA. FST is indeed meant to associate with each CA and FB a 
PN. Thus, a fuzzy severity scale and a fuzzy occurrence scale are iden
tified and, subsequently, shared with the subject matter experts on the 
system at hand. The experts are asked to specify a level of severity and 
occurrence for each category of inappropriate CA and FB (i.e., action 
provided or non-provided, error of timing or sequence, error of dura
tion). Consequently, the judgments arising from different experts are 
collected (F3). This step requires an iterative process to obtain judg
ments as coherent as possible for each expert. For instance, the plant is 
characterized by different valves that have the same purpose, which is 
isolating parts of the gas line. Let valve A and valve B be two different 
valves that operate with similar gas pressure and temperature. It is 
possible to assume that the consequences arising from valve A not 
closing could be similar to the consequences caused by valve B not 
closing. Accordingly, a given expert should evaluate similarly the former 
consequences. When two particularly different opinions are expressed 
by the same expert for the former cases, the expert is interviewed again 
to clarify his judgment, and possibly correct it in case an error emerges. 
A similar procedure could be applied for the occurrence. The only pur
pose of the former process is to reduce the possibility of human error 
during expert elicitation. After the aggregation (F4) and defuzzification 
processes, a PN is obtained for each CA and FB (F5). Specifically, the PN 
associated with each CA and FB is estimated as the maximum PNs of the 
related inadequacy categories. To conclude this phase, the CAs and FBs 
are ranked through their PNs, effectively prioritizing the most critical 
Unsafe Control Actions (UCAs) or Inappropriate Control Actions (ICAs) 
(S3). At this stage, FST has enabled a systematic prioritization of the 
UCAs, and consequently, of the causal scenarios to be investigated to 
identify a sequence of events that describes how a particular situation or 
condition might lead to a loss over time. In addition, the FST allows for 
the prioritization of the scenarios to explore and understand the un
derlying causes and effects of it (S4 and F6). 

In addition, it is possible to summarize the methodology in the 
following steps (Bingham and Ostaszewski, 2019; Falch and Silva, 2018; 
Yazdi et al., 2022):  

• Define purpose and system (S1, F1): The analysis begins by defining 
the purpose of the analysis and the system under study using the 
STPA technique.  

• Define fuzzy scales (F2): Fuzzy scales are established to evaluate and 
rank the criticalities of the systems, providing a basis for the subse
quent analysis.  

• Collect information and build SCS (S2): Information and data are 
collected to construct the System Constraint Structure (SCS) based on 
the STAMP principles. Causal Factors (CAs) and related Feedbacks 
(FBs) are identified at different levels of the hierarchical structure, 
studying their interactions. 

• Expert evaluation (F3): Subject matter experts evaluate the fre
quency and severity of each CA and FB using the identified fuzzy 
severity and occurrence scales (Yazdi et al., 2019). Three categories 
of inadequacy are considered. The process of expert selection follows 
a methodical approach that involves several important steps. Firstly, 
it requires determining the necessary qualifications for the task at 
hand. Afterwards, an extensive research effort is conducted to 
identify potential experts who possess the desired expertise. Fig. 1. Flowchart of the developed methodology.  
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Thorough evaluation is then carried out, meticulously scrutinizing 
their expertise, background, reputation, and credibility to ensure 
they have a commendable standing in their respective field. Addi
tionally, a comprehensive review is conducted to examine their 
relevant experience and assess their suitability for the task. The 
communication skills of potential experts are meticulously assessed 
to ensure effective conveyance of knowledge and opinions. 
Throughout the selection process, strict adherence to principles of 
independence and objectivity is maintained. Furthermore, their 
availability and capacity are verified to ascertain their ability to 
commit to the assigned responsibilities. Lastly, if necessary, multiple 
opinions are deliberately considered to foster a comprehensive and 
well-rounded analysis (Simić et al., 2017). By following these sys
tematic steps, an expert is chosen who possesses the necessary 
expertise and qualifications, thereby ensuring the provision of an 
impartial and well-informed opinion for the purpose of analysis.  

• Expert judgment collection (F4): The judgments provided by 
different experts regarding severity and occurrence are collected. An 
iterative process is employed to ensure coherence and consistency 
among expert judgments.  

• Aggregation and defuzzification (F5): The collected judgments are 
aggregated and defuzzied to obtain a PN for each CA and FB. The PN 
represents the level of severity and occurrence. Ascertain the ranking 
of the PNs evaluated for each CAs and FBs, thereby prioritizing 
pivotal actions and scenarios.  

• Ranking of CAs and FBs (S3): The CAs and FBs are ranked based on 
their PNs, allowing for the prioritization of Unsafe Control Actions 
(UCAs) or Inappropriate Control Actions (ICAs). This helps identify 
the most critical scenarios to investigate. 

• Prioritization of scenarios (S4, F6): FST enables the systematic pri
oritization of UCAs and the associated causal scenarios to explore 
their underlying causes and effects. This helps understand how 
particular situations or conditions may lead to losses over time. 

By implementing these strategies, the methodology endeavors to 
minimize subjectivity, ensuring an objective and robust analysis of 
system processes and potential hazards. 

3. Results and analysis 

The developed methodology is instantiated in an NGRMS, which 
holds a vital role in any Natural Gas distribution network, being the one 
designed to reduce the pressure of the gas flow before it can be 
distributed to customers. 

3.1. Case study description 

An NGRMS is a hazardous plant whose objective is twofold: (i) 
Reducing the pressure of the gas flow to adapt it to the subsequent 
utilities (both for industrial and public applications) and (ii) Measuring 
the most relevant parameters of the gas flow (e.g., upstream pressure, 
downstream pressure, etc.). The considered NGRMS is located in Tus
cany, Italy. It has approximately a dimension of 10 m x 8 m and pro
cesses 2000 m3/gof natural gas. The gas flow pressure should be reduced 
from 24 to 4.5 bar. This is fundamental to avoid eventual overpressure 
downstream of the NGRMS. As with most of the natural gas installations, 
the NGRMS has to follow the Italian standards and regulations related to 
the natural gas distribution systems. 

