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Mesoscopic elasticity controls 
dynamin‑driven fission of lipid 
tubules
Marco Bussoletti 1, Mirko Gallo 1, Matteo Bottacchiari 1,2, Dario Abbondanza 1 & 
Carlo Massimo Casciola 1*

Mesoscale physics bridges the gap between the microscopic degrees of freedom of a system and 
its large‑scale continuous behavior and highlights the role of a few key quantities in complex and 
multiscale phenomena, like dynamin‑driven fission of lipid membranes. The dynamin protein wraps 
the neck formed during clathrin‑mediated endocytosis, for instance, and constricts it until severing 
occurs. Although ubiquitous and fundamental for life, the cooperation between the GTP‑consuming 
conformational changes within the protein and the full‑scale response of the underlying lipid substrate 
is yet to be unraveled. In this work, we build an effective mesoscopic model from constriction to fission 
of lipid tubules based on continuum membrane elasticity and implicitly accounting for ratchet‑like 
power strokes of dynamins. Localization of the fission event, the overall geometry, and the energy 
expenditure we predict comply with the major experimental findings. This bolsters the idea that a 
continuous picture emerges soon enough to relate dynamin polymerization length and membrane 
rigidity and tension with the optimal pathway to fission. We therefore suggest that dynamins found 
in in vivo processes may optimize their structure accordingly. Ultimately, we shed light on real‑time 
conductance measurements available in literature and predict the fission time dependency on elastic 
parameters.
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Discovered in 1989, dynamin is the first protein shown to catalyze fission of lipid  vesicles1. Its ability to pro-
mote tubulation by helically polymerizing on compliant, high curvature, and cylindrical lipid  substrates2 and to 
drive their constriction and fission via a series of conformational changes upon GTP (guanosine triphosphate) 
 hydrolysis3–7 grants the dynamin a key role in the fascinating choreography of endocytosis. Indeed, dynamin is 
recruited on and helically wraps around the neck of clathrin-8 or caveolin-induced9 buds, for instance, eventually 
finalizing the detachment of endocytic  vesicles3,10,11 necessary for nutrient uptake, synaptic transmission, and 
intracellular  trafficking12–14. Altogether, these aspects link mutations or misregulated expressions of dynamin to 
a plethora of neurodegenerative  disorders15 and  myopathies16.

Despite its physiological relevance and ubiquity, a thorough picture of how dynamin drives constriction and 
cleavage of membrane necks is still missing, especially for what concerns the comprehension and quantification 
of energy barriers, forces, minimal machinery, and role of geometrical  aspects11,14. As a matter of fact, whether 
it is on necks developed in the final stages of clathrin-mediated  endocytosis12 or their in vitro surrogates, i.e. 
lipid tubules with radii in the range of 10 to 30 nm 2, the dynamin monomers polymerize into helices spanning 
from tens to hundreds of nanometers along the tubule’s axis. Therefore, the GTP-dependent molecular activ-
ity of dynamin meets the lipids’ response on a mesoscopic scale where elastic features start playing a role. In 
this concern, continuum elasticity interests a nourished cohort of theoretical and experimental studies dealing 
with both membrane- and polymer-related  mechanics17–26. Such coarse-grained descriptions not only possess 
the ability to effectively portray the behavior of the system at this scale but also operate on a reduced amount 
of variables and  complexity27,28. Pursuing this motif, we aim to recognize a common mechanism underlying 
dynamin-driven fission and emerging from a scale where the granular nature of matter fades into a more diffuse 
and continuous one. As such, it is pivotal to characterize the influence of the key mesoscale quantities defining 
the system, such as dynamin’s polymerization length (or number of rungs), tubule radius as well as membrane 
rigidity and tension. Each one of these variables eludes the reach of atomistic approaches when dealing with 
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full-scale processes and rightfully enters the grasp of continuum elasticity, which is thence expected to bridge 
the gap toward experimentally accessible observables.

Indeed, experimental techniques may either allow to spatially reconstruct the dynamin-lipid assembly down 
to a subnanometer detail employing, most often, mutated compounds at the price of a practically unfeasible 
observation of fast, dynamic  processes4,7,11,18,21,24,25,29–35 or probe the system evolution with sufficiently narrow 
time resolutions while being limited to mesoscale or integral observables, e.g., tubule’s radius and integrity 
and dynamin’s  length6,12,18,19,36–39. Such limits may be transcended by full atomistic molecular dynamics tech-
niques, which are invaluable tools for shedding light on the biochemistry of protein–lipid interactions and 
determining the nature of the GTP-activated conformational  changes24,29,31. Recent advancements, amidst the 
other  possibilities19,37,40–43, substantiate the hypothesis of a ratchet-like power stroke taking place between the 
cross-linked dimers of adjacent rungs composing the  helix4,18,24,32,39. Furthermore, through a combination of 
experimental and numerical  investigations24, these GTPase power strokes were shown to be intense enough 
to actively constrict the membrane. Still, the full framework encompassing both constriction and fission of the 
lipid tubular structure remains unclear. Nonetheless, the computational cost associated to atomistic techniques 
imposes limitations on the accessible spatiotemporal scales and, in order to deal with the full-scale evolution of 
the tubule severing, rather strong coarse-graining approaches shall be  deployed25,37,40,44,45.

