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Copula models are flexible tools to represent complex structures of dependence for 
multivariate random variables. According to Sklar’s theorem, any multidimensional abso-
lutely continuous distribution function can be uniquely represented as a copula, i.e. a joint 
cumulative distribution function on the unit hypercube with uniform marginals, which 
captures the dependence structure among the vector components. In real data applications, 
the interest of the analyses often lies on specific functionals of the dependence, which 
quantify aspects of it in a few numerical values. A broad literature exists on such 
functionals, however extensions to include covariates are still limited. This is mainly due 
to the lack of unbiased estimators of the conditional copula, especially when one does 
not have enough information to select the copula model. Several Bayesian methods to 
approximate the posterior distribution of functionals of the dependence varying according 
covariates are presented and compared; the main advantage of the investigated methods is 
that they use nonparametric models, avoiding the selection of the copula, which is usually 
a delicate aspect of copula modelling. These methods are compared in simulation studies 
and in two realistic applications, from civil engineering and astrophysics.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Copula models have received an increasing interest since the work of Sklar (1959). Sklar’s theorem is a probability result 
which states that every multivariate cumulative distribution function (CDF, hereafter) can be represented as a copula, i.e. 
a joint cumulative distribution function on the unit hypercube [0, 1]d with uniform marginals, capturing the dependence 
structure among the components of the random vector. This result is very important in statistical modelling, especially 
when it is reasonable and useful to separately model the marginal distributions and the potentially complex multivariate 
dependence structure, or when the degree of information about the marginals and their dependencies is different, since, in 
general, more information can be gathered on marginal aspects of the problem at hand.

Sklar’s theorem proves that every multivariate distribution function FY(·) of a random variable Y = (Y1, . . . , Yd) can be 
represented by a copula C(·) : [0, 1]d → [0, 1] depending on d univariate marginal distributions

FY(y1, . . . , yd) = C (F1(y1|θ1), . . . , Fd(yd|θd) | ψ) , (1.1)
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where F j(·) is the marginal CDF of Y j , depending on the parameter vector θ j , for j = 1, . . . , d, and ψ is the copula parameter 
vector. This representation is unique if FY is continuous. In the case of continuous random variables, Equation (1.1) admits 
the following density, which shows how the copula absorbs all the dependence of the model

fY(y1, . . . , yd) = c(F1(y1|θ1), . . . , Fd(yd|θd) | ψ) · f1(y1|θ1) · . . . · fd(yd|θd),

where c(·) is the density of the copula C(·). In this work, we will focus on the bivariate case fY(y1, y2), however all the 
methods can be easily extended to the d-dimensional case. We refer the reader to Nelsen (2007) for a detailed descrip-
tion of copula theory and methods. Therefore, the density of the d-dimensional absolutely continuous distribution can be 
represented as the product of the marginal densities times the copula density applied to the marginal distribution functions.

Patton (2006) extends the definition of copula in the presence of covariates, to describe situations where the marginals 
and their dependence structure are influenced by the values of other variables, that is:

FY|X (y1, . . . , yd|X = x) = CX
(

F1|X(y1|X = X), . . . , Fd|X(yd|X = x) |X = x
)
,

where X ∈Rp represents a vector of covariates, C X (·) is the conditional copula, which may potentially vary with X, and F j|X
is the conditional CDF of Y j , for j = 1, . . . , d. Here and in the following, the dependence on the parameters (ψ, θ1, . . . , θd) is 
left implicit in the notation of the CDFs. The introduction of covariates may be useful in many applications where the depen-
dence structure varies over the space of the observations (Acar et al., 2011). Moreover, conditional copulas are the building 
blocks of vine copulas (Czado, 2010), where situations of dependence among the variables on which copulas are conditioned 
on are common in real applications; in these cases, a “Simplifying Assumption” (Czado, 2019) is often introduced in order 
to make statistical analysis easier. According to the Simplifying Assumption, the conditional copula is assumed constant, as 
in Gijbels et al. (2015). Several contributions to the literature aim at exploring and testing violations of this assumption, 
such as in Haff et al. (2010), Acar et al. (2012), Acar et al. (2013), Killiches et al. (2016), Killiches et al. (2017) and Kurz 
and Spanhel (2017). However, Levi and Craiu (2018) shows that violations of the Simplifying Assumption may be due to the 
omission of important covariates, rather than to a real dependence on the included covariates. This result suggests that, in 
practical situations, it is safer to assume the potential dependence of the copula on the values of the available covariates.

A standard approach to model the influence of covariates on copulas is based on a parametric model which assumes a 
functional relationship between copula parameters and covariates, such that CX(·) = Cψ(X)(·), where ψ ∈ � is the copula 
parameter, assumed to be a function of the covariates X, supposing for simplicity that the copula depends on one parameter. 
In this setting, the parameter is associated to the covariates through a link function ζ : � →R, such that ψ(X) = ζ−1(η(X)), 
where η(·) is a real-valued calibration function. The calibration function may assume different forms. A parametric form 
is adopted, for example, by Genest et al. (1995), while a nonparametric form is suggested by Acar et al. (2011), which 
employs a local polynomial-based approach, and Craiu and Sabeti (2012), Vatter and Chavez-Demoulin (2015), Klein and 
Kneib (2016) and Stander et al. (2019), which propose additive conditional copula regression specifications with predictors 
defined using splines.

Different approaches are considered in the literature for the estimation of conditional copulas. Abegaz et al. (2012) and 
Gijbels et al. (2012) have proposed semiparametric and nonparametric methodologies within the frequentist framework to 
model the influence on copulas of covariates taking values in complex spaces; in both papers the authors consider the 
statistical properties of conditional copula estimators, establishing consistency and asymptotic normality results.

In the Bayesian framework, Dalla Valle et al. (2018) has proposed to nonparametrically estimate the conditional copula 
density in the bivariate case, introducing a generalization of ideas presented in Wu et al. (2015). The authors assume that the 
unknown conditional copula density can be represented as an infinite mixture of Gaussian copulas, where the correlation 
parameter is defined as a (linear or non-linear) function of a covariate:

c X (u1, u2 | X = x) =
∞∑
ι=1

πιcρ(x)(u1, u2 | X = x),

where cρ(x)(·) denotes the Gaussian copula densities with correlation coefficient ρ(x) depending on the covariate X , u1 =
F1|X (y1 | X = x), u2 = F2|X (y2 | X = x), 

∑∞
ι=1 πι = 1 and 0 < πι < 1.

Levi and Craiu (2018) proposes to jointly estimate the marginal distributions and the copula using Gaussian process 
(GP) models, where the calibration function follows a priori a single-index model based on GPs, to handle high-dimensional 
covariates. In more details, the authors assume that the copula is characterized by its own calibration function η(xi) =
η(x′

iβ), for i = 1, . . . , n, where β ∈Rp is a vector of coefficients that must be normalized for identifiability reasons (||β|| =
1). The calibration function follows a Gaussian process prior, centred around zero and with covariance structure depending 
on a kernel which is a function of the distance among the covariates, e.g. the squared exponential kernel. Although the 
GP approach is very attractive for its flexibility, the idea of modelling the parameters of a known copula as a function of 
covariates implies the need to choose the copula family. Several model selection methods, which may be applied to both 
the choice of the copula family and the choice of the form of the calibration function, are available. One approach compares 
the average prediction power of different models using the cross-validated pseudo-marginal likelihood (CVML) proposed by 
Geisser and Eddy (1979); another approach is based on the Watanabe-Akaike information criterion, proposed by Watanabe 
(2013). Both measures can be generalized to consider covariates.
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As a general comment, we point out that the choice of a statistical model for the distribution of a multivariate random 
vector is generally complex. In particular, when differences among copula models are strong in the tails of the distributions, 
it is possible that there is a limited number of observations in applied settings in order to clearly identify the correct model. 
We will show this limitation in the simulation study of Section 3. For this reason, it is often the case that the researcher 
prefers to reconsider the inference goals on some low dimensional functional of the copula, i.e., for example Kendall’s τ , 
Spearman’s ρ or some tail dependence indices; in such case, the complete dependence structure could be considered as a 
nuisance parameter.

In this paper we explore several ways to make inference on functionals of the dependence, in particular the Spearman’s 
ρ and the Kendall’s τ , in presence of covariates. The goal of the paper is to avoid the selection of the copula. We discuss 
and propose three methods of increasing relaxation of the distributional assumptions on the functional of interest: the 
former is based on GPs, where, as opposed to Levi and Craiu (2018), the choice of a specific copula family is avoided; the 
second is a direct generalization of the approach of Grazian and Liseo (2017) and makes use of the empirical likelihood of 
the functional of interest, either implementing an inconsistent estimator of the conditional copula or a linearized model; 
the latter makes use of Bayesian splines to approximate the behaviour of the functional of the copula. For each method, 
we discuss advantages and disadvantages. GPs show the best performance in the simulation study, they are applicable in 
presence of repetitions of observations for each level of the covariate, therefore the method is affected by the curse of 
dimensionality and may be not applicable in real applications in the presence of an even small number of covariates. The 
method based on the Bayesian use of the empirical likelihood shows a worse performance and it relies on the existence 
of moment conditions, however it can be applied to data without the need of replications for each level of the covariate. 
Finally, the Bayesian splines show a good performance. However they need a certain level of tuning and, again, replications 
for each level of the covariate; moreover, they show a tendency to over-smooth the function of interest, as it will be shown 
on real datasets.

