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A B S T R A C T   

Background: The food industry generates a vast amount of food waste. Nevertheless, several types of food waste, i. 
e. those deriving from fruits, vegetables, grains, and other plant-based food production and processing chains, 
still contain valuable nutritional and bioactive compounds thus having the potential to be converted into value- 
added products. Several approaches have been investigated as pre-treatment of food waste to improve the 
nutritional, functional, and technological properties before to re-inclusion in food production. Sourdough 
fermentation, either spontaneous or through selected microbial strains, appears to be a suitable and sustainable 
tool for upcycling plant-derived food waste. 
Scope and approach: This review reveals the latest insights into the potential of sourdough fermentation to recycle 
milling by-products, brewers’ spent grain, wasted bread, and miscellaneous plant wastes. 
Key findings and conclusions: Sourdough biotechnology is suitable for improving the sustainability of several food 
chains. Nevertheless, due to the significant effect of the presence, growth, and metabolic activity of specific 
microorganisms on the quality of the final products, an accurate set-up and optimization of tailored fermentation 
processes is highly suggested.   

1. Introduction 

Food waste is any edible or inedible loss from its supply chain 
(O’Connor et al., 2021). In the European Union, over 58 million tons of 
food waste (131 kg/inhabitant) are generated annually (Food waste and 
food waste prevention – estimates, 2023). The most abundant part 
comes from fruits and vegetables, including cereals as the main in-
gredients for worldwide staple foods, which generate by-products dur-
ing pre- and post-harvesting, preparation, and processing (FAO, 2019). 
The overall estimation is that one-third of worldwide food is wasted at 
various stages along the food supply chain (FAO, 2019). FAO’s Food 
Loss Index estimates that globally, around 14 percent of all food pro-
duced is lost from the post-harvest stage up to, but excluding, the retail 
stage (FAO, 2019). According to the UNEP Food Waste Index 2021, 
around 931 million tons of food waste were generated in 2019–61% of 
which came from households, 26% from food service, and 13% from 
retail – suggesting that 17% of global food production may be wasted at 
these stages of the food supply chain. Similarly, in the EU, households 

generate more than half of the total food waste (54%) with 70% of food 
waste arising at household, food service and retail (Food waste and food 
waste prevention – estimates, 2023). 

Stockpiling of food wastes poses social, environmental, and eco-
nomic issues. Global food system causes approximately one-fourth of all 
greenhouse gas emissions (FAO, 2019). Food wastes require large-scale 
storage, transportation, and costly disposal applications (FAO, 2019). 
They have high oxidation potential and water content, and when 
generated from rendering plants and accidental failure of the cooling 
system occur, they also suffer from contamination by spoiling and/or 
pathogen agents (ICMSF, 2000). Given this impact, the United Nations 
set the Sustainable Development Goals to reduce food waste by 50% per 
capita by 2030. FAO believes that food waste recycling is the pillar of 
achieving sustainable development with the concept of a circular 
economy (FAO, 2019). 

Solutions for food waste concern education programs focused on 
consumers’ healthy lifestyles, prevention, improvement of processing 
efficiency, and valorization. Valorization is the most sustainable 
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approach, which should convert wastes into products with added value, 
thus limiting their disposal in landfills and eliminating greenhouse gas 
emissions (Al-Obadi et al., 2022). Currently, food wastes are physically, 
chemically, or biologically transformed to get an array of biofertilizers 
and soil amendments. Composting and anaerobic digestion are the main 
large-scale conversion techniques to exploit the potential of food wastes 
into biofertilizers and soil amendments. Other emerging conversions 
such as dehydration, biochar production and chemical hydrolysis show 
promising potentialities in agriculture and soil remediation (O’Connor 
et al., 2021). Aiming at a “zero waste economy”, food waste can be used 
as raw material for new products and applications. Nevertheless, it was 
observed that the food waste needs further processing steps before being 
used. Overall, the use of microorganisms that guide the production of 
functional ingredients for novel food formulation has been suggested to 
be helpful for the development of low-cost bioprocesses of food wasted 
and by-products leading to a transition toward a bio-economy model 
(Sabater et al., 2020). Lactic acid bacteria isolated from sourdough can 
be employed as a biotechnological starter to increase the safety of food 
industry by-products, to provide added value, to design the synthesis of 
functional molecules in fermentable substrates, and to moderate the 
technologies for safer alternative stock (e.g., food waste and 
by-products) incorporation to the main food (e.g., bread) formulas. 
Sourdough is a mixture of flour and water, spontaneously fermented by 
lactic acid bacteria and yeasts, and having acidification and leavening 
capacities (Arora et al., 2021). Sourdough is one of the oldest examples 
of natural starters, mostly used for making leavened baked goods as an 
alternative to baker’s yeast and chemical leavening. Almost thirty years 
of literature accumulated on sourdough show the undoubtedly techno-
logical, sensory, and nutritional advantages compared to the other 

leavening agents. A recent systematic review (Arora et al., 2021) high-
lighted the versatility of sourdoughs to ferment an extraordinary variety 
of cereal, pseudo-cereal, and legume flours, as well as miscellaneous 
agri-food by-products. 

Here, we review the potential of sourdough fermentation to recycle 
milling by-products, brewers’ spent grain, wasted bread, and miscella-
neous plant wastes. Sourdough fermentation should represent a natural, 
low-cost, sustainable, and flexible approach to create added value 
within the food chain system (Fig. 1). 

1.1. Recycling of milling by-products 

Milling is the principal conversion procedure in the cereal industry. 
Dry milling separates by-products such as outer fibrous materials and 
germs from the grain endosperm. Pearling gradually removes seed coat 
(testa and pericarp), aleurone and sub-aleurone layers, and germ to get 
polished grains. Wet milling delivers starch and gluten, leaving steep 
solids, germ, and bran as by-products. It is estimated that circa 13% of all 
food waste comes from these milling procedures, with 30% of the cereal 
weight basis lost (FAO, 2019). While milling is inevitable for processing 
baked goods, most, if not all, milling by-products have high biological 
and nutritional value to be recycled (Cacace et al., 2022). Chemical 
and/or physical extraction, and purification procedures are options to 
separate valuable compounds, but they are quite expensive and 
contribute per se to environmental pollution. On the other hand, the 
direct reuse of untreated milling by-products as food ingredients causes 
poor technological and unpleasant sensory attributes. Sourdough 
fermentation, either spontaneous or driven by an ad hoc microbiota 
(Arora et al., 2021), conjugates the potential to exploit the biological 

Fig. 1. Schematic approach of food waste fermentation.  
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Table 1 
Non-exhaustive list of the main advantages related to the application of spontaneous or selected sourdough fermentation to cereal milling by-products and their related 
products.  