Within this work, by sacrificing a sizeable level of detail in the protein machinery, we build a mesoscopic 
model based on a consistent elasticity description and able to retain the key features of dynamin-induced con-
striction. In particular, we develop a protein-interaction term to be coupled with a diffuse interface, Ginz-
burg–Landau type of free energy which reproduces the results of classical elasticity membrane  models46,47 —
namely the Canham–Helfrich  Hamiltonian48,49— and overcomes the associated limitations by accounting 
for topology-related effects across membrane  severing50. Analogous approaches were recently proved effec-
tive in thoroughly reproducing mesoscale phenomena like, e.g.,  boiling51, water  cavitation52,53, vapor bubble 

Figure 1.  Outline of the mesoscopic elastic picture. (a) The mesoscale interpretation of dynamin as a chain-like 
helix structure where molecular details are replaced by its essential geometric characteristics, like internal and 
external radii, pitch h, polymerization length H, and number of dimers per turn Nd . The forces exchanged by 
dimers of adjacent rungs following GTP hydrolysis are highlighted in red for a pair of chain  links24. This same 
interaction is repeated for each pair of dimers, resulting in a statistically zero net force for dimers in the inner 
turns. (b) At the mesoscale, the lipid bilayer behaves as a continuum elastic medium. Based on the celebrated 
 Canham48 and  Helfrich49 elasticity model, the membrane mechanics is here portrayed through a diffuse 
interface approach capable of following the full-scale processes of constriction and topological rearrangement 
in a regularized  way50. This 5 nm-thick diffuse interface, highlighted in the upper half of the contour plot, is 
defined by the order parameter φ(x) , whose complete structure is shown in the lower half of the contour plot 
ranging from −1 in the blue, external region to + 1 in the red, internal one. (c) Focusing on a coarser and more 
diffuse picture of the dynamin action onto lipid tubules, it is possible to retrieve a pressure, p(r, z), that depends 
on the position along the tubule axis, as shown in the lower red graph, and its local radius, shown in the upper 
blue graph (see Supplementary Information for additional details). The intensity of this pressure depends on 
the above-mentioned key quantities as well as on the tangential component of the force originating from the 
ratchet-like power strokes, Fτ ≈ 2.5 pN24, and is therefore normalized as p(r, z) = p⋆(r, z)× p(Rin, 0) , where 
p(Rin, 0) = NdFτ /(hRin) is its value at the center of the initial tubule with radius Rin . (d) The outcomes of the 
constriction phase could result in the severing of the lipid tubule. As will be shown later in the article, different 
fission pathways may delineate depending on mesoscopic quantities such as the polymerization length.
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 nucleation54,55, Rayleigh-Plateau  instability56, crystal  growth57, and dielectrics  breakdown58. Figure 1 depicts the 
outline and general idea of this article. For the purpose of aiding a mechanical comprehension of the continuous 
model construction, the dynamin complexity is first shrunk down to a simple chain-like picture where the ratchet 
power strokes take place between chain links of adjacent turns (a pair of which is highlighted in red in Fig. 1a). 
A further coarse-graining step loses focus on the discrete nature of the chain and enforces a diffuse paradigm 
portraying the effect of conformational changes onto the membrane (Fig. 1, panels b,c), eventually resulting in 
the constriction and fission of the tubule (Fig. 1d).

We investigate whether pure constriction may play as the main mechanism leading to fission and what are the 
implications of different polymerization lengths on effectiveness and efficiency. Experimentally available results 
on phenomenology, critical neck radii, and energy expenditure estimates are shown to corroborate the picture 
here proposed. Unexpectedly, some insights on the location of fission nucleation sites are retrieved, shedding 
light on the role of membrane tension as well as nonlinear elasticity effects in determining whether severing is 
expected to occur at the middle or at the edge of dynamin coats, a duality first recognized by Pannuzzo et al.40. 
All these aspects converge in reproducing the experimentally measured time required for completing fission, 
eventually evidencing its relationship with the key mechanical properties of the system.

