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Introduction

The present thesis has two objectives:
a. to provide a clustering methodology with a consequent study of the con-
tagion that allows an efficient diversification of the risk;
b. to build a model for the estimation of market risk that adapts to finan-
cial data and their peculiarities more efficiently than the usual models built
through the use of Normal distribution. A sample of the nine most capitalized
stock indices has been studied, such as: Dow Jones, S&P500, Nasdaq 100,
FTSE 100, Nikkei 225, SSE Composite, SZSE Component, Euronext 100,
HANG SENG. The chosen time horizon is about ten years, more precisely
from January 2, 2012 to October 11, 2022. The work is divided into three
chapters, of which the first chapter sets out the theoretical foundations on
which the analysis under discussion is based, analytically presenting the em-
pirical properties of financial data, such as: the presence of non-independent
and identically distributed yield series; the significant correlation of returns
squared; the near zero value of the above conditional expected values; the
characteristic leptocurtic tails and the presence of clusters for the extreme
values. The importance of an accurate estimate of rare events is underlined
and the extreme values theory is dealt with, focusing on the distribution of
generalized extreme values (GEV), on the maximum domain of attraction,
on the ”Block Maxima” method and over threshold exceedances. We proceed
by providing the definition and explaining the mathematical properties of the
copula function; we describe, moreover, various types of copulas including the
skew t copula, the Vine copula and the elliptic copulas, to this last category
belong the Gaussian copula and the Student t copula. In addition, the cali-
bration methods of the parameters of the function under consideration, such
as the Maximum Likelihood Method (ML), the Margin Inference Functions
Method (IFM) and the Method of Maximum Canonical Likelihood (CML). A
quick description of the sample being analysed is also provided. The second
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2 CONTENTS

chapter presents an analysis of the behavior of time series in risky scenarios
in order to enable the implementation of performing portfolio diversification
strategies. Through a methodology that is articulated in four different phases:
to find the model that is well adapted to the data in analysis, to measure the
dependence of tail, to create the matrix of dissimilarity, to construct of the
clusters that allow the study of the phenomenon of the contagion in extreme
events. Three different thresholds were chosen to study the correlation of the
nine indices in risky scenarios and in stable market conditions. The third
and final chapter explains accurately all the operations carried out that have
finally led to the construction of the desired model, starting from the daily
closing prices of the nine indices constituting the portfolio. The combined use
of extreme value theory and copulas: t , skew t and Vine leads to a market
risk modelling approach that stands out from traditional risk management
models. They assume conditional normality for logarithmic returns on finan-
cial assets or risk factors despite empirical evidence that yield distributions
are characterized by leptocurtic tails. The main objective of this study was to
obtain a model consistent with this empirical evidence. Finally, the obtained
portfolio index returns are simulated and the Value at Risk is calculated with
relative back-testing to test the goodness of the presented model.



Chapter 1

Theoretical notions

1.1 Abstract

The following chapter is aimed at the explanation of the theoretical foun-
dations that will be applied in the following practical elaboration . It first
presents and explains the empirical properties of the financial data, below is
proposed what is the main theme of this paper, this is the importance of esti-
mating rare events with further study of the theory of extreme values. Since
the application model object of this analysis is obtained by combining the
theory of extreme values and copulas, it was considered more than appropri-
ate to provide a theoretical explanation of the tool used for the multivariate
modelling phase, explaining also the possible calibration methods.

1.2 Empirical properties of financial data

Financial time series have common characteristics that can be traced back to
the following list of ”stylized facts”. This expression indicates a collection of
empirical observations, and inferences drawn from these observations, which
seem to apply to most daily time series of changes in the risk factor, such
as logarithmic returns of shares, indices, foreign exchange transactions and
commodity prices. These observations are so deeply rooted in econometric
experience that they have been elevated to the state of ”facts”. They often
persist even for longer time intervals, such as weekly or monthly returns, or
for shorter time intervals, such as intra-daily returns.

3



4 CHAPTER 1. THEORETICAL NOTIONS

1.2.1 Stylized facts

Below a list of the ”Stylized Facts” that characterize the financial historical
series :
(1) historical yield series are not independent and identically distributed
(i.e.d), even if they show minimal serial correlation;
(2) absolute or square yield series show significant serial correlation;
(3) expected conditional yields are close to zero;
(4) volatility appears to vary over time;
(5) yield series are characterised by heavy or leptocytotic tails;
(6) extreme yield values appear in clusters.
Let X1, ..., Xn be the series of returns and it is assumed that the latter
have been calculated as a logarithmic price difference (St)t=0,1,...,n, so Xt =
ln(St/St−1) ,t = 1, ..., n.

Volatility Clustering

Empirical evidence concerning the first two stylized facts is shown in figure
1.1, where (a) it shows 2608 logarithmic returns for the DAX stock index over
a ten-year horizon, from January 2, 1985 to December 30, 1994, a period that
includes both the 1987 stock market crash and the reunification of Germany
in 1989. Figures (b) and (c) show simulated i.e.d. data series originating from
a Normal model and a t model of Student, respectively. In both cases the
parameters of the model have been set to adapt it to the real yield data using
the maximum likelihood method under the assumption that the data under
examination are independent and identically distributed. In the case of nor-
mal, this means that they were simply simulated i.e.d. data with distribution
N(µ, σ2) where

µ = X̄ = n−1
n∑
i=1

Xi

and

σ2 = n−1
n∑
i=1

(Xi − X̄)2

In the case of the Student t likelihood is maximised numerically and the
parameter of estimated degrees of freedom is v = 3, 8. It is evident from
the figures that the data simulated by a normal distribution are clearly very



1.2. EMPIRICAL PROPERTIES OF FINANCIAL DATA 5

Figure 1.1: Real and simulated returns of the DAX stock index

different from the DAX yield and do not show the same range of extreme
events, while the t model of Student can generate extreme values comparable
to real data. A more accurate observation reveals that real returns show
a phenomenon known as ”volatility clustering”, which is not present in the
simulated series. The term ”Volatility clustering” indicates the tendency for
extreme yield values to be followed by other extreme values, although not
necessarily of the same sign.

Figure 1.2 presents the correlograms of the pure data and their absolute
values for all three previously presented cases, namely: real logarithmic yields
of the Dax index, simulated i.e.d. returns obtained using a Normal model in
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Figure 1.2: Autocorrelation’s functions

the first case and with a Student t model in the second. The correlogram
graphically shows estimates of serial correlation. Although there is little evi-
dence of serial correlation in the raw data for all three datasets, the absolute
values of the real financial data seem to demonstrate the presence of serial de-
pendence or ”volatility clustering”. Note that more than 5 % of the estimated
correlations are outside the dashed lines, indicating potential serial correla-
tion. This serial dependence in absolute returns should be equally evident in
squared yield values and seems to confirm the presence of volatility cluster-
ing. We conclude that, although there is no evidence against the hypothesis
of independence and identical distribution for truly i.e.d., there is strong evi-
dence against this hypothesis for the DAX yield data examined. Moreover, if
there are serial dependencies in financial performance data, then the question
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arises: to what extent can this dependence be used to make predictions about
the future? This is the argument of the third and fourth stylized facts. It is
very difficult to predict performance in the subsequent period based solely on
historical data. This difficulty in predicting future returns is part of the evi-
dence of the well-known assumption of efficient financial markets that prices
react quickly to reflect all available market information. In empirical terms
the lack of predictability of returns is shown by the lack of a serial correlation
in the historical series of raw or pure returns. For some data samples it is
sometimes possible to observe evidence of correlation to the first lag. A min-
imal positive correlation to the first lag might suggest that there is a clear
tendency for a yield with a particular sign, positive or negative, to be followed
in the following period by a yield with the same sign. However, this does not
appear in the DAX index data examined, which suggests that our best esti-
mate for tomorrow’s returns based on observations available to date is zero.
Volatility is often formally modelled as the conditional standard deviation of
financial returns calculated on historical data, and although the conditional
expected values are consistently close to zero. Volatility clustering suggests
that conditional standard deviations are constantly changing in a partially
predictable way. If we know that yields have been very large in recent days,
because of the excitement of the market, then we have reason to believe that
the distribution from which tomorrow’s yield is calculated should have great
variance.

Leptocurtic Distribution

Normal distribution has frequently been shown to be a bad model for daily,
weekly and even monthly yields. This statement can be confirmed by using
several well-known normality tests, including the Q-Q plot, performed with a
normal distribution, as well as a number of formal numerical tests. The Q-Q
plot, where the two Q’s in the name stand for quantile, is a standard visual
tool that shows the relationship between the empirical quantiles of data and
the theoretical quantiles of a reference distribution. A lack of linearity in the
Q-Q plot is interpreted as evidence against the assumed reference distribu-
tion. The common numerical tests we have mentioned include those of Jarque
and Bera, Anderson and Darling, Shapiro and Wilk, and D’Agostino. Histor-
ically, following the empirical analysis resulting from the application of the
tests listed above, it was noted that daily financial returns showed a higher
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curtosis than would have been consistent with a normal distribution hypoth-
esis, The distribution of such data has been termed leptocurtic, which means
that it proves to be narrower than the normal distribution in the center, but
has longer and heavier tails than the latter.Further empirical analyses often
suggest that the distribution of daily, weekly, etc financial returns.. have tails
that decay slowly according to a power law, unlike the faster exponential de-
cay of the tails of a normal distribution. This means that we tend to see far
more extreme values than would be expected in that dataset.

1.3 Why estimate rare events?

In recent decades, empirical evidence has shown that currency crises, stock
market collapses and bank failures are not so rare globally. For traditional
models of risk measurement it has become of fundamental importance to be
able to take into account also these so-called ”extreme” phenomena, and as
such they fall beyond the normal range of available observations. The Extreme
Values Theory (EVT) offers a solid theoretical foundation to build quantita-
tive models suitable to describe ”extreme” financial events. For international
financial supervisory authorities, as well as for risk managers of financial in-
stitutions, it is essential to be able to rely on estimation models capable of
considering the impact on the value of the portfolios of catastrophic events.
That is, events that occur with very low probability but the effect of which
can be particularly severe and therefore catastrophic for financial portfolios.
Events with such characteristics can occur in many real financial situations,
for example:

�in market risk management, where the daily determination of the Value
at Risk (VarR) of trading book losses due to adverse market movements is
addressed;

�credit and operational risk management, where the objective is to de-
termine the capital requirement to protect losses arising from deterioration
in the credit quality and default of the portfolio assets or from unforeseen
operational problems;

�in insurance risk management. A typical problem in this area is the as-
sessment of the premium required for products that offer protection against
catastrophic losses such as excess-of-loss reinsurance deals concluded with
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primary insurers.

So whenever it is of interest to study the tail of the distribution of returns or
losses of a portfolio of financial assets , for the management of market, credit,
operational and insurance risks, the extreme values theory (EVT) is a valuable
tool for the correct estimation of risk as theoretically superior to traditional
methodologies. The latter inevitably end up by dangerously underestimating
the risk of tail, that is, the risk associated with extreme but not so unlikely
events, as assumed by the normal distribution hypothesis. In such a context,
the extreme values theory makes a valuable contribution to the prediction of
the dimension by which a rare event occurs. Such theory allows us to obtain
an optimal estimate of the tail using a generalized distribution even when the
scarce historical data available do not allow to make hypotheses on the form
of the underlying distribution.

1.4 The Extreme Values Theory (EVT)

The extreme values theory is a branch of probability that has given many im-
portant results by describing the behavior of maximum and minimum samples
, statistics of higher order , such as the k-th major value in a sample, and
sample values exceeding high thresholds. In this case the interest in this the-
ory is focused on the application of its results to develop models that best
approximate the extreme behaviors of financial risk factors. We chose to focus
on the two main types of model for extreme values:

�The most traditional models are the Block Maxima Models: they are
models suitable for the largest observations collected from large samples of
independent and identically distributed observations.

�A more modern and powerful group of models are those that measure
threshold exceedances : such models are suitable for all large observations
exceeding a certain high level. They are generally considered to be the most
useful for practical applications ,this is due to their more efficient use of
data on extreme results. Over-threshold models can be incorporated into an
elegant process framework that directs simultaneously their occurrence over
time and the magnitude of losses exceeding the threshold. This is the so-
called peak over-threshold model (POT Model). The POT model serves as
a starting point for developing more dynamic descriptions of the occurrence
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and magnitude of extreme values.

1.4.1 Maxima: Generalized distribution of extreme values

It is considered a sequence of independent and identically distributed random
variables (Xi)i∈N which represent financial losses. They may have different
interpretations, such as operating losses, insurance losses, and losses in a
credit portfolio over fixed time intervals. The assumption of independence was
later set aside and the random variables are considered to form a stationary
historical series of dependent losses. They could be (negative) profits from a
single security investment , an index or an investment portfolio. The role of
the generalized extreme value distribution (GEV) in the theory of extreme
values is similar to that of the Normal distribution in the central limit theory
for sums of random variables. Assuming that the random variables X1, X2 . . .

are independent and identically distributed with a finite variance and writing

Sn = X1 +X2 + · · ·+Xn (1.1)

as the sum of the first n variables, the standard version of the Central
Limit Theorem (CLT) states that the properly normalized sum (Sn − an)/bn
converges in the distribution to the distribution of a standard normal for n
going to infinity. Proper normalization uses sequences of normalized constants
(an) e (bn) defined as follows:

(an) = nE(X1) (1.2)

and

(bn) =
√
nvar(X1) (1.3)

In arithmetic terms we have:

lim
x→∞

P

(
Sn − an
bn

≤ x

)
= Φ(x) (1.4)

with x ∈ R, where Φ is the CDF of a standard normal distribution.
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The Classical extreme values theory concerns limited distributions for nor-
malized maxima. Here we denote the maximum value of n random variables
i.e.d. X1, X2, ..., Xn as:

Mn = max(X1, ..., Xn) (1.5)

Definition : Generalized distribution of extreme values

The definition of the generalized extreme value distribution is given by

Hξ(x) =

{
exp(−(1 + ξx)−1/ξ), ξ ̸= 0,

exp(−e−x), ξ = 0,
(1.6)

where 1 + ξn > 0. A triparametric family is obtained by defining

Hξ,µ,σ = Hξ(x−µ)/σ (1.7)

with the location parameter µ ∈ R and the scale parameter σ > 0 . The
parameter ξ is known as the shape parameter of the generalized distribution
of extreme values (GEV). The distribution of extreme values is said to be
generalized because the parametric form includes three types of distribution
that are known with different names depending on the value assumed by ξ:
when ξ > 0 the distribuzioen is known as Fréchet’s distribution; when ξ = 0 it
is called the Gumbel’s distribution; finally when ξ < 0 is called the Weibull’s
distribution. We also note that for a fixed value of x we have that the

lim
ξ→0

Hξ(x) = H0(x) (1.8)

For this reason, the parameterization present in the definition of the distri-
bution of extreme values presented above is continuous in ξ, which facilitates
the use of this distribution in statistical modelling.