The plant handles two hazardous substances, which are methane and 
tetrahydrothiophene (THT). Indeed, a precise quantity of odorizer is 
added to the gas flow since methane is an odorless gas. Furthermore, the 
plant processes water required for heating the gas flow. Any NGRMS is 
characterized by two or three parallel lines that work simultaneously to 
satisfy the gas demand and avoid interruption of the distribution. For 
instance, in case a maintenance intervention is required for a line, or a 
component of the line fails, the other lines are expected to be able to 

continue working. A schematic representation of the plant is shown in  
Fig. 2, in which the color-coded arrows represent different pressures of 
the process. 

Following the gas flow, the first component along a line is the filter, 
which is in charge of removing the impurities (both solid and liquid), as 
they could damage the downstream devices. Next, the gas is preheated 
to avoid the formation of ice during the subsequent pressure reduction 
process. Indeed, reducing the pressure results in a temperature decrease 
due to the gas’ law. The preheating group oversees the temperature 
increase of the gas flow. Specifically, a water flux is heated by a boiler, 
and it is sent toward the exchangers through two pumps. Then, the 
heated gas is sent to the pressure regulation stage, where a pressure 
regulator is provided. The pressure regulator could be considered the 
core part of the plant since it is charged with the reduction of the gas 
pressure. The pressure regulator maintains the downstream pressure at a 
pre-determined through the variation of the cross-sectional flow area. 
Each pressure regulator is associated with a pilot, which is adopted for 
faster and more precise pressure changes. After the pressure reduction, 
methane’s most relevant parameters are measured. In this stage, the 
most important parameter is mass flow, which is measured through 
counters or meters. Finally, the odorizer is added to the gas that flows 
through a tank containing the THT. Based on the previous description, 
six main stages can be identified inside an NGRMS: filtration stage, 
heating stage, pressure regulation stage, measuring stage, odorization 
stage, and pre-heating stage (see Fig. 2). In addition to the previous 
stage, each line has several valves that are designed to block the gas flow 
in case an intervention is required on a line. For instance, in case a given 
pressure regulator should be replaced, the valves downstream and up
stream of the pressure regulator can be closed to allow safe dismounting. 

3.2. Application of the developed methodology 

3.2.1. Define the purpose of the analysis 
Following the first step of the methodology, this section aims to 

define the system, boundaries, hazards, scenarios, and losses to be 
investigated. By the time the system is being assessed for residual safety 
risk, the system hazard logs should already contain a list of the system 
hazards. Therefore, the following section defines the scenarios, hazards, 
and losses of the system. 

Scenario/Mission: the scenario to be analyzed on the process is the 
steady state operation process of the presented NGRMS. Additionally, 
the systems losses are defined as certain conditions to be avoided (see  
Table 1), as well as the corresponding hazards (see Table 2). 

3.2.2. Modeling the Safety Control Structure (SCS) 
This section maps the system elements and their interactions in a 

STAMP SCS, adopting the controller/controlled process logic. The SCS 
has been divided into three different levels:  

(i) High Organizational Level  
(ii) Low Organizational & High Operational Level, and  

(iii) Operational – Technical Level. 

A High Organizational Level SCS (level i) is represented in Fig. 3 and 
it has been segmented into: Cabinet of Minister; Government Regulatory 
Office & Industries Associations; and Company Management. These 
three system elements constitute the authority bodies on the process and 
represent the organizational-business level of the system (green box in 
Fig. 3), they act together via regulations and laws. Hence, the enterprise 
organization (level ii) is made up of the following elements: Central 
Utilities Plant Operations; Plant Engineering office; Operators & Con
tractors. These elements represent the lowest organizational level and 
contemporarily, the highest technical-operating level of the system (blue 
box in Fig. 3). In addition, the plant operating system (level iii, yellow 
box in Fig. 3) is made up of: Central Control Room System; Control Room 
for NGRMS; Filtration stage; Heating stage; Pressure Regulation stage; 
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Measuring station; Odorization stage; Pre-Heating stage; Pipeline and 
Automated Control sub-systems for other NGRMS processes; Other 
controlled refinery processes. The case study has been highlighted in 
purple color in Fig. 3 (interaction between the automated control room 
and the stage in the NGRMS). 

For the sake of the process, a more granular SCS is proposed by 
isolating the Control Room for NGRMS and the respective processes. 
This SCS excerpt is proposed in Fig. 4, in which the filtration stage, the 
control room for NGRMS, and the pipeline have been mapped in detail 
for demonstrative purposes. The fractal nature of STAMP allows indeed 
exploiting control loop at different levels of abstraction: this detailed 
SCS has been defined to highlight the CAs and FBs between the Control 

Algorithm and the Controlled Process, marked with a (*) in Fig. 3. The 
interactions have been codified to increase readability (see Table 3). 

Additionally, the STAMP model has been transcribed into a task re
cord to describe the CAs and FBs involved in Fig. 3 they will be used in 
the following analysis, as presented in Table 3 documented in purple 
arrows in Fig. 4. 

These items were then used as entry points for the FST application, 
which was meant to prioritize the criticalities to be further investigated. 

3.2.3. Identification and evaluation of the unsafe/inappropriate actions 
As described in Section 3.2, severity and occurrence fuzzy scales 

need to be defined (see F1 of Fig. 1). The severity and occurrence scales 
along with the associated linguistic and crisp scales are shown in Table 4 
and Table 5 respectively. The scales are built from previous used cases 
(Garcia et al., 2005; Renjith et al., 2018). 