Results
The mesoscopic elastic picture
Five domains constitute the prototypical dynamin  monomer11,29–31. Among these, the GTPase (G) domain is 
responsible for the power-stroke generation, then transmitted to the underlying lipid substrate by the membrane-
binding pleckstrin homology (PH)  domain7. The detail of the model construction, starting from the mechanical 
role of each domain, may be found in the Supplementary Information. For our purposes, however, it is worth 
knowing that, as revealed by cryo-electron microscopy, dynamin monomers crisscross associate in an anti-
parallel dimer, itself constituting the building block of the  helix7,14,31, and thus expose the power units (the G 
domains) to the adjacent rungs. From a mechanical point of view, these molecular motors connect the adjacent 
rungs and apply a shearing force on them, thus inducing a longitudinal tension. This is balanced by a pressure 
acting on the membrane. The tension builds up in the two extremal rungs and is constant in the inner ones, 
hence self-equilibrated in the longitudinal direction.

In other words, since the chain sustains internal tension but exhibits no significant bending  reactions24,29, 
one can retrieve the pressure experienced by the lipid bilayer for polymers completing at least one full turn. It 
should be noticed that the shear stress on the membrane may affect the fission process as well, as suggested in 
Refs.42,59. This aspect is worth future investigation, but it is not further considered here due to the reported time 
scale difference between the fast lipid diffusion (under 10ms ) and the slow protein rearrangements (from 100ms 
to 10 s29,60) as discussed in Refs.40,43–45. The pressure field, p(r, z), is represented in the main plot of Fig. 1c with r 
and z being the radial distance from the tubule axis and the axial distance from the polymer center, respectively. 
We build p(r, z) upon the assumption that GTP is abundant and readily hydrolyzed by a preassembled dynamin 
at a statistically steady rate. As anticipated, the power strokes build up tension along the chain length but keep 
it constant in the inner, statistically equilibrated turns. This provides the axial dependency of the pressure field 
shown in the lower red graph of Fig. 1c. On the other hand, the radial dependency of p(r, z) (upper blue graph 
of the same panel) is related to the internal tension of the chain via the inverse of the tubule radius and progres-
sively fades to zero when the molecular structure of the helix reaches a maximum admitted curvature (around 
3 nm in terms of tubule  radius14,33, though the results are robust with respect to its exact value and to the shape 
of the decay function). Whenever tubule rupture is achieved, dynamin polymers  disassemble6 and, accordingly, 
the pressure field vanishes. In this model, no depolymerization energy is deposited on the lipid membrane, 
in accordance with some recent  evidence18,32. Such a diffuse model inherits the key geometrical aspects of 
the helix inasmuch as it depends on the polymerization length H, the pitch h ≈ 10 nm7,25,30,33, the number of 
dimers per turn Nd ∼ 1314,30–33,41,61, and the intensity of the averaged tangential traction exerted by the power 
units on each chain link, Fτ ≈ 2.5 pN24 if not differently stated. These quantities appear in the pressure value 
p(Rin, 0) = (NdFτ )/(hRin) attained at the center of the tubule when in its initial, undeformed configuration, Rin 
being its radius, and are used in Fig. 1c to normalize the pressure as p(r, z) = p⋆(r, z) × p(Rin, 0).

In this work, we focus on systems characterized by open, axisymmetric portions of lipid tubules as they 
indeed represent the experimentally relevant scenario of long tubular bilayers pulled from a Giant Unilamellar 
Vesicle. In this setting, the vesicle, having a typical size well above the micrometer, acts as a lipid reservoir for 
the tubule. Moreover, the mechanical conditions imposed on the vesicles, for instance by micropipette aspira-
tion, set the value of the surface tension γ the tubule inherits from its boundaries. Following the ideas of the 
celebrated  Canham48 and  Helfrich49 model, the lipid bilayer (mesoscale) mechanics is mostly determined by the 
local curvatures of its midplane surface Ŵ , depicted in purple in the figures appearing hereinafter. An expression 
of the elastic Hamiltonian for symmetric, homogeneous composition bilayers, subjected to a constant surface 
tension γ , reads

where kb and kG are the bending rigidity and the Gaussian modulus, respectively, while M and G the mean and 
Gaussian curvatures of Ŵ . This picture is thought to hold as long as a scale separation persists between the cur-
vature radii and the membrane  thickness62–64, though there is evidence of its effectiveness in extreme-curvature 
 tubules63. The second integral in Eq. (1) is characterized by an elusive behavior inherited from the Gauss–Bonnet 
theorem of differential geometry, relating the integral of the Gaussian curvature to the topology of the surface, 