The figure 1.3 shows the distribution function and the density of the gener-
alized distribution of extreme values (GEV) for the three cases ξ = 0, 5; ξ = 0,
ξ = −0, 5, which correspond respectively to the Fréchet, Gumbel and Weibull
distributions. It is noted that the Weibull distribution is a distribution with
”short tail” and limited right field of existence. The distributions of Gumbel
and Fréchet have an unlimited field of existence on the right, but the decay
of the tail of Fréchet’s distribution is much slower than that of Gumbel’s
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Figure 1.3: Distribution Function and Density of the GEV : Fréchet distribution with
ξ = 0, 5 represented by the dotted line; Gumbel distribution with ξ = 0 represented by
the solid line; Weibull distribution with ξ = −0, 5 represented by the dashed line (Mc-
Neil,Frey,Embrechts(2015))

distribution. Suppose that the maxima Mn of independent and identically
distributed random variables converges for n→∞ under appropriate stan-
dardisation. Recalling that P ((Mn ≤ x) = F n(x) it can be observed that this
convergence means that there are sequences of real constants (dn) and (cn),
where cn > 0 for each n, therefore:

lim
n→∞

P ((Mn − dn)/cn ≤ x) = lim
n→∞

F n(cnx+ dn) = H(x) (1.9)

for certain nondegenerative H(x) distribution functions. The role of gener-
alized extreme-value distribution in the study of maxima is formalized by the
following definition and theorem:

Definizione : Maximum domain of attraction

If limn→∞ P ((Mn − dn)/cn ≤ x) = limn→∞ F
n(cnx + dn) = H(x) for certain

non degenerative distribution functions of H, then it is said that F is in the
maximum attraction domain of H , so you can write that F ∈MDA(H).



1.4. THE EXTREME VALUES THEORY (EVT) 13

Theorem: Fisher-Tippet, Gnedenko

If F ∈MDA(H) for certain nondegenerative distribution functions of H , so
H must necessarily be a distribution of the type Hξ , that is a generalized
extreme value distribution (GEV).

Observations:

1) If a convergence of normalized maxima occurs, the type of limit distribu-
tion is uniquely determined, even if the position and scale parameters µ and
σ of the limit depend on the exact normalization sequences chosen; this is
guaranteed by the so-called convergence to the type theorem. It is always
possible to choose these sequences so that the limit appears in the standard
form Hξ.
2)Nondegenerative distribution function means a limit distribution that is not
concentrated on a single point.

1.4.2 Maximum Domain of Attraction

For most applications it is sufficient to note that essentially all common
continuous distributions inherent in the statistical or actuarial sciences are
MDA(Hξ) for certain values of ξ. In this section we consider the problem of
the underlying distributions that limit the maxima.

The Fréchet case:

Distributions leading to the limit of Fréchet Hξ(x) for ξ > 0 have a particu-
larly elegant characterization involving slowly or regularly different functions.

Definition: Slowly variable and regularly different functions

(i) A positive and ”Lebesgue-measurable” function L on (0,∞) is slowly vari-
able in ∞ , that is L ∈ R0 if:

lim
x→∞

L(tx)

L(x)
= 1 t > 0, (1.10)

(ii)A positive and ”Lebesgue-measurable” function h on (0,∞) is regularly
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variable in ∞ with the index ρ ∈ R if :

lim
x→∞

L(tx)

L(x)
= tρ t > 0, (1.11)

Slowly variable functions are functions that change relatively slowly with
respect to power functions for large x values , an example is the logarithm:
L(x) = ln(x). Regularly variable functions are functions that can be rep-
resented by power functions multiplied by slowly variable functions, as an
example: h(x) = xpL(x) for some L ∈ R0

Theorem: Fréchet MDA, Gnedenko

For ξ > 0 ,

F ∈MDA(Hξ)⇐⇒ F̄ (x) = x1/ξL(x) (1.12)

for some L ∈ R0, where F̄ (x) is the survival function.

This means that the distributions that give rise to the Fréchet case are
distributions with tails that are regularly variable functions with a negative
variation index. Their tails essentially decay as a function of power and
decay speed α = 1/ξ is often referred to as the distribution tail index. These
distributions are the most studied distributions in extreme value theory and
are of particular interest to financial applications because they are heavy
distributions with infinite moments higher. If X is a non-negative random
variable whose distribution function F is an element of MDA(Hξ) for ξ > 0,
then it is demonstrable that E(Xk) =∞ for k > 1/ξ. If, for some small ϵ > 0,
the distribution is inMDA(H(1/2)+ϵ), it is an infinite variance distribution and
if the distribution is inMDA(H(1/4)+ϵ), then it is a distribution with infinitely
fourth moment.

The Gumbel case:

The characterization of distributions in this class is more complicated than the
Fréchet class. Distributions in this class have tails that have essentially expo-
nential decay. A positive random variable with element distribution function
of MDA(H0) with finite moments of any positive order, that is E(Xk) <∞
for every k > 0 . However, there is great variety in distribution tails in
this class, for example, both normal and log-normal distributions belong to
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the Gumbel class. The normal distribution has a thin tail , while the log-
normal distribution has much heavier tails and it is necessary to collect a
lot of data from the lognormal distribution before being able to distinguish
the behavior of its tail from that of a distribution belonging to the Fréchet
class. In financial modeling it is often mistakenly assumed that the only in-
teresting models for financial returns are the powerful tail distributions of
the Fréchet class. The Gumbel class is also interesting because it contains
many distributions with tails much heavier than normal, although these are
not regularly variable power tails. Examples are generalized hyperbolic and
hyperbolic distributions (with the exception of the particular boundary case
which is Student’s t). Other distributions with MDA(H0) elements include
gamma disributions, chi-square, standard Weibull ( to be distinguished from
the Weibull special case of the GEV distribution ), the Benktander distribu-
tions type I and II (which are known distributions for actuarial losses) and
the Gumbel distribution itself.

The Weibull case:

This is perhaps the least important case for financial modelling, at least in
terms of market risk, as distributions in this class all have well-defined right
thresholds. While all potential financial and insurance losses are, in prac-
tice, limited, we will continue to foster models that have infinite support for
modeling potential losses. An exception might be in credit risk modeling,
where it is useful to study probability distributions over the [0, 1] range. One
characterization of the Weibull class is as follows.

Theorem: Weibull MDA, Gnedenko

For ξ < 0 , F ∈ MDA(Hξ) ⇐⇒ xF < ∞ and F̄ (xF − x−1) = x1/ξL(x) for
each L ∈ R0.

1.4.3 Maxima of strictly stationary time series

The standard theory dealt with in the previous section concerns the maxima
of the sequences of independent and identically distributed random variables.
Bearing in mind the financial time series and their characteristics, looking
briefly at the theory for calculating the maxima of strictly stationary time
series, we note that the same types of limit distributions can be applied.
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In this section we denote with (Xi)i∈N a strictly stationary time series
with stationary distribution F and we denote with (X̌i)i∈Z the associated
independent and identically distributed process, that is a process with white
noise with the same distribution function F . Set Mn = max(X1, ..., Xn)
and M̌n = max(X̌1, ..., X̌n) indicate respectively the maxima of the original
historical series and of that i.e.d.

For many processes (Xi)i∈N it can be shown that there is a real number θ
in a range of (0, 1] such that:

lim
n→∞

P (
M̌n − dn

cn
≤ x) = H(x) (1.13)

for a value of H(x) limited and not degenerative if and only if

lim
n→∞

P (
Mn − dn

cn
≤ x) = Hθ(x) (1.14)

For such processes this θ value is known as the ”extreme index” of the process,
not to be confused with the tail index of distributions in the Fréchet class.
A formal definition is more technical, but the basic ideas behind (1.13) and
(1.14) are easy to explain. For processes with an extreme index, the normal-
ized maxima converge in distribution as long as the maxima of the associated
i.i.d. processes converge in distribution i.e., provided that the underlying dis-
tribution F is in MDA(Hξ) for some ξ. Moreover, since Hθ

ξ (x) can be easily
verified as a distribution of the same type of Hξ(x), the limit distribution
of the normalized maxima of dependent series is an GEV distribution with
exactly the same ξ parameter as the limit for independent and identically
distributed data; only the position and scale of the distribution can change.
Writing u = cnx + dn we observe that, for n quite large ,(1.13) and (1.14)
imply that:

P (Mn ≤ u) ≈ P θ(M̌n ≤ u) = F nθ(u) (1.15)

so for large values of u the probability distribution of the maximum value
of n observations from the historical series with extreme index θ can be ap-
proximated by the distribution of the maximum of nθ < n observations of
the associated i.i.d. series. Somehow, nθ can be seen as an approximation
of the number of independent cluster observations in n observations and θ is
often interpreted as the reciprocal of the mean cluster size. Not all strictly
stationary processes have an extreme index but, for the types of time series
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processes that interest us for financial modeling, there is generally an extreme
index. Basically, we just have to distinguish between cases where θ = 1 and
cases where θ < 1: for the first case there is no high-level cluster trend and
the maxima calculated on large historical series samples behave exactly like
the maxima calculated on samples of similar amplitude i.i.d. For the second
case, we need to be aware of the tendency of extreme values to form clusters.
� The rigorous white noise processes, independent and identically distributed
random variables have extreme index θ = 1 ;
� ARMA processes with white noise Gaussian have θ = 1. However, if the
distribution function has values in MDA(Hξ) for ξ > 0, then θ < 1;
� ARCH and GARCH processes have θ < 1 . The latter is particularly
relevant for our financial applications, as the ARCH and GARCH processes
provide good approximation models for many time series of financial returns.

1.4.4 The method ”Block Maxima”

Construction of a generalized extreme distribution: Suppose you have
data from the F distribution of an unknown underlying, which we assume to
be in the attraction domain of a distribution of extreme values Hξ for some
ξ. If the data are realizations of i.i.d. variables, or variables of a process
with an extreme index like GARCH, the implication of the theory is that
the true distribution of the n-th maximum block Mn can be approximated
to fairly large n values from a three-parameter GEV distribution Hξ,µ,σ . We
use this idea by applying the distribution GEV Hξ,µ,σ to the data of the nth
block Mn. Of course we need repeated observations of the nth maximum
block, and suppose the data can be divided into m blocks of size n. This
method makes more sense when there are natural ways to block data. In fact,
it originates from hydrology, where, for example, the daily measurement of
water levels can be divided in annual blocks and annual maxima are recorded.
Similarly, we will consider financial applications where daily returns data
are divided into annual or semi-annual blocks and the maximum daily losses
included in those blocks are analysed. We denote the maximum block of the
j-th block with Mnj, so our data is Mn1, ...,Mnm. The generalized extreme
value distribution (GEV) can be applied using various methods, including the
maximum likelihood. To apply this methodology it is necessary to assume
that the size of the nth block is large enough so that, regardless of whether the
underlying data are dependent or not, observations of block maxima can be
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considered independent. An alternative is the method of weighted moments
of probability.

In this case writing hξ,µ,σ for the density of the GEV distribution the ”log-
likelihood” is easily calculated as follows:

l(ξ, µ, σ;Mn1, ...,Mnm) =
m∑
i=1

lnhξ,µ,σ(Mni) =

−mlnσ − (1 +
1

ξ
)

m∑
i=1

ln(1 + ξ
Mni − µ

σ
)−

m∑
i=1

(1 + ξ
Mni − µ

σ
)−1/ξ

which must be maximized based on parameter constraints: σ > 0 and
1+ ξ(Mni− µ)/σ > 0 , ∀i. Although this is a problem of irregular likelihood,
due to the dependence of the parameter space on the data values, the coher-
ence and asymptotic efficiency of the MLE results can be established for the
case where ξ > −1/2 using the results in Smith (1985). In determining the
number and size of the blocks (m and n, respectively), there is necessarily a
compromise: on the one hand, a large value of n leads to a higher accurate
approximation of block distribution of maxima via a GEV distribution and
at low polarization in parameter estimates. A large value of m gives more
data in blocks of maxima for ML estimation and leads to low variance in
parameter estimates. Also note that, in the case of dependent data, it may
be advisable to use larger blocks than in the case where the data are i.i.d.;
the dependency generally has the effect of slowing convergence to the GEV
distribution , since the actual sample size is nθ, which is less than n.

Performance levels and stress losses: The GEV model can be used to
analyze two related quantities that describe the presence of stress events: on
the one hand we can estimate the size of a stress event that happens with a
given frequency, the so called problem of performance levels. On the other
hand, we can estimate the frequency of a stress event that has a given size,
the so called return period problem.

Definition: level of performance:

H denotes the distribution function of the true distribution of the n-th block
maximum, the k performance level of the n-th block maximum is rn,k =
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q1− 1
k
(H) ; that is the quantile 1− 1

k of H.

The performance level of the k element of the n-th block can be interpreted
roughly as that level being exceeded on mean once every k n-th blocks. Using
our model we would estimate a return level as follows:

r̂n,k = H−1
ξ̂,µ̂,σ̂

(1− 1

k
) = µ̂+

σ̂

ξ̂
((−ln(1− 1

k
))−ξ̂ − 1) (1.16)

Definition: return period:

Let H be the distribution function of the real distribution of the n-th block of
maximum. The event return period Mn > u is kn,u = 1/H̄(u). Note that the
kn,u return period is defined in such a way that the return level of the kn,u n-th
block is u. In other words, in the kn,u of the n-block you would expect to see a
single block where the u level was passed. If there was a strong tendency for
extreme values to cluster, you would expect to have more values that exceed
that level within that block. Assuming that H is the distribution function of a
generalized distribution of extreme values and using the parameterized model
you can estimate the return period with k̂n,u = 1/H̄ξ̂,µ̂,σ̂(u). Note that both

the parameters k̂n,u and r̂n,u are simple features of the estimated parameters
of the GEV distribution. In addition to calculating point estimates for these
quantities, confidence intervals reflecting the error in parameter estimates
should be established of the GEV distribution. A good method is to base these
confidence intervals on the likelihood ratio. To do this, the GEV distribution
was reparametrized in terms of the amount of interest.

1.4.5 Excess of threshold

The block of maxima method described in section 1.4.4 has as its main defect
the waste of data: in order to carry out such analyses only the maximum losses
in big blocks are preserved. For this reason it has been almost completely
replaced in practice by methods based on threshold exceedances, where all
extremely significant data exceeding a certain level are used.

Generalised distribution of Pareto

The main distribution model for exceedances from thresholds is the Gener-
alised Pareto Distribution (GPD).
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Definition: The distribution function of the Generalized Pareto Distribution
(GPD) is given by

Gξ,β(x) =

{
1− (1 + ξx/β)−1/ξ), ξ ̸= 0,

1− exp(−x/β), ξ = 0,
(1.17)

where β > 0, and x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ when ξ < 0. The
parameters ξ and β refer, respectively, to the parameters of form and scale.