The BICC R-package R Core Team (2013) has been prepared to implement all the methodologies presented in this work. 
The package BICC is publicly available at the page https://github .com /cgrazian /BICC.

The remainder of this paper is organised as follows: Section 2 presents several methods to perform inference on func-
tionals of the dependence based on nonparametric representations of the copula. Each of these methods is compared in 
Section 3 and is contrasted to the conditional method proposed by Levi and Craiu (2018) in the case of two covariates. 
Two datasets showing non-linear dependence on one or two covariates are analysed in Section 4, showing that areas of 
applications include a broad range spacing from civil engineering and energy management to astrophysics. Finally, Section 5
concludes the paper.

2. Bayesian analysis for functionals of conditional copulas

2.1. Conditional dependence measures

Let us consider the bivariate case and assume that for each level of a covariate (x1, x2, . . . , xk) we observe n
 replications 
Y1i and Y2i , with 
 = 1, . . . , k, and compute the probability integral transforms u ji = F j|Xi (y j |Xi = xi) for j = 1, 2 so to 
obtain:[(

u1,1, u2,1
)
, . . . ,

(
u1,n


, u2,n


)]
, 
 = 1, . . . ,k,

such that n
 is the sample size of (u1, u2) at location x
 and 
∑k


=1 n
 = n. The joint distribution is defined through a 
conditional copula:

FY1,Y2|X (y1, y2|X = x) = C X (u1, u2|X = x).

We also assume that the strength of dependence between vectors U1 and U2 can be modelled as a smooth function of 
X and that we are not able to assume any specific parametric form for C X . Also, we consider the situation where one is 
mainly interested in making inference on a synthetic dependence measure of C X , say

ϕ(C X ; x) =E[v(U1, U2)
∣∣X = x],

for some function v . The quantities of interest are in general, functionals of the dependence, such as Kendall’s τ , Spearman’s 
ρ or tail dependence indices. Kendall’s τ is a measure of similarity of the orderings of the data. Given two independent 
bivariate random variables (Y1,1, Y2,1) and (Y1,2, Y2,2), Kendall’s τ is defined as

τ = E
(
sgn

[
(Y1,1 − Y1,2)(Y2,1 − Y2,2)

])
.

This dependence measure can also be defined in terms of copulas as

τ (Y1, Y2) = 4
¨

2

C(u1, u2)dC(u1, u2) − 1. (2.1)
[0,1]

3
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The Spearman’s ρ is an alternative nonparametric measure of rank correlation, assessing how well the dependence among 
variables can be described by a monotonic function; it is defined as

ρ(Y1, Y2) = Corr
(

FY1(Y1), FY2(Y2)
) ;

the corresponding copula expression is

ρ(Y1, Y2) = 12
¨

[0,1]2

C(u1, u2)du1du2 − 3. (2.2)

Other measures of interest are tail dependence indices or the conditional expected value of U1 for a given level of X and 
U2, see Levi and Craiu (2018). In addition, dependence measures such as the Randomized Dependence Coefficient (RDC) 
was proposed by Lopez-Paz et al. (2013) for non-monotonic associations. The rest of the paper is focused on bivariate 
Spearman’s ρ and Kendall’s τ , however other measures of dependence can be analysed, as well as multivariate extensions 
to dimension d; it is important to notice, however, that multivariate functionals of the dependence are often not uniquely 
defined Schmid and Schmidt (2007). Moreover, the methodologies proposed in this work require the definition of estimators 
of the quantities of interest. While the literature provides estimators for the measures of monotonic dependence, such as the 
Spearman’s ρ and the Kendall’s τ , robust nonparametric estimation of other measures has not been considered thoroughly. 
Recently, Goegebeur et al. (2020) proposes a robust and nonparametric estimation of the coefficient of tail dependence in 
presence of covariates, based on density power divergence. However, while Goegebeur et al. (2020) proves the existence, 
convergence and asymptotic normality of the estimator, it does not provide an easy-to-use formula, as in the case provided 
in this work. For these reasons, Bayesian nonparametric analysis of conditional tail dependence is left for further research.

Since the above dependence indices can be directly defined through their copula, the conditional versions of (2.1) and 
(2.2) can be easily derived in terms of conditional copulas:

τ (x) = 4
¨

[0,1]2

C X (u1, u2)dC X (u1, u2) − 1, and

ρ(x) = 12
¨

[0,1]2

C X (u1, u2)du1du2 − 3. (2.3)

Consequently, the most common estimators of measures of conditional dependence are expressed in terms of estimators of 
the conditional copula. In particular, estimators of τ (x) and ρ(x) are obtained in terms of

C X;h(u1, u2) =
n∑

i=1

πn;i(x,hn)I [U1 ≤ u1, U2 ≤ u2] , (2.4)

where I is an indicator function and {πn;i(x, hn)} is a sequence of weights that smooth over the covariate space (for example, 
the Nadaraya-Watson or the local-linear weights) and hn > 0 is a bandwidth which is assumed to vanish as the sample size 
increases. See Gijbels et al. (2011) for a detailed definition. Moreover, weights depend on a kernel smoothing over the 
covariate space, such as the triweight kernel and the Gaussian kernel.

Based on these estimators of the copula, Gijbels et al. (2011) propose the nonparametric version of the conditional 
Kendall’s τ :

τ̂ (x) = −1 + 4

1 − ∑n
i=1 π2

n;i(x,hn)

n∑
i=1

n∑
t=1

πn;i(x,hn)πn;t(x,hn)I(Yi,1 < Yt,1, Yi,2 < Yt,2),

and of the conditional Spearman’s ρ

ρ̂(x) = 12
n∑

i=1

πn;i(x,hn)(1 − Û i,1)(1 − Û i,2) − 3,

where Û i,1 = F̂1|X (yi,1|Xi = xi) and Û i,2 = F̂2|X (yi,2|Xi = xi).
Unfortunately, estimator (2.4) is biased and the size of the bias depends on the role of the covariates on the marginal 

distributions. In order to reduce the influence of the covariates, Gijbels et al. (2011) have proposed an alternative estimator, 
where the marginal distributions are similarly approximated using Equation (2.4); in this case, a different sequence of 
weights must be adopted. Nonetheless, this latter estimator is biased as well: whereas, in particular settings, it can be 
drastically less biased than the former estimator, there is no guarantee that the bias will always be smaller than the bias of 
the former. In addition, it is necessary to choose three different bandwidth parameters in order to implement it. We refer 
to Veraverbeke et al. (2011) for a discussion of the asymptotic properties of these estimators. In conclusion, the problem of 
evaluating the bias of the nonparametric functionals of the dependence is still open.
4
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Grazian and Liseo (2016) shows a preliminary extension of the method proposed in Grazian and Liseo (2017) to the 
conditional case, based on simulations. However, the lack of theoretical warranties makes the performance of the procedure 
rather “problem-specific” and difficult to evaluate in general.

In this work, the goal of the analysis is to approximate the posterior distribution of ϕ(u1, u2; x) = ϕ(x) where ϕ(·) is 
a measure of conditional dependence, when a nonparametric consistent estimator of ϕ(x) is not available. We propose to 
work on a transformation of ϕ(x), encouraging normality, e.g. the Fisher’s transformation which maps indices defined in 
[−1, 1], like Spearman’s ρ or Kendall’s τ , into the real line:

Z(x) = 1

2
log

1 + ϕ(x)

1 − ϕ(x)
. (2.5)

The sample version of Z(x) is then defined by computing the (possibly biased) estimates of ϕ:

W (x) = 1

2
log

1 + ϕ̂(x)

1 − ϕ̂(x)
.

2.2. Gaussian processes approach

In this section, we present a method based on a Gaussian representation of a transformation of the functionals of the 
dependence. While the methodology is already available in the literature, to the best of our knowledge, this is the first 
application to a copula setting. First, we assume that Z(x) follows - a priori - a GP

Z(x) ∼ GP
(

g(x)T β,σ 2K(x, x′; ξ)
)

. (2.6)

Here, the location parameter of the Gaussian process is

E[Z(x)] = g(x)T β,

where g(x) = (
g1(x), . . . , gq(x)

)T
is a vector of known functions, x ∈Rp and β ∈Rq . Common choices for the basis function 

g(x) are 0, (1, x) or (1, x, x2), and so on.
Also, K(x, x′; ξ) is a generic correlation kernel depending on a parameter ξ , and σ 2 is a positive scale parameter, so that

Cov(Z(x), Z(x′)) = σ 2K(x, x′; ξ).