(1)HCH [Ŵ] =
kb
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and therefore accounts for a constant energy contribution as long as no topological rearrangement occurs. In 
this concern, lipid tubules preserve their topology throughout the whole constriction process, thus justifying the 
extensive use of these models in portraying the mechanical properties of their  bilayer17,18,20,22–26. Nevertheless, 
the classical elasticity approach entails the impossibility to deal with topological transitions without recurring 
to surgical cut and paste operations on membrane  patches65 and, consequently, cannot capture the energetics 
nor contemplate the Gaussian curvature-related forces involved in tubule fission. For these reasons, the recently 
proposed Ginzburg–Landau type free  energy50, built on a diffuse interface description, is deployed to reproduce 
classical elasticity results in the first stages of constriction and account for Gaussian energy effects in a regular-
ized way across neck cleavage. Such contributions are particularly relevant to the constitution of the energy 
barriers associated with topological  rearrangements50 and also allow to envision possible mechanisms for their 
reduction, such as the catalytic effect of fusion  peptides66. The adopted diffuse interface approach introduces 
a continuous phase field φ(x) , depicted by the contour plot on the lower half of Fig. 1b, which spans the entire 
three-dimensional domain � hosting the membrane, and distinguishes the internal and external environments, 
φ = 1 and φ = −1 , respectively. Thence, φ(x) identifies the bilayer as the ∼ 5 nm diffuse region across the φ = 0 
iso-surface, itself standing for Ŵ , and an effective, coarse-grained free energy is built thereupon.

In order to seize the effects of dynamin helices on these lipid tubules and portray the processes of constriction 
and fission, a forcing term, I[φ] , is suitably developed and introduced in the free energy of the system so as to 
properly spread the external pressure p(r, z) over the full width of the diffuse interface. The details of the math-
ematical model joining the contributions of the mean curvature (or bending) energy, Fb[φ]46,47,67,68, the Gaussian 
energy, FG[φ]50, the surface tension energy, Fγ [φ] , and the interaction term are covered in Methods section.

A cylindrical lipid membrane of radius Rin is straightforwardly found to minimize the elastic Hamilto-
nian in Eq. (1) when Rin =

√

kb/(2γ ) . Though surface tension may sensibly vary depending on the specific 
experimental setting or physiological condition, it usually ranges between 10−6 and 5× 10−4 Nm−118. For the 
following results, if not differently stated, we adopt a typical value γ = 1.5× 10−4 Nm−1 . Upon choosing a 
reasonable set of physical parameters for the bilayer, consisting in kb = 20 kBT

69, kG = −kb
70,71, and membrane 

thickness lme = 5 nm , we evolve the system from the undisturbed configuration of a microscopic-sized tubule 
( 1400 nm long and with radius Rin = 16.6 nm ) exploiting a maximum-dissipation-rate dynamics. Indeed, the 
coarse-grained free energy functional is minimized following a steepest gradient descent, also called Allen–Cahn 
dynamics (see Eq. (14)), which corresponds to an overdamped evolution with negligible inertial effects (the 
interested reader is encouraged to go through the details provided in “Methods” section). In order to set the 
actual time scale of the proposed dynamics, we perform a direct comparison with experiments on the kinetics 
of tubule deformation under external osmotic  pressure6 (see “Methods” section as well as the Supplementary 
Information for additional details).

The effect of polymerization length on the energetic requirements for fission
A hemifission intermediate stands along the fission pathway of lipid tubules and links the constriction phase to 
the severing completion, similarly to the hemifusion intermediate manifesting in the reversed, fusion  process18. 
As experimentally  determined6,19,37, the inner monolayer proceeds to fission before the outer one so that the 
impermeability of the membrane is preserved and the leak of enclosed substances prevented, thus momentar-
ily realizing a single-layered, short, cylindrical micelle linking the now disjoined environments. The energy 
expenditure associated with this lipid reorganization was first estimated on a theoretical  basis17, resulting in 
a spontaneous transition from the constricted configuration to the hemifission one upon reaching a critical 
membrane radius of ∼ 3 nm at the site of tightest constriction, namely the membrane neck. An energy drop is 
thence estimated for completing fission, suggesting that the constriction alone could be sufficient for triggering 
the whole topological  transition17,18. A minimal energy fission pathway has been numerically found with the 
aid of coarse-grained molecular dynamics  approaches45, too, providing a non-negligible barrier of ∼ 30 kBT for 
rupturing the hemifission intermediate and completing fission. However, subsequent  developments40 propose 
such a barrier not to be biologically relevant because of the specific simulation set-up, evidencing the persistence 
of challenges in the comprehension of such multiscale topological rearrangements. On the other hand, the copi-
ous experimental studies carried out over the last decade were able to delineate some recurring features of the 
fission process. Indeed, there is a common consensus on the existence of a critical neck radius, inasmuch as an 
unconstrained neck spontaneously proceeds towards fission whenever the inner luminal diameter or, equiva-
lently, the neck radius approach the thickness of the lipid  bilayer36,41,72.