Like the GEV distribution, the GPD is generalized in the sense that it
contains a number of special cases: when ξ > 0 the distribution function Gξ,β

is that of an ordinary distribution of Pareto with α = 1/ξ and κ = β/ξ;
when ξ = 0 we have an exponential distribution; when ξ < 0 we have a
Pareto distribution of type II with short tail. Also, as in the case of the GEV
distribution, fixed the x the parametric form is continuous in ξ, so

limξ→0
Gξ,β(x) = G0,β(x)

Figure 1.4: Distribution function and Pareto generalized distribution density (GPD)

The distribution function and the Pareto generalized distribution density
(GPD) for various values of ξ and β = 1 are shown in the figure: specifically on
the left is indicated with the (a) the GPD distribution function in three cases:
the solid line corresponds to the case where xi = 0 (exponential distribution);
the dotted line corresponds to the case where xi = 0, 5 (Pareto distribution);
and the dashed line to the case where xi = −0, 5 (Pareto distribution of the
second type). The scale parameter β is equal to 1 in all cases. While right
(b) indicates the corresponding density. In terms of attraction domain we
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have Gξ,β ∈ MDA(Hξ) for every ξ ∈ ℜ . Note that for ξ > 0 and ξ < 0,
this statement easily follows the characterizations in the theorems of Fréchet
and Weibull. In the case of heavy tails, ξ > 0, it can be easy to verify that
E(Xk) = ∞ for k ≥ 1/ξ. The mean of the GPD is defined by placing ξ < 1
and is:

E(X) = β/(1− ξ) (1.18)

The role of GPD in extreme value theory is like a natural model for distri-
butions that exceed a given threshold. This concept is defined below along
with the mean function of excesses which will also play an important role in
theory.

Definition: distribution of exceedances over the u threshold

Let X be a random variable with a distribution function F .

The excess distribution over the u threshold has the following distribution
function:

Fu(x) = P (X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u)
(1.19)

for 0 ≤ x < xF − u , where xF ≤ ∞ is the last point right of F .

Definition:mean function of excesses

The mean function of the excesses of a random variable X with finite mean
is given by

e(u) = E(X − u|X > u) (1.20)

The Fu surplus distribution function describes the distribution of losses that
exceed the u threshold. The mean excess function e(u) expresses the mean of
Fu as a function of u. In survival analysis the surplus distribution function is
more commonly known as the residual life distribution function, it expresses
the probability that, for example, an electrical component that worked for u
unit of time breaks in the period of time (u, u + x]. The mean function of
excesses is known as the mean residual life function and indicates the expected
residual life of components with different ages.
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Theorem:Pickands-Balkema-de Haan

You can find a positive and measurable function β(u) such that

lim
u→xF

sup
0≤x<xF−u

|Fu(x)−Gξ,β(u)(x)| = 0 (1.21)

if and only if F ∈MDA(Hξ) , ξ ∈ ℜ

Thus distributions for which normalized maxima converge to a GEV dis-
tribution constitute a series of distributions for which the distribution of ex-
ceedances converges to the generalized distribution of Pareto (GPD) when
the threshold is raised. In addition, the form parameter of the limiting GPD
for excesses is the same as the limiting GEV distribution form parameter for
maxima. We have already stated in the previous section that essentially all
the continuous distributions of frequently used statistics belong toMDA(Hξ)
for some values of ξ, hence the Pickands-theoremBalkema-de Haan turns out
to be a widespread finding that essentially states that GPD is the canonical
distribution for modeling losses in excess of high thresholds.

Modelling of excess losses

We use the Pickands-Balkema-de Haan theorem assuming that we are dealing
with a distribution of losses F ∈MDA(Hξ) so that, for some high threshold
u properly chosen, we can model Fu from a generalized distribution of Pareto.
We formalize this with the following assumption.

Assumption 1.1: Let F be a distribution of loss with last right point xF
and suppose that for some high thresholds u we have Fu(x) = Gξ,β(x) for 0 ≤
x < xF − u and some ξ ∈ ℜ and β > 0 . This is clearly an idealization, as in
practice the excess distribution is generally not exactly GPD, but Assumption
1.1 is used to perform the calculations in the following sections.

The methodology. Given the following losses X1, ..., Xn from F , a random
number Nu will exceed the threshold set u. It is useful to rewrite this data as
follows X̌1, . . . , X̌Nu

for each of these exceedances the amount of Yj = X̌j−u
of losses exceeding the threshold is calculated. The goal is to estimate the
parameters of a GPD model by applying this distribution to the Nu excess
losses. There are several ways to adapt the GPD, such as the use of maxi-
mum likelihood (ML) or probability-weighted moments (PWM). The previous
method is more commonly used and is easy to implement if you assume that
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the exceedances are independent, since the total density function will then be
given by a marginal density product of the GPD. By typing gξ,β for the GPD
density, the log-likelihood can be easily calculated as follows:

lnL(ξ, β;Y1, ..., YNu
) =

Nu∑
j=1

lngξ,β(Yj) = −Nulnβ − (1 +
1

ξ
)

Nu∑
j=1

ln(1 + ξ
Yj
β
)

which shall be maximised according to the following parameter constraints:
β > 0 and 1+ ξYj/β > 0 for each j. Solving the maximization issue produces
a model GPD Gξ̂,β̂ for distributing the surplus Fu.

Excesses from the highest thresholds: From the model adapted to the dis-
tribution of exceedances exceeding the u threshold, you can easily deduce a
model for the distribution of exceedances exceeding any threshold. You have,
therefore, the following lemma:

Lemma(1.2):

Under assumption 1.1 we have that Fv(x) = Gξ,β+ξ(v−u)(x)for each threshold
v ≥ u Proof: We use the (1.21) and the GPD distribution function to deduce
that

F̄v(x) =
F̄ (v + x)

F̄ (v)
=
F̄ (u+ (x+ v − u))

F̄ (u)

F̄ (u)

F̄ (u+ (v − u))
=
F̄u(x+ v − u)
F̄u(v − u)

=
Ḡξ,β(x+v−u)

Ḡξ,β(v−u)
= Ḡξ,β+ξ(v−u)(x)

So the excess distribution on the higher thresholds remains a GPD with
the same parameter ξ, but with a scale parameter that grows linearly with
the v threshold. Provided that ξ < 1, the mean function of excesses is given
by:

e(v) =
β + ξ(v − u)

1− ξ
=

ξv

1− ξ
+
β − ξu
1− ξ

(1.22)

where u ≤ v <∞ if 0 ≤ ξ < 1 and u ≤ v ≤ u− β/ξ if ξ < 0

The linearity of the mean surplus function (1.22) in v is commonly used as a
diagnostic tool for data accepting a GPD model for distributing exceedances.
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It forms the basis for the following simple graphical method for choosing an
appropriate threshold.

Plot of the mean sample surplus:

For positive value loss data X1, ..., Xn is defined as the function of the mean
of sample exceedances so that it is an empirical estimator of the function of
the mean of excesses. The estimator is given by:

en(v) =

∑n
i=1(Xi − v)I{Xi > v}∑n

i=1 I{Xi > v}
(1.23)

To study the mean function of exceedances is generally constructed the
mean plot of exceedances

{(Xi,n, en(Xi,n)) : 2 ≤ i ≤ n} , where Xi,n denotes the statistics of i-th
order. If the data supports a GPD model on a high threshold, then (1.23)
suggests that this plot should become increasingly ”linear” for values higher
than v. A linear upward trend indicates a GPD model with a positive form
parameter of ξ; a horizontal trend plot indicates a GPD with a shape param-
eter of approximately zero, or, in other words, an exponential distribution of
exceedances; a linear downward trend indicates a GPD with negative form
parameter.

These are the ideal situations but in practice you need some experience to
read the plots of the mean surplus. Even for data which are in themselves
distributed according to a generalized Pareto model, the plot of the sample
mean of excesses is rarely perfectly linear, particularly for the right end of the
distribution, where we are measuring a small number of large exceedances.
In fact, we often do not consider the few final points, as they can distort the
graphic representation a lot. If we have evidence that the mean surplus plot
becomes linear then we could choose as our threshold u a value towards the
beginning of the linear section of the plot.

Tail modelling and tail risk measures

In this section we will explain how the GPD model for excess losses is used
to estimate the tail of the underlying F loss distribution and the associated
risk measures. To make the necessary theoretical calculations, let us take
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Assumption 1.1 again.
tail probability and risk measures: First we observe that under the assump-
tion 1.1 we have for x ≥ u,

F̄ (x) = P (X > u)P (X > x|X > u) = F̄ (u)P (X − u > x− u|X > u)

= F̄ (u)F̄u(x− u) = F̄ (u)(1 + ξ
x− u
β

)−1/ξ (1.24)

that if F (u) is known it gives us a formula for tail probabilities. This for-
mula can be reversed to obtain a high quantile of the underlying distribution,
which is interpreted as the VaR. For α ≥ F (u) you have that the VaR is equal
to:

V aRα = qα(F ) = u+
β

ξ
((
1− α
F̄ (u)

)−ξ − 1) (1.25)

It’s good at this point, for a better understanding, to give a definition of
the Expected Shortfall:

Expected Shortfall: For a L loss with E(|L|) <∞ and distribution function
FL, the ES at an alpha confidence level α ∈ (0, 1) is defined as:

ESα =
1

1− α

∫ 1

α

qu(FL)du (1.26)

where qu(FL) = F←−L (u) is the quantile function of FL. The condition
E(|L|) < ∞ ensures that the integral in (1.26) is well defined. From the
definition, the Expected Shortfall is linked to the VaR by the following ex-
pression:

ESα =
1

1− α

∫ 1

α

V aRu(L)du (1.27)

Returning to the previous treatment, after giving the definition of Expected
Shortfall, it is possible to say that assuming that ξ < 1 the associated Ex-
pected Shortfall can be easily calculated from (1.26) and (1.27). You get:
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ESα =
1

1− α

∫ 1

α

qx(F )dx =
V aRα

1− ξ
+
β − ξu
1− ξ

(1.28)

It is important to note that assumption 1.1 and Lemma 1.2 imply that losses
in excess respect to the V aRα have a GPD distribution that meets FV aRα

=
Gξ,β+ξ(V aRα−u). The ES estimator in (1.1) can also be obtained by adding the
mean of this distribution to the V aRα, i.e., ESα = V aRα + e(V aRα), where
e(V aRα) is given by (1.22). It is interesting to examine how the ratio of the
two risk measures behaves for the large values of the α quantile. It is easily
calculated from (1.25) and (1.27) that:

limα−→1
ESα
V aRα

=

{
(1− ξ)−1, 0 ≤ ξ < 1,

1, ξ < 0,
(1.29)

so the ξ form parameter of the GPD actually determines the ratio when we
are far enough away from the tail values.

Estimation in practice: Note that under assumption 1.1, tail probabilities,
VaR, and Expected Shortfalls are all given by formulas such as g(ξ, β, F̄ (u)).
Assuming we have built a GPD model for excess losses above a u threshold,
we estimate these quantities first by replacing ξ and β in formulas (1.24) -
(1.28) with estimated values. Of course, we also need an estimate of F̄ (u) and
we use for this purpose the simple empirical estimator Nu/n . In doing this,
we implicitly assumed that there is a sufficient proportion of sample values
above the u threshold to estimate F̄ (u) reliably. However, we hope to get
more than an empirical method using some sort of extrapolation based on
the GPD model for the most extreme tail probabilities and for risk measures.
For the tail probabilities, proposed for the first time by Smith (1987), an
estimator of form is obtained:

F̂ (x) =
Nu

n
(1 + ξ̂

x− u
β̂

)−1/ξ̂ (1.30)

(where ξ̂, β̂ are the estimated values) that’s important to note is only valid
for x ≥ u. For α ≥ 1−Nu/n a similar estimate is obtained for V aRα and for
ESα from (1.26) and from (1.29). Of course we also want to get confidence
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intervals. If we used the likelihood approach to estimate ξ and β, then it
is quite easy to get confidence intervals for g(ξ, β,Nu/n) which account for
uncertainty in ξ and β (estimated) but overlook the uncertainty in Nu/n as
an estimate of F̄ (u).

1.5 The Copulas functions

Empirical evidence has shown the inadequacy of normal distribution to model
the actual distribution of returns on financial assets in particular on two
points:
1) empirical marginal distributions are asymmetric and with fat tails;
2)the assumption of normal multivariate distribution does not take into ac-
count the possibility of extreme joint movements of returns on portfolio fi-
nancial assets.

In other words, the real empirical dependency structure between financial
assets moves away from that described by the Gaussian distribution. The
copulas functions, used in the financial field, are a valuable tool to implement
in a more realistic way efficient algorithms for simulating the actual distri-
butions of financial asset returns. These mathematical functions are able to
model the dependency structure between the marginals regardless of the dis-
tributional form of the marginals themselves, appropriately describing how
the joint distribution is combined with its marginal distributions. Therefore,
the copula functions allow us to overcome the problem of the multivariate
cumulative distribution function (CDF) and the estimation of its parameters,
dividing the problem into two phases:
1) the determination of the marginal CDF, F1, ..., Fn, describing the proba-
bilistic structure of the individual risk factors, and the subsequent estimation
of the relevant parameters from the available data, using common statistical
methods suitable for this purpose;
2) the determination of the dependency structure between the random vari-
ables X1, ..., Xn, through the use of a suitable copulation function for this
purpose.

The goodness of the choice both of the analytical representations of the
marginal distributions and of the copula function that unites them must be
verified with techniques of ”backtesting”. In this way, it is possible to choose
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the analytical forms of the marginals and the copula function that best rep-
resent the empirical profit and loss distribution of the portfolio derived from
empirical real data. In conclusion, it is possible to construct a multivariate
distribution with different marginals and with a dependency structure repre-
sented by an appropriate copula function. The copula function is therefore a
mathematical function that combines marginal probabilities in a joint distri-
bution (Joe,1997; Nelsen,1999). Through the copula functions it is possible
to separate the dependency and the behaviour of the marginals relative to
the assets that compose the financial portfolio. It is therefore evident that
the phase of selecting and calibrating the appropriate function copula from
real financial data is a crucial aspect of the problem.

1.5.1 Definition and mathematical properties of the copula func-
tion

Underlining the potential of the analytical instrument of the copula function,
its analytical properties are briefly described here. A n-dimensional copula
function, C ,is a multivariate cumulative distribution function (CDF) with
uniformly distributed margins in the [0.1] range that satisfies the following
properties (Sklar, 1959):
i) C : [0, 1]n −→ [0, 1];
ii) C is limited and not decreasing;
iii)C has marginal Ci such that Ci(u) = C(1, ..., 1, u, 1, ..., 1).