Without loss of generality, we will consider the squared exponential kernel

Cov
(

Z(x), Z(x′)
) = σ 2K(x, x′; ξ) = σ 2 exp

(
−1

2

m∑
ι=1

d(xι, x′
ι)

ξι

)
= σ 2 exp

(
−1

2

m∑
ι=1

(xι − x′
ι)

2

ξι

)
.

For ease of notation, we will consider the case where m = 1, that is

K(x, x′; ξ) = exp

(
−1

2

(x − x′)2

ξ

)
;

however, generalizations to m > 1 are straightforward.
We estimate the functional ϕ(x
) using the unconditional consistent estimator of ϕ , say ϕ̂ and assume that each vector 

of observations, (yi,1, yi,2, x
), i = 1, . . . , n
 , generates a noisy version of Z(x
), say W (x
), which depends on a statistic 
evaluated at location x
; in practice, W (x) is a noisy observation of the signal Z(x). This means that for each level of the 
covariate, n
 replications are needed. It is possible to explicitly model the noise through some parametric assumption. For 
instance, the case of compensating errors can be modelled through a Gaussian distribution

W (x
) = Z(x
) + ε
 
 = 1, . . . ,k,

where Z(x
) is defined as in Equation (2.6) and ε
 ∼N (0, κ2

 ), with κ2


 = κ2/n
 and ε
 ⊥ ε
′ , 
 
= 
′ .
Consequently, the observations follow a normal distribution

W (x
) ∼ N
(

g(x
)
T β,σ 2 + κ2




)

 = 1, . . . , κ. (2.7)

From Equation (2.7), it follows that the likelihood associated to the observations related to locations x1, . . . , xk , with a 
number of observations n1, . . . , nk each, is

L(β,σ 2, ξ, κ2) = N
(

g(x)Tβ,σ 2�ξ + κ2 Ĩ
)

,

where Ĩ = diag
(

1 , . . . , 1
)

is a diagonal matrix with element 
(

1 , . . . , 1
)

on the diagonal, and
n1 nk n1 nk

5
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�ξ =
⎛
⎜⎝
K(x1, x1; ξ) · · · K(x1, xk; ξ)

...
. . .

...

K(xk, x1; ξ) · · · K(xk, xk; ξ)

⎞
⎟⎠ .

Standard Bayesian approaches to Gaussian processes can then be developed to estimate the parameters of this model 
(β, σ 2, κ, ξ) (Goldstein and Wooff, 2007, Cressie, 1992). First, the variance matrix can be reformulated following Paulo 
(2005):

σ 2�ξ + κ2 Ĩ = σ 2
(

�ξ + κ2

σ 2
Ĩ
)

= σ 2
(
�ξ + λĨ

)
= σ 2M,

where λ = κ2/σ 2 and M is a positive definite matrix depending on parameters ξ and λ.
Then, the likelihood can be rewritten as

L(β,σ 2, λ, ξ) = 1

σ k | M |1/2
exp

(
− 1

2σ 2
(W − X̃β)T M−1(W − X̃β)

)
, (2.8)

where X̃ = g(x)T is a k × q matrix of known constants.
Integrating Equation (2.8) with respect to β (using a noninformative prior distribution π(β) ∝ 1), the integrated likeli-

hood function for the variance parameters is obtained as

LI (σ 2, λ, ξ) =
ˆ

B

L(β,σ 2, λ, ξ)π(β)dβ

∝ σ−(k−q) | M |−1/2| X̃T M−1X̃ |−1/2 exp

(
− 1

2σ 2
S̃2
ξ

)
,

where S̃2
ξ = WT Q̃W, Q̃ = M−1P̃, P̃ = I − X̃(X̃T M−1X̃)−1X̃T M−1, and I is the identity matrix.

It is also possible to integrate with respect to the scale parameter σ 2, assuming, a priori, that it follows an inverse gamma 
distribution with shape parameter α and scale parameter r

π(σ 2) ∝ 1

σα+1 exp
(
− r

2σ 2

)
.

Then, the integrated likelihood for ξ and λ is (see Paulo (2005)):

LI (ξ, λ) =
∞̂

0

LI (σ 2, λ, ξ)π(σ 2)dσ 2

∝| M |−1/2| XT M−1X |−1/2 1(
S̃2
ξ + r

) n−q
2 +α

. (2.9)

Expression (2.9) can be also interpreted as the joint density of the observations (w1, . . . , wk) conditionally on the hyperpa-
rameters ξ, λ.

In practice, the GP modelling assumptions may not hold (e.g. the bias of the estimator can be asymmetric, the tails may 
be non-Gaussian, the variance may vary over the parameter space). In order to consider the case of a varying covariance 
structure depending on the parameter space, we may define

W ∼ N
(

g(x)β,σ 2�ξ + κ2 Ĩ exp(ς(x))
)

,

where ς(x) is again modelled as a GP: ς(x) ∼ GP(0, K∗(x, x′)). The variance of the Fisher’s transform of the copula func-
tional is allowed to vary smoothly as a function of the covariate; the exponential function is used since the variance needs 
to be positive, then the logarithm is modelled as a GP. Again, K∗ can be chosen to be the squared exponential kernel. The 
covariance matrix may be reparametrized by fixing either σ 2 or κ2 equal to one in order to make the model identifiable. 
Model selection techniques can be used to select the functional form for g(·) and ς(·); see, for example, Vehtari and Ojanen 
(2012).

The posterior sample of (ξ, λ) is then used to approximate the posterior predictive distribution of W at new locations 
x∗ , using the following expression:
6
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f
(

w∗|x∗,W
) =

ˆ

ξ,λ

f
(

w∗, ξ, λ|x∗,W
)

dξdλ

=
ˆ

ξ,λ

f
(

w∗|x∗, ξ, λ
)

f (ξ, λ|W)dξdλ.

This approximation can be computed for each value x∗ defined over a grid. A natural summary value for the predictive 
distribution of W ∗ is the expected value E(W |x∗) ≈ W̄ ∗(x∗) = ∑N

t=1 w∗
t f (w∗

t |x∗), where N is the number of Monte Carlo 
simulations, which is also a point estimate of W ∗ = Z∗ + ε∗ ≈ Z∗ .

Finally, the estimation of the functional of interest ϕ can be obtained as

ϕ̂(x∗) = exp{2W̄ ∗(x∗)} − 1

exp{2W̄ ∗(x∗)} + 1
. (2.10)

Alternatively, a full sample of ϕ(x∗) can be derived from the posterior predictive distribution of W ∗(x∗).
The need for replications for each level of the covariate may be unrealistic in practice, and it means that this method 

is affected by the course of dimensionality: in order to reach a constant level of accuracy, more and more replications will 
be needed for each combination of covariate levels. In particular, in case of continuous covariates, it is necessary to identify 
group levels, and the grouping may be arbitrary. A similar comment applies to the Bayesian spline method described in 
Section 2.4.

2.3. Empirical likelihood approach

We now present a method based on a Bayesian use of the empirical likelihood. This approach represents a natural 
extension of the work of Grazian and Liseo (2017) to the conditional case and it is a novel contribution.

The assumption of normality of the Fisher’s transform of the copula functionals may be admittedly too strict in many 
situations, in particular because the bias of the conditional copula estimator is not analytically known.

In recent years, there has been an interest in finding ways to derive the posterior distribution of the parameters of a 
model by substituting the likelihood function with an approximation. In this setting, Price et al. (2018) propose to use the 
approximation provided by a synthetic likelihood, for which the distribution of some (not necessarily sufficient) summary 
statistics of the model is assumed to be Gaussian. Elsewhere (see, for example, Gutmann and Corander, 2016) simulator-
based models are used, which compare the observed datasets with datasets generated from the model; the likelihood 
function is then approximated by assuming a specific model – for example, a Gaussian distribution – for the discrepancy 
between observed and simulated data (possibly evaluated in terms of summary statistics). Another proposal is available in 
Mengersen et al. (2013), where the empirical likelihood is employed as a nonparametric approximation of the likelihood 
function of the parameter of interest. See Grazian and Fan (2020) for a recent review of these approaches.

Recently, Grazian and Liseo (2017) have introduced the use of the empirical likelihood in the specific setting of copula 
models, by proposing a semiparametric procedure where the posterior distribution of (low-dimensional) functionals of the 
dependence is derived and the structure of dependence of the underlying joint multivariate distribution is taken as a nui-
sance parameter defined on a infinite-dimensional space. This approach has two main advantages: i) in many settings, the 
interest lies in particular indices of the dependence (Spearman’s ρ , Kendall’s τ or tail dependence indices) which may be 
in complex relationship with the parameters of the copula and therefore it can be difficult to derive a likelihood function 
for them and ii) the selection of a specific copula family can be difficult in applied contexts and a semiparametric approach 
would avoid the need of choosing among alternative copula models. Grazian and Liseo (2017) has derived an approximation 
of the posterior distribution π(ϕ; y) of the functional of interest ϕ using

π(ϕ|y) ∝ π(ϕ)L̂(ϕ;y),

where π(ϕ) is a prior distribution and L̂(·) is a nonparametric approximation of the likelihood function. The choice of 
the prior distribution for φ is relatively easy in this setting, since functionals of the dependence are usually defined in a 
compact space, e.g. the Spearman’s ρ and the Kendall’s τ are defined in [−1, 1] and tail dependence indices are defined in 
[0, 1]; however a formal objective prior for these quantities has not yet been derived in the literature. Therefore we adopt, 
throughout the paper, uniform prior distributions, defined on these compact spaces, as a surrogate of an ignorance prior.