In order to assess the proposed mesoscopic model and the role of the polymerization length H in determining 
severing effectiveness and efficiency, we perform a series of in silico experiments and compare some selected 
quantities with literature results. Hereinafter, we define the neck of the tubule as the site of maximum constric-
tion. Furthermore, we define the critical state as the one with maximum elastic energy, Fe = Fb + FG + Fγ , when 
it is followed by fission. Accordingly, there is no critical state when no fission occurs. It is worth specifying that 
multiple necks could form in general but, by definition, they all share the same minimum radius Rn.

Figure 2a shows the neck radii characterizing the equilibrium configurations attained for different values of 
H (red line with triangles). In particular, a null value here indicates that no neck exists at equilibrium, therefore 
determining the occurrence of a fission event. Along with that, the neck radii Rn (green line with squares) and 
radii at the tubule center Rc (blue line with circles) of the configurations with maximum elastic energy (critical 
ones, if preceding fission) are shown. Figure 2b depicts a collection of snapshots of tubule portions coated by a 
short, 20 nm-long dynamin in the upper row and a longer, 70 nm-long one in the lower row. The columns of this 
panel are organized so as to portray the evolution of the system from its undeformed state toward the severed one, 
passing through the critical configuration preceding fission. Equilibrium neck (red triangle), critical neck (green 
square), and critical central (blue circle) radii are evidenced. From the analysis in Fig. 2a, dynamin helices that 
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barely complete a full turn around the tubule, i.e. with less than ∼ 18 stalk dimers, do not complete fission but 
rather reach a maximum deformation that increases with the number of actively involved power stroke units. For 
longer coats, instead, fission is always observed and the critical radii that the tubules reach right before triggering 
the topological transition are found to be quite independent of the helix height, thus implying that an intrinsic 
critical length exists distinguishing whether the bilayer shall spontaneously proceed to fission or not. Notably, 
this same concept permeates the almost entirety of literature, where  theoretical17 and experimental  data36,41,72 
identify the critical radius as ∼ 3 nm or comparable to the width of the bilayer. For the sake of comparison, this 
range is highlighted in Fig. 2a for a 5 nm thick membrane (light blue stripe). It is worth noticing that experi-
mental estimates are often obtained through integral measurements, where the accessible observable is a sort of 
averaged radius of the putative cylindrical structure preceding fission, and, therefore, the slightly larger critical 
neck radius estimate ( ∼ 5 nm ) should be compared to the critical radius of the central region, Rc . As evident in 
Fig. 2a,b, indeed, long polymers manifest different behaviors between Rn and Rc . This is related to the formation 
of a central, highly-constricted, tubular region enclosed by two distinct maximum deformation sites. In fact, the 
value assumed by Rc for sufficiently long coats (large H) is consistent with the equilibrium radius of a tubular 
lipid membrane subjected to a tension modified by the dynamin pressure as γ̄ = γ + NdFτ /h , as explained in 
Methods section, thus retrieving Rc ≈

√

kb/(2γ̄ ) = 3.5 nm.
The maximum elastic energy, �Fe , is shown in Fig. 2c (red circles) versus the polymerization length H, taking 

as a reference the elastic energy of the unperturbed tubule. This maximum is achieved at equilibrium for coats 
shorter than 15 nm , Fig. 2a, which do not reach fission. By increasing H and, therefore, the number of power 
stroke units, the elastic energy content increases. As for the radii, as soon as neck cleavage occurs, an elastic 
energy plateau ( ∼ 130 kBT ) appears between H = 15 nm and H = 35 nm , i.e. the amount of energy needed to 

Figure 2.  Effects of polymerization length on constriction and fission efficacy and efficiency. (a) Radius 
of maximum deformation sites, namely the neck radius Rn , at equilibrium (red line with triangles) and at 
maximum elastic energy (green line with squares), the latter preceding fission for H ≥ 15 nm , is depicted for 
increasing values of the coat height H. Critical radius at the coat center, Rc , is shown (blue line with circles), too. 
The initial radius Rin =