It is evident from the above definition that if F1, . . . , Fn are functions of uni-
variate distributions, then C(F1(x1), . . . , C(Fn(xn) is a multivariate CDF with
marginals F1, . . . , Fn since Ui = Fi(Xi), with i = 1, . . . , n is a uniform random
variable U(0, 1). Thus, copulas functions can be used to combine marginal
distributions into a multivariate distribution, proving to be a valuable tool
for building and simulating multivariate distributions. Copulas functions are
also unique, meaning that for a given multivariate distribution with continu-
ous marginal distributions there is only one copula function representing it.
The following theorem is known as Sklar’s theorem and is in the financial
field the most important theorem on copulas functions as used in all practical
applications.
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The Sklar’s Theorem:

If F is an n-dimensional CDF with continuous margins, F1, ..., Fn , then F
has the following unique copulas representation:

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)) (1.31)

From the Sklar theorem (in eq 1.31) it descends that , for continuous mul-
tivariate distribution functions, the univariate margins and the multivariate
dependence structure can be separated, where the latter can be represented by
an appropriate copula function. From Sklar’s theorem descends the following
Scaillet corollary (2004):

Scaillet’s Corollary:

If F is an n-dimensional CDF with continuous margins, F1, . . . , Fn and copula
C (which satisfies the equation 1.31). So for every u = (u1, . . . , un) in [0, 1]n:

C(u1, ..., un) = F (F−11 (u1), ..., F
−1
n (un)) (1.32)

where F−1i is the generalized inverse of Fi. The density of the F multivariate
CDF can be written as follows:

f(x1, ..., xn) = c(F1(x1), ..., Fn(xn))
n∏
i=1

fi(xi) (1.33)

In equation (1.31) c(F1(x1), ..., Fn(xn) and f(x1, ..., xn) are the density func-
tions of the copula and marginal respectively. From Scaillet’s corollary (2004)
it follows that the dependency structure built into the copula can be recovered
from knowledge of the joint distribution F and its marginal Fi. We conclude
this paragraph by presenting some simple examples of copulas functions. A
first example is the Gumbel copula function, expressed by the following equa-
tion:

CGu
β (u1, ..., un) = exp[(− log u1)

1/β + ...+ (− log un)
1/β]β (1.34)
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where 0 < β ≤ 1 is the parameter that expresses the dependence between
the marginal components; the case β = 1 describes the condition of inde-
pendence between random variables, while β −→ 0 gets perfect dependence.
Another very simple example is given by the copula of independent random
variables, which takes the following analytical form:

Cind(u1, ..., un) = u1 · ... · un (1.35)

A further example is the Farlie-Gumbel-Morgenstern copula (FGM), which,
in the bivariate case, is defined through the following analytical expression:

C(u1, u2) = u1u2[1 + α(1− u1)(1− u2)], −1 ≤ α ≤ 1 (1.36)

1.5.2 The elliptical copulas: the Gaussian copula and the Student
t copula

The class of elliptical distributions provides useful examples of multivariate
distributions as they share the same tractability properties as the normal
multivariate distribution and, at the same time, they allow to model multi-
variate extreme events and forms of dependence other than normal. Elliptical
copulas are simply the copulas of elliptical distributions. The simulation of
elliptical distributions is easy to perform. Thus, as a result of Sklar’s theorem,
the simulation of elliptical copulas is also simple. The copula of the normal
multivariate distribution is the normal or Gaussian copula. Thus, a random
vector X = (X1, ..., Xn) is normal multivariate if and only if:
i) univariate marginal distributions, F1, ..., Fn, are normal;
ii) the dependency structure between these marginals is described by a single
copula function, C (the normal copula), such that:

CGa
R (u1, ..., un) = ΦR(φ

−1(u1), ..., φ
−1(un)) (1.37)

where ΦR is the standard CDF multivariate with linear correlation matrix
R and ϕ−1 is the inverse of the normal CDF univariate standard. Normal
multivariate is traditionally adopted in risk management applications to sim-
ulate the distribution of the n risk factors that affect the value of the trading
portfolio (market risk) and the n systematic factors that drive the value of
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a counterparty’s credit quality index (credit risk). For n = 2, the equation
(1.37) can be rewritten as follows:

CGa
R (u, v) =

∫ ϕ−1(u)

−∞

∫ ϕ−1(v)

−∞

1

2π(1−R2
12)

1/2
exp{−s

2 − 2R12st+ t2

2(1−R2
12)

}dsdt

(1.38)
where R12 is, simply, the linear correlation coefficient of the two random vari-
ables. The normal bivariate copula, (1.38), is not endowed with dependence
in the upper tail if R12 < 1 . Also, since the elliptical distributions are sym-
metrical, the dependence coefficients of the upper and lower tail are equal.
Thus, normal copulas are not endowed with dependence of the lower tail. The
Student’s t copula is the copula of the multivariate Student t distribution. As-
suming that X is a vector with standardized n-variate Student t distribution

with v degrees of freedom and with covariance matrix
v

v − 2
R (for v > 2), X

can be represented as follows:

X =

√
v√
S
Y (1.39)

In the (1.39) S ∼ χ2
v is independent from the random vector Y ∼ Nn(0, R).

The copula of the vector Y is the copula Student t with v degrees of freedom
that can be represented analytically as follows:

Ct
v,R(u) = tnv,R(t

−1
v (u1), ..., t

−1
v (un)) (1.40)

where

Ri,j = Σij/
√
ΣiiΣjj per i, j ∈ {1, ..., n} ; tnv,R is the multivariate CDF of the

random vector
√
vY/
√
S , where the random variable S ∼ χ2

v is independent
of the random vector Y (which has a normal n-dimensional distribution with
mean vector 0 and covariance matrix R); tv represents the marginal distribu-
tions of tnv,R . For n=2, the t-Student copula takes the following analytical
form:

Ct
v,R(u, v) =

∫ t−1
v (u)

−∞

∫ t−1
v (v)

−∞

1

2π(1−R2
12)

1/2
{1 + s2 − 2R12st+ t2

v(1−R2
12)

}−(v+2)/2dsdt

where R12 is the linear correlation coefficient of the bivariate Student t dis-
tribution (n = 2) with v degrees of freedom, if v > 2. Embrechts, Lindskog



32 CHAPTER 1. THEORETICAL NOTIONS

and McNeil (2001) showed that, unlike the Gaussian copula, the bivariate
Student’s t copula has superior tail dependence. Such dependence is, as you
should expect, increasing in R12 and decreasing in v. Thus, Student’s t cop-
ula would seem more suitable (than the Gaussian copula) to simulate events
similar to stock market collapses or joint insolvencies of multiple counterpar-
ties in a portfolio of credit assets. We can obtain the density function of the
Student’s t copula (Bouye et al., 2000) through the following equation:

c(u1, ..., un;R, v) =
Γ ((v + n)/2)[Γ (v/2)]n(1 + ωTR−1ω)−(v+2)/2

|R|1/2Γ (v/2)[Γ (v + 1)/2]n
∏n

i=1(1 + ω2
i /v)

−(v+1)/2

(1.41)
where ω = (ω1, ..., ωn)

T = (t−1v (u1), ..., t
−1
v (un)). Student’s t copula represents

the dependency structure implied in a multivariate Student’s t distribution.
We highlight how this type of copula function has aroused a lot of operational
interest in the financial field especially in a context of modeling multivariate
financial data, for example the daily logarithmic price changes of securities.
For example Mashal and Zeevi(2002) as well as Breymann et al.(2003) have
shown that the adaptation to empirical data of Student’s t copula is generally
higher than that of normal copula (the latter structure of dependence of
the normal multivariate distribution). One reason for this is the student’s t
ability to grasp the correlation between extreme values, which is often seen in
financial phenomena. On the other hand, normal copula is only a particular
case of Student’s t copula and precisely when the number of degrees of freedom
goes to infinity. In addition, unlike normal copula, Student’s t copula has tail
dependence on both tails (Embrechts, McNeil and Straumann,2001), while
the Gaussian copula has no tail dependence if the value of Pearson’s linear
correlation coefficient is different from ±1. For these reasons, Student’s t
copula is capable of generating more extreme events than normal copula, for
example the events of insolvency, extreme events by definition.

1.5.3 Vine copula

With the availability of massive multivariate data comes a need to develop
flexible multivariate distribution classes. The copula approach allows to con-
struct marginal models for each variable separately and join them with a
dependence structure characterized by a copula. The class of multivariate
copulas was limited for a long time to elliptical (including the Gaussian and
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t-copula) and Archimedean families (such as Clayton and Gumbel copulas).
Both classes are rather restrictive with regard to symmetry and tail depen-
dence properties. The class of vine copulas overcomes these limitations by
building a multivariate model using only bivariate building blocks. This gives
rise to highly flexible models that still allow for computationally tractable
estimation and model selection procedures.

Since vine copulas are built out of bivariate copulas we now discuss prop-
erties of bivariate copulas. To investigate the dependence properties we con-
sider several dependence measures. Since the Pearson correlation ρ(X1, X2) =
Cor(X1, X2) is not invariant with respect to monotone transformations of the
margins, it is more useful to consider invariant dependence measures such as
Kendall’s τ and Spearman’s ρ. In particular, Spearman’s rank correlation is
defined as the Pearson correlation of the random variables F1(X1) and F2(X2),
i.e., ρs(X1, X2) = Cor(F1(X1), F2(X2)). Another popular measure invariant
to marginal transformations is Kendall’s τ , defined as

τ(X1, X2) = P ((X11−X21)(X12−X22) > 0)−P ((X11−X21)(X12−X22) < 0)
where (X11, X12) and (X21, X22) are independent and identically distributed
copies of (X1, X2). Since τ(X1, X2) and ρ(X1, X2) are invariant with regard
to margins they depend only on the underlying copula. More specifically it
holds

τ(X1, X2) = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1

ρ(X1, X2) = 12

∫ 1

0

∫ 1

0

u1u2dC(u1, u2)− 3

While the catalogue of bivariate parametric copula families is large, this is
not the case for d > 2 . The motivation for vine copula models was to find a
way to construct multivariate copulas using only bivariate copulas as building
blocks.

Regular vine copulas and distributions

A regular vine distribution for a d-dimensional random vectorX = (X1, . . . , Xd)
is specified by the triplet (F, V, B) with:
1. Marginal distributions: F= (F1, . . . , Fd) is a vector of continuous marginal
distribution functions of the random variables (X1, . . . , Xd)
2. Regular vine tree sequence: V is an R-vine tree sequence on d elements.
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3. Bivariate copulas: The set B = Ce|e ∈ Ei; i = 1, . . . , d− 1, where Ce is a
bivariate copula with density ce . Here Ei is the edge set of tree Ti in the
R-vine tree sequence V.
4. Relation between R-vine tree sequence and the set of bivariate copulas:
for each e ∈ Ei , i = 1, . . . , d − 1, e = (a, b) , Ce(̇, )̇ is the copula associated
with the conditional distribution of XCe,a

and XCe,b
given XDe

.

Existence of a regular vine distribution

Assume that (F, V, B) satisfy the properties (1)-(3), then there is a valid
d-dimensional distribution F with density f1,...,d(x1, . . . , xd) = f1(x1)× · · · ×
fd(xd) ×

∏d−1
i=1

∏
e∈Ei

XCe,a
XCe,a

| De(FCe,a
| De(XCe,a

| XDe
), FCe,b

| De(XCe,b
|

XDe
))

such that for each e ∈ Ei , i = 1, . . . , d − 1 , with e = a, b we have for the
distribution function of XCe,a

and XCe,b
given XDe

FCe,aCe,b
| De(XCe,a

, XCe,b
|

XDe
) = Ce(FCe,a

| De(XCe,a
| XDe

), FCe,b
| De(XCe,b

| XDe
))

Further the one-dimensional margins of F are given by Fi(xi) , i = 1, . . . , d.
If all margins are standard uniform, we call the resulting distribution a regular
Vine copula.

1.5.4 Skew-t copula

IfXi, i ∈ 1, 2, ..., p are continuous random variables, the density f(x1, x2, . . . , xp)
of their joint distribution can be presented through a copula density c(u1, u2, . . . , up)
and marginal densities fi(xi):

f(x1, x2, . . . , xp) = c(F1(x1), . . . , Fp(xp)) · f1(x1) · ... · fp(xp)

A copula (A.Azzalini, 2014) is called skew-t copula, if its density function
is:

cp,v(u;µ,Σ, α) =
gp,v[G

−1
1,v(u1; 0,Σ1,1, α1), . . . , G

−1
1,v(up; 0,Σp,p, αp);µ,Σ, α]∏p

i=1 g1,v[G
−1
1,v(ui;µi,Σi,i, αi);µi,Σi,i, αi]

where: gp,v(·;µ,Σ, α) : Rp → R is the density function of the p-variate
skew-t distribution and function G−11,v(ui;µi, σi,i, αi) : R

1 → I , i ∈ {1, . . . , p}
denotes the inverse of the univariate t1,v distribution function.
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Multivariate skew tp,v copula can be presented of the form:

Ct,v(u;µ,Σ, α) = 2

∫ A

−∞
· · ·

∫ B

−∞
tp,v(x;µ,Σ) ·Tv,p

[
αTW−1(x−µ)( v + p

Q+ v
)1/2

]
dx

where
A = G−11,v(u1;µ1, σ1,1, α1)

B = G−11,v(up;µp, σp,p, αp)

Q = (x− µ)TΣ−1(x− µ)
W = δi,j

√
σi,j

1.5.5 Estimation of copula function parameters

In this section, we present some methods to estimate the parameters of some
of the most widely used copula functions in the financial field.

The Maximum Likelihood method (ML):

Let’s say f is the density function of the joint distribution F . Analytically
you have:

f(x1, ..., xn) = c(F1(x1), ..., Fn(xn))
n∏
i=1

fi(xi) (1.42)

In equation (1.42) fi is the univariate density function of the marginal dis-
tribution Fi and c is the density function of the copula function calculated
through the following equation:

c(u1, ..., un) =
δC(u1, ..., un)

δu1...δun
(1.43)

Suppose you have a set of T empirical data related to n log-returns on
financial assets, X = {(xt1, ..., xtn)}Tt=1. Let’s say δ = (δ1, ..., δn, α) is the
vector of parameters to be estimated where δi, with i = 1, ..., n is the vector
of the parameters of the marginal distribution Fi and α is the vector of the
parameters of the copula. The log-likelihood function is expressed as follows:

l(δ) =
T∑
t=1

lnc(F1(x
t
1; δ1), ..., Fn(x

t
n; δn);α) +

T∑
t=1

n∑
i=1

lnfi(x
t
i; δi) (1.44)
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The maximum likelihood estimator (ML) δ̂ of the parameter vector δ is the
one that maximizes the equation (1.44), in analytical terms: δ̂ = argmaxl(δ).