Cereal source Fermentation type/species/strain Effects References 

Bran 
Wheat Levilactobacillus brevis E95612 and Kazachstania 

exigua C81116 with enzymes 
Increase of peptides and free amino acids concentration; increase of 
protein digestibility, soluble fiber concentration. Decrease of pungent 
flavor and bitter taste of fortified bread. 

Coda et al. (2014) 

Lacticaseibacillus rhamnosus (R0011, ATCC 9595, 
and RW-9595M) and Saccharomyces cerevisiae 

Exopolysaccharides synthesis; increase of total phenolic content, 
bioaccessibiity and antioxidant activity. 

Bertsch et al. (2020) 

Lacticaseibacillus rhamnosus 1473 Decrease of phytic acid; increase of soluble arabinoxylans; improvement 
of aroma profile. 

Spaggiari, Ricci, et al. (2020) 

Enterococcus faecalis M2 Increase of soluble dietary fiber, alkylresorcinol, flavonoid and total 
phenol contents, and antioxidant activity 

Mao et al. (2020) 

Spontaneous fermentation Increase of soluble fiber water-extractable arabinoxylans and free ferulic; 
total degradation of phytic acid. 

Manini et al. (2014) 

Commercial baker’s yeast, Lactobacillus 
delbrueckii subsp. bulgaricus and Streptococcus 
thermophilus 

Increase of water extractable arabinoxylans and soluble dietary fiber. 
Reduction of phytic acid content. Improvement of hydration properties 
and flavor. 

Zhao et al. (2017) 

Levilactobacillus brevis E− 95612 and Candida 
humilis E− 96250 with enzymes 

Increase of protein solubilization and in-vitro digestibility. Increase of 
phytase activity and total phenols content. 

Arte et al. (2015) 

Kazachstania exigua VTT C-81116 and 
Levilactobacillus brevis VTT E− 95612 

Increase of free amino acids and phenolic compounds concentration. Savolainen et al. (2014) 

Spontaneous fermentation Increase of folates and phenols bioavailability; pentosan solubilization. Katina et al. (2012) 
Lactobacillus helveticus FAM22155 Reduction of aflatoxin B1 Zhang et al. (2021) 
Companilactobacillus paralimentarius (PB 3, PB 4), 
Lactobacillus helveticus (PB 7), Levilactobacillus 
brevis (PB 12A) 

Increase of radical scavenging activity of wheat-rye bread Mikušová et al. (2013) 

Liquorilactobacillus uvarum, Lacticaseibacillus casei 
and Lacticaseibacillus paracasei 

Lowering content of mycotoxin (below the threshold for human 
consumption) and biogenic amine. 

Bartkiene, Zokaityte, et al., 
2021; Zokaityte et al., 2021 

Pediococcus acidilactici LUHS29 (DSM 20284) Reduction in DON content in the sourdough by 44–69% and a removal of 
15-acetyldeoxynivalenol (15-AcDON), alternariol (AOH), 
deoxynivalenol-3-glucoside (D3G), toxins H-2 and HT-2. 

Zadeike et al. (2021) 

Lactobacillus helveticus Decrease of aflatoxin B1 concentration. Zhang et al. (2021) 
Wheat, 

barley and 
emmer 

Lactobacillus plantarum T6B10 and Weissella 
confusa BAN8 with commercial xylanase 

Increase of peptides and total free amino acids; Increase of total phenols 
and antioxidant activity. Decrease of phytic acid. Improvement of the 
nutritional value of bread. 

Pontonio, Dingeo, et al. (2020) 

Oat Streptococcus thermophilus, Lacticaseibacillus 
rhamnosus, Saccharomyces cerevisiae and Candida 
milleri 

Folic acid fortification. Korhola et al. (2014) 

Kazachstnia humilis Increase of fiber solubility. Degutyte-Fomins et al. (2002) 
Rice Lacticaseibacillus rhamnosus and S. cerevisiae with 

enzymes 
Reduction of the cytotoxicity and inhibition of melanogenesis in B16F1 
melanoma. 

Chung et al. (2009) 

Lactobacillus acidophilus GIM1.731 and 
Lactiplantibacillus plantarum subsp. plantarum GIM 
1.648 with enzymes 

Increase of total phenolic content and antioxidant activity. Liu, Cao, et al. (2017) 

Weissella koreensis DB1 Increase of ornithine and citrulline content. Yeong et al. (2020) 
Increases in total amino acid content and antioxidant activity of bread. 

Lactiplantibacillus plantarum EM High cholesterol removal and strong antimicrobial activity. Moon and Chang (2021) 
Levilactobacillus brevis Decrease of mycotoxin concentration. Anti-aflatoxigenic effect on 

aflatoxin B1. 
Sadeghi et al. (2019) 

Rye Baker’s yeast with enzymes Increase of phenolic compounds in bread. Koistinen et al. (2016) 
Limosilactobacillus reuteri TMW 1.106 Increase of amount and speed production of exopolysaccharides. Kaditzky and Vogel (2008) 
Weissella confusa Exopolysaccarides synthesis. Kajala et al. (2016) 

Germ 
Wheat Spontaneous fermentation Improve technological and sensory properties of doughs and breads. Marti et al. (2014) 

Lactiplantibacillus plantarum subsp. plantarum 
DSM 32248 and Furfurilactobacillus rossiae DSM 
32249 

Slow down lipid oxidation by decreasing the activity of lipase and 
lipoxygenase. Increase of in-vitro protein digestibility, the concentration 
of total phenols and amino acids, phytase and antioxidant activities 
(sourdough and bread). Improve the texture and sensory properties of 
bread. 

Rizzello et al., 2010a,b  

Ex-vivo anti-proliferative effects colon and ovarian carcinoma cell lines. Rizzello et al. (2013) 
Lactiplantibacillus plantarum and Lactobacillus 
acidophilus 

Decrease of the activity of lipase and lipoxygenase and increase in 
antioxidant activity. 

Khosroshahi et al. (2022) 

Saccharomyces cerevisiae 5022 and 
Lactiplantibacillus plantarum 299v 

Increase of peptide and GABA concentrations and scavenging activity. Bayat et al. (2022) 

Lactiplantibacillus plantarum dy-1 Antiproliferative effects and the induction of apoptosis of human HT-29 
colon cancer cells. 