√

kb/(2γ ) of the lipid tubule is displayed as a reference (orange line) and the range of 
theoretically and experimentally predicted critical neck and central radii is reported (light blue stripe)17,36,41,72. 
The value H = 20 nm divides the abscissa in two different logarithmic scales so as to facilitate perception of all 
data. (b) Snapshots of tubule portions for different dynamin lengths ( H = 20 nm above and H = 70 nm below) 
along the evolution. Specifically, from the first to the third columns, the system is depicted in its undeformed, 
critical, and severed states, respectively. Equilibrium neck radius (red triangle), critical neck radius (green 
square), and critical central radius (blue circle) are evidenced, too. (c) Maximum elastic energy content of the 
critical (when preceding fission) or equilibrium (when no fission occurs) configuration with respect to the 
initial, unperturbed one. The energy of the tubule (red circles) is shown for increasing dynamin heights together 
with the energy contributions from the central tubular region (orange square) and the outer flanks (blue 
triangle). This subdivision of the system is illustrated in the critical snapshot at the bottom of the graph (refer 
to the colored version of the article for better visibility). Experimentally estimated values for the minimal work 
expenditure of the optimal dynamin  machinery18 is shown for reference (light red stripe). The value H = 20 nm 
divides the abscissa in two different logarithmic scales so as to facilitate perception of all data, whereas the 
ordinate follows a unique logarithmic scale.
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sever the tubule is almost independent of H. This, together with the observation that particularly short polymers 
do not trigger fission, shows that an activation barrier ought to be overcome for it to occur and that, in the con-
sidered range of coat heights, fission proceeds in a similar fashion. Furthermore, this estimated activation energy 
( ∼ 130 kBT ) is in astonishing agreement with the minimal effective amount of energy the GTP molecules must 
provide to the tubule for successful severing. As a matter of fact, literature data report the minimum number 
of GTPase cycles in the range between 15 and  1818,36 and an efficiency of ∼ 37% in effectively transferring to 
the membrane the ∼ 20 kBT of available energy per GTP, leading to the estimated 110 kBT to 130 kBT , shown 
as a light red stripe in Fig. 2c. Noteworthy, these experimental estimates are performed on fairly short helices 
comprising about two rings since these structures are believed to represent the optimal machinery for tubule 
 severing19,33,40 and, perhaps not by mere coincidence, are characteristic of clathrin-mediated  endocytosis60,73. 
This, again, finds a correspondence in our numerical results (Fig. 2c) which indicate how chains with 1.5 to 3 
loops (or 15 nm ≤ H ≤ 30 nm ) are more efficient than longer ones in achieving fission, in the sense that they 
are associated to a lower critical elastic energy and, therefore, a lower work expenditure. In this concern, long 
polymers are experimentally found to show a reduced efficiency or even  impossibility6 to constrict and cleave 
tubule necks, unless GTP-enhanced disassembly takes place in advance, shortening the operating  machinery19. 
Indeed, focusing on the long polymers branch of the plot in Fig. 2c, which means high values of H, the critical 
elastic energy increases linearly with H and soon reaches very high values. This regime is separated from the 
short helices plateau by a distinct step in �Fe taking place at H ∼ 35 nm . In order to explain this evidence and 
bearing in mind the results in Fig. 2a,b, the critical elastic energy increment is split into two contributions: the 
energy of the tubule portions outside the neck (or necks), namely the outer flanks (blue triangles), and that of 
the constricted tubular (inner) region (orange squares) characterizing long helices. We find that the energy of 
the outer flanks retraces that of the whole tubule up until the end of the plateau, H ∼ 35 nm , and keeps constant 
therefrom. On the other hand, the creation of the inner tubular region is found responsible for the aforemen-
tioned step in the total elastic energy. When the length of the helix increases, so does, proportionally, the energy 
of the inner, highly constricted region.

Determining fission site location
The analyses carried out so far show a different behavior between short, H < 40 nm (4 rungs), and long, 
H > 40 nm , polymers, the most prominent difference being the formation of a single neck in the former case 
and two necks in the latter, see Fig. 3.

Two examples of critical configurations for short and long helices are shown in Fig. 3b, where the color con-
tours depict the pressure exerted by the dynamin on the lipid bilayers. For long polymers, a constricted cylindrical 
structure separates the two necks and its axial extension increases linearly with H, as revealed by Fig. 3a. In fact, 
in this case, the necks form at a fixed distance from the coat edges.