The method Inference Functions for Margins(IFM):

According to Joe and Xu’s IFM (Inference Functions for Margins) method
(1996), marginal distribution parameters are estimated separately from cop-
ula parameters. In other words, the estimation process is divided into the
following two steps:
i) estimate the parameters δi, for i = 1, . . . , n of the marginal distributions Fi
through the maximum likelihood method. Analytically:

δ̂i = argmaxli(δi) = argmax

T∑
t=1

lnfi(x
t
i; δi)

where li is the log-likelihood function of the marginal distribution Fi ;
ii)estimate the vector of the copula parameters, α, after obtaining the esti-
mates of the marginal parameters in the previous phase. Analytically:

α̂ = argmax lc(α) = argmax

T∑
t=1

log c(F1(x
t
1; δ̂1), ..., Fn(x

t
n; δ̂n);α)

where lc is the log-likelihood function of the copula.

The Method Canonical Maximum Likelihood(CML):

The CML (Canonical Maximum Likelihood) method differs from the IFM
methot: it makes no assumption about the parametric form of marginal dis-
tributions. The estimation process is carried out through the following two
steps:
i) transform the set of (xt1, ..., x

t
n), with t = 1, . . . , T , into uniform determina-

tions (ût1, . . . , û
t
n) using empirical distributions (in other words determinations

are generated by empirical copula);
ii) estimate the copula’s parameters as follows:

α̂ = argmax

T∑
t=1

log c(ût1, ..., û
t
n;α)
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It is possible, for example, to estimate the parameter, R, of the Gaussian
copula function with the CML method or the IFM method as follows (Dur-
rleman,Nikeghbali and Roncalli, 2000):

R̂IFM/CML =
1

T

T∑
t=1

ςTt ςt

where ςt(Φ
−1(ut1), ...,Φ

−1(utn)).

The following recursive procedure (Bouyè et al., 2000) is used to estimate
the R parameter of the tv-Student copula:
i) assume that R̂1 is the IFM/CML estimator of the R parameter of the
Gaussian copula;
ii)

ˆRm+1 =
1

T
(
v + n

v
)

T∑
t=1

ςTt ςt

1 + 1
v ςtR̂

−1
m ςTt

con m = 1, 2, ... in cui ςt(t
−1
v (ut1), ..., t

−1
v (utn));

iii) the point ii) must be repeated until ˆRm+1 = R̂m. At this point , the
IFM/CML estimator of the R Student’s tv copula parameter is R̂IFM/CML =

R̂∞. Mashal and Zeevi (2002) suggested using the following algorithm to es-
timate the v and R parameters of the Student’s tv copula:
a) turns the (xt1, ..., x

t
n) dataset, with t = 1, . . . , T , into uniform determina-

tions (ût1, ..., û
t
n) using empirical marginal distributions;

b)estimate R̂ using the non-parametric estimator τ of Kendall:
R̂ij = sin(π2 τ̂ij) ,i, j = 1, ..., n
c)run a numerical search for v̂, for example

v̂ = arg max
v∈(2,∞]

[
T∑
t=1

log(c(ut1, ..., u
t
n; v, , R̂))]

where:

c(u1, ..., un; v,R) =
Γ((v + n)/2)[Γ(v/2)]n−1(1 + y′R−1y)−(v+n)/2

|R|1/2[Γ((v + 1)/2)]n
∏n

i=1(1 + y2i /v)
(v+1)/2

e

y = (y1, ..., yn) = (t−1v (u1), ..., t
−1
v (un))
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Nonparametric estimation:

Through the methods described above it is possible to estimate the param-
eters of a given copula function. Deheuvels (1979) introduces a technique
for constructing empirical copula (or Deheuvels copula) from sample data.
The empirical copula is the copula of the empirical multivariate distribution.
Assuming that {x(t)1 , ..., x

(t)
n } are the order statistics and that {rt1, ..., rtn} are

the rank statistics (with t = 1, . . . , T ) of the sample data set, we have that

x
(rti)
i = xti, with i = 1, ..., n.

Each function: Ĉ( t1T , ...,
tn
T ) = 1

T

∑T
t=1

∏n
i=1 1[rti≤ti] , defined on the lattice

ℓ = {( t1T , ...,
tn
T ) : 1 ≤ i ≤ n; ti = 0, ..., T} is an empirical copula. The density

function (Nelsen, 1998) of the empirical copula has the following analytical
expression:

ĉ = {(t1
T
, ...,

tn
T
) =

2∑
i1=1

...

2∑
in=1

(−1)i1+...+inĈ(t1 − i1 + 1

T
, ...,

tn − in + 1

T
)

1.5.6 Calibration methods of the copula function parameters

In this paragraph we present some methods of calibration of the parameters
from a given analytical rappresection of the copula function. The first step is
to select the type of copula that best suits the empirical data. The method
described by Deheuvels (1979) is able to select the Archimedean copula that
best suits the real data. The Archimedean copula (see Mc Neil et al. 2005) has
the analytical representation described by equation(1.45). Then, to select the
most suitable copula, simply identify the generator: ψ. In the bivariate case
(n = 2), Genest and Rivest(1993) defined a univariate function, K, which is
linked to the Archimedean copula generator through the following analytical
expression:

Kψ(z) = z − ψ(z)

ψ′(z)
(1.45)

A non-parametric estimate of the above equation is given by the following
equation:

K̂(z) =
1

T

T∑
t=1

1[δt≤z] (1.46)
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If we choose a parametric representation for the generator, ψ, then the
parameter, α of the selected Archimedean copula is estimated using, for ex-
ample, Kendall’s τ estimate:

τ =

(
T

2

)−1∑
i<j

sign[(xi1 − x
j
1) · (xi2 − x

j
2)] (1.47)

The parameter α can also be estimated using the IFM method or the CML
method. Using α, a parametric estimate of the equation (1.47) can be easily
obtained. All of the above steps are repeated for different ψ. Frees and Valdez
(1998) proposed to use a QQ-plot between the equations (1.45) and (1.46).
Optimal copula can also be selected by minimizing the distance based on the
L2 norm between equations (1.45) and (1.46) as in Durrleman, Nikeghbali
and Roncalli (2000). Analytically:

d2(K̂,K) =

∫ 1

0

[K(z)− K̂(z)]2dz (1.48)

The method described here can also be used to graphically estimate the α
parameter of a given Archimedean copula.

Selection of the most appropriate copula using empirical copulation

Let’s say {Ck}1≤k≤K is the set of available copulas. We choose the Ck copula
that minimizes the following distance, expressed in the following equation,
based on the Ln discrete norm, between the Ck copula and the empirical
copula:

d̄n(Ĉ, Ck) = (
T∑

t1=1

...
T∑

tn=1

[ ˆ(C)(
t1
T
, ...,

tn
T
)− Ĉk(

t1
T
, ...,

tn
T
)]2)1/2 (1.49)

The distance (1.49) can also be used to estimate the δ ∈ Θ parameter’s
vector of a given copula C(u; δ) as follows:

δ̂ = argmin
δ∈Θ

(
∑
u∈ℓ

[Ĉ(u)− C(u; δ)]2)1/2 (1.50)
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1.5.7 Simulation algorithms

In this paragraph, we present some algorithms to simulate random deter-
minations (u1, . . . , un) from certain types of copula function C. From the
definition of copula it follows that these random variables are determinations
of correlated random variables and evenly distributed in (0,1). So in order
to simulate random variables (x1, . . . , xn) from a multivariate distribution F
with marginal data Fi , i = 1, . . . , n and copula C, we need to reverse each
ui using the marginal distributions : xi = F−1i (ui) , i = 1, ..., n .

Simulation of the Gaussian copula

To generate random determinations of normal copula, we can use the proce-
dure explained in this paragraph. If the R matrix is positive, then there are
A matrices of size n × n such that R = AAT . It is also assumed that the
random variables Z1, . . . , Zn are standard independent variables. In addition,
the random vector µ+ AZ, where Z = (Z1, . . . , Zn)

T , and the vector µ ∈ Rn

is distributed in a multinormal way with medium vector µ and covariance
matrix R. The A matrix can be easily determined through the Cholesky de-
composition of the R. The result of this decomposition is the unique lower
triangular matrix, such that LLT = R. It is therefore possible to generate
random determinations of the n-dimensional normal copula by implementing
the following algorithm:
i) find the Cholesky A breakdown of the R;
ii) matrix simulate n standard normal independent random determinations

z = (z1, . . . , zn)
T

iii) fix x = Az ;
iv) determine the components ui = ϕ(xi), i = 1, . . . , n; where the vector
(u1, . . . , un)T is a random determination of the n-dimensional gaussian copula,
CGa
R .

Simulation of Copula tv by Student

To simulate random determinations of Student’s t copula, Ct
v,R, you can use

the following algorithm based on the (1.41):
i) find the Cholesky decomposition A of the correlation matrix R;
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ii) simulate n independent random determinations z = (z1, . . . , zn) from the
standard normal distribution;
iii) simulates a random determination, s, from the distribution χ2

v , indepen-
dent of z;
iv) determine the vector y = Az;

v) perform the transformation x =

√
v√
s
· y;

vi) determine the components ui = tv(xi) , i = 1, . . . , n; the resulting vector
is:

(u1, . . . , un)
T ∼ Ct

v,R

1.6 Description of the sample

The analysis covered by this report is carried out on a sample of data repre-
sented by the daily closing prices of the nine most capitalised stock indices,
acquired through the Bloomberg platform, in order to obtain the most repre-
sentative sample of the stock market as a whole. The time horizon is from 2
January 2012 to 23 September 2022, for a total of about 10 years. The stock
indices examined are: Dow Jones, S&P500, Nasdaq 100, FTSE 100, Nikkei
225, SSE Composite, SZSE Component, Euronext 100, HANG SENG. Below
is a brief description of these stock indices and the daily returns of each index
over the time frame analysed are shown:
i)Dow Jones: whose full name is Dow Jones Industrial Average, is the oldest
stock index in history, as well as the most well-known of the New York Stock
Exchange (NYSE), created by Charles Dow, father of technical analysis and
founder of the Wall Street Journal and Edward Jones, American financial
statistician. The index is calculated by weighing the price of the top 30 Wall
Street stocks. The choice to limit its composition to only 30 Blue Chips has
meant that over time, the index has lost much of its importance because it
can no longer reflect the entire trend of the American stock market.

ii) S&P500: was created by Standard & Poor’s in 1957 and follows the
trend of a stock basket of the 500 most capitalized US companies. Part of
this basket are the shares of large companies traded at the New York Stock
Exchange (Nyse), the American Stock Exchange (Amex) and the Nasdaq.
The weight attributed to each holding is directly proportional to the market
value. This is the most significant index of the entire American market and
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Figure 1.5: Dow Jones Industrial Average Returns

has now surpassed by importance the same Dow Jones, basket of 30 major
American stocks. The index was established and continues to be managed by
S&P Dow Jones Indices, a joint venture controlled by McGraw Hill Financial.

iii) Nasdaq 100: is a stock market index of the top 100 non-financial
companies listed on the NASDAQ stock market. It is a weighted index,
the weight of the various companies that compose it is based on their market
capitalisation, with some rules to take into account the influences of the major
components. It does not include financial corporations, and includes some
foreign companies. These two factors differentiate it from the S& P500 index.

iv) FTSE 100: is a stock index of the 100 most capitalized companies
listed on the London Stock Exchange. The index has been quoted since 3
January 1984 at an initial level of 1000. FTSE stands for ’Financial Times
Stock Exchange’. The index is managed by the FTSE Group, a now inde-
pendent company that was originally established as a joint venture between
the Financial Times and the London Stock Exchange. The 100 companies
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in the index represent about 80% of the market capitalisation of the entire
London Stock Exchange. The components the index is established quarterly;
the largest companies in the FTSE 250 index are promoted if their market
capitalisation places them among the top 90 companies in the FTSE 100. At
the end of 2006, for example, the threshold for entry was 2,9 billion. As of 29
December 2006, the six largest companies in the index were BP, Royal Dutch
Shell, HSBC, Vodafone, Royal Bank of Scotland and glaxosmithkline, each
worth over 60 billion.

v)Nikkei 225: The index contains the 225 stocks of the largest compa-
nies listed on the Tokyo Stock Exchange (TSE) by capitalization, which are
updated annually. The Nikkei 225 began to be calculated from 7 September
1950, retroactively from 16 May 1949 and from January 2010, is updated
every 15 seconds. The index peaked on 29 December 1989 at 38957.44 , dur-
ing the Japanese speculative bubble. It is an index weighted on the stock
price, large-cap type, representing the entire market. Therefore, there are no
specific weights for the different economic sectors to which a single security
belongs: all shares have the same weight based on a nominal value equal to
50 yen.

vi)SSE Composite: The Shanghai Stock Exchange Composite Index com-
prises all A and B shares listed on the Shanghai Stock Exchange, for a total
of 872 companies. It’s a capitalization-weighted index, created on December
19, 1990, with a base value of 100.

vii)SZSE Component: is the main index of the Shenzhen Stock Exchange
(SZSE), as well as one of the most well-known stock indices of the Chinese
stock market A-share. The SZSE Component Index is designed to represent
the performance of the multi-tier Shenzhen stock market, providing market
participants with a global benchmark and effective investment tools in an
innovative and fast-growing market. The SZSE Component index is weighted
with float-free capitalisation and comprises the 500 largest and most liquid
A-share shares listed and traded on the Shenzhen Stock Exchange. The index
was created on 20 July 1994 with a base value of 1000. On 20 May 2015 the
number of constituent securities increased from 40 to 500.

viii)Euronext 100: is the largest capitalised and most actively traded
stock index on the Euronext stock exchange. Its composition is reviewed
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quarterly; companies listed on the Euronext 100 belong to the nations of
France, the Netherlands, Portugal, Belgium and Luxembourg; these com-
panies must market annually at least 20% of their issues (calculated on a
roundabout basis). It is considered one of the leading benchmarks in the
European stock market.

ix) HANG SENG: is a capitalization-weighted stock market index. It
is used to record and monitor the daily changes of the major companies in
the Hong Kong stock market and is the main indicator of the global market
performance of the aforementioned square. It consists of 50 companies repre-
senting about 58% of the capitalisation of the Hong Kong Stock Exchange. It
was launched on 24 November 1969 and is currently compiled and operated
by Hang Seng Indexes Company Limited, a wholly owned subsidiary of Hang
Seng Bank, one of the largest registered and listed banks in Hong Kong in
terms of market capitalisation.

Above we presented only the returns of the Dow Jones index, in the Ap-
pendix are presented the returns of all the other eight indices.