Zhang et al. (2015) 

Latilactobacillus sakei TMW1.22 and 
Fructilactobacillus sanfranciscensis DSM20451T 

Degradation of wheat germ agglutinin. Tovar & Gänzle, 2021 

Saccharomyces cerevisiae Cancer-fighting characteristics: inhibition metastatic tumor 
dissemination and proliferation. 

Boros et al., 2005; Saiko et al., 
2009; Comín-Anduix et al., 
2002 

Spontaneous fermentation Anti-aging activity. Zhao et al. (2021) 
Rice Latilactobacillus sakei Enrich in GABA showing a positive effect on the sleep disturbance of 

mice. 
Mabunga et al. (2015) 

Bran and Germ 

(continued on next page) 
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value and eliminate the negative attributes of recycled bran and germ in 
food preparations (Table 1). 

1.1.1. Cereal bran 
With variations depending on the cereal species, bran is a concen-

trate of dietary fibers (mainly arabinoxylans), phenolic compounds, 
proteins, and amino acids with high biological value, as well as minerals 
and vitamins (e.g., folates) (Chen et al., 2023). Unfortunately, these 
nutritive features has low bio-accessibility for humans, limiting its 
recycling potential. The bound forms of dietary fibers and phenolic 
compounds weaken their bioavailability, digestibility and/or intestinal 
absorption (Holland et al., 2020). The formation of insoluble complexes 
with phytate (Saurabh et al., 2021) and constraints imposed by the cell 
wall matrix limit the digestion and bioavailability of proteins (Alzuwaid 
et al., 2020) and minerals. Furthermore, the direct recycling of bran in 
food preparations might be responsible for poor hygiene (mycotoxins 
and other contaminants), and unpleasant rheology and sensory attri-
butes (Ma et al., 2021). Notwithstanding the potential of other micro-
organisms (Chen et al., 2021; Li et al., 2022; Wu et al., 2022), sourdough 
fermentation prior to recycling into food preparations, alone or in 
combination with enzymes, has the potential to overcome most of these 
nutritional, technological, and sensory constraints (Chen et al., 2021; Li 
et al., 2022; Wang, Li, et al., 2022a,b). 

The ad hoc fermentation with two typical sourdough species, Levi-
lactobacillus brevis, and Kazachstania exigua, in combination with xyla-
nase, endoglucanase, and β-glucanase enzymes, was successful in 
breaking the wheat bran cell wall, thus increasing the content of soluble 
arabinoxylans (Coda et al., 2014). Combining the spontaneous sour-
dough fermentation and the activity of endogenous or microbial en-
zymes, the same effect was found for rye arabinoxylans. After 
fermentation with sourdough, the bran was recycled into the bread 
formula, and volume and texture improved (Courtin & Delcour, 2002). 
Usually, the extractability of arabinoxylans increased during sponta-
neous sourdough backslopping and reached the highest value when the 
microbiota of lactic acid bacteria and yeasts became mature and stable 
(Manini et al., 2014). Soluble dietary fibers almost quadrupled, free 
amino acids increased as the hydrolysis of wheat bran proteins pro-
ceeded, and the content of phytate decreased (Mao et al., 2020). Almost 
the same efficiency was observed under solid-state fermentation of 
wheat bran steered by Lactobacillus delbrueckii subsp. bulgaricus and 
Streptococcus thermophilus together with baker’s yeast (Zhao et al., 
2017). Mixing wheat bran and whey permeate, another agri-food 
by-product, the fermentation with Lacticaseibacillus rhamnosus and 
Saccharomyces cerevisiae allowed the solubilization of fibers and 
increased the level of free phenolic compounds (Bertsch et al., 2020). 

The sourdough fermentation does not affect the total content of 
phenolic compounds but elevates the ratio between free and bounded 
forms. The sourdough fermentation of both peeled and native rye bran 
increased the content of free ferulic acid and other hydroxycinnamic 
acids liberated from the polymeric structure (Katina et al., 2007). It was 
estimated that the spontaneous sourdough fermentation increased the 

content of bioavailable ferulic acid by 82% (Manini et al., 2014). Lactic 
acid bacteria, including those populating the sourdough ecosystem, 
express ferulic acid esterases (Gaur & Gänzle, 2023). Additionally, 
Pediococcus acidilactici was found to significantly increase the contents of 
caffeic acid and mainly gallic acid during fermentation (Zhang et al., 
2023). 

When combined with cell wall degrading enzymes, sourdough spe-
cies such as Lv. brevis and Kazachstania humilis abundantly released free 
phenolic compounds (Arte et al., 2015). Lac. rhamnosus metabolized 
conjugated phenolic compounds and broke the linkage with cell wall 
polysaccharides (Spaggiari, Calani, et al., 2020). The wheat bran 
solid-state fermentation that started with Enterococcus faecalis promoted 
a remarkable free radical scavenging activity, which depended on the 
release of free phenolic compounds (Mao et al., 2020). The sourdough 
fermentation with Lactobacillus acidophilus, Lactiplantibacillus plantarum 
and hydrolyzing enzymes modified the profile of phenolic compounds in 
rice bran, thus increasing the levels of soluble ferulic acid (Liu, Zhang, 
et al., 2017). This processed rice bran was used as an ingredient for 
making functional foods, which, due to the enrichment of free phenolic 
acids and flavonoids, showed remarkable antioxidant activity. 