Increasing H above a certain threshold value, H⋆ ≈ 40 nm , the fission site shifts from the center of the 
dynamin coat to its periphery. These two behaviors were alternatively observed in experiments,  see36 for fission 
at the center  and18,35 for fission at the edges, and in molecular dynamics  simulations40,44. In particular, Pannuzzo 
et al.40 discussed how this behavior is related to the polymer length. Although different explanations were pro-
posed, ranging from the differential mechanical action of dynamin along its  length24 to the greater stress due 
to the presence of an edge between coated and uncoated tubule  regions18, our results endorse the idea that the 

Figure 3.  Fission site locations depend on polymerization length. (a) Distance D among critical necks for 
different polymerization lengths H of interest (main plot). The entire range of available results is shown in the 
inset on the right. D also depicts the distance between fission sites for those necks that are going to experience 
fission, i.e. for H ≥ 15 nm . The inset on the left evidences the profiles characterizing the tubule deformation 
at the critical configuration for H = 20 nm , H = 50 nm , H = 100 nm , and H = 150 nm . The threshold 
polymerization length H⋆ , identified at ≈ 40 nm , differentiates the configurations leading to one or two fission 
sites. (b) Critical configurations for H = 20 nm and H = 70 nm evidencing the distance D between fission sites 
and the local pressure exerted by the GTP-activated dynamin action.
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location of the fission sites is determined by an intrinsic length related to the tubule elasticity. Specifically, the 
maximum constriction sites, namely the necks, anticipate the fission sites in the configuration where the elastic 
energy content is maximum (critical configuration), as also observed in  experiments32.

The fact that an intrinsic elastic length may explain the different fission scenarios is confirmed by the lin-
earized Canham–Helfrich model, Eq. (19), which predicts an axial decay length, Ldec , proportional to the initial 
tubule radius, Ldec =

√
2Rin

74. Actually, “Methods” section, the associated Green’s function is characterized by 
spatial oscillations exponentially decaying on the scale Ldec , see Fig. 6a below, which result into a single promi-
nent dimple after convolution with the pressure of a short dynamin. To the contrary, a long coating leads to an 
almost complete cancellation of the oscillations except for the edges where two dimples survive, see Fig. 6b. In 
the linearized theory, the single dimple splits into two minima after the coating length exceeds the threshold 
H⋆
l.e. = 2

√
2πRin , see the blue dashed line in Fig. 4a.

Nevertheless, this prediction substantially differs from what we obtain from the present nonlinear simulations 
at critical conditions, whose data are shown in red in Fig. 4a with the bars providing the confidence interval. 
Following the motif of this work, we expect to find a direct relationship between the elastic parameters of the 
tubule and H⋆ , as in the case of linearized elasticity. Indeed, varying γ in a reasonable  range18, we find that the 
nonlinear splitting height at critical conditions (threshold height H⋆ ) is determined by Rin as shown by the red 
solid line in Fig. 4a. This delineates a phase diagram where fission of the tubule-dynamin assembly is expected 
to occur at the center or at the edge of the coat when below or above the threshold height H⋆ , respectively. To 
further investigate the origin of the reduced threshold height for the nonlinear case, we compare the equilibrium 
deformation profiles, obtained through the minimization of the complete Ginzburg–Landau elastic free energy 
as well as through linearized elasticity, of tubules with Rin = 16.6 nm and subjected to radially-constant pressure 
fields with increasing intensities. The upper plot of Fig. 4b reports the case of H = 100 nm , expected to be below 
H⋆
l.e. but above the numerically found H⋆ . The solutions taking into account nonlinear effects (solid lines) do 

superpose with linearized elasticity ones (dashed lines) for low intensities of the applied pressure (bluish colors), 
identifying a unique neck at the center of the coat (circles). However, they soon diverge when increasing the 
pressure intensity (reddish colors) and nonlinear elasticity results bifurcate into two distinct necks with increas-
ing separation. Accordingly, when considering H = 200 nm , now above both H⋆

l.e. and H⋆ , the structure of the 
equilibrium profiles is more consistent (lower plot of Fig. 4b) and the effect of nonlinear elasticity is limited to 
the containment of the deformation and the concurrent enlargement of the distance between necks.

Figure 4.  The role of nonlinear elasticity in fission pathway bifurcation. (a) Dependency of the threshold 
polymerization length ( H⋆ ) on initial tubule radius (or membrane tension, with kb = 20 kBT ). Linearized 
elasticity prediction, H⋆

l.e. = 2
√
2πRin , is represented by the dashed blue line whereas nonlinear elasticity results 

are condensed in the solid red line, H⋆ = (25.6± 2.3) nm+ (0.77± 0.11)Rin , obtained by interpolation of 
the numerical results, red symbols (the shaded band represents the interpolation error while the vertical bars 
provide the confidence interval on the numerical data). Three zones are delineated in the phase diagram, where 
maximum constriction (linearized model, blue) and fission (nonlinear model, red) are predicted at the center 
or at the edge of the coat as summarized by the sketches. (b) Tubule deformation profiles ( Rin = 16.6 nm ) 
under the effect of increasing pressure (see color bar): linear elasticity, dashed lines; complete Ginzburg–
Landau elastic model, solid lines. Two different axial extensions (H) of the pressure distribution are reported: 
H⋆ < H = 100 nm < H⋆