Grazian and Liseo (2017) uses the exponentially tilted empirical likelihood proposed by Schennach (2005). This version 
of the empirical likelihood allows for a Bayesian interpretation involving an implicit nonparametric process prior on the 
infinite-dimensional nuisance parameter (the copula structure). Other version of the empirical likelihood (Owen, 2001) 
can be used: see, for example, Mengersen et al. (2013). This approach produces a good approximation of the posterior 
distribution (and of the likelihood function) if the generalized moment condition - which is implicit in the maximization 
problem associated with the definition of the empirical likelihood - is satisfied; this condition can be interpreted as a sort of 
unbiasedness requirement. In order to achieve this goal, a consistent estimator of the quantity of interest ϕ is needed; while 
7
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this is easy to do in an unconditional setting, common estimators of the conditional copula – upon which the estimators 
for the functionals are built – have been shown to display some degree of inconsistency (Gijbels et al., 2011).

Suppose the model FY,ψ (·) as expressed in (1.1) for a multivariate random variable Y is indexed by a parameter ψ which 
can be defined as ψ = (ϕ, ν) and the interest of the analysis is in ϕ while ν is considered as a nuisance parameter. Then 
the goal of the analysis is to derive the posterior distribution of ϕ

π(ϕ|y) =
ˆ

N

f (y|ν,ϕ)π(ν|ϕ)π(ϕ)

m(y)
dν,

where ϕ ∈ � and ν ∈ N , π(ν|ϕ)π(ϕ) is the joint prior distribution of (ϕ, ν) and m(y) is the distribution of the data y
marginalized over the parameter space.

In the specific setting of this work, we assume that the copula C(·) is parametrized by (ϕ, C∗) where ϕ is some functional 
of the dependence in the joint distribution and C∗ belongs to an infinite dimensional metric space (H, dH ). The empirical 
likelihood, in particular its Bayesian exponentially tilted version proposed by Schennach (2005), LB E L , may be seen as the 
derivation of the integrated likelihood for ϕ

LB E L(ϕ;y) ∝
ˆ

N

L(ϕ,ν;y)π(ν|ϕ)dν,

where the prior distribution π(ν|ϕ) is a stochastic process constructed in such a way to give preference to distributions 
with a large entropy; following Schennach (2005), the empirical likelihood is defined in terms of a vector of weights {ωi }n

i=1
obtained as the solution (for each fixed value of ϕ), of the maximization problem

max
(ω1,...,ωn)

n∑
i=1

(−ωi logωi) ,

under the constraints 0 ≤ ωi ≤ 1 for i = 1, . . . , n, 
∑n

i=1 ωi = 1, and a moment constraint

n∑
i=1

q(yi,ϕ)ωi = 0,

for some function q. A common choice for q(·) is a moment condition such as E[φ − φ̂] = 0; therefore φ̂ should be at least 
a consistent estimator of φ for the moment condition to be respected. The approximate Bayesian procedure for deriving an 
approximate posterior distribution for ϕ is then defined by i) selecting a prior distribution π(ϕ); ii) selecting a nonpara-
metric estimator ϕ̂ , which must be, at least, asymptotically unbiased; iii) computing the empirical likelihood LB E L(ϕ); iv) 
deriving the posterior distribution π(ϕ|y) through a simulation process. Unfortunately, it is not always easy to perform step 
ii), i.e. to find an (at least, asymptotically) unbiased estimator of the quantity of interest, in order to satisfy the moment 
condition. In the setting of conditional functional of the dependence, as we have stated in Section 1, nonparametric estima-
tors of the copula are biased, then a fully nonparametric approach cannot be directly implemented by using the empirical 
likelihood approximation, along the lines of Grazian and Liseo (2017).

The Fisher’s transform of the observations can be defined as a function of the covariates, through a Taylor’s expansion in 
terms of a polynomial of degree p. Assume that W (·) is differentiable p times in a neighbourhood of an interior point x0; 
then

W (xh) ≈ W (x0) + W (x0)
′(xh − x0) + . . . + W (x0)

(p)

p! (xh − x0)
p ≡ x∗T

h,x0
β, (2.11)

where x∗T
h,x0

= (1, (xh − x0), . . . , (xh − x0)
p) and β = (β0, β1, . . . , βp).

Similarly, a spline approximation, along the lines of Craiu and Sabeti (2012), can be adopted, using a cubic spline as a 
model for the calibration function of the copula parameter

W (xh) ≈
3∑

ι=1

αιx
ι
h +

S∑
s=1

δs(xh − γs)
3+, (2.12)

where a+ = max(0, a) and {γs}S
s=1 is a vector of knots. In the approach of Craiu and Sabeti (2012), the copula family is 

chosen through a model selection procedure. Then, consistent estimators of the coefficients of the Taylor’s expansion or of 
the spline function, which can be used to define the moment condition in the definition of the empirical likelihood, can be 
derived.

For the parameters β of the linearised model, it is common to define weakly informative priors, such as, for instance, 
N (0, σ 2), where σ 2 is some large value, and combine them with the weights defined by the empirical likelihood approach 
described in Grazian and Liseo (2017) in order to obtain a sample of size G of (β0, . . . , βl|w1, . . . , wk) such that
8
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⎡
⎢⎢⎣

β
(1)
0 , . . . , β

(1)

l ,ω(1)

...

β
(G)
0 , . . . , β

(G)

l ,ω(G)

⎤
⎥⎥⎦ ,

where ωg , with g = 1, . . . , G , represents the weights of (β(g)
0 , . . . , β(g)

l ) induced by the empirical likelihood. The combina-

tions of (β(1), . . . , β(G)) and the weights (ω1, . . . , ωG) produce an approximation of the joint posterior distribution for β . 
On the other hand, if a cubic spline as in Equation (2.12) is used, weakly informative priors for the parameters {αι}3

ι=1 and 
{δs} =S

s=1 can be considered, such as, for example, independent N (0, σ 2) for some large value σ 2.
The approximate posterior distribution of β can be used to approximate the posterior predictive distribution

f
(

w∗|x∗,W
) =

ˆ

B

f
(

w∗,β|x∗,W
)

dβ

=
ˆ

B

f
(

w∗|x∗,β
)

f (β|W)dβ

≈
G∑

g=1

f
(

w∗|x∗,β(g)
)
ω̄(g),

where ω̄(g) = ω(g)∑G
g=1 ω(g)

is the normalized weight for the g-th iteration. As in Section 2.2, the approximation can be com-

puted on a grid of possible values of x∗ and the estimator of the functional of interest can be derived as in Equation 
(2.10).

2.4. Bayesian splines approach

Finally, we present the approach based on Bayesian splines. Similarly to the approach proposed in Section 2.2, the 
methodology is already available in the literature, however, up to our knowledge, it has never been applied to the specific 
setting of conditional copula.

An alternative to the empirical likelihood approach of Section 2.3, still avoiding parametric assumptions, is to model the 
functional of the dependence as a regression function using regression splines. In this setting, it is possible to introduce 
assumptions on the type of function, i.e. its shape and degree of smoothness.

Again, it is useful to work with a transformation of the functional of the dependence, as defined in Equation (2.5):

Z(x) = f (x) + ε,

where f is assumed to be smooth; in addition, constraints to force the function to be monotone or convex can be included.
For a given vector of m knots, a = d0 < . . . < dm−1 = b, spline basis functions s(x) = (s1(x), . . . , sm(x)) are defined on 

[a, b]. Possible choices of splines are quadratic I-splines (Ramsay et al., 1988), cubic I-splines, and C-splines (Meyer, 2008).
The function f (·) of the predictor x is modelled as

f (x) =
m∑

j=1

β jδ j.

The δ j for j = 1, . . . , m are basis vectors corresponding to the shape-restricted basis function for f . The coefficients β j
are supposed to follow a priori a normal distribution with zero mean and large variance M . In addition, a vague gamma 
prior distribution can be assumed for the precision of the error term. For a full description of the method used in the 
implementation, we refer the reader to Meyer et al. (2011).

Prior distributions for the coefficients β j , and to impose shape restrictions, the prior for the coefficients can be restricted 
to be positive. Noninformative camma prior distributions for the coefficients are chosen.