Chapter 2

Contagion and clustering among
financial time series

2.1 Abstract

The objective of this work is to analyse the behaviour of financial time series
in risky scenarios in order to enable the implementation of performing port-
folio diversification strategies. The data used are the daily prices of the nine
most capitalised stock indices: the Dow Jones, S&P500, Nasdaq 100, FTSE
100, Nikkei 225, SSE Composite, SZSE Component, Euronext 100, HANG
SENG. Below is a methodology for grouping financial time series according to
association in the tail of their distribution. The work takes as reference the ar-
ticle of F. Durante, R. Pappadà and N. Torelli (2013) and has been extended,
however, also taking into account a quantification of the uncertainty present
on clustering, based on the posterior distributions of the bivariate measures of
dependence. The methodology for obtaining the posterior distribution takes
as a reference the work in C.Grazian and B.Liseo (2017).

2.2 The methodology

Let (xit)t=1,...,T be a matrix of d financial time series (i = 1, 2, ..., d) repre-
senting the returns of different assets or stock indices. In order to determine
suitable groups among the considered time series according to their pairwise
tail dependence, we need to proceed in different steps:
1. Fit a suitable time series model in order to produce series of indipendent
residuals

45
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2. Create a pseudo-data matrix using the empirical CDF on each single
marginal
3 Select a suitable way to measure the association between time series in the
tails, i.e. determine a criterion under which we may assign a number to the
strength of the (positive) dependence between the time series in a given tail
region of their domain.
4. For each pair of pseudo-data, we determine the posterior distribution of
the Spearman’s correlation coefficient ρ based on the simulation of a posterior
sample,using the methodology described in Schennach, (2005) and C.Grazian
and B.Liseo (2017).
5. For each of these ρij, we simulate 1000 realizations from its posterior dis-
tribution.
6.We calculate a Dissimilarity Matrix.
7. Apply a suitable cluster algorithm, according to the general characteristics
of the above introduced dissimilarity measure.

Each step will be explained in detail in the rest of the section.

2.2.1 Fit a suitable time series model:

Time series models constitute a standard tool in order to describe the link
among different univariate time series in a flexible way (see Patton 2012, and
the references). Here, before applying our clustering procedure, we assume
that the time series (xit)t=1,...,T are generated by the stochastic process (Xt,Ft)
such that, for i = 1, ..., d , one has

Xit = µi(Zt−1) + σi(Zt−1)ϵit (2.1)

where Zt−1 depends on Ft−1, the available information up to time t−1, the
innovations ϵit are distributed according to a distribution function Fi, for each
t and may be jointly dependent for the same time point t. In other words,
we will assume that the conditional mean and variance of each univariate
time series are modelled using some parametric specification that allows for a
wide variety of models for the conditional mean (e.g., ARMA models, vector
autoregressions, and others) and for the conditional variance (e.g., ARCH,
GARCH, GJR-GARCH, etc.). Moreover, the innovations ϵit are assumed
to have a constant conditional distribution Fi (with mean 0 and variance 1,
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for identification) such that, for every t, the joint distribution function of
(ϵ1t, ..., ϵdt) can be expressed in the form C(F1, ..., Fd) for some copula C. As
known (see, e.g.,Jaworski et al. 2010, 2013), the copula C is exactly the func-
tion that captures the dependence properties of the time series. Both the
rank-invariant measures of association (like Kendall’s τ , Spearman’s ρ and
their conditional versions) and the tail dependence coefficients are based on
the calculation (in a parametric or non-parametric way) of the respective cop-
ula. Moreover, the estimation of the model may be done in two steps: first,
we fit the marginal distributions, then we estimate the copula among them.
Following these considerations, our procedure to deal with time series can be
so summarized:
i. We fit an appropriate ARMA-GARCH model to each univariate time se-
ries. The choice of this univariate model is made by classical model selection
procedures (e.g., Bayesian Information Criteria) and the goodness of fit may
be verified by classical tests of omoscedasticity and uncorrelatedness of the
residuals (Patton 2012, 2013). Notice that different models (with different
parameters) can be estimated for each univariate time series.
ii. Using the parametric models estimated in previous step, we construct the
estimated standardized residuals, for each i = 1, ..., d by

ϵ̂it =
xit − µ̂i(Zt−1)
σ̂i(Zt−1)

(2.2)

iii. The estimated standardized residuals are converted to the estimated
probability integral transform variables zit = Fi(ϵit), where Fi may be esti-
mated from a parametric model (Gaussian, Student t, etc.) or by using the
empirical distribution function.

2.2.2 Measuring the tail dependence

One possible way to consider such a kind of dependence is to restrict to a
conditional version of the classical Pearson correlation coefficient, as done
for instance by Longin and Solnik (2001), Malevergne and Sornette (2006).
However, in analogy with the classical correlation coefficient (see, for instance,
Embrechts et al. 2002), Pearson’s correlation coefficient is often an inappro-
priate dependence measure since, firstly, it measures only linear dependence,
secondly, it is not invariant to a change of the univariate margins, and thirdly,
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it is very sensitive to outliers (Schmid and Schmidt 2007). In order to over-
come these pitfalls of linear correlations, we suggest to use the Spearman’s
correlation coefficient ρS. In fact, we recall that ρS is invariant under rank
transformation of the marginals and only depends on the copula of the in-
volved random variables. Moreover, it is more robust than linear correlation,
as stressed for instance by Croux and Dehon (2010). Since we are interested
in the tail of the time series, we will use as a measure of tail dependence a suit-
able conditional version of ρS, i.e. we calculate ρS conditional on the fact that
the time series are below a given threshold. Specifically, given two random
variables (Xi, Xj) and a threshold α ∈ (0, 1) representing the risky level, we
are interested in the Spearman’s correlation ρijS (α) of the conditional distri-
bution of (Xi, Xj)∥(Xi, Xj) ∈ T ijα , where T ijα = (−∞, qα(Xi)]× (−∞, qα(Xj)]
is a set of non-zero probability and qα(Xi) is the α−quantile of Xi for every i.
As known from Dobric et al. (2007), Durante and Jaworski (2010) (compare
also with Bernard et al. 2013), ρijS (α) can be calculated via:

ρijS (α) = 12

∫
[0,1]2

CT ij
α
(u, v)dudv − 3 (2.3)

where CT ij
α
is the (threshold)copula associated with the conditional distri-

bution function of (Xi, Xj)∥(Xi, Xj) ∈ T ijα .

At the end of this procedure,in the work of F. Durante et al (2013) it is
obtained a value ρijS (α) representing the association between time series i and
j when both markets are experiencing severe losses.

In the present work, instead, we simulate the posterior distribution of the
coefficient ρijS (α) for three different values of α.

The output of this computation consists of 108 vectors (we have 36 different
pairs of indeces and for each of them we compute the ρ’s for three different
thresholds) of the type:

ρij1 (α), ρ
ij
2 (α), ..., ρ

ij
h (α), ..., ρ

ij
M(α)

where i and j represents the assets or indices; α are the threshold repre-
senting the risky level and M is the size of the posterior simulation.
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2.2.3 Posterior distribution of the Spearman’s correlation coeffi-
cient ρ

The method (C.Grazian and B.Liseo ,2017) is based on the simulation of
a posterior sample weighted in terms of the Bayesian exponentially tilted
empirical likelihood (Schennach, 2005). No assumption is made on the cop-
ula structure. The central tool in this approach is the empirical likelihood
(Owen,2001); it is adopted an approximate Bayesian approach based on the
use of a pseudolikelihood, along the lines of Mengersen et al. (2013). It
is used a partially specified model where the prior distribution is explicitly
elicited only on the quantity of interest. Its approximate posterior distri-
bution is obtained via the use of the Bayesian exponentially tilted empirical
likelihood approximation of the marginal likelihood of the quantity of interest,
illustrated in Schennach (2005). This approximation of the true “unknown”
likelihood function hopefully reduces the potential bias for incorrect distribu-
tional assumptions. The method’s goal is the estimation of a given functional
of interest of C, say ϕ(C). In this respect, it is adopted a semiparametric
Bayesian strategy for estimating ϕ(C) where the parameter of interest is the
particular functional ϕ for which we derive an approximated posterior distri-
bution

π(ϕ|x) ∝ π(ϕ)L̂(ϕ;x)

where L̂(ϕ;x) is a nonparametric approximation of the likelihood function
for ϕ. Empirical likelihood has been introduced by Owen (2001); it is a
way of producing a nonparametric likelihood for a quantity of interest in
an otherwise unspecified statistical model. Schennach (2005) proposed an
exponentially tilted empirical likelihood which can also be interpreted as a
semiparametric Bayesian procedure. Assume that our dataset is composed of
n independent replicates (x1, ..., xd) of some random vector X with distribu-
tion F and corresponding density f. Rather than defining the usual likelihood
function in terms of f, the Bayesian exponentially tilted empirical likelihood
is constructed with respect to a given quantity of interest, say ϕ, expressed
as a functional of F, i.e. ϕ(F ), and then a sort of profile likelihood of ϕ is
computed in a nonparametric way. More precisely, consider a given set of
generalized moment conditions of the form

EF (h(X,ϕ)) = 0
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where h(·) is a known function, and ϕ is the quantity of interest. The resulting
Bayesian exponentially tilted empirical likelihood LBEL(ϕ;x) is defined as

LBEL(ϕ;x) =
n∏
i=1

p∗i (ϕ)

where (p∗1(ϕ), . . . , p
∗
n(ϕ)) is the solution of

maxp1,...,pn

n∑
i=1

(−pilogpi)

under the constraints 0 ≤ pi ≤ 1 ,
∑n

i=1 pi = 1 and
∑n

i=1 h(xi, ϕ)pi = 0
Here has beed replaced the empirical likelihood with the exponentially tilted
empirical likelihood proposed by Schennach (2005), in order to guarantee
a solid Bayesian justification of the procedure. In this particolar case the
only moment we use is the expression of a non-parametric consistent of the
Spearman’s ρ , namely ρ̂n =

1
n

∑n
i=1(

12
n2−1RiQi)− 3n+1

n−1 , where Ri and Qi are
defined in figure 2.1 .

The figure 2.1 shows the approximate Bayesian semiparametric copula
algorithm for the Spearman’s ρ (Grazian and Liseo, 2017). The Spear-
man’s ρ between X and Y is the correlation coefficient among the trans-
formed variables U = FX(X) and V = FY (Y ) or, in a copula language
ρ = 12

∫ 1

0

∫ 1

0 (C(u, v)− uv)dudv = 12
∫ 1

0

∫ 1

0 C(u, v)duduv − 3.

2.2.4 Create a dissimilarity measure

For each of the M ρijS (α) realizations we create a Dissimilarity Matrix that col-
lects the information about the pairwise tail dependence among the posterior
distribution values.

Then for each pair (i,j), for i, j = 1, 2, . . . , d, we may define the M dis-
similarity matrices ∆h = (∆h

ij) , for h=1, . . . ,M ,whose elements are given
by:

∆h
ij =

√
2(1− ρijh (α)) (2.4)
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Figure 2.1: ABSCop algorithm Spearman’s ρ (C.Grazian and B.Liseo, 2017)

2.2.5 Cluster building

For each dissimilarity matrix we apply a Partition Around Medoids (PAM)
cluster algorithm. The PAM algorithm works for a fixed number K of groups.
We implemented the algorithm with different values, namely K=3 and K=4.
The final output will be M different clustering and the results were synthesized
through the probability that the values linked to the indices i and j are in the
same cluster or not. It is worth noticing that different clustering structure
will be obtained with different values of α; this highlights the impact of the
choice of the threshold α in the portfolio strategy.
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2.3 Application to real data

To illustrate our approach we analyze the log-returns of the nine most capi-
talized stock indices: the Dow Jones, the S&P500, the Nasdaq 100, the FTSE
100, the Nikkei 225, the SSE Composite, the SZSE Component, the Euronext
100, the HANG SENG in the period from January 2, 2012 to October 11,
2022. The data were downloaded from Bloomberg and are formed by the
daily closing prices of the nine stock indices specified above. We calculated
the log-returns from stock prices and fit ARMA-GARCH models to each uni-
variate time series with Student-t distributed errors to account for heavy tails.
The choice of this univariate model is made by classical model selection pro-
cedure, in this specific case the Akaike Information Criterion (AIC): the most
appropriate model will be the one with the lowest AIC value. By using the
procedure explained in section 2.2.1 we derive hence the sample (z1t , ..., z

N
t )

on [0, 1] .

Figure 2.2: ARMA GARCH(1,1) residuals of the nine indexes

Moreover, the innovations ϵit are assumed to have a constant conditional
distribution Fi (with mean 0 and variance 1, for identification) such that, for
every t, the joint distribution function of (ϵ1t, ..., ϵdt) can be expressed in the
form C(F1, ..., Fd) for some copula C.
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Figure 2.3: Bivariate Plots of Residuals in terms of pseudo-data

In order to restrict our analysis to extreme observations we fix a threshold
α denoting the ”degree” of risk of the scenario we are considering. We set
three different values of α : 0,01 ; 0,25 ; 0,1 . For each α we compute
d(d−1)/2 = 9(8)/2 = 36 posterior distributions of the Spearman’s correlation
coefficient ρ associated with the pairs (zit, z

j
t ), i ̸= j, i, j = 1, ..., 9 conditional

to the fact that (zit, z
j
t ) takes values on [0, α]2 and denote them by

ρij1 (α), ρ
ij
2 (α), ..., ρ

ij
h (α), ..., ρ

ij
M(α)

In the figure 2.4 we show the histogram of the values of the posterior distribu-
tion of ρ for the couple Dow Jones and S&P500, calculated for the value of α
: 0,01. In the Appendix we present the complete series of the 108 histograms
that graphically represents the ρ posterior distributions for each couple of
indices analyzed for the three values fo α .

For each α value we obtain 1.000 realizations of the ρ and, for each of
them, we create a dissimilarity matrix that collects the information about
the pairwise tail dependence among the posterior distribution values. The
starting point for our clustering procedure is a distance defined through the
Spearman’s correlation matrix. We apply the PAM cluster algorithm directly
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to the matrix ∆ = (∆ij) ,for j = 1, . . . , 9 with

∆ij =

√
2(1− ρijh (α))

and we select two values for K : 3 and 4.