Although the disruption of the cell wall matrix is the main factor for 
increasing the bio-accessibility of bran proteins (Li et al., 2023), sour-
dough fermentation initially solubilized wheat bran proteins because of 
the activation of endogenous proteases at circa pH 4.0 (Arora et al., 
2021). Following this primary proteolysis, peptidases by sourdough 
lactic acid bacteria were responsible for the liberation of small-size 
peptides and free amino acids (Christensen et al., 2022), which were 
more readily absorbable at intestinal level comparing to native proteins 
(Khubber et al., 2022). Processing rye bran with enzymes and sourdough 
fermentation prior to recycling into bread making led to high in-vitro 
protein digestibility (Nordlund et al., 2013). Sourdough proteolysis also 
favored the release of biogenic peptides (Pontonio, Verni, et al., 2020; 
Verni, Verardo, & Rizzello, 2019) and degraded antinutritional factors 
such as trypsin inhibitors and phytic acid (Patterson et al., 2017; Pon-
tonio, Dingeo, et al., 2020). Pre-fermented wheat bran was used to 
enhance the nutritional profile of bread. Compared to nonfermented 
bran, the in-vitro protein digestibility increased by 40%, and enriched 
breads showed pleasant sensory and textural attributes (Pontonio, 
Verni, et al., 2020). The sourdough fermentation with an ad hoc 
microbiota was also efficient for the treatment of rice bran. Weissella 
koreensis enriched rice bran with ornithine, which is a healthcare sup-
plement to activate the immune system and liver function (Yeong et al., 
2020). Water-soluble extracts of sourdough fermented rice bran had an 
anti-photoaging effect on human skin fibroblasts cultures (Seo et al., 
2010). The rice bran co-fermented with Lac. rhamnosus and S. cerevisiae 
decreased the cytotoxicity and inhibited melanogenesis in B16F1 mel-
anoma through the downregulation of microphthalmia-associated 
transcription factors (Chung et al., 2009). Rice bran fermented with 
Lp. plantarum attenuated the levels of cholesterol (45–68%) and exerted 
inhibitory activities towards foodborne pathogenic bacteria and spoiling 
fungi (Moon & Chang, 2021). 

Table 1 (continued ) 

Cereal source Fermentation type/species/strain Effects References 

Wheat Lactiplantibacillus plantarum subsp. plantarum 
DSM 32248 and Furfurilactobacillus rossiae DSM 
32249 

Increase of fiber content, protein digestibility and nutritional indexes of 
fortified bread. Decrease of glycemic index. 

Pontonio et al. (2017) 

Maize Lactiplantibacillus plantarum subsp. plantarum 
T6B10 and Weissella confusa BAN8 

Increase of the concentrations of free amino acids and peptides, the 
antioxidant activity. Degradation of phytate. 

Pontonio et al. (2019) 

Improve content of dietary fibers and proteins, the protein digestibility, 
and the starch hydrolysis index in bread 

Lactobacillus sakei MI401 and Pediococcus 
acidilactici PA-2 

Improve technological properties of albumins and globulins and increase 
the digestibility and free radical scavenging activity of prolamins. 
Increase of free amino acids concentration and antioxidant activity. 

Zadeike et al. (2022) 

Rye/wheat Kazachstania unispora and Kazachstania servazii 
and Latilactobacillus curvatus 

Improve the complexity of the volatile molecules. Increase in short chain 
fatty acids, antioxidant activity, total phenol content, bioactive peptides. 
Decrease in phytic acid content and an increase in prebiotic activity. 

Siroli et al. (2022)  
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Cereal endogenous or microbial phytases are responsible for the 
hydrolysis of phytic acid in cereal bran. Wheat endogenous phytases are 
almost inactive at neutral pH, but sourdough acidification promotes 
their activation with the consequent decrease of the phytate content and 
the increase of protein and mineral bioavailability (Ameur et al., 2022). 
Phytases by several sourdough lactic acid bacteria and yeasts were 
characterized. Lac. rhamnosus had the capability to degrade phytate in 
wheat bran (Spaggiari, Ricci, et al., 2020), and Lp. plantarum and 
Weissella confusa decreased its level by 25%–60% when used as starters 
for wheat bran fermentation (Moon & Chang, 2021; Pontonio, Dingeo, 
et al., 2020). Also, the fermentation of rice bran with a functional strain 
of Lp. plantarum EM decreased the content of phytic acid by 50% (Moon 
& Chang, 2021). The spontaneous sourdough fermentation of bran 
increased the level of folates by over 100% and the highest detectable 
levels coincided with the highest cell density of autochthonous lactic 
acid bacteria and yeasts. Overall, the increase of folate was mainly due 
to synthesis by yeasts, while the liberation by lactic acid bacteria was 
strain-dependent. The ad hoc substitution of folate-consuming lactic acid 
bacteria with folate-synthesizing strains significantly increased the 
vitamin content in sourdough breads enriched with pre-fermented and 
recycled bran (Mendez-Vilas, 2007). The capability of yeasts to syn-
thesize folate from oat bran was species dependent, with S. cerevisiae, 
Pseudozyma sp., Rhodotorula glutinis and Kluyveromyces marxianus lead-
ing to the highest concentrations (Korhola et al., 2014). Intending to 
increase the folate concentration in bran processing, sourdough 
fermentation with yeasts was always the most efficient option. Oat bran 
fermented with St. thermophilus or Lac. rhamnosus, and S. cerevisiae and 
K. humilis led to a folate concentration of 120 ng/g. The intake of 100 g 
of fermented oat bran supplied 15% of the recommended daily dose of 
folate (Korhola et al., 2014). The enrichment of rye and wheat brans 
with exopolysaccharides (EPS) is another option with multiple out-
comes. Sourdoughs made with ad hoc lactic acid bacteria, for instance 
Limosilactobacillus reuteri (Kaditzky & Vogel, 2008) or W. confusa, was 
the most efficient choice. Usually, the in-situ production of EPS in rye 
bran reached the concentration of 2–3% on dry matter (Kajala et al., 
2016) and represented the way to improve the structure-forming capa-
bility of bran, making it a recyclable ingredient with prebiotic and 
in-vitro antitumor and immunomodulating activities (Korcz & Varga, 
2021). 

1.1.2. Wheat germ 
The annual world deposit of wheat germ is estimated to be circa 

25,000,000 tons, which undoubtedly deserves valorization as it corre-
sponds to the most nutritious part of the grain (Rizzello, Nionelli, Coda, 
De Angelis, & Gobbetti, 2010). The fast development of rancidity 
because of the presence of unsaturated fats, lipoxygenases and lipases 
severely limits the use of germ in baked goods processing (Li et al., 
2016). Nowadays, sourdough fermentation is the most efficient solution 
to stabilize and improve the nutritional attributes of germ (Khosroshahi 
et al., 2022). 