Shape-restricted regression splines have been introduced by Meyer (2008). By using I-splines and C-splines, the shape-
restrictions are imposed by constraining the spline basis functions to be non-negative. This method has been shown to be 
robust in terms of choices of the knots, provided that the number of knots is large enough to capture the behaviour of the 
data. In this work, we have associate the number of knots to the sample size, since Stone and Huang (2002) proved that the 
optimal number of knots for unrestricted regression splines is n1/(2r+1) where r is the order of the regression splines (here 
r = 3).

The Bayesian estimation of the regression coefficients and the knots locations can be implemented via Gibbs sampler.
In presence of multiple covariates, an additive regression model can be used, so that

Z(x1, . . . , xp) = f1(x1) + . . . + f p(xp) + ε,

and each function fk can be estimated with by imposing shape restrictions (which may differ from function to function).
9
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Table 1
Frequencies of correct selection of the copula model using leaving-one-out cross-
validation, where ρ is a linear function of the covariate. The rows represent the copula 
the data have been simulated from, and the columns the possible models.

Clayton Frank Gumbel Joe Gaussian Plackett Student t

Clayton 42 0 0 0 0 1 7
Frank 0 10 0 0 0 38 3
Gumbel 0 0 39 0 0 0 11
Gaussian 0 0 0 0 8 0 42

Table 2
Frequencies of correct selection of the copula model using leaving-one-out cross-
validation, where ρ is a sine function of the covariate. The rows represent the copula 
the data have been simulated from, and the columns the possible models.

Clayton Frank Gumbel Joe Gaussian Plackett Student t

Clayton 39 0 0 0 0 0 11
Frank 5 1 7 21 1 0 15
Gumbel 0 0 6 0 0 0 44
Gaussian 1 0 6 27 0 0 16

3. Simulation study

Here we present a detailed simulation study, including set ups with one and two covariates.

3.1. One covariate

Values of the covariate were simulated from a uniform distribution and the Spearman’s ρ was associated to the covariate 
through a linear or a sine relationship

• ρ = 0.8x − 2 with x ∼ Unif(2, 5);
• ρ = sin(x) with x ∼ Unif(−5, 5).

For each model, we had 20 levels of the covariate. We simulated two-dimensional pseudo-observations from four differ-
ent copula models: Clayton, Frank, Gumbel and Gaussian. For each level of the covariate, we simulated 100 data points with 
specific parameter values.

Each simulation set-up was repeated 50 times. We first performed a model selection approach based on the xvCop-
ula function of the R copula package (Kojadinovic et al., 2010), performing the leave-one-out cross-validation for a set 
of hypothesized parametric copula models, using maximum pseudo-likelihood estimation. Specifically, we considered, as 
potential generating models, the following copulas: Clayton, Frank, Gumbel, Joe, Gaussian, Plackett, and Student t . Table 1
and 2 show the frequencies of correct selection of the copula model, when ρ is defined as a linear function and as a 
sine function respectively. It is apparent that the selection of the copula model is not expected to be an easy task. On the 
other hand, methods based on an assumption about the copula model describing the data, strongly rely on this assumption 
for inference on the functionals of dependence, such as Spearman’s ρ , Kendall’s τ , or tail dependence indices. Moreover, 
when selecting the copula based on the observed data, one often assumes that the copula does not change with the level 
of the covariate; conversely, when this possibility is taken into account, the number of observations for each level of the 
covariate are limited, and the selection problem becomes more difficult. As shown in Grazian and Liseo (2017), a parametric 
method may outperform nonparametric methods when the correct model can be selected; therefore, if enough information 
is available to select the correct copula model a parametric method should be used, however, when information is limited 
Grazian and Liseo (2017) also shows that estimating functionals of the dependence under miss-specification may lead to 
strong biases and, in this situation, a nonparametric method may be preferred in terms of robustness.

Tables 3, 4, 5 and 6 show the results of the comparison among the four approaches described in Section 2: GPs, the 
empirical likelihood method based on an inconsistent estimator of the copula, the empirical likelihood method based on 
a linearised model for the functional of the dependence, and Bayesian splines. An approximation of the integrated mean 
squared error (IMSE) is used to compare the approaches, where the integration is taken with respect to all the possible 
samples and all the possible covariate levels:

I M S E =
ˆ

Y

ˆ

X

(ρ̂(x, y) − ρ(x, y))2dxdy ≈
50∑

i=1

k∑

=1

(ρ̂(x
,yi) − ρ(x
,yi))
2,

where ρ(x
, yi) is the true value of Spearman’s ρ for covariate level x
 , evaluated at the sample value yi = (y1,i, . . . , yn,i)

and ρ̂(x
, yi) is the corresponding estimate obtained with each of the four approaches under analysis. An analogous expres-
10



Table 3
Results for the nonparametric analyses with Spearman’s ρ as a linear function. “GP” denotes the 
Gaussian process model of Section 2.2; “Incons. EL” denotes the empirical likelihood approach 
using the inconsistent estimator (2.4), with Local Linear (LL) or Nadaraya-Watson (NW) weights 
and triweight or Gaussian kernel; “EL - linearised model” denotes the empirical likelihood ap-
proach of Section 2.3 using the approximation (2.11); “Bayes Splines” denotes the approach of 
Section 2.4.

Clayton Frank Gumbel Gaussian

GP IMSE 0.009 0.003 0.004 0.006
(Ave) CI Length 0.300 0.305 0.270 0.293
(Ave) CI coverage 0.910 1.000 0.978 0.891

Incons. EL - LL, triweight IMSE 0.260 0.297 0.276 0.267
(Ave) CI Length 1.326 1.298 1.309 1.328
(Ave) CI coverage 0.717 0.671 0.725 0.760

Incons. EL - NW, triweight IMSE 0.277 0.282 0.262 0.260
(Ave) CI Length 1.318 1.316 1.304 1.313
(Ave) CI coverage 0.728 0.727 0.730 0.739

Incons. EL - LL, Gaussian IMSE 0.298 0.283 0.274 0.261
(Ave) CI Length 1.299 1.314 1.299 1.317
(Ave) CI coverage 0.723 0.718 0.704 0.775

Incons. EL - NW, Gaussian IMSE 0.280 0.290 0.302 0.230
(Ave) CI Length 1.321 1.295 1.306 1.328
(Ave) CI coverage 0.000 0.729 0.721 0.734

EL - linearised model IMSE 1.097 1.039 1.065 0.926
(Ave) CI Length 2.000 2.000 2.000 2.000
(Ave) CI coverage 1.000 1.000 1.000 1.000

Bayes Splines IMSE 0.003 0.003 0.004 0.002
(Ave) CI Length 0.166 0.169 0.155 0.164
(Ave) CI coverage 0.975 0.985 0.880 0.970

sion for the IMSE can be obtained for Kendall’s τ . In addition to the IMSE values, Tables 3, 4, 5 and 6 list the average length 
and average coverage results for the credible intervals of level 95%.

Table 3 displays the results with Spearman’s ρ as linear function ρ(x) = 0.8x − 2, while Table 4 lists the results with 
Kendall’s τ as linear function τ (x) = 0.8x − 2. The best performance is obtained using the GPs (Section 2.2) and Bayesian 
splines (Section 2.4) based approaches, where in all cases, the coverage is close to the expected one and the IMSE is lower 
than 0.01. The results based on empirical likelihood approaches are always worse than those based on GPs and Bayesian 
splines. When using the inconsistent estimator (2.4), the results are relatively similar, independently of the particular choice 
of the kernel (Gaussian or triweight) or weights (local-linear or Nadaraya-Watson): the interval coverage is constantly lower 
than the expected one (around 70%) and the IMSE is around 0.3, definitely larger than the previous cases; this behaviour 
may highlight the bias induced by the use of an inconsistent estimator in the empirical likelihood approach. Finally, when 
using the empirical likelihood approach based on the Taylor expansion (2.11), with empirical likelihood weights on the β
coefficients, the variance of the estimates increases and the credible intervals cover all the parameter space.

Similarly to Tables 3 and 4, Tables 5 and 6 report the performance study of the different methods when the true 
functions are ρ(x) = sin(x) (Table 5) and τ (x) = sin(x) (Table 6) respectively. Again, the best performance is achieved by 
the GPs and the Bayesian splines approaches. The Bayesian splines show a coverage which is similar or higher than the one 
obtained with the GPs approach, with only slightly longer intervals on average. The methods based on empirical likelihood 
approximations seem inconsistent, with larger intervals lengths and reduced coverage.

Since the methods based on Gaussian processes and Bayesian splines require replications for each level of the covariate, 
they tend to underperform with respect to the method based on empirical likelihood when there are only few replications 
available. Table 7 shows that when the number of replications are low the method based on the empirical likelihood beats 
the other two methods (similar results are obtained with different choices of weights), while as the number of replicates 
increases GP and Bayesian splines tend to outperform EL. Howers, when the covariate is continuous and there are no 
replicates Bayesian splines and GP cannot be obtained, being based on a first computation of an estimate of the dependence 
index. Similar results are obtained when the true underlying function is a sin function and when observations are simulated 
from different copulas.