The severity and occurrence scales are shared with experts who are 
asked to associate with each CA and FB a level of occurrence and severity 
(see F2 of Fig. 1). This process is iterated to assure a higher coherence of 
the opinions expressed by each expert. 

The plant presents similar components sharing similar CAs, and in 
turn, similar levels of severity and occurrence should be assigned to 
them. For instance, considering Valve I and Valve IV (see Fig. 2), it is 
possible to state that the valves are almost identical as they serve the 
same role (i.e., interrupting the gas flow through the filter) they operate 
at the same pressure. Consequently, the valves are associated with 
identical CAs. Based on the previous considerations, it is reasonable to 
assume that the same category of inadequacy for the same CA of Valve I 
and Valve IV should present similar, if not identical, levels of severity 
and occurrence. However, during the fill-in process, experts could make 
mistakes such as specifying an undesired or wrong level of severity or 
occurrence. Therefore, in case a given expert expressed a conflicting 
answer, the expert was asked to clarify the answers and correct them if 
required. For example, if an expert assigned a severity level equal to 1 
and 5 for the same category of inadequacy associated with the same CA 
of Vale I and Valve IV, respectively, the expert was questioned once 

Fig. 2. Schematic representation of an NGRMS.  

Table 1 
System losses identified in the NGRMS.  

Losses description Loss ID 

Occupational damage (fatalities or injuries) L-01 
Operational damage (to the equipment or to the plant) L-02 
Financial loss L-03 
Reputation loss L-04 
Environmental contamination L-05 
Gas supply production reduction or stop L-06  

Table 2 
System hazards identified in the NGRMS.  

Hazard description Hazard 
ID 

Linked Losses 

Pressure Regulation Stage violates the 
safety margins 

H-01 L-01; L-02; L-06 

Odorization Stage does not comply with 
the standard 

H-02 L-01; L-02; L-03; L-04; L- 
05; L-06 

Operation condition disrupts the 
requirements 

H-03 L-03; L-04; L-06  
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more to ensure higher reliability of his answers. 
When the aforementioned iterative process is terminated, the judg

ments from different experts are aggregated through the improved SAM 
(see F3 of Fig. 1), adopting a relaxation factor equal to 0.5, the typical 
adopted value (Jianxing et al., 2021). The improved SAM requires 
specifying a weight for each expert. The weight of each expert is esti
mated based on Eq. (3), considering the criteria listed in Table 6. In this 
context, it is worth mentioning that the adoption of different experts, or 
different weighting criteria could lead to different results. However, the 
sensitivity analyses related to the expert selection and weighting criteria 
were outside of the scope of this paper. 

Therefore, in this study, four experts have been involved (two of 
them have worked in the SMS of the NGRMS plants, instead, the other 
two are experts in Safety techniques in different domains), as per the 
corresponding weights shown in Table 7. 

It is worth mentioning that the third expert preferred to not specify 
their judgments on the system due to the lack of information or 

irrelevance of the CAs. Accordingly, some CAs are characterized by three 
opinions instead of four, still not implying a loss of generalization or 
capabilities. The judgements expressed by the experts are shown in  
Table 8 and Table 9 for the severity and occurrence respectively. 

To estimate the criticalities, the aggregation of the judgments is 
applied separately for the severity and occurrence levels at first as shown 
in Table 10. Thus, each CA is associated with three distinct aggregated 
severity and occurrence levels (one for each category of inadequacy). 

After the defuzzification process for the occurrence and severity 
aggregated numbers, the PN is estimated for each category of in
adequacy and each CA as the product of the aggregated severity and the 
aggregated occurrence (see F4 of Fig. 1). In other words, three distinct 
PNs are estimated for each CA (one for each category of inadequacy). 
Then, the maximum PN estimated for each CA is considered. The former 
maximum PN is exploited to identify the most critical UCAs through the 
adoption of the risk matrix reported in Table 11. The risk matrix also 
reports the traditional color-coded association. It follows that any CA 

Fig. 3. High-Level Safety Control Structure for the NGRMS plant.  
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characterized by a maximum PN higher than 8 is associated with a high 
risk, while a medium risk is assigned to each CA with a maximum PN 
between 4 and 8. Finally, a maximum PN lower than 4 identifies a low- 
risk CA. The choice of the risk matrix and the former risk thresholds was 
guided by expert opinions. Specifically, the same experts involved in the 
evaluation of the CAs and FBs also in recommended the risk level of the 
considered risk matrix. The former choice was made to assure a good fit 
for the requirements of the NGRMS. 

Following 11 the identified CAs and FBs for the filtration stage are 
classified according to the three risk levels, allowing to identify the most 
critical UCAs (i.e., the ones associated with high risk). The selection 
criteria have been defined with the higher PN number of the three 
criteria (action, timing or sequence, and duration) highlighted by color 
(previously defined in the risk matrix). Therefore, six CAs or FBs are 
regarded as high risk, while six are associated with a medium risk level 
(Table 12). 

It is possible to observe how the F-V1–1, F-V4–1, and F-PV1–1 are 
critical since they have a high risk in terms of timing or sequence to 
develop the task. Moreover, the F-V1–2, F-V1–3, and F-V1–5 have a high 

Fig. 4. A detailed SCS for the filtration stage (an excerpt of the NGRMS plant).  

Table 3 
The CAs and FBs description for the studied process.  