At the end of our analysis the results were summarised by the following six
tables in figure 2.5 and 2.4, one for each combination of the three values of α
and two values of K. The following tables show the probability for each pair
of indices to be in the same cluster for a specific level α . We can study the
correlation of the financial time series analyzed in this way: if the probability
for each pair of indices has a high value only for α = 0, 01 it implies that the
two indices are related in very risky scenarios, if otherwise the probability is
high even with α = 0, 25 it means that the two indices have a high correlation
and therefore a common behavior . If the probability is high with α = 0.25
and low with α = 0.01 it means that when the market is stable the two
indices have a common behavior between them, and when the market is risky
they adopt a different behavior. This is very important for investors and for
those who make portfolio choices because they must choose which stocks to
invest in order to diversify portfolio risk. For example from our results we
can see that the Dow Jones and the S&P500 have a high correlation; infact
for K=3 the probability to be in the same cluster are equal to 1 for α = 0, 25
, equal to 0,84 for α = 0, 1 and equal to 0,60 for α = 0, 01.This correlation
between the Dow Jones and the S&P500 is present also for the K=4. So
we can state that the two indices have a common behavior not only in risky
scenarios. Completely opposite are the results obtained for the Dow Jones
and FTSE 100 index : for K=3 the probability to be in the same cluster are
equal to 0,02 for α = 0, 25 , equal to 0,08 for α = 0, 1 and equal to 0,44 for
α = 0, 01 . So we can conclude that the two indices have a common behavior
in risky scenarios and a different behavior when the market is stable. In fact,
it may happen that the dependence between two assets changes according to
different ”crisis” periods both the assets are experiencing.
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Figure 2.4: posterior distribution of ρ for Dow Jones and S&P500 (α= 0,01)

2.4 Conclusions

We have presented a methodology to analyze the phenomenon of financial
contagion (Durante and Foscolo 2013) between financial time series in risky
scenarios. From a practical point of view to use this type of methodology the
first important thing to establish is the value of α in coherence with desired
investment strategy. The main steps of our method are:
1.Fit a suitable copula-based time series model,
2.Measuring the tail dependence through the estimation of its posterior dis-
tribution,
3.Create M dissimilarity measure,
4.Apply a cluster algorithm
This analysis has shown how this methodology can be applied in portfolio
selection. We have shown how important it is to consider the behavior of
financial time series in risky scenarios to diversify risk. Figures 2.7 and 2.8
show in blue the Markowitz’s Efficient Frontier calculated on the portfolio
made up of all nine indices examined in this work, while in red the efficient
frontier calculated on three and four indices respectively belonging to a dif-
ferent cluster. In Figure 2.7 the three indices chosen, one for each cluster,
are: S&P 500, SZSE Component, Hang Seng. In Figure 2.8 the four indices
are: Dow Jones, Nikkei225, SZSE Component, Hang Seng. The two graphs
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show that in very risky scenarios the diversification of the portfolio applied
according to the method of clustering presented in this paper, represented by
the efficient frontier in red, enables portfolio returns to be higher than the
total portfolio of the nine indices. In fact, as the risk increases, the efficient
frontier in red tends to have higher returns than the efficient frontier in blue.

Figure 2.5: Correlation for K = 3: green color represents positive correlation and red color
represents the negative one
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Figure 2.6: Correlation for K = 4 : green color represents positive correlation and red color
represents the negative one
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Figure 2.7: Efficient Frontier 9 indices and 3 indices

Figure 2.8: Efficient Frontier 9 indices and 4 indices



Chapter 3

Application EVT and Copulas

3.1 Abstract

The following chapter describes the possible methodologies for calculating
stock indices, and describes the nine indices that make up the portfolio under
study: Dow Jones, S&P500, NASDAQ 100, FTSE 100, Nikkei 225, SSE Com-
posite,the SZSE Component, the Euronext 100, the HANG SENG. The time
horizon is from 2 January 2012 to 9 September 2022, for a total of about 10
years. Then we proceed to the explanation of the techniques used for the con-
struction of the models that sees the combined use of the theory of extreme
values and copulas: t , skew t and Vine, through a two-step approach: the
first of univariate modeling and the second of multivariate modeling. Finally,
the obtained portfolio index returns are simulated and the Value at Risk is
calculated with relative back-testing to test the goodness of the presented
model. The back-test is made on one month period: from 12 September 2022
to 11 October 2022.

3.2 Stock Indices

The stock indices are the synthesis of the value of the basket of the stocks that
they represent, and the movements of the index are a good approximation of
the variation in the time of the valorization of the securities included in the
portfolio. There are different methods of calculating indices, depending on
the weighting that is attributed to the shares in the basket. We can therefore
distinguish between:

59
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i)Equally weighted indices: these are characterised by equal weighting factors
for all the securities making up the index. It does not matter the capitaliza-
tion of the included companies, because all the stocks of the index have the
same weight;
ii) Price weighted indices: in this case the weight associated with each stock
varies according to its price (if the price of one stock increases more than the
others, automatically it also increases its weight within the index). They are
very easy to calculate because they are given by the simple sum of the prices
of the securities that make up the index. These indices, however, have the
disadvantage of not correctly reflecting the performance of the entire portfo-
lio: in fact, the most ”expensive” securities are represented more, regardless
of the number of shares present and the size of the company;
iii)Value weighted indices: These solve the problems of the previous ones
as the weight of each security is proportional to its stock market capitaliza-
tion. In contrast to other calculation methodologies, in this case indices are
adjusted and adjusted as a result of corporate transactions such as fraction-
ations, groupings, payment of extraordinary dividends, divisions, free allo-
cations or new issues for payment. Most major world indices are therefore
calculated using the value weighted methodology.

3.3 Construction of the model

The combined use of extreme value theory and copulas leads to a market
risk modelling approach that differs from traditional risk management mod-
els. They assume conditional normality for logarithmic returns on financial
assets or risk factors despite empirical evidence that yield distributions are
characterized by leptocurtic tails. Below is an application of this approach
to market risk modelling that characterises the behaviour during financial
and economic crises of the nine most highly capitalised stock indices, namely:
Dow Jones, S&P500, Nasdaq 100, FTSE 100, Nikkei 225, SSE Composite,
SZSE Component, Euronext 100, HANG SENG. The analysis consists of two
phases, the first of univariate modeling and the second of multivariate model-
ing. In the first phase we estimate a probability distribution for each variable
using a non-parametric smoothing technique for the central part of the distri-
bution. We apply the extreme value theory to better characterize the extreme
values found in the upper and lower tails. When this first phase is over we
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will have nine separate univariate models , one for each stock index that con-
stitutes the portfolio under consideration. In the multivariate phase, we tie
these models apart with copulas to get a portfolio view, which will allow me
to better analyze the data. We chose to use the three different copulas: t
copula, skew t copula and Vine copula. Standard distributions often require
that all univariate and multivariate marginal distributions are of the same
type and only allow for highly symmetric dependence structures. These char-
acteristics are rarely satisfied in applications. For this reason we have also
used in our model the Vine copula (C.Czado and T.Nagler, 2021). By decou-
pling the univariate description of individual variables from the multivariate
description of the dependency structure, copulas offer significant theoretical
and computational advantages over traditional risk management techniques.
Once these two steps have been completed and the copulas have been cali-
brated, we use the Monte Carlo simulation to calculate the Value at Risk of
the equally weighted portfolio over a one-month timeframe.

3.4 Univariate modelling

To carry out the following analysis, it was considered appropriate to use the
daily closing prices of the nine most capitalised equity indices: Dow Jones,
S&P500, Nasdaq 100, FTSE 100, Nikkei 225, SSE Composite, SZSE Compo-
nent, Euronext 100, HANG SENG. The relative price changes of each index
are illustrated graphically below. The initial level of each index has been nor-
malized to the unit, dividing the first value, or the closing price of January
2, 2012 for itself and then all the values to follow for the first value, to facili-
tate the comparison of performance between the various stock indices under
consideration.

From the prices it was possible to calculate the returns of each index. For
the sake of simplicity, we have chosen to report the graphs related to a single
index, the Dow Jones, in order to streamline the treatment, but it is important
to specify that all the steps explained below for the Dow Jones have been
applied to all nine indices examined and constituting our portfolio. And
all the graphs presented here for the Dow Jones are in the appendix for all
the indices. To produce a series of independent and identically distributed
observations, a first order (AR 1) autoregressive model has been adapted to
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Figure 3.1: Monthly Prices Normalized of the nine indices

the conditional mean returns of each stock index

rt = c+ θ rt−1 + ϵt

and an asymmetric Garch (Generalized Autoregressive Conditional Heteroschedas-
ticity) model for conditional variance

σ2t = k + ασ2t−1 + ϕϵ2t−1 + ψ [ϵt−1 < 0 ]ϵ2t−1

The residuals of each index were modeled from a standardized Student t .
These residuals represent the underlying with mean equal to 0 and variance
equal to 1 independent and identically distributed on which the extreme values
theory of the empirical Cumulative Distribution Function (CDF) estimate is
based.
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Figure 3.2: Residuals and Volatility Dow Jones

The correlograms presented in figure 3.3 show the autocorrelation func-
tion (ACF) of : returns, squared returns, residuals and squared residuals of
the Dow Jones Industrial Average stock index. It is possible to note that
standardized residuals respond well to our needs, in fact because the autocor-
relation defines the degree of dependence between the values under consider-
ation, if we look at the correlogram, we see taht there isn’t evidence of serial
dependence between the residuals.

Once the data is filtered, the goal is to find a probability distribution to
model the daily movements of each index. It is not assumed that the data
come from a normal distribution or from any other simple parametric distri-
bution, since the goal is to find a more flexible empirical distribution that
allows the data to speak for itself.
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Figure 3.3: Autocorrelation function Dow Jones

�To estimate the CDF within the distribution we use the Kernel Gaussian
, which works well within the distribution, where most of the data is located,
but not when applied to tails;

�For tails it was chosen to use a generalized pareto distribution (GPD) that
will provide a reasonable model of the most extreme observations, large losses
and large gains. For risk management, it is essential to accurately characterise
tails.

So you get the empirical cumulative distribution function (CDF) for each
index, below is the Dow Jones CDF.

Finally, we proceed to the evaluation of the generalised Pareto distribu-
tion (GPD) before repeating the steps explained so far for each index in the
portfolio. It was chosen to use a Matlab function (Machine Learning Tool-
box gpfit) by which empirical CDF data is used to find parameters for the
GPD in the tails of the curve, it compares ,then, the empirical CDF with the
fitted Generalized pareto CDF and you immediately notice that it is a good
approximation.

When the first phase, that is, univariate modeling is completed, there will
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Figure 3.4: Empirical CDF Dow Jones

be nine separate univariate models describing the distribution of gains and
losses over the chosen time interval. However, it is necessary for the purpose of
this applicative analysis to bind these separate models together, and copulas
has been chosen for this purpose.

3.5 Multivariate modelling

Since a copula is a multivariate probability distribution whose individual vari-
ables are uniformly distributed, it is now possible to use newly derived uni-
variate distributions to transform the individual data of each index into a
uniform scale, which is the module needed to build a copula. This step is
very important because it has the calibration of the copulas: t , skew t and
Vine. But first it is good to understand which type of copula is most suitable
for our purposes. Having common movements in extremes is a widespread
phenomenon in the real world, for example if the Canadian index is down
30% today, you can be reasonably sure that the US market has also suffered
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Figure 3.5: Upper tail of standardized residuals Dow Jones

a relatively large fall. Modeling indices with a Gaussian copula does not cap-
ture this behavior, because the most extreme events of individual indices in
a Gaussian copula model would be independent of each other. The t copula,
however, includes a parameter given by the degrees of freedom that can be
used to model the tendency for extreme events to occur jointly. In this ap-
plication the t copula has been calibrated by estimating the scalar parameter
indicating the degrees of freedom and its linear correlation matrix through
the maximum likelihood: the calibration method used is known as canonical
maximum likelihood (CML). This step does what previously corresponded
to the estimate of the Cumulative Distribution Function (CDF) for a single
index, that is, it finds a model for the interaction between the indices , in the
behavior models of the single indices. We chose to build the model also with
the skew-t copula (Azzalini Capitanio 2003) because the skew-t copula is par-
ticularly appealing in finance where the data are characterized by heavy tails
and skewness, and where interest is in analysing conditional distributions.
However, the skew-t model is intuitively appealing in that it extends the Nor-
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mal distribution by permitting tails that are heavy and asymmetric. In our
model we used the dependency structure implied by the skew-t of Azzalini
and Capitanio (2003). It’s important to consider that for the analysis of large
multivariate data sets, flexible multivariate statistical models are required
that can adequately describe also the multivariate tail behavior. Standard
distributions, such as the multivariate normal or Student’s t distribution, are
too inflexible in their marginal and joint behavior. They often require that
all univariate and multivariate marginal distributions are of the same type
and only allow for highly symmetric dependence structures. These character-
istics are rarely satisfied in applications. For this reason we have also used
in our model the Vine copula (C.Czado and T.Nagler, 2021). The class of
multivariate copulas was limited for a long time to elliptical (including the
Gaussian and t-copula) and Archimedean families (such as Clayton and Gum-
bel copulas). Both classes are rather restrictive with regard to symmetry and
tail dependence properties. The class of vine copulas overcomes these limita-
tions by building a multivariate model using only bivariate building blocks.
This gives rise to highly flexible models that still allow for computationally
tractable estimation and model selection procedures. We use the R package
VineCopula to model the marginal series we obtain by the process explained
above.

3.6 Simulation of portfolio returns

You could use the model created by the previous steps for a wide range of
applications, such as calculating the expected deficit or performing dynamic
portfolio analysis. Here we have chosen to derive a measure of Value at Risk,
as well as the maximum loss and maximum gain simulated. Since we now
have a probability model that describes the observed data quite well, we are
able to generate random daily returns that will be statistically equivalent to
historical data. The Monte Carlo simulation is used to analyze not just one
historical study but thousands, in fact, two thousand independent random
tests of employee index returns over a period of one month (or 22 trading
days) are simulated. Here, the Matlab GARCH Toolbox simulation engine is
used to reintroduce autocorrelation and heteroschedasticity observed in the
original index returns. Then, after simulating the returns of each index and
forming a comparable global portfolio, it was decided to extract from the data
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the maximum economic gain, as well as the var at various confidence levels
90 % 95 % 99 % over the risk horizon of one month. We then obtain the
empirical CDF of the simulated returns of the global portfolio over a time
horizon that goes from 12 September 2022 to 11 October 2022 starting from
the sample of data in question that ends on 9 September 2022.

3.7 Calculation of Value at Risk

In the table are shown the obtained values of Value at Risk at 90 %, 95% and
99 %, in the second column starting from the left are presented the values
obtained following the application of the modeling presented in our treatment,
respectively for the t copula, skew t copula and Vine copula, while in the right
column there are values obtained by calculating the Value at Risk on real data.
As it was possible to find on the stock market the closing price data of the
nine most capitalized indices analyzed, for the period from 12 September 2022
to 11 October 2022 it was considered appropriate to perform a verification
of the goodness of the proposed model. It is important to explain what is
meant by saying that the var 90 %, which corresponds to 10 % cumulative
probability, is about -4,10 %: it means that, during the chosen time interval,
with a 90% probability the portfolio under consideration will lose no more
than 4,10 %. From our analysis we can notice that the application of the
model with choice of the copula Skew t has the values of the Value at Risk
closer to the real ones, differing for the 0,97 % in the case of the 90 % var.