3.2. Two covariates

We have performed simulations also considering functionals depending on two covariates, x1 and x2. Recall that some of 
the methods investigated in this paper require replications for each combination of the covariate levels, therefore they are 
not applicable when using continuous covariates, unless values are grouped into classes. Here, we compare the results with 
C. Grazian, L. Dalla Valle and B. Liseo Computational Statistics and Data Analysis 169 (2022) 107417
11



C. Grazian, L. Dalla Valle and B. Liseo Computational Statistics and Data Analysis 169 (2022) 107417

Table 4
Results for the nonparametric analyses with Kendall’s τ as a linear function. “GP” denotes the 
Gaussian process model of Section 2.2; “Incons. EL” denotes the empirical likelihood approach 
using the inconsistent estimator (2.4), with Local Linear (LL) or Nadaraya-Watson (NW) weights 
and triweight or Gaussian kernel; “EL - linearised model” denotes the empirical likelihood ap-
proach of Section 2.3 using the approximation (2.11); “Bayes Splines” denotes the approach of 
Section 2.4.

Clayton Frank Gumbel Gaussian

GP IMSE 0.008 0.000 0.009 0.009
(Ave) CI Length 0.187 0.174 0.217 0.217
(Ave) CI coverage 0.623 1.000 0.771 0.771

Incons. EL - LL, triweight IMSE 0.264 0.255 0.242 0.242
(Ave) CI Length 1.269 1.303 1.337 1.337
(Ave) CI coverage 0.703 0.737 0.773 0.773

Incons. EL - NW, triweight IMSE 0.322 0.257 0.244 0.244
(Ave) CI Length 1.340 1.320 1.319 1.319
(Ave) CI coverage 0.698 0.715 0.751 0.751

Incons. EL - LL, Gaussian IMSE 0.297 0.283 0.240 0.240
(Ave) CI Length 1.291 1.324 1.311 1.311
(Ave) CI coverage 0.711 0.753 0.743 0.743

Incons. EL - NW, Gaussian IMSE 0.326 0.294 0.301 0.301
(Ave) CI Length 1.369 1.278 1.243 1.243
(Ave) CI coverage 0.000 0.000 0.000 0.000

EL - linearised model IMSE 0.986 0.735 0.966 0.966
(Ave) CI Length 2.000 2.000 2.000 2.000
(Ave) CI coverage 1.000 1.000 1.000 1.000

Bayes Splines IMSE 0.000 0.001 0.003 0.003
(Ave) CI Length 0.141 0.137 0.153 0.153
(Ave) CI coverage 1.000 0.967 0.917 0.917

Table 5
Results for the nonparametric analyses with Spearman’s ρ as a sine function. “GP” denotes the 
Gaussian process model of Section 2.2; “Incons. EL” denotes the empirical likelihood approach 
using the inconsistent estimator (2.4), with Local Linear (LL) or Nadaraya-Watson (NW) weights 
and triweight or Gaussian kernel; “EL - linearised model” denotes the empirical likelihood ap-
proach of Section 2.3 using the approximation (2.11); “Bayes Splines” denotes the approach of 
Section 2.4.

Clayton Frank Gumbel Gaussian

GP IMSE 0.504 0.492 0.428 0.366
(Ave) IC Length 1.214 1.001 1.007 1.258
(Ave) IC coverage 0.715 0.862 0.892 0.787

Incons. EL - LL, triweight IMSE 1.620 1.972 1.762 1.672
(Ave) CI Length 1.326 1.298 1.309 1.328
(Ave) CI coverage 0.175 0.185 0.253 0.600

Incons. EL - NW, triweight IMSE 1.217 1.823 1.612 1.601
(Ave) CI Length 1.518 1.161 1.324 1.413
(Ave) CI coverage 0.482 0.437 0.478 0.416

Incons. EL - LL, Gaussian IMSE 1.281 1.238 1.245 1.621
(Ave) CI Length 1.229 1.314 1.229 1.316
(Ave) CI coverage 0.623 0.628 0.654 0.685

Incons. EL - NW, Gaussian IMSE 1.202 1.270 1.202 1.236
(Ave) CI Length 1.222 1.198 1.273 1.210
(Ave) CI coverage 0.410 0.387 0.321 0.344

EL - linearised model IMSE 1.437 1.071 1.242 1.417
(Ave) IC Length 2.000 2.000 2.000 2.000
(Ave) IC coverage 1.000 1.000 1.000 1.000

Bayes Splines IMSE 0.541 0.502 0.720 0.541
(Ave) IC Length 1.229 1.071 1.051 1.206
(Ave) IC coverage 0.931 1.000 0.825 0.912
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Table 6
Results for the nonparametric analyses with Kendall’s τ as a sine function. “GP” denotes the 
Gaussian process model of Section 2.2; “Incons. EL” denotes the empirical likelihood approach 
using the inconsistent estimator (2.4), with Local Linear (LL) or Nadaraya-Watson (NW) weights 
and triweight or Gaussian kernel; “EL - linearised model” denotes the empirical likelihood ap-
proach of Section 2.3 using the approximation (2.11); “Bayes Splines” denotes the approach of 
Section 2.4.

Clayton Frank Gumbel Gaussian

GP IMSE 0.645 0.293 0.563 0.494
(Ave) CI Length 0.391 0.732 0.949 1.577
(Ave) CI coverage 0.518 0.549 0.398 0.792

Incons. EL - LL, triweight IMSE 0.144 0.135 0.350 0.131
(Ave) CI Length 0.809 0.831 0.747 0.849
(Ave) CI coverage 0.320 0.380 0.260 0.420

Incons. EL - NW, triweight IMSE 0.805 0.809 0.797 0.882
(Ave) CI Length 1.134 1.320 1.141 1.102
(Ave) CI coverage 0.320 0.340 0.400 0.340

Incons. EL - LL, Gaussian IMSE 0.303 0.305 0.457 0.309
(Ave) CI Length 0.598 0.754 0.687 0.662
(Ave) CI coverage 0.320 0.260 0.280 0.200

Incons. EL - NW, Gaussian IMSE 0.669 0.597 0.806 0.605
(Ave) CI Length 0.673 0.544 0.767 0.579
(Ave) CI coverage 0.340 0.320 0.360 0.320

EL - linearised model IMSE 1.420 1.504 1.854 1.534
(Ave) CI Length 2.000 2.000 2.000 2.000
(Ave) CI coverage 1.000 1.000 1.000 1.000

Bayes Splines IMSE 0.492 0.491 0.944 0.507
(Ave) CI Length 1.039 1.003 0.517 1.066
(Ave) CI coverage 0.400 0.330 0.100 0.350

the semi-parametric approach proposed by Levi and Craiu (2018): while such method requires the selection of the copula, 
it does not require repetitions for each level of the covariates. Here, following Levi and Craiu (2018), we use the conditional 
cross-validated pseudo marginal likelihood (CCVML) as selection tool; the CCVML considers the predictive distribution of 
one response given the rest of the data.

We generated again 50 repetitions of simulations of pseudo-observations from each of the four considered copulas: 
Clayton, Frank, Gumbel, and Gaussian. The methods can be performed for any functional of the dependence, however we 
focus here on the Kendall’s τ without loss of generality. We fixed

τ = 0.7 + 0.15 sin(
√

10(x1 + 3x2)), (3.1)

with x1, x2 independently and identically distributed from Unif(0, 1). We adopted the application setting of the algorithm 
used in Scenario 1 of the paper by Levi and Craiu (2018). We considered 10 repetitions for each combination of the levels 
of x1 and x2. Table 8 shows the results of the selection task for the copula model, using the CCVML. Again, the identification 
of the correct copula model is not easy, in particular it seems that the Gaussian copula is poorly identified through CCVML.

Table 9 compares the results of the method proposed by Levi and Craiu (2018) with the methods presented in Section 2: 
GPs, the empirical likelihood method based on an inconsistent estimator of the copula, the empirical likelihood method 
based on a linearised model for the functional of the dependence and Bayesian splines. The method based on GPs shows 
the best performance in terms of average IMSE. In this case, Bayesian splines show slightly larger IMSE results than GPs, 
which may be due to the increased dimensionality of the problem.

To implement the method based on the inconsistent copula estimator, it is necessary to extend the definition of the 
Nadaraya-Watson weights given in Section 2. Specifically, for p covariates the weights are defined as

wi(x,hn) =
K

(
Xi−x

hn

)
∑n

i=1 K
(

Xi−x
hn

) , (3.2)

where K(Xi − x) = Kh1 (Xi1 − x1) × . . . × Khp (Xip − xp) for some choices of bandwidth (h1, . . . , hp). Again, we choose a 
triweight and a Gaussian kernel function.