Code Task Type 

Control Room & Filtration stage (F) 
Control Room - Valve I (V1) 
F-V1–1 On/Off condition Pre-filtration CA 
F-V1–2 Pre-filtration temperature condition CA 
F-V1–3 Pre-filtration pressure condition CA 
F-T1–4 Gas temperature before filtering FB 
F-PS1–5 Gas pressure before filtering FB 
F-V1–6 Valve positioning FB 
Control Room - Filter I (F1) 
F-F1–1 Clogging control CA 
F-F1–2 Differential gas pressure upstream and downstream the filter FB 
Control Room - Valve IV (V4) 
F-V4–1 On/Off condition after filtering CA 
F-V4–2 Valve positioning FB 
Control Room - Purge Valve I (PV1) 
F-PV1–1 On/Off condition CA 
F-PV1–2 Valve positioning FB  

Table 4 
Linguistic scale, descriptions, crisp values, and fuzzy numbers adopted for the 
severity.  

Linguistic 
scale 

Description Crisp 
value 

Fuzzy 
number 

None (N) No reason to expect failure to have any 
effect on safety, health, environment, or 
mission.  

1 (0,1,2) 

Minor (MI) Minor effect on product or system 
performance to have any effect on safety 
or health. The system can require repair.  

2 (1,2,3) 

Moderate 
(MO) 

Moderate effect on system performance. 
The system requires repair. A failure 
which may cause moderate injury, 
moderate property damage, or moderate 
system damage which will result in delay 
or loss of system availability or mission 
degradation.  

3 (2,3,4) 

Major (MA) System performance is severely affected 
but functions (reduced level of safety 
performance). The system may not 
operate. Failure could involve 
noncompliance with government 
regulations or standards.  

4 (3,4,5) 

Serious (S) Failure is hazardous and occurs without 
warning. It affects safe operation. A 
failure is serious enough to cause fatality 
or injury, property damage, or system 
damage. Failure will occur without 
warning.  

5 (4,5,5)  

Table 5 
Linguistic scale, rate, crisp values, and fuzzy numbers adopted for the 
occurrence.  

Linguistic scale Rate Crisp value Fuzzy number 

Remote (R) < 1:20000  1 (0,1,2) 
Low (L) 1:20000 or 1:10000  2 (1,2,3) 
Moderate (M) 1:2000; 1:1000; or 1:200  3 (2,3,4) 
High (H) 1:100 or 1:20  4 (3,4,5) 
Very High (VH) 1:10 or 1:2  5 (4,5,5)  
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risk in terms of how the task has been developed. On the other hand, the 
rest of the CAs and FBs had a medium risk related to the timing or the 
action of the task. 

Therefore, it is worth noting that most of the critical CAs and FBs are 
related to opening and closing the valves. Indeed, the valves are charged 
with interrupting the gas flow in case it is required to operate on a 
certain line. Thus, if the gas flow is not interrupted when required, it 
could lead to catastrophic consequences. The considered CAs refer to a 
single line, however, the results could be extended to any of the three 
lines inside an NGRMS. 

3.2.4. Identify the causal scenarios and prioritize the critical path 
This section of the analysis has been performed using the last two 

steps of the STPA technique (S3 and S4 in Fig. 1). Therefore, the analysis 
seeks to describe a set of conditions in which the CAs and FBs with the 
higher PN number could lead to a loss. Table 13 describes a systematic 
way to describe the causal scenarios to be used to improve the system 
design through new safety constraints. In addition, the table shows two 
types of indents (i) the first one (•) is linked with the CAs in charge to 
change the position of the valve to close or open them; and (ii) the other 

Table 6 
Criteria and Score to estimate the weight of each expert (Guo et al., 2021).  

Criteria Class Score 

Professional position Senior Manager  10 
Junior Academic / Professor  8 
Engineer / Tenure Research  6 
Technician  4 
Worker  2 

Service time ≥ 30  10 
between 20 and 29  8 
between 10 and 19  6 
between 6 and 9  4 
≤ 5  2 

Education level Ph.D. Degree  10 
Master Degree  8 
Bachelor Degree  6 
Higher National Diploma  4 
School Degree  2 

Age ≥ 50  8 
between 40 and 49  6 
between 30 and 39  4 
< 30  2  

Table 7 
Weight score of each expert to evaluate the UCAs of the system.  

Expert Professional position Service time Education level Age Weight 

E1 Junior Academic / Professor 20–29 PhD 40–49  0.333 
E2 Junior Academic / Professor 10–19 PhD 30–39  0.292 
E3 Engineer / Tenure Research ≤ 5 MSc < 30  0.188 
E4 Engineer / Tenure Research ≤ 5 MSc < 30  0.188  

Table 8 
Opinions judgments expressed by the experts for the severity.  

CAs & FBs Criteria Opinions by Expert 

E1 E2 E3 E4 

F-V1–1: On/Off condition Pre-filtration Action  5 5  5  5 
Timing or Sequence  5 3  4  5 
Duration  4 3  4  5 

F-V1–2: Pre-filtration temperature condition Action  3 4  4  3 
Timing or Sequence  2 4  2  1 
Duration  2 3  3  1 

F-V1–3: Pre-filtration pressure condition Action  3 4  5  3 
Timing or Sequence  2 4  3  3 
Duration  2 4  4  2 

F-V1–4: Gas temperature Pre-filtration Action  1 4  3  2 
Timing or Sequence  1 2  2  1 
Duration  1 3  2  1 

F-V1–5: Gas pressure Pre-filtration Action  1 5  5  3 
Timing or Sequence  1 3  4  3 
Duration  1 4  4  2 

F-V1–6: Valve position Action  1 -  4  4 
Timing or Sequence  1 -  2  3 
Duration  1 -  2  3 

F-F1–1: Clogging control Action  3 -  4  3 
Timing or Sequence  2 -  2  1 
Duration  1 -  3  2 

F-F1–2: Differential gas pressure upstream and downstream the filter Action  1 4  3  2 
Timing or Sequence  1 2  1  1 
Duration  1 1  1  2 

F-V4–1: On/Off condition after filtering Action  5 5  5  5 
Timing or Sequence  5 3  4  5 
Duration  4 3  4  5 

F-V4–2: Valve position Action  1 2  4  4 
Timing or Sequence  1 1  2  3 
Duration  1 1  2  3 

F-PV1–1: On/Off condition Action  3 -  3  4 
Timing or Sequence  4 -  4  3 
Duration  4 -  2  3 

F-PV1–2: Valve position Action  1 -  3  4 
Timing or Sequence  1 -  4  3 
Duration  1 -  2  3  
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one (-) are associated with the CAs related to change and regulate 
pressure and temperature of the process. 