Lowering the value of pH by sourdough fermentation inactivates 
lipase and lipoxygenase enzymes (Marti et al., 2014; Rizzello, Nionelli, 
Coda, Di Cagno, & Gobbetti, 2010). Compared to nonfermented wheat 
germ, the sourdough fermentation with Lp. plantarum and Furfur-
ilactobacillus rossiae almost inhibited the synthesis of volatile compounds 
from lipid oxidation during 40 days of storage (Rizzello, Nionelli, Coda, 
Di Cagno, & Gobbetti, 2010). Other sourdough starters were proven to 
behave similarly (Khosroshahi et al., 2022). In summary, the sourdough 
fermentation abolished the technological obstacles to incorporating 
wheat germ into the bread formula. Improved in-vitro protein di-
gestibility, decreased phytase activity, and extended shelf life were the 
main nutritional benefits derived from the germ supplementation into 
wheat bread formula (Rizzello, Nionelli, Coda, Di Cagno, & Gobbetti, 
2010). The sourdough fermentation also decreased the content of 
anti-nutritional factors such as phytic acid and raffinose and raised the 
content of free amino acids to 50%, mainly lysine (Lys) and γ-amino 

butyric acid (GABA), a non-protein amino acid with functional features 
(Bayat et al., 2022; Rizzello, Nionelli, Coda, De Angelis, & Gobbetti, 
2010; Rizzello, Nionelli, Coda, Di Cagno, & Gobbetti, 2010). One of the 
most promising achievements for sourdough fermented wheat germ was 
represented by the cytotoxic activity towards cancer cell lines. Wheat 
germ fermented with Lp. plantarum dy-1 inhibited the proliferation of 
HT-29 cells via apoptosis suggesting its use as a potential anticarcino-
genic (Zhang et al., 2015). Avemar®, a commercial product made of 
wheat germ fermented with S. cerevisiae (Boros et al., 2005; Saiko et al., 
2009), showed in-vitro anticancer and autoimmune properties on 
various human cancer cell lines (Comín-Anduix et al., 2002). 
Two-methoxy benzoquinone and 2,6-dimethoxybenzoquinone are 
naturally present in wheat germ but in a glycosylated and non-active 
form. After activation through β-glucosidase activity of Lp. plantarum 
and Fu. rossiae, they exerted ex-vivo anti-proliferative effects on colon 
and ovarian carcinoma cell lines (Rizzello et al., 2013). Based on the 
metabolism of thiols, sourdough fermentation decreased the content of 
agglutinins in wheat germ, which is one of the triggering factors for 
non-celiac wheat sensitivity (Tovar & Gänzle, 2021). A sourdough made 
combining wheat germ and bran was recycled and used in the bread 
formula (Pontonio et al., 2017). The bread was enriched in dietary fi-
bers, free amino acids, and phenolic compounds, and as shown by 
in-vitro and in-vivo assays, it was classified as a low glycemic index food. 
After fermentation with Latilactobacillus sakei, the rice germ fermented 
was enriched in GABA, showing a positive effect on the sleep distur-
bance of mice (Mabunga et al., 2015). Lp. plantarum and W. confusa were 
used to ferment raw maize or heat-treated germ and bran (Pontonio 
et al., 2019). The concentrations of free amino acids and peptides, the 
antioxidant activity, and the phytate degradation increased during 
sourdough fermentation. Incorporation of these fermented maize 
by-products in bread positively affected the content of dietary fibers and 
proteins, the protein digestibility, and the starch hydrolysis index 
(Pontonio et al., 2019). 

1.1.3. Mycotoxins degradation 
Compared to whole grains, by-products from cereal milling suffer 

from higher levels of mycotoxin contamination (Hoffmans et al., 2022). 
Although using implemented good practices, the bio-accumulation of 
mycotoxins in milling by-products is almost inevitable, especially under 
suboptimal storage conditions (Khodaei et al., 2021). Decontamination 
before recycling is a priority. Available options include physical, 
chemical, and biological methods, with the latter attracting considerable 
interest (Piotrowska, 2021). Although the effect of sourdough fermen-
tation is somewhat controversial, the degradation of aflatoxins, fumo-
nisins, ochratoxins, deoxynivalenol, and zearalenone was demonstrated 
with various species of lactic acid bacteria (Bartkiene, Zokaityte, et al., 
2021; Muhialdin et al., 2020; Sadeghi et al., 2019; Zokaityte et al., 
2021). The mechanism for mycotoxin decontamination occurs through 
the adhesion of significant amounts of mycotoxins to microbial cells 
and/or the degradation of mycotoxins into non-toxic metabolites 
(Muhialdin et al., 2020; Piotrowska, 2021). 

Extrusion combined with the fermentation by Lacticaseibacillus casei 
and Lacticaseibacillus paracasei, or Liquorilactobacillus uvarum reduced 
the levels of several mycotoxins in wheat bran to levels below the 
threshold for human consumption (Bartkiene, Zokaityte, et al., 2021; 
Zokaityte et al., 2021). In addition, the sourdough fermentation with Lp. 
plantarum and P. acidilactici alone decreased the mycotoxin contamina-
tion of whole wheat flour and rye by 10%–40% (Pontonio et al., 2021). 
Lv. brevis was capable of decreasing the contamination by aflatoxins B1, 
B2, G1, and G2 (Sadeghi et al., 2019), and P. acidilactici decontaminated 
deoxynivalenol (44–69%), and removed 15-acetyldeoxynivalenol, 
alternariol, deoxynivalenol-3-glucoside, and toxins H-2 and HT-2 
(Zadeike et al., 2021). Usually, the highest level of decontamination 
was observed during long-time (48 h) sourdough fermentation with 
mixed sourdough starters (Zadeike et al., 2021). Under solid-state 
fermentation of wheat bran, Lactobacillus helveticus synthesized 
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enzymes capable of degrading aflatoxin B1 into four low-toxin de-
rivatives without a lactone ring structure (Zhang et al., 2021). 

1.2. Brewers’ spent grain 

Malting for making beer leaves brewers’ spent grains (BSG), whose 
elevated organic load is critical for environmental pollution (Teixeira 
et al., 2020). The recycling of BSG has gained attention due to biogenic 
components such as alkaloids, plant growth factors, food-grade pig-
ments, and phenolic compounds (Verni, Pontonio, et al., 2020). BSG is 
also rich in cellulose and arabinoxylans and contains proteins up to 20%, 
particularly rich in lysine (Verni, Pontonio, et al., 2020). The high 
moisture content (circa 80%), along with the richness in polysaccharides 
and proteins, make BSG highly prone to microbial contamination with a 
short lifespan (7–10 days) (Kavalopoulos et al., 2021). Various conser-
vative treatments of BSG have been assessed (Lynch et al., 2016), and 
among these, sourdough fermentation was one of the most promising 
(Fig. 2). 