Table 9 shows that the performance of the empirical likelihood method results in lower IMSE values than those yielded 
by the conditional method of Levi and Craiu (2018), but in larger IMSE values than those obtained with the methods based 
on GPs and splines. In addition, the implementation of the empirical likelihood approach is computationally intensive, and 
13
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Table 7
IMSE values obtained in the estimation process with 
observations simulated from a Clayton copula with 
5, 10, 15, and 20 values of covariates (indicated in 
the columns) and between 2 and 50 replications 
for each covariate. GP stands for method based on 
Gaussian processes, EL stands for method based on 
empirical likelihood (values obtained with Gaussian 
kernel and local-linear weights), and SPL stands for 
method based on Bayesian splines.

nx 5 10 15 20

2 GP 1.509 1.956 1.622 1.594
EL 0.527 0.619 0.239 0.224
SPL 1.892 1.726 1.613 1.552

3 GP 1.926 1.113 1.148 1.1092
EL 0.304 0.472 0.139 0.127
SPL 1.838 1.838 1.624 1.524

4 GP 0.520 0.586 0.579 0.516
EL 0.321 0.244 0.253 0.028
SPL 0.829 0.524 0.315 0.635

5 GP 0.482 0.407 0.403 0.409
EL 0.140 0.051 0.138 0.032
SPL 0.456 0.438 0.484 0.307

10 GP 0.122 0.107 0.109 0.103
EL 0.301 0.082 0.016 0.012
SPL 0.989 0.606 0.176 0.153

15 GP 0.016 0.020 0.023 0.020
EL 0.058 0.060 0.037 0.006
SPL 0.780 0.030 0.001 0.003

20 GP 0.246 0.211 0.210 0.203
EL 0.239 0.031 0.012 0.008
SPL 0.989 0.004 0.019 0.005

25 GP 0.057 0.017 0.004 0.001
EL 0.103 0.026 0.018 0.021
SPL 0.929 0.011 0.013 0.001

50 GP 0.016 0.003 0.001 0.003
EL 0.030 0.029 0.008 0.008
SPL 0.789 0.004 0.002 0.002

Table 8
Frequencies of correct selection of the copula model us-
ing CCVML, where τ is a function of two covariates, see 
Equation (3.1). The rows represent the copula the data 
have been simulated from, and the columns the possible 
models.

Clayton Frank Gaussian Gumbel

Clayton 26 11 13 0
Frank 13 15 22 0
Gumbel 0 0 10 40
Gaussian 3 10 1 36

it requires a limited number of covariates. Finally, as for Section 3.1, the performance of the method based on the empirical 
likelihood computed on the linearised model is the worst amongst the analysed methods.

Here recall that the approaches based on GPs and Bayesian splines require replications for each combination of covariate 
levels, while the semi-parametric approach of Levi and Craiu (2018) and the approaches based on the empirical likelihood 
can be applied when no replications are available. However, the semi-parametric conditional approach relies on the selection 
of the copula family (see Table 8).
14
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Table 9
Integrated Mean Squared Errors (IMSE) for the nonparametric analyses of 
the Kendall’s τ in presence of two covariates. “Semi-parametric (LC2018)” 
stands for the method proposed by Levi and Craiu (2018), while the other 
acronyms can be interpreted as in Table 3.

Clayton Frank Gumbel Gaussian

Semi-parametric (LC2018) 0.451 0.467 0.452 0.180
GP 0.002 0.002 0.003 0.004
Incons. EL - NW triweight 0.041 0.041 0.041 0.041
Incons. EL - NW Gaussian 0.042 0.042 0.041 0.041
EL - linearised model 1.057 1.061 1.061 1.001
Bayes Splines 0.009 0.009 0.009 0.009

Fig. 1. Scatterplots of heating and cooling load measures (plotted on the vertical axes) against relative compactness (on the horizontal axes), from the 
Energy Efficiency dataset. The solid line are obtained as smoothed conditional means, while the grey areas show the relevant confidence intervals.

4. Data examples

We now apply the methods described in this work to two data examples, the first in the area of civil engineering and 
the second in astrophysics, to compare the results of the analysis performed by the different methodologies on realistic 
problems.

4.1. Energy efficiency

The Energy Efficiency dataset includes simulations for 12 different building architectural interior environments, obtained 
with the Ecotect software (Roberts and Marsh, 2001). The buildings differ with respect to 8 features which, combined in 
different ways, lead to 768 building shapes. The response variables are the heating and the cooling loads, i.e. the amount 
of heat energy that would need to be added or removed to the space to maintain the temperature in the requested range, 
respectively. Lower thermal loads are indicators of higher energy efficiency. The data have been generated and analysed in 
Tsanas and Xifara (2012). The data are available at https://archive .ics .uci .edu /ml /datasets /Energy +efficiency.

An important feature when studying the energy efficiency of buildings is the relative compactness (RC), which is a 
measure to compare different building shapes through the surface to volume ratio (Pessenlehner and Mahdavi, 2003, Ourghi 
et al., 2007). Fig. 1 shows the scatterplots of the observed data of heating and cooling loads against RC. The solid line 
smoothed conditional mean, showing that the relationship is non-linear. We now analyse the effect on the dependence 
between heating and cooling loads with respect to the RC indicator.

We applied the approaches described in Section 2 to the Energy Efficiency dataset, after estimating each marginal non-
parametrically.

Fig. 2 shows the approximation of the Spearman’s ρ computed between heating and cooling loads as a function of RC. 
The blue lines show the approximation obtained with the GP method illustrated in Section 2.2 and the coral lines show 
results of the splines method illustrated in Section 2.4. The inner dashed lines denote the posterior means and the dotted 
lines denote the 95% credible intervals. The red points are frequentist estimates for each of the levels of RC. From Fig. 2
it seems that the dependence between heating and cooling loads is strong for low and high levels of RC, respectively. For 
moderate levels of RC, instead, it seems that the strength of dependence is lower. This may be due to an increased variability 
in the data, as shown in Fig. 1. A comparison between the method based on GPs and the method based on splines shows 
that the approximation obtained through the GP method seems to better follow the frequentist estimates of Spearman’s 
15

https://archive.ics.uci.edu/ml/datasets/Energy+efficiency


C. Grazian, L. Dalla Valle and B. Liseo Computational Statistics and Data Analysis 169 (2022) 107417
Fig. 2. Approximations of Spearman’s ρ computed between heating and cooling loads, varying as a function of RC from the Energy Efficiency dataset, 
obtained with the GP method illustrated in Section 2.2 (blue lines) and the splines method illustrated in Section 2.4 (coral lines), respectively. The inner 
dashed lines denote the posterior means and the dotted lines denote the 95% credible intervals. The red points are frequentist estimates for each of the 
levels of RC. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Approximations of Spearman’s ρ computed between heating and cooling loads, varying as a function of RC from the Energy Efficiency dataset, 
obtained with the method based on EL. The orange long-dashed lines denote the frequentist estimates obtained with the inconsistent estimator of the 
copula, the coloured dashed lines denote the posterior means obtained with the EL methods and the dotted lines denote the 95% credible intervals. Each 
figure represents the approximation obtained with NW weights and triweight kernel (top left), NW weights and Gaussian kernel (top right), LL weights and 
triweight kernel (bottom left), and LL weights and Gaussian kernel (bottom right).

ρ (red points in Fig. 2), while the approximation obtained through splines is less sensitive to changes in the value of the 
dependence. This may be due to the limited number of points for each level of the covariate, showing that GPs is able to 
follow changes in dependence with a lower number of data points.

Fig. 3 shows a similar approximation of the posterior distribution of Spearman’s ρ obtained with the method based 
on the empirical likelihood (EL) illustrated in Section 2.3, using the inconsistent estimator of the copula. The orange long-
dashed lines denote the frequentist estimates obtained with the inconsistent estimator of the copula, the coloured dashed 
lines denote the posterior means obtained with the EL methods and the dotted lines denote the 95% credible intervals. Each 
figure represents the approximation obtained with NW weights and triweight kernel (top left), NW weights and Gaussian 
kernel (top right), LL weights and triweight kernel (bottom left), and LL weights and Gaussian kernel (bottom right). From 
Fig. 3 it is evident that the approximation depends on the weights and kernel chosen in the estimator of the copula. All the 
approximations tend to be concentrated around large values of dependence, however methods based on local-linear weights 
show a decline of the dependence for large values of RC. Methods based on the EL for the parameters of the linearised 
model show highly variable posterior approximations of the parameters, that lead to estimates of Spearman’s ρ which are 
very uncertain (with credible intervals including all the parameter space) and are not included here.

The presence of several building features in the Energy Efficiency dataset allows for the application of methods based 
on more than one covariate. In particular, we now focus the analysis on two covariates: RC and wall area (WA). Table 10
shows the frequency of the data for each combination of the RC and WA covariate levels. Fig. 4 shows the Spearman’s 
16
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Table 10
Frequency table of Relative Compactness (on the rows) and Wall Area (on the columns) 
from the Energy Efficiency dataset.