In addition, the methodology allows not only to trace the issues that 
occur among the interlevel but also to identify and define problems that 
may occur between each level (orange lines in Fig. 5), allowing to 
recognize the issues that arise indirectly in the other processes of the 
system. 

Therefore, the methodology provides information on what other CAs 
and FBs should be critical downstream and upstream. Fig. 5, shows the 
path of how F-V1–1, F-V1–2, F-V1–3, F-V1–5, F-V4–1, and F-PV1–1 
involve other components of the process e.g., Pipeline, Pressure Sensor I, 
Valve I, Purge Valve I, Valve IV and the Control Algorithm (red boxes in 
Fig. 5) and its interactions (red arrows in Fig. 5). 

Moreover, the advantage of the system theory is the abstraction of 
the study. Based on this, Fig. 6 represents a high-level SCS identifying 
the critical path of each component and its interactions involved in the 
UCAs. This information is essential since it is possible to prioritize which 
part of the process could be relevant to improve the SMS and prevent 
such conditions that could lead to a loss. Therefore, the analysis gives 
indent into how the UCAs could be approached to reduce or prevent 
such undesired events, e.g., it is possible to identify and discuss at the 
organization level in terms of guidelines, laws, and regulations to 
guarantee new safety constraints to ensure that F-V1–1, F-V1–2, F-V1–3, 
F-V1–5, F-V4–1, and F-PV1–1 have been provided correctly. Besides, it is 
possible to study the company policy and the process conditions to 
ensure new safety constraints or update the old ones to guarantee that F- 
V1–1, F-V1–2, F-V1–3, F-V1–5, F-V4–1, and F-PV1–1 have been applied 
accurately. 

It is important to note that the critical path underlined in Fig. 6 
shows the hierarchically higher components of the process. This means 

that if the analysis wants to focus on describing each level of the STAMP 
model with its interactions, the critical path will be similar to Fig. 5, 
which describes the specific components of each phase of the process 
and their interactions (where the criticality of the process is highlighted 
in red color). 

4. Discussion 

4.1. Advantages and limitations 

STPA technique allows users to systematically study a given system 
process, providing information on the interactions among different 
levels (e.g., operational, technical, and social). However, applying STPA 
often results in a long list of CAs and FBs, especially for complex systems 
processes. Thus, addressing all the UCAs and understanding their pri
orities is challenging. Furthermore, since finite resources characterize 
any organization, it is not possible to focus on all the CAs and FBs with 
the same efforts to evaluate the system hazards that could lead to a loss. 
The integration of STPA and FST allows associating each CA and FB with 
a level of priority, highlighting the most critical ones. Considering the 
case study, only 50% of the detected CAs are identified as critical due to 
a PN higher than 8. Therefore, the managers of the plant are provided 
with a reduced list of CAs to consider in the first place. These activities 
should be monitored and controlled thoroughly, and proper counter
measures should be adopted to avoid errors (e.g., extensive operator 
training). Besides, the former reduced list allows for wasting less time in 
identifying the most critical UCAs since only a reduced number of CAs 
could be considered at first. Finally, the proposed framework could 
support the decision-making processes related to asset management. The 
efforts and investments should be directed toward the identified most 

Table 9 
Opinions judgments expressed by the experts for the occurrence.  

CAs & FBs Criteria Expert opinion 

E1 E2 E3 E4 

F-V1–1: On/Off condition Pre-filtration Action  2 2  1  2 
Timing or Sequence  3 1  2  3 
Duration  3 2  1  3 

F-V1–2: Pre-filtration temperature condition Action  4 3  2  2 
Timing or Sequence  4 3  3  3 
Duration  4 2  2  3 

F-V1–3: Pre-filtration pressure condition Action  4 2  3  2 
Timing or Sequence  4 3  2  3 
Duration  4 3  2  3 

F-V1–4: Gas temperature Pre-filtration Action  2 2  3  3 
Timing or Sequence  2 1  2  3 
Duration  2 1  1  3 

F-V1–5: Gas pressure Pre-filtration Action  2 3  3  4 
Timing or Sequence  2 2  3  4 
Duration  2 3  2  4 

F-V1–6: Valve position Action  2 -  2  2 
Timing or Sequence  2 -  1  2 
Duration  2 -  1  2 

F-F1–1: Clogging control Action  2 -  2  2 
Timing or Sequence  3 -  2  3 
Duration  3 -  2  3 

F-F1–2: Differential gas pressure upstream and downstream the filter Action  2 1  2  4 
Timing or Sequence  2 2  2  4 
Duration  2 2  1  4 

F-V4–1: On/Off condition after filtering Action  2 2  1  2 
Timing or Sequence  3 1  2  3 
Duration  3 2  1  3 

F-V4–2: Valve position Action  2 1  2  2 
Timing or Sequence  2 2  3  2 
Duration  2 1  2  2 

F-PV1–1: On/Off condition Action  2 -  3  2 
Timing or Sequence  2 -  2  3 
Duration  2 -  2  3 

F-PV1–2: Valve position Action  2 -  2  2 
Timing or Sequence  2 -  2  2 
Duration  2 -  2  2  
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critical CAs. For the considered case study, the application of the pro
posed framework highlighted that the most critical CAs of the filtration 
stage of the NGRMS are related to valve management. It follows that 
particular attention should be devoted to the valve activation or closing 
processes. To validate the coherence of the former results, a validation 
workshop was conducted with the four experts involved in this study. 
The experts confirmed that the identified criticalities and priorities are 
aligned with their expectations and the considered installation. 
Accordingly, the methodology provides promising results for the 
considered case study. 