l.e. , upper plot; H⋆ < H⋆
l.e. < H = 200 nm , lower plot. Nonlinear elasticity anticipates 

the bifurcation of the fission pathway that starts occurring at smaller H. The circles highlight the maximum 
constriction sites (necks).
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The time scale of fission
To this point, we only focused on time-independent quantities like critical radii, activation energies, and fission 
site location. However, the time scale (and kinetics) of constriction and fission plays a fundamental role in the 
physiological function of dynamins. We therefore observe the time evolution of a 1.4µm-long tubule with initial 
radius Rin ≈ 16 nm under the activity of differently polymerized dynamins. The chosen observables, shown in 
Fig. 5a, are the ratio of deformed-to-initial Debye-corrected lumenal conductance (normalized conductance Gn 
shown in the upper plot, more details in the Supplementary Information) and the elastic energy change ( �Fe in 
the lower plot). The occurrence of fission entails an abrupt decrease (to zero) of the lumen conductance, accompa-
nied by a likewise steep decrease in the elastic energy. Prior to fission, along the constriction phase, the Gn versus 
time curve remains substantially flat for short coats. On the contrary, it varies substantially when H > H⋆ , i.e. 
where all dimers cooperate, as depicted by the blue and green dashed lines for H = 70 and 200 nm , respectively.

The normalized lumenal conductance is especially suitable for experimental comparison since it can be 
accurately measured along the constriction phase, at least for long tubules. Figure 5b shows such comparison 
for the case with kb = 16 kBT and γ = 5× 10−4 Nm−1 , implying Rin ≈ 8 nm , using experimental results from 
the  literature6,19, blue and black shaded lines. In these experiments, there is no direct control on the dynamin 
polymerization length, however, based on the present results (Fig. 5a and red long-dashed line—H = 20 nm , 
Fτ = 3.25 pN—in Fig. 5b), the modest reduction of the lumen conductance until severing takes place suggests 
the action of a short dynamin. Indeed, the authors themselves in Ref.19 suggest that dynamins might optimize 
their geometry for fission (attaining lower activation energies, as found in previous sections) by depolymerizing 
into separated collars made of few rungs and operating individually. This interpretation can be directly checked 
by comparing the conductance decrease induced by a connected, 70 nm-long coat (dashed green line in Fig. 5a) 
with that of five 20 nm-long collars, positioned 90 nm apart, see the short-dashed red line in Fig. 5b. Based on 
the data provided in Ref.24 we estimate the uncertainty in the value of Fτ as Fτ = 3.25± 0.75 pN , leading to the 
reddish band delimited by conductance profiles for 2.5 pN on the right and 4 pN on the left (single dynamin with 
H = 20 nm ). Panel c of Fig. 5 shows snapshots of the relevant region of the tubule along the constriction. The 
local forces exerted by dynamin on the lipid bilayer are shown as red arrows.

In another class of  experiments18, the dynamins are significantly longer, H > 150 nm . In this case, as shown 
in the upper inset of Fig. 3a (see, e.g., the blue line), the constricted region is basically cylindrical except for the 

Figure 5.  Time evolution of the system and fission time dependency on elasticity. (a) The Debye-corrected 
conductance of the internal lumen (upper) is measured during constriction and fission of 1.4 µm-long tubules 
coated by differently polymerized dynamins ( H = 20; 70; 200 nm , Fτ = 2.5 pN ). Concurrently, the associated 
elastic energy change is shown (lower), evidencing the presence of an intrinsic energy barrier determining the 
closure of the lumen, i.e. null conductance. (b) Comparison of the time evolution of lumen conductance with 
experimentally available  measurements6,19. The effect of a single short dynamin ( H = 20 nm ) is depicted by the 
long dashed red line for Fτ = 3.25 ± 0.75 pN24, with the reddish area delineated by the uncertainty range of Fτ . 
The effect of multiple (five) short dynamins, with H = 20 nm , Fτ = 3.25 pN , and set ∼ 90 nm apart, is shown 
by the short dashed red line. The same elastic parameters characterize both the experiments and the numerical 
analysis, specifically kb = 16 kBT and γ = 5× 10−4 Nm−1 , determining an initial tubule radius of ∼ 8 nm . 
(c) Snapshots of the deformed tubules with arrows depicting the local dynamin force (per unit of volume) in 
the different conditions analyzed in panels a and b; scale arrow is 0.8 pN/nm3 . From left to right, 16 nm-radius 
tubule with a short dynamin, 