Wall Area

245.0 269.5 294.0 318.5 343.0 367.5 416.5

0.62 64
0.64 64
0.66 64
0.69 64
0.71 64

Relative 0.74 64
Compactness 0.76 64

0.79 64
0.82 64
0.86 64
0.90 64
0.98 64

Fig. 4. Estimation of Spearman’s ρ , with respect to the levels of WA (vertical axis) and RC (horizontal axis), for the Energy Efficiency dataset. Different 
colours denote the Spearman’s ρ posterior conditional mean levels obtained by applying the GP method. Dark red denotes strong dependence, while light 
yellow denotes weak dependence levels. The dots represent the frequentist estimates of the Spearman’s ρ computed as unconditional samples for the 
observations with that particular combination of the covariate levels. Blue dots denote positive ρs and green dots denote negative ρs. The size of the dots 
represents the scaled absolute value of the estimates.

ρ posterior conditional means obtained by applying the method based on GPs, with respect to the levels of WA and RC. 
Dark red denotes strong dependence, while light yellow denotes weak dependence levels. The dots represent the frequentist 
estimates of the Spearman’s ρ computed as unconditional samples for the observations with that particular combination of 
the covariate levels. Blue dots denote positive ρs and green dots denote negative ρs. The size of the dots represents the
scaled absolute value of the estimates.

Due to the data setting, as illustrated in Table 10, the implementation of the Bayesian splines is made more difficult 
for the limited amount of data points for each of the few observed combinations of covariates and the method does not 
converge. Similarly, the EL computed on the multivariate versions of the NW or LL weights tends to perform poorly, with 
many weights being close or equal to zero, which influences the overall approximation of the likelihood function.

In conclusion, in this example the only method applicable with two covariates is the one based on GPs amongst the 
methods presented in this work. However, it is clear that, as the number of covariates (or the number of levels in each 
covariate) increases, the method would require an increasing number of observations, and this reduces the applicability in 
high-dimensional settings.

4.2. MAGIC gamma telescope

The Cherenkov gamma telescope observes high energy gamma rays, detecting the radiation emitted by charged particles 
produced inside electromagnetic showers. Photons are collected in patterns forming the shower image and it is necessary 
to discriminate between the image caused by primary gamma rays and the one caused by other cosmic rays. Images are 
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Fig. 5. Empirical normalized contour plot of the variables Length and M3Long (bottom left panel) from the MAGIC Gamma Telescope dataset; scatter-
plot and correlation between the pseudo-observations (top right panel); histograms of Length (top left panel) and M3Long (bottom right panel), after 
transforming the variables into pseudo-observations.

usually ellipses and their features, in terms of measures associated with the long and short axes, help to discriminate 
amongst images.

The data used in this Section are simulations of ellipses parameters generated by the Monte Carlo program Corsika (Heck 
et al., 1998) to simulate registrations of high energy gamma particles in a Cherenkov gamma telescope, called MAGIC (Major 
Atmospheric Gamma Imaging Cherenkov) telescope located on the Canary islands. The dataset is formed by 19,020 observa-
tions with 11 variables. For a full description of the dataset and the evaluation of the performance of several classification 
methods applied to the data, the reader is referred to Bock et al. (2004) and Dvořák and Savickỳ (2007).1

The dependence between the MAGIC Gamma Telescope variables was analysed by Czado (2019) and by Nagler and Czado 
(2016), who pointed out the uncommon characteristics of the dependence structure between some of the variables, which 
do not correspond to any parametric copula families. In particular, the dependence between the variables Length (length 
of the major axis of the ellipse, in mm) and M3Long (third root of the third moment along the major axis, in mm) is rather 
peculiar, as confirmed by the empirical normalized contour plot depicted in the bottom left panel of Fig. 5.

Here we analyse how the dependence between Length and M3Long, measured by Spearman’s ρ , varies with respect 
to the variables: class (which has two levels: gamma rays or background noise), Width (the length of the minor axis of 
the ellipse in mm) and Size (the 10-log of the sum of the content of all pixels in the image).

Fig. 6 shows the approximation of the posterior mean and credible intervals of the Spearman’s ρ between Length and
M3Long with respect to Width and Size, split by class, obtained with the GP and the spline methods. The blue lines 
show the results obtained with the GP method, while the coral lines show the results obtained with the splines method. The 
inner dashed lines denote the posterior means and the dotted lines denote the 95% credible intervals. Red dots depict the 
frequentist estimates of the unconditional Spearman’s ρ for observations belonging to the specific levels of the covariates. 
Similarly to the example in Section 4.1, splines tend to excessively smooth out the relationship between the dependence and 

1 The data are available at https://archive .ics .uci .edu /ml /datasets /magic +gamma +telescope.
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Fig. 6. Posterior approximations of Spearman’s ρ between Length and M3Long as a function of Width (top plots) and Size (bottom plots), for the 
observations classified as gamma rays (left plots) and background noise (right plots), as defined by class. The blue lines show the results obtained with 
the GP method, while the coral lines show the results obtained with the splines method. The inner dashed lines denote the posterior means and the 
dotted lines denote the 95% credible intervals. Red dots depict the frequentist estimates of the unconditional Spearman’s ρ for observations belonging to 
the specific levels of the covariates.

the covariates, while the GPs better follow the data. Fig. 6 also shows that the dependence structure among the recorded 
images measurements shows different patterns for gamma rays and background noise and can be used for discriminating 
between these two data classes.

Fig. 7 shows the posterior approximations of Spearman’s ρ between Length and M3Long with respect to Width and
Size, split by class, calculated with the method based on the EL, with the inconsistent estimator of the copula using: NW 
weights with triweigth kernel (blue), NW weights with Gaussian kernel (orange), LL weights with triweight kernel (green), 
LL weights with Gaussian kernel (purple). The inner dashed lines denote the posterior means and the dotted lines denote 
the 95% credible intervals. Red dots depict the frequentist estimates of the unconditional Spearman’s ρ for observations 
belonging to the specific levels of the covariate. Similarly to the previous examples, the approximation strongly depends on 
the definition of the weights and the kernel functions within the weights, and the uncertainty associated with the estimates 
is larger than that obtained with methods based on splines or GPs. Moreover, the computational cost is large, where for 
some approximations most of the weights describing the EL associated with different values of the functional are zero or 
close to zero and it is not possible to obtain accurate approximations (this is the reason why some of the estimates are not 
shown in the plots). In general, non linear functions seem to be less well approximated than linear functions, especially if 
some areas of the covariate spaces are less represented.

While the uncertainty associated to the EL estimates is larger than the methods based on GP or Bayesian splines, EL 
is more robust: it does not require to discretize a continuous covariate to compute the frequentist estimates for each 
level of the covariate, which is necessary for GP and Bayesian splines. Since the bias associated with the unconditional 
frequentist estimates cannot be computed, GP and Bayesian splines my follow too closely these estimates, underestimating 
the estimation bias. Moreover, the frequentist estimates may depend on the choice of how the continuous covariate is 
discretized into groups.
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Fig. 7. Posterior approximations of Spearman’s ρ between Length and M3Long as a function of Width (top plots) and Size (bottom plots), for the 
observations classified as gamma rays (left plots) and background noise (right plots), as defined by class. The lines show the results obtained with the 
methods based on the EL using: NW weights with triweigth kernel (blue), NW weights with Gaussian kernel (orange), LL weights with triweight kernel 
(green), LL weights with Gaussian kernel (purple). The inner dashed lines denote the posterior means and the dotted lines denote the 95% credible intervals. 
Red dots depict the frequentist estimates of the unconditional Spearman’s ρ for observations belonging to the specific levels of the covariate.

5. Conclusions

In this work, we have analysed three main methodologies to approximate the posterior distribution of functionals of the 
dependence: Gaussian processes, methods based on the empirical likelihood, and methods based on Bayesian splines.

We have compared the methods in terms of approximation error and precision of the estimates.
The main advantage of all these methods is that they avoid the selection of the copula family. We have shown in 

practical examples that the selection of the copula is not an easy task. In particular, when the functional of the dependence 
is influenced by covariates, two main difficulties arise: the number of observations for each level of the covariates can be 
too limited to properly select the model and the structure of the dependence can in practice change with the level of the 
covariate.

Non-linear estimation procedures (like Gaussian processes and Bayesian splines) benefit from being flexible enough to 
adequately fit the relationship between the dependence and covariates, however they need several observations for each 
level of the covariates to define a noisy version of the functionals to be estimated. Such requirement can be limiting in 
applied contexts either because there could be only one observation for each level or because the covariate is continuous. 
In the latter case, groups of covariate values can be combined into discrete levels. In any case, these methods can be 
implemented with a limited number of covariates.

Methods based on the empirical likelihood, despite not needing replications for each covariate level, on the other hand 
show higher approximation errors. When using an inconsistent estimator of the copula, the approximation seems to strongly 
depend on the choice of the weights and the approximation error is larger than GPs- or spline-based methods. On the other 
hand, when using a linearised model of the functional through a Taylor’s expansion, the uncertainty increases so that 
inference is not meaningful.
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For this work, an R-package called BICC has been implemented containing code to perform the methodologies described 
in the article. The package is available at https://github .com /cgrazian /BICC.
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