It is worth mentioning that the application of the improved SAM 
allows for conducting quantitative analysis based on expert judgments, 
enhancing the qualitative nature of the STPA. However, the improved 
SAM is characterized by a user-defined parameter (i.e., the relaxation 
factor), whose choice could affect the results. Thus, during the following 
section, a sensitivity analysis is conducted to assess the impact of the 
relaxation factor on the detected critical CAs. 

In addition, the STPA technique, before defining the system hazards 
and losses at the beginning of the analysis, does not consider the 

possibility that additional hazards or losses may appear in a second 
phase or evaluation of the analysis. Then, suppose any new hazard or 
loss is uncovered in the analysis. In that case, it is necessary to report 
them as part of the assessment’s findings and raise them to management 
as quickly as possible to upgrade the safety management system of the 
process. Otherwise, the new hazards or losses in the analysis must be 
notified and updated to cover them and avoid such situations. Accord
ingly, the developed methodology should be applied once again to up
date the PNs and the priorities, based on which the decision-making to 
modify the system process to reduce or prevent undesired conditions 
should be conducted. Hence, the proposed methodology could be iter
ative in which after the evaluation the PN and the identification of the 
criticalities of the system the STPA analysis could be reapplied to pre
vent or improve the criticalities of the system identified previously. 

4.2. Sensitivity analysis 

It is pivotal to understand how the relaxation factor influences the 
analysis. Indeed, the relaxation factor is a user-defined parameter, and 
different values of the relaxation factor could lead to distinct critical 
CAs. Thus, it is important to identify eventual differences in criticalities 
arising from the variation of the relaxation factor. Indeed, new critical 
aspects could emerge. To this end, the aggregation method is carried out 
two more times, adopting a relaxation factor equal to 0 and 1 respec
tively. According to Eq. (5, a) relaxation factor (β) equal to 0 implies a 
higher impact of the experts’ consensus. On the other hand, imposing a 
relaxation factor equal to 1 generates a higher impact of the experts’ 
weights. To assess the differences among the PNs obtained through the 
adoption of three distinct relaxation factors (i.e., 0, 0.5, and 1), a Ratio 
of Variation (ROV) is estimated as shown in Eq. (8). 

Table 10 
Aggregated fuzzy numbers for the severity and occurrence of the identified CAs and FBs.  

CAs & FBs Criteria Severity aggregated Occurrence aggregated 

a b c a b c 

F-V1–1: On/Off condition Pre-filtration Action  4.00  5.00  5.00  0.80  1.80  2.80 
Timing or Sequence  3.27  4.27  4.75  1.27  2.27  3.27 
Duration  2.95  3.95  4.74  1.32  2.32  3.32 

F-V1–2: Pre-filtration temperature condition Action  2.49  3.49  4.49  1.84  2.84  3.84 
Timing or Sequence  1.28  2.28  3.28  2.28  3.28  4.28 
Duration  1.30  2.30  3.30  1.78  2.78  3.78 

F-V1–3: Pre-filtration pressure condition Action  2.69  3.69  4.48  1.78  2.78  3.78 
Timing or Sequence  1.98  2.98  3.98  2.08  3.08  4.08 
Duration  1.97  2.97  3.97  2.08  3.08  4.08 

F-V1–4: Gas temperature Pre-filtration Action  1.46  2.46  3.46  1.43  2.43  3.43 
Timing or Sequence  0.49  1.49  2.49  0.94  1.94  2.94 
Duration  0.73  1.73  2.73  0.70  1.70  2.70 

F-V1–5: Gas pressure Pre-filtration Action  2.53  3.53  4.02  1.92  2.92  3.92 
Timing or Sequence  1.68  2.68  3.68  1.62  2.62  3.62 
Duration  1.72  2.72  3.72  1.68  2.68  3.68 

F-V1–6: Valve position Action  1.93  2.93  3.93  1.00  2.00  3.00 
Timing or Sequence  0.89  1.89  2.89  0.72  1.72  2.72 
Duration  0.89  1.89  2.89  0.72  1.72  2.72 

F-F1–1: Clogging control Action  2.29  3.29  4.29  1.00  2.00  3.00 
Timing or Sequence  0.72  1.72  2.72  1.72  2.72  3.72 
Duration  0.89  1.89  2.89  1.72  2.72  3.72 

F-F1–2: Differential gas pressure upstream and downstream the filter Action  1.46  2.46  3.46  1.11  2.11  3.11 
Timing or Sequence  0.26  1.26  2.26  1.37  2.37  3.37 
Duration  0.20  1.20  2.20  1.16  2.16  3.16 

F-V4–1: On/Off condition after filtering Action  4.00  5.00  5.00  0.80  1.80  2.80 
Timing or Sequence  3.27  4.27  4.75  1.27  2.27  3.27 
Duration  2.95  3.95  4.74  1.32  2.32  3.32 

F-V4–2: Valve position Action  1.58  2.58  3.58  0.74  1.74  2.74 
Timing or Sequence  0.62  1.62  2.62  1.20  2.20  3.20 
Duration  0.62  1.62  2.62  0.74  1.74  2.74 

F-PV1–1: On/Off condition Action  2.29  3.29  4.29  1.29  2.29  3.29 
Timing or Sequence  2.72  3.72  4.72  1.29  2.29  3.29 
Duration  2.11  3.11  4.11  1.29  2.29  3.29 

F-PV1–2: Valve position Action  1.53  2.53  3.53  1.00  2.00  3.00 
Timing or Sequence  1.53  2.53  3.53  1.00  2.00  3.00 
Duration  0.89  1.89  2.89  1.00  2.00  3.00  

Table 11 
Adopted risk matrix to evaluate the criticality of the CAs and FBs.  
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ROV =

⃒
⃒PN0.5 − PN0|1

⃒
⃒

PN0.5
(8)  

where PN0.5 represents the PN estimated with a relaxation factor equal 
to 0.5, while PN0|1 is computed for a relaxation factor equal to 0 and 1. 
Considering the CAs and FBs listed in 3, the results of the calculation are 
shown in Table 14. On the other hand, Fig. 7 provides a graphical rep
resentation of the values listed in Table 14. 