The sourdough fermentation with lactic acid bacteria enriched BSG 
with dextran and oligosaccharides (Koirala et al., 2021). The supple-
mentation with sucrose (4% w/w) and fermentation with Leuconostoc 
pseudomesenteroides and W. confusa yielded 11 g/kg of dextran, which 
improved the BSG viscosity and taste. This fermented BSG was used as 

an ingredient for wheat bread formula. Compared to control bread 
without addition, the bread enriched with BSG had a higher content of 
proteins and fibers, and positively influenced the gut microbiota func-
tionality. Along with an increase of several essential amino acids, a 
consistent increase of GABA was also observed during the simulated 
digestion (Koirala et al., 2022). BSG was also used for making a beverage 
fermented by Lp. plantarum. The beverage had antioxidant potential 
because of the high content of phenols and flavonoids, which were 
released through acidification and microbial metabolism (Gupta et al., 
2013). The combination of xylanase and sourdough fermentation with 
Lp. plantarum released free phenolic compounds and liberated encrypted 
biogenic peptides with antioxidant activity and protective effect toward 
oxidative stress on human keratinocytes (Verni, Pontonio, et al., 2020). 
Given these attributes, the bioprocessed BSG was used for making pasta. 
Compared to pasta containing nonfermented BSG, the enriched pasta 
had higher protective effects against oxidative stress caused by human 
colon carcinoma cells under simulated gastro-intestinal digestion 
(Schettino et al., 2021). Positive effects of fermented BSG were also 
observed when used as an ingredient in bread formula. The rheology and 
sensory attributes of the enriched bread improved, and the nutritional 
profile was optimal because of the supplementation with proteins, fi-
bers, and essential amino acids (Waters et al., 2012). The enrichment of 
bread with spontaneously sourdough-fermented BSG also decreased the 

Fig. 2. Main advantages of fermentation on brewers’ spent grains and wasted bread.  
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phytate content (Ktenioudaki et al., 2015). 
BSG was also used as a solid-state substrate to cultivate and preserve 

(up to 10 weeks at circa 6 Log cfu/g) sourdough cultures. The fermented 
BSG was used (10% p/p) in an experimental baking trial leading to 
sourdough breads characterized by optimal organic acids ratio and 
acceptability according to a consumer-based study (Vriesekoop et al., 
2021). 

1.3. Wasted bread 

On a global scale, bread is one of the major wasted foods. Industrial 
waste is generated because of substandard products, crust removal for 
sandwich production, and unsold bread at retail (Verni, Rizzello, & 
Coda, 2019). In most cases, the huge amount of wasted bread is still 
under safe conditions for human consumption. Indeed, innovative, and 
sustainable recycling solutions must focus on keeping wasted bread - 
within the food chain. Recycling wasted bread through sourdough 
fermentation has shown an undoubted potential. 

Recycling of wasted bread to prepare a culture medium (wasted 
bread medium, WBM) for the cultivation of lactic acid bacteria was 
considered (Verni, Minisci, et al., 2020). The protocol included bread 
(20%) homogenization with water and hydrolysis with amylases. Its 
suitability as a valid alternative to common synthetic media was 
demonstrated for almost all sourdough lactic acid bacteria reaching the 
most common cell densities after cultivation. The sourdough was also 
proposed to ferment wasted bread and recycle it as an ingredient for 
bread making. Sourdough was made from wasted bread crumbs. Several 
lactic acid bacteria demonstrated the capability of using the bread 
crumb as a fermentation substrate. Lp. plantarum and P. acidilactici were 
capable of a long-time (48–96 h) fermentation without the genesis of 
off-flavors (Gélinas et al., 1999). A sourdough made with wasted bread 
was used as an aroma and flavor enhancer for making bread. The for-
mula included 50% whole wheat bread crumb and fermentation with Lp. 
plantarum. The synthesis of lactic and acetic acids resembled that of the 
traditional sourdough fermentation, and a positive effect on glycemic 
index and insulinemic responses was hypothesized (Poutanen et al., 
2009). Bread is mainly subjected to fungal spoilage during its shelf life. 
Salts of propionic and sorbic acids and ethanol are the most common 
chemical preservatives to extend the shelf life, although their negative 
consumer perception and the healthy recommendations to markedly 
decrease their use. A protocol to synthesize bioactive peptides from 
wasted bread was standardized (Nionelli et al., 2020). After hydrolysis 
by microbial proteases and fermentation with Lv. brevis, the wasted 
bread showed a broad inhibitory spectrum against some of the most 
diffuse fungal-contaminating species. Nine antifungal peptides, 
encrypted in wheat protein sequences, were released during sourdough 
fermentation and identified as the main responsible for fungal inhibi-
tion. The shelf-life of the bread was extended up to 10 days (Nionelli 
et al., 2020). The direct recycling of wasted bread negatively affects the 
specific volume and softness of the newly manufactured bread. Gelati-
nized starch and denatured proteins are not reassembled into a new 
gluten network (Immonen et al., 2020). The hydrolysis of gelatinized 
starch improved the viscoelastic properties of wasted bread (Immonen 
et al., 2021), but the most suitable option is the use of sourdough lactic 
acid bacteria capable of synthesizing EPS (dextran and β-glucan) in-situ 
(Immonen et al., 2020). The dextran synthesis occurring during sour-
dough fermentation of wasted bread compensated for the adverse effect 
of the recycled bread increasing the specific volume and decreasing the 
crumb hardness. EPS synthesized by Weissella species also exerted 
antioxidant and prebiotic activities (Kavitate et al., 2020). A blend of 
wasted bread and wheat bran was used as the substrate to synthesize 
GABA (Verni et al., 2022). Lp plantarum yielded the highest content of 
GABA (circa 800 mg/kg). This fermented wasted bread/bran slurry was 
used as an ingredient for the manufacture of GABA-enriched bread. In 
conclusion, tailored sourdough fermentations with selected lactic acid 
bacteria are key options for recycling wasted bread, gaining suitable 

technological features, and creating added functional value along the 
food chain. 