3.8 Conclusions

The main objective of this paper was to study a different approach from tra-
ditional portfolio risk estimation models that assume conditional normality
for logarithmic returns of financial assets or risk factors. Empirical evidence
shows that distributions of logarithmic returns on financial assets are char-
acterised by leptocurtic tails. Consistent with this statistical phenomenon,
which is typical of financial data in general, a new technique of generation of
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the scenarios of the returns of the nine indices analyzed has been chosen to
use, going to emulate and to describe through the use of the extreme values
theory the empirical evidence of the data in examination. The two-step ap-
proach described allows us to simulate and model the stock returns, in line
with historical data. In the first step a probability distribution for each series
is estimated. When this first phase is over you will have as many univariate
models as there are variables under consideration, but it is necessary to tie
these separate models together and for this purpose we use a copula. By sepa-
rating the univariate description of individual variables from the multivariate
description of the dependency structure, copulas offer significant theoretical
and computational advantages over traditional risk management techniques.
Having common movements in extremes is a widespread phenomenon in the
real world, for this reason, in the second phase, it was chosen to use the t
copula and the skew-t copula that include a parameter given by the degrees of
freedom that can be used to model the tendency for extreme events to occur
jointly. Vine copula has also been chosen because it is a flexible multivariate
statistical model able to adequately describe also the behavior of the multi-
variate tail, and it was considered useful to compare the output returned by
the EVT model and Vine copula with the two previous more inflexible in their
marginal and joint behavior. In this way the nine separate models are linked
together, each for each stock index under consideration, with the copulas to
finally get a portfolio view, which will allow to analyze the data better. After
these two steps, it was decided to use the Monte Carlo simulation to calculate
the Value at Risk of the equally weighted portfolio over a period of one month.
However it should be noted that you could use the template created for a wide
range of applications, such as calculating the expected deficit or performing
dynamic portfolio analysis. Specifically, we estimated for our three different
model ,implementing the three different copulas ,the Value at Risk at 90%,
95% and 99% of the portfolio consisting of the nine most capitalized equity
indices and then we verified the goodness of our model by performing a back-
test on real data, such as the closing prices of the nine indices analysed over
the period from 12 September 2022 to 11 October 2022. The comparison
between the VaR calculated on the sample of simulated data from the three
different models implemented and the VaR calculated on the real data shows
that among the three models implemented the EVT and Skew-t copula model
has values of Value at Risk closer to that calculated on real data.
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Figure 3.6: Simulated one-month global portfolio returns CDF
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Figure 3.7: posterior distribution of ρ for Dow Jones and Nasdaq100 (α= 0,01)

Figure 3.8: posterior distribution of ρ for Dow Jones and FTSE100 (α= 0,01)

Figure 3.9: posterior distribution of ρ for Dow Jones and Nikkei225 (α= 0,01)

Figure 3.10: posterior distribution of ρ for Dow Jones and SSEComposite (α= 0,01)
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Figure 3.11: posterior distribution of ρ for Dow Jones and SZSEComponent (α= 0,01)

Figure 3.12: posterior distribution of ρ for Dow Jones and Euronext100 (α= 0,01)

Figure 3.13: posterior distribution of ρ for Dow Jones and HANGSENG (α= 0,01)
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Figure 3.14: posterior distribution of ρ for S&P500 and Nasdaq100 (α= 0,01)

Figure 3.15: posterior distribution of ρ for S&P500 and FTSE100 (α= 0,01)

Figure 3.16: posterior distribution of ρ for S&P500 and Nikkei225 (α= 0,01)

Figure 3.17: posterior distribution of ρ for S&P500 and SSEComposite (α= 0,01)
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Figure 3.18: posterior distribution of ρ for S&P500 and SZSEComponent (α= 0,01)

Figure 3.19: posterior distribution of ρ for S&P500 and Euronext100 (α= 0,01)

Figure 3.20: posterior distribution of ρ for S&P500 and HANGSENG (α= 0,01)
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Figure 3.21: posterior distribution of ρ for Nasdaq100 and FTSE100(α= 0,01)

Figure 3.22: posterior distribution of ρ for Nasdaq100 and Nikkkei225 (α= 0,01)

Figure 3.23: posterior distribution of ρ for Nasdaq100 and SSE Composite (α= 0,01)

Figure 3.24: posterior distribution of ρ for Nasdaq100 and SZSEComponent (α= 0,01)
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Figure 3.25: posterior distribution of ρ for Nasdaq100 and Euronext100 (α= 0,01)

Figure 3.26: posterior distribution of ρ for Nasdaq100 and HANG SENG (α= 0,01)

Figure 3.27: posterior distribution of ρ for FTSE100 and Nikkei225 (α= 0,01)
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Figure 3.28: posterior distribution of ρ for FTSE100 and SSE Composite (α= 0,01)

Figure 3.29: posterior distribution of ρ for FTSE100 and SZSE Component (α= 0,01)

Figure 3.30: posterior distribution of ρ for FTSE100 and Euronext 100 (α= 0,01)

Figure 3.31: posterior distribution of ρ for FTSE100 and HANG SENG (α= 0,01)
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Figure 3.32: posterior distribution of ρ for Nikkei 225 and SSE Composite (α= 0,01)

Figure 3.33: posterior distribution of ρ for Nikkei 225 and SZSE Component (α= 0,01)

Figure 3.34: posterior distribution of ρ for Nikkei 225 and Euronext100 (α= 0,01)
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Figure 3.35: posterior distribution of ρ for Nikkei 225 and HANG SENG (α= 0,01)

Figure 3.36: posterior distribution of ρ for SSE Composite and SZSE Component (α= 0,01)

Figure 3.37: posterior distribution of ρ for SSE Composite and Euronext 100 (α= 0,01)

Figure 3.38: posterior distribution of ρ for SSE Composite and HANG SENG (α= 0,01)
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Figure 3.39: posterior distribution of ρ for SZSE Component and Euronext 100 (α= 0,01)

Figure 3.40: posterior distribution of ρ for SZSE Component and HANG SENG (α= 0,01)

Figure 3.41: posterior distribution of ρ for Euronext100 and HANG SENG (α= 0,01)



82 CHAPTER 3. APPLICATION EVT AND COPULAS

Figure 3.42: posterior distribution of ρ for Dow Jones and Nasdaq100 (α= 0,25)

Figure 3.43: posterior distribution of ρ for Dow Jones and FTSE100 (α= 0,25)

Figure 3.44: posterior distribution of ρ for Dow Jones and Nikkei225 (α= 0,25)

Figure 3.45: posterior distribution of ρ for Dow Jones and SSEComposite (α= 0,25)
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Figure 3.46: posterior distribution of ρ for Dow Jones and SZSEComponent (α= 0,25)

Figure 3.47: posterior distribution of ρ for Dow Jones and Euronext100 (α= 0,25)

Figure 3.48: posterior distribution of ρ for Dow Jones and HANGSENG (α= 0,25)

Figure 3.49: posterior distribution of ρ for Dow Jones and S&P500 (α= 0,25)
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Figure 3.50: posterior distribution of ρ for S&P500 and Nasdaq100 (α= 0,25)

Figure 3.51: posterior distribution of ρ for S&P500 and FTSE100 (α= 0,25)

Figure 3.52: posterior distribution of ρ for S&P500 and Nikkei225 (α= 0,25)

Figure 3.53: posterior distribution of ρ for S&P500 and SSEComposite (α= 0,25)
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Figure 3.54: posterior distribution of ρ for S&P500 and SZSEComponent (α= 0,25)

Figure 3.55: posterior distribution of ρ for S&P500 and Euronext100 (α= 0,25)

Figure 3.56: posterior distribution of ρ for S&P500 and HANGSENG (α= 0,25)
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Figure 3.57: posterior distribution of ρ for Nasdaq100 and FTSE100(α= 0,25)

Figure 3.58: posterior distribution of ρ for Nasdaq100 and Nikkkei225 (α= 0,25)

Figure 3.59: posterior distribution of ρ for Nasdaq100 and SSE Composite (α= 0,25)

Figure 3.60: posterior distribution of ρ for Nasdaq100 and SZSEComponent (α= 0,25)
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Figure 3.61: posterior distribution of ρ for Nasdaq100 and Euronext100 (α= 0,25)

Figure 3.62: posterior distribution of ρ for Nasdaq100 and HANG SENG (α= 0,25)

Figure 3.63: posterior distribution of ρ for FTSE100 and Nikkei225 (α= 0,25)
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Figure 3.64: posterior distribution of ρ for FTSE100 and SSE Composite (α= 0,25)

Figure 3.65: posterior distribution of ρ for FTSE100 and SZSE Component (α= 0,25)

Figure 3.66: posterior distribution of ρ for FTSE100 and Euronext 100 (α= 0,25)

Figure 3.67: posterior distribution of ρ for FTSE100 and HANG SENG (α= 0,25)
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Figure 3.68: posterior distribution of ρ for Nikkei 225 and SSE Composite (α= 0,25)

Figure 3.69: posterior distribution of ρ for Nikkei 225 and SZSE Component (α= 0,25)

Figure 3.70: posterior distribution of ρ for Nikkei 225 and Euronext100 (α= 0,25)
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Figure 3.71: posterior distribution of ρ for Nikkei 225 and HANG SENG (α= 0,25)

Figure 3.72: posterior distribution of ρ for SSE Composite and SZSE Component (α= 0,25)

Figure 3.73: posterior distribution of ρ for SSE Composite and Euronext 100 (α= 0,25)

Figure 3.74: posterior distribution of ρ for SSE Composite and HANG SENG (α= 0,25)
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Figure 3.75: posterior distribution of ρ for SZSE Component and Euronext 100 (α= 0,25)

Figure 3.76: posterior distribution of ρ for SZSE Component and HANG SENG (α= 0,25)

Figure 3.77: posterior distribution of ρ for Euronext100 and HANG SENG (α= 0,25)
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Figure 3.78: posterior distribution of ρ for Dow Jones and Nasdaq100 (α= 0,1)

Figure 3.79: posterior distribution of ρ for Dow Jones and FTSE100 (α= 0,1)

Figure 3.80: posterior distribution of ρ for Dow Jones and Nikkei225 (α= 0,1)

Figure 3.81: posterior distribution of ρ for Dow Jones and SSEComposite (α= 0,1)



3.8. CONCLUSIONS 93



94 CHAPTER 3. APPLICATION EVT AND COPULAS

Figure 3.82: posterior distribution of ρ for Dow Jones and SZSEComponent (α= 0,1)

Figure 3.83: posterior distribution of ρ for Dow Jones and Euronext100 (α= 0,1)

Figure 3.84: posterior distribution of ρ for Dow Jones and HANGSENG (α= 0,1)

Figure 3.85: posterior distribution of ρ for Dow Jones and S&P500 (α= 0,1)
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Figure 3.86: posterior distribution of ρ for S&P500 and Nasdaq100 (α= 0,1)

Figure 3.87: posterior distribution of ρ for S&P500 and FTSE100 (α= 0,1)

Figure 3.88: posterior distribution of ρ for S&P500 and Nikkei225 (α= 0,1)

Figure 3.89: posterior distribution of ρ for S&P500 and SSEComposite (α= 0,1)
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Figure 3.90: posterior distribution of ρ for S&P500 and SZSEComponent (α= 0,1)

Figure 3.91: posterior distribution of ρ for S&P500 and Euronext100 (α= 0,1)

Figure 3.92: posterior distribution of ρ for S&P500 and HANGSENG (α= 0,1)
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Figure 3.93: posterior distribution of ρ for Nasdaq100 and FTSE100(α= 0,1)

Figure 3.94: posterior distribution of ρ for Nasdaq100 and Nikkkei225 (α= 0,1)

Figure 3.95: posterior distribution of ρ for Nasdaq100 and SSE Composite (α= 0,1)

Figure 3.96: posterior distribution of ρ for Nasdaq100 and SZSEComponent (α= 0,1)
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Figure 3.97: posterior distribution of ρ for Nasdaq100 and Euronext100 (α= 0,1)

Figure 3.98: posterior distribution of ρ for Nasdaq100 and HANG SENG (α= 0,1)

Figure 3.99: posterior distribution of ρ for FTSE100 and Nikkei225 (α= 0,1)



3.8. CONCLUSIONS 99

Figure 3.100: posterior distribution of ρ for FTSE100 and SSE Composite (α= 0,1)

Figure 3.101: posterior distribution of ρ for FTSE100 and SZSE Component (α= 0,1)

Figure 3.102: posterior distribution of ρ for FTSE100 and Euronext 100 (α= 0,1)

Figure 3.103: posterior distribution of ρ for FTSE100 and HANG SENG (α= 0,1)
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Figure 3.104: posterior distribution of ρ for Nikkei 225 and SSE Composite (α= 0,1)

Figure 3.105: posterior distribution of ρ for Nikkei 225 and SZSE Component (α= 0,1)

Figure 3.106: posterior distribution of ρ for Nikkei 225 and Euronext100 (α= 0,1)
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Figure 3.107: posterior distribution of ρ for Nikkei 225 and HANG SENG (α= 0,1)

Figure 3.108: posterior distribution of ρ for SSE Composite and SZSE Component (α= 0,1)

Figure 3.109: posterior distribution of ρ for SSE Composite and Euronext 100 (α= 0,1)

Figure 3.110: posterior distribution of ρ for SSE Composite and HANG SENG (α= 0,1)
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Figure 3.111: posterior distribution of ρ for SZSE Component and Euronext 100 (α= 0,1)

Figure 3.112: posterior distribution of ρ for SZSE Component and HANG SENG (α= 0,1)

Figure 3.113: posterior distribution of ρ for Euronext100 and HANG SENG (α= 0,1)
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Figure 3.114: Indices Returns
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Figure 3.115: Autocorrelation Function
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Figure 3.116: Autocorrelation Function
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Figure 3.117: Autocorrelation Function
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Figure 3.118: Autocorrelation Function
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Figure 3.119: Autocorrelation Function
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Figure 3.120: Autocorrelation Function
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Figure 3.121: Autocorrelation Function
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Figure 3.122: Autocorrelation Function
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Figure 3.123: Residuals and Volatility
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Figure 3.124: Residuals and Volatility
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Figure 3.125: Residuals and Volatility
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Figure 3.126: Residuals and Volatility
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Figure 3.127: Residuals and Volatility
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Figure 3.128: Residuals and Volatility
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Figure 3.129: Residuals and Volatility
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Figure 3.130: Residuals and Volatility
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Figure 3.131: Empirical CDF
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Figure 3.132: Empirical CDF
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Figure 3.133: Upper Tail of Standardized Residuals
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Figure 3.134: Upper Tail of Standardized Residuals
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