The calculation depicted that the CAs or FBs whose PN is most 
affected by the relaxation factor choice are the following ones: F-V1–5 
and F-V1–6. Specifically, adopting a relaxation factor equal to 0 leads to 
an increase in the PNs associated with F-V1–5 and F-V1–6. On the other 
hand, F-F1–1 and F-PV1–1 are the least affected by the relaxation factor 
variation. Considering F-V1–5 and F-V1–6, the first expert expressed low 
values of severity, while the other experts provided more similar and 
higher severity levels. Moreover, the first expert is associated with the 
highest weight, thus its judgment is predominant when the relaxation 
factor is equal to 1. Following the previous considerations, lower PNs are 
assigned to both F-V1–5 and F-V1–6 when the relaxation factor is equal 
to 1 due to the low severity values provided by the first expert and his 
importance. On the other hand, the opinions related to the occurrence 

and severity of F-F1–1 and F-PV1–1 are very similar across the three 
experts. For this reason, their PNs are slightly influenced by the relax
ation factor choice. 

In the former context, it is worth mentioning that the CAs and FBs 
formerly associated with a high-risk level are still identified as such for 
both the alternative relaxation factor. Accordingly, for this application, 
the detected criticalities are not much affected by the aforementioned 
user-defined parameter. Indeed, F-V1–1, F-V4–1, and F-PV1–1, with PNs 
higher than 8 for all the adopted relaxation factors. The former tasks are 
all related to valve management. Since opening and closing the valve is a 
manual task conducted by operators, there could be errors related to the 
sequence, timing, or even the absence of action when required. Thus, to 
avoid possible errors from occurring it is required to properly train the 
operators, while providing appropriate standards and procedures. 
Moreover, it could be useful to reduce the number of tasks a given 
operator should conduct in the plant. Indeed, the higher number of 
tasks, the higher the fatigue of the operators, which could be more prone 
to errors. Besides, F-V1–2, F-V1–3, and F-V1–5 emerged as critical for all 
three relaxation factors. F-V1–2, F-V1–3, and F-V1–5 are activities per
formed by specific sensors when the gas enters the plant. Accordingly, 
the parameters of the gas flow at the inlet of the installation are pivotal. 

Table 12 
Risk evaluation of the CAs and FBs for the filtration stage, the highest PN are mapped with bold font in the corresponding criterion.  
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Furthermore, to avoid possible errors or even the absence of measure
ments, it is essential to adopt very reliable and precise sensors. Indeed, 
sensors with high reliability and precision could reduce the occurrence 
of non-proper measurements. 

5. Conclusion 

Using the STPA technique in combination with the FST method has 
been proven effective in identifying and prioritizing the CAs and FBs 
involved in the related system process hazards (Leoni, De Carlo et al., 
2021). In addition, the STPA technique allowed a comprehensive anal
ysis of the system and its potential losses. At the same time, the FST 

method provided a flexible and adaptable framework for assessing the 
occurrence and severity of each CAs and FBs to be ranked to facilitate the 
selection of the hazard to be mitigated in the future. This paper provides 
detailed guidance on integrating an STPA and FST method to quantify 
each interaction. The obtained results demonstrate the feasibility of the 
proposed methodological solution to assess and identify the criticalities 
of the system. Based on this analysis, managers could develop and 
implement appropriate mitigation strategies and new safety constraints 
to prevent or reduce future undesired events (Nakhal A, Gravio et al., 
2022). Expert opinion may also complement the estimated PNs to vali
date or improve the prioritization process (Dorsey et al., 2020; Garg and 
Mhaskar, 2018). For instance, a validation workshop was adopted in this 

Fig. 5. Critical system components for the filtration stage of the NGRMS (orange lines are the problems related with the system components arise indirectly. On the 
other hand, the red elements show the critical path of the system). 

Table 13 
Identification of the causal scenarios for the critical CAs and FBs.  

Identify why would UCAs occur Unsafe Controller Behavior  • For F-V1–1, F-V4–1, and F-PV1–1: The operator forgets to close or open valve I, IV, or purge valve I due 
to distractions, fatigue, or last-minute issues in a different area of the plant.  

- For F-V1–2, F-V1–3, and F-V1–5: The operator misreads wrong the valve I and the pressure sensor I due 
to distractions or fatigue. 

Inadequate Feedback or 
Data Information  

• For F-V1–1, F-V4–1, and F-PV1–1: The operator forgets or makes a mistake to close or open valve I, IV, 
or purge valve I due to a misread of the temperature on thermometer I or pressure in pressure sensor I. 
This could also be related to broken or de-calibrated sensors that indicate a wrong measurement.  

- For F-V1–2, F-V1–3, and F-V1–5: The operator makes a mistake or conducts a wrong task because 
pressure sensor I indicates the wrong measure. Moreover, this measure could be read in the automated 
control room or in the pipeline both ways are electronic components in which the data information or 
feedback of the process could be wrong due to external factors or de-calibration of the instruments. 

Identify why would CA(s) be 
improperly executed / not executed 

Control Path  • For F-V1–1, F-V4–1, and F-PV1–1: The STPA technique provides information on the interlevel (down 
and upstream) of the CAs and FBs affected by the UCAs. Therefore, P-V1–1, P-V4–1, and P-FV1–1 
(valve positioning angle for valve I, IV, and purge valve I) are involved in the actions that could lead to 
an unsafe or inappropriate scenario since they stop or allow the flow of the gas.  