When wasted bread is not edible and recycling into the food chain 
implies microbiological risks (e.g., presence of mycotoxins), alternative 
biotechnological solutions are exploited. It is known that lactic acid 
bacteria act as plant growth-promoting microorganisms (PGPM), indi-
rectly favoring nutrient acquisition in the alkaline soils characterizing 
the Mediterranean area. Besides, lactic acid bacteria act as biocontrol 
agents, improving the ability of the host plant to withstand biotic and 
abiotic stress or producing compounds that directly stimulate plant 
growth (Lamont et al., 2017). A bioprocessed wasted bread, which was 
obtained by enzyme treatments coupled with sourdough fermentation 
was used as an amendment in pot trials. The aim was to evaluate the 
modification of the soil physicochemical properties and the plant 
growth-promoting activity using escarole (Cichorium endivia var. Cuar-
tana) as the indicator crop (Cacace et al., 2022). Compared to non-
amended soils, the supplementation with sourdough fermented wasted 
bread raised the content of soil organic carbon up to 37% and total ni-
trogen up to 40%. In addition, the lower pH and the higher organic acid 
content favored a higher availability of Mn, Fe, and Cu. Escaroles 
showed improved growth with a higher number of leaves. 

Recently, a biotechnological protocol for recycling bread waste at 
the industrial level has been set up and patented (Ampollini et al., 2023). 
The approach includes the preliminary drying and fine milling of bread 
resulting from sandwich production (bread crust). A slurry was obtained 
with waste bread powder and water, and food-grade proteases were 
added to the semiliquid formulation to promote fermentation. Lactic 
acid bacteria (Lp. plantarum) and yeast (S. cerevisiae) strains were 
selected for sourdough fermentation in automatic fermenters. It was 
demonstrated that waste bread sourdough can be added up to 50% of the 
final weight of bread dough without negatively affecting the textural 
properties of the bread. Sensory properties were moreover those typical 
of a sourdough bread. 

1.4. Miscellaneous plant wastes 

Miscellaneous plant by-products and wastes comprise a very het-
erogeneous set of matrices (e.g., fruit and vegetables hulling and peeling 
wastes, pomaces, food surplus) sharing an unquestionable nutritional 
value. Nevertheless, they are characterized by sources heterogeneity, 
variation of their chemical composition, and microbial instability. Being 
rich in carbohydrates, organic acids, mineral salts, and vitamins, these 
compounds can be utilized as substrates for contaminant (either path-
ogenic or not) microorganisms. Furthermore, the high fiber and 
phenolic contents can negatively affect the sensory profile and techno-
logical properties of fortified foods (Kosseva, 2020). The exploitation of 
their potential needs to overcome these weaknesses, either through 
technological treatments or exploiting fermentation processes, with the 
latter proven to be an effective, sustainable, and mild approach. 

Apples are among the most widely processed fruits, which inevitably 
generate large amounts of residues. Such availability together with high 
contents of fibers and phytochemicals make these by-products and 
wastes ideal ingredients to enrich the wheat bread formula. Fermenta-
tion of apple by-products with a binary culture of Weissella cibaria and 
S. cerevisiae was proposed for recycling in breadmaking at a rate of 
5–10% (w/w of flour) (Cantatore et al., 2019). The fruit and vegetable 
by-products addition in baked goods causes low acceptability because of 
the poor sensory and rheological attributes. The dilution of gluten with 
fruit or vegetable by-products implies a decreased capability of the 
dough to retain gas, which leads to low volume and high hardness. 
Fortification with fruit or vegetable by-products does not exceed 10% 
(w/w of flour) (Gómez & Martinez, 2018). The formula enriched with 
5% apple by-products fermented with sourdough improved the wheat 
dough stability and water absorption and did not interfere with the 
bread specific volume and color (Cantatore et al., 2019). The sourdough 
fermentation maximized the hydration properties of apple by-products 
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because of the synthesis of EPS, and the partial breakdown of insoluble 
fibers, which resulted in an increased porosity and surface area. 
Enrichment with sourdough-fermented apple by-products also provided 
bio-accessible polyphenols (Tlais et al., 2021). In addition, apple 
pomace was used to fortify sourdough started with a selected culture of 
Fructilactobacillus florum DSM 22689 and baker’s yeast (single and 
co-culture). The sourdough nutritional value was positively affected by 
the incorporation mainly thanks to the presence of valuable compounds 
like organic acids and fibers. Additionally, the abundance of glucose and 
fructose in apple pomace led to higher microbial viability and growth 
(Martău et al., 2021). Research efforts also focused on the potential of 
plant by-products as sources of antimicrobial compounds to extend the 
bread shelf life. By-products having relevant protein contents represent 
ideal substrates for the biosynthesis of antimicrobial peptides. The 
sourdough fermentation of palm kernel cake with Lc. casei favored the 
accumulation of antifungal peptides, which, once added to the bread 
formula, were effective in counteracting the spoilage up for to 10 days 
(Asri et al., 2020). Another constraint to recycle non-conventional in-
gredients is their eventual association with increased levels of acryl-
amide during baking (Bartkiene, Bartkevics, et al., 2021). Oat has a 
higher potential for acrylamide formation than wheat because of the 
higher levels of soluble carbohydrates and free asparagine. Sourdough 
fermentation of oat by-products prevented acrylamide accumulation in 
baked goods (Bartkiene, Bartkevics, et al., 2021). Solid-state fermenta-
tion and the subsequent recycling as ingredients for breadmaking 
demonstrated how agri-food by-products also served to deliver 

microbial enzymes (e.g., feruloyl esterase, xylanase) with appreciable 
properties (dos Santos Costa et al., 2021). Date seed flour was proposed 
as an innovative ingredient for sourdough breadmaking (Ameur et al., 
2022). Autochthonous lactic acid bacteria and yeasts were isolated from 
date seeds and selected based on various technological criteria. A mixed 
starter, comprising Leuconostoc mesenteroides, Lp. plantarum and 
S. cerevisiae, was used to prepare type I sourdough after consecutive 
refreshments. An aliquot of durum wheat flour was replaced by date 
seed flour. The sourdough fermented bread showed an increased radical 
scavenging activity because of the consistent release of free phenolic 
compounds, while the perceived bitterness and astringency diminished 
due to microbial degradation of tannins. Being an economic and sus-
tainable alternative to animal-based proteins, rapeseed proteins isolated 
from defatted rapeseed press cake have the potential for food applica-
tions. Rapeseed protein concentrations higher than 5% in wheat 
breadmaking led to detrimental effects on textural and sensory attri-
butes. Rapeseed proteins became suitable ingredients for making sour-
dough bread when fermented with W. confusa, which synthesized 
dextran in-situ. Compared to control bread, the sourdough fermentation 
improved the in-vitro protein digestibility, enriched the free amino acid 
profile mainly with lysine, methionine, and isoleucine, and guaranteed 
suitable specific volume and low crumb hardness (Wang, Li, et al., 
2022a,b). 