- For F-V1–2, F-V1–3, and F-V1–5: On the other hand, for the other UCAs the P-V1–2, P-V1–3, and P- 
V1–5 (pre and post-filtration gas pressure) are involved in the actions that could lead and inappro
priate reading and interpretation of the gas pressure in the process. 

Controlled Process Factors  • For F-V1–1, F-V4–1, and F-PV1–1: the pipeline and filter I are the controlled processes involved in 
these causal scenarios. In addition, the inappropriate development of these CAs leads to a sudden 
change in pressure or an abrupt decrease in temperature, the piping could start to freeze, causing 
problems in plant mobility and process control.  

- For F-V1–2, F-V1–3, and F-V1–5: the pipeline and filter I are the controlled processes involved in these 
causal scenarios. In addition, the inappropriate development of these CAs leads to a sudden change in 
pressure or an abrupt decrease in temperature, the piping could start to freeze, causing problems in 
plant mobility and process control.  
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study. 
As for most of the works, this study has some limitations. For 

instance, only the operative level (micro-perspective) was considered in 
this analysis. In this regard, further research may include considering 
the fractal nature of resilience and exploring more dimensions: (i) micro- 
perspective referring to the study of single components (technical or 
human); (ii) meso-perspective, considering the whole organization, and 
(iii) macro-perspective to extend impacts evaluation also considering 
society involvement. To perform the former task, it is required to pro
vide more details regarding CAs and FBs related to meso-perspective and 
macro-perspective. Subsequently, a first viable option could be evalu
ating the severity and occurrence of each CA and FB through expert 
judgements as described in this paper. Another viable option could be 
considering the critical CAs and FBs detected for the micro-level. Next, it 
could be possible to study and define their relationships and impacts on 
meso-perspective and macro-perspective. In other words, a bottom-up 
approach could be followed to detect meso-perspective or macro- 

Fig. 6. A high-level SCS of the critical path of how UCAs could affect the entire system process.  

Table 14 
PNs and ROVs associated with the high risk CAs and FBs for a relaxation factor 
equal to 0 and 1.  

CAs and FBs PN ROV 

Beta ¼ 0 Beta ¼ 1 Beta¼ 0 Beta¼ 1 

F-V1–1  9.52  9.04  0.03  0.03 
F-V1–2  9.52  10.29  0.04  0.04 
F-V1–3  9.81  10.29  0.02  0.02 
F-V1–4  6.20  5.79  0.03  0.03 
F-V1–5  10.72  8.94  0.09  0.09 
F-V1–6  6.53  5.19  0.11  0.11 
F-F1–1  6.61  6.54  0.01  0.01 
F-F1–2  5.30  5.08  0.02  0.02 
F-V4–1  9.52  9.04  0.03  0.03 
F-V4–2  4.88  4.13  0.09  0.08 
F-PV1–1  8.52  8.48  0.002  0.002 
F-PV1–2  5.47  4.66  0.08  0.08  
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perspective criticalities. Adopting the aforementioned solutions could 
allow to have a more comprehensive view on safety matters, allowing to 
conduct a more informative decision-making process related to possible 
countermeasures. 

Besides, triangular fuzzy numbers have been considered. Thus, it 
could be interesting to extend the framework for hesitant or intuition
istic fuzzy numbers, which are usually more suited for treating the un
certainty arising from expert opinions. In this context, it is worth 
mentioning that different experts, different opinions, or different 
weighting criteria could lead to different results. Accordingly, it could be 
useful to investigate the impacts that different expert groups and weight 
criteria have on the criticalities. 

Moreover, only a single case study is considered. Thus, it could be 
interesting to apply the proposed framework to different contexts such 
as manufacturing, transportation, and aerospace. Indeed, extending the 
methodology to other fields of application could be useful to evaluate its 
generalizability, along with identifying its weaknesses and strengths 
more in-depth. In this context, it is worth mentioning that FST has been 
successfully integrated with other tools in several fields. Thus, it is 
possible to expect a similar capability for the integration of FST and 
STAMP. 

Furthermore, in this work, the comparison of the methodology with 
similar frameworks was outside of the scope. Thus, a future develop
ment could be integrating FST with other techniques to map and assess 
hazards such as the Functional Resonance Analysis Method (FRAM) 
(Hollnagel, 2012). The FRAM has been advocated as a systemic 
approach useful to understand and analyse complex socio-technical 
systems and their resilience, with specific focus on functional in
teractions being useful for detailed mapping of actual system in
terdependencies under varying conditions (Patriarca et al., 2020). When 
integrated with FRAM, FST allows for the modeling and propagation of 
uncertainties, providing a more comprehensive understanding of system 
dynamics and potential hazards. By leveraging FST, there is a possibility 
to offer valuable support by addressing uncertainties and imprecisions in 
system parameters. FST enables the representation and reasoning of 
imprecise and incomplete information, leading to more realistic as
sessments and improved decision-making for risk mitigation strategies 
(Lundberg et al., 2008). Then, a comparison could be conducted to 
address the advantages and the limitations arising from the different 
integration frameworks. This structured analysis should improve the 
quality of the data gathering using Machine Learning (ML) algorithms 
such as Deep Learning or Decision Tree complemented with some ML 
data analysis in safety domains (Nakhal A et al., 2021; Nakhal A, Hov
stad et al., 2022). Finally, another future development of this research 
could be the reinforcement of the current framework with the imple
mentation of the BN (Leoni, BahooToroody et al., 2021; Leoni et al., 
2019) supported by FST to evaluate the probabilities of the critical CAs 
and FBs identified through the frameworks. 
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