1.4.1. Lactic acid bacteria glycosyl hydrolases 
One of the main secrets beyond the sourdough fermentation as 

Fig. 3. Schematic reconstruction of putative pathways characterizing the fermentation (30 ◦C for 24 h) of a brewer spent grain -based medium by Leuconostoc 
pseudomesenterides and Lactiplantibacillus plantarum strains. Red colored pathways were unique to Leuc. pseudomesenteroides, while blue colored pathways were unique 
to Lp. plantarum. Black colored pathways were present in both species. Genes that were over-expressed compared to growth in standard reference medium (MRS 
broth) are shown in green (Acin-Albiac et al., 2022). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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valuable biotechnology to recycle plant by-products and wastes con-
cerns the hydrolysis of complex polymers (e.g. arabinoxylans, cellulose, 
and hemicellulose fraction) and the bio-accessibility of phenolic com-
pounds. Sourdough lactic acid bacteria have the aptitude to metabolize 
diversified carbon sources. This aptitude relies on key metabolic path-
ways mediated by an extensive set of glycosyl hydrolases. These en-
zymes undertake the ambivalent role of releasing a wide range of 
phenolic compounds from glycosylated precursors and degrading the 
resulting sugar moiety. Glycosyl hydrolases also have the potential to 
remove undesired bitterness or release aroma compounds. Encoding 
genes for glycosyl hydrolases are widespread among lactic acid bacteria. 
Phospho-β-glucosidase genes show a high degree of redundancy. Phos-
pho-β-glucosidases catalyze the degradation of phosphorylated gluco-
sides and fibers-related disaccharides (e.g., cellobiose and gentiobiose), 
which are activated through the phosphoenolpyruvate (PEP)-dependent 
carbohydrate phosphotransferase systems (PEP-PTS) (Acin-Albiac et al., 
2021). Recently, the complete framework describing the metabolism 
drift of Lp. plantarum and Leuc. pseudomesenteroides caused by the 
lignocellulosic BSG was provided by implementing molecular and phe-
nomics approaches (Fig. 3) (Acin-Albiac et al., 2021, 2022). As 
confirmed by gene overexpression, Lp. plantarum preferred arabinose 
among pentosans, while Leuc. pseudomesenteroides mainly uses xylose. 
The phenotype switching towards galactose metabolism suffered the 
greatest fluctuation in Lp. plantarum. All lactic acid bacteria strains 
utilized sucrose more intensively and its plant-derived isomers. 
Sucrose-6-phosphate hydrolases activity in Leuc. pseudomesenteroides 
likely mediated the increased consumption of raffinose. The increased 
levels of some phenolic compounds suggested the involvement of 
6-phospho-β-glucosidases in β-glucosides degradation. Expression of 
genes encoding β-glucoside/cellobiose-specific EII complexes and phe-
notyping highlighted an increased metabolism for cellobiose (Aci-
n-Albiac et al., 2022). The glycoside hydrolase group includes 
fructan-β-fructosidases and β-fructofuranosidases, which undertake the 
hydrolysis of inulin and fructooligosaccharides, and β-D-Xylosidases and 
α-L-arabinofuranosidases, which are responsible for xylooligo-
saccharides and arabino-xylooligosaccharides utilization by several 
lactobacilli (Petrova & Petrov, 2017). 

2. Conclusion 

Valorizing food waste, mainly using sustainable and biological ap-
proaches, i.e., either spontaneous or selected sourdough fermentation, is 
a tool for reducing its environmental and economic burden and tran-
sitioning to a circular economy. Fermentation with lactic acid bacteria 
and/or yeasts has been demonstrated to be an optimal approach to 
improve the nutritional and functional features (e.g., improved in-vitro 
protein digestibility, antioxidant activity) of several plant-derived food 
waste and by-products, and to overcome the drawbacks (e.g., decreased 
concentration of anti-nutritional compounds, improved textural prop-
erties) which might impede their re-use in food production. Aiming at 
facing the advancement of large-scale fermentations and the need for the 
implementation and diversification of available products on the market, 
the use of well-adapted and ad hoc selected microorganisms for indus-
trial processing is of main importance. Also given the differences among 
the food waste composition, several studies have involved the selection 
of strains with various and specific functional properties to be used in 
tailored fermentation inspired to the sourdough biotechnology. The ef-
fects of this approach, suitable for significantly improving the sustain-
ability of several food chains and the quality of the products, depend on 
the presence, growth, and metabolic activity of specific microorganisms, 
therefore requiring the accurate set-up and optimization of tailored 
fermentation processes. 
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Koirala, P., Maina, N. H., Nihtilä, H., Katina, K., & Coda, R. (2021). Brewers’ spent grain 
as substrate for dextran biosynthesis by Leuconostoc pseudomesenteroides 
DSM20193 and Weissella confusa A16. Microbial Cell Factories, 20(1), 1–13. https:// 
doi.org/10.1186/s12934-021-01515-4 

Koistinen, V. M., Katina, K., Nordlund, E., Poutanen, K., & Hanhineva, K. (2016). 
Changes in the phytochemical profile of rye bran induced by enzymatic 
bioprocessing and sourdough fermentation. Food Research International, 89, 
1106–1115. https://doi.org/10.1016/j.foodres.2016.06.027 

Korcz, E., & Varga, L. (2021). Exopolysaccharides from lactic acid bacteria: Techno- 
functional application in the food industry. Trends in Food Science & Technology, 110, 
375–384. https://doi.org/10.1016/j.tifs.2021.02.014 

Korhola, M., Hakonen, R., Juuti, K., Edelmann, M., Kariluoto, S., Nyström, L., Sontag- 
Strohm, T., & Piironen, V. (2014). Production of folate in oat bran fermentation by 
yeasts isolated from barley and diverse foods. Journal of Applied Microbiology, 117, 
679–689. https://doi.org/10.1111/jam.12564 

Kosseva, M. R. (2020). Sources, characteristics and treatment of plant-based food waste. 
In M. R. Kosseva, & C. Webb (Eds.), Food industry wastes (pp. 37–66). Academic 
Press.  

Ktenioudaki, A., Alvarez-Jubete, L., Smyth, T. J., Kilcawley, K., Rai, D. K., & Gallagher, E. 
(2015). Application of bioprocessing techniques (sourdough fermentation and 
technological aids) for brewer’s spent grain breads. Food Research International, 73, 
107–116. https://doi.org/10.1016/j.foodres.2015.03.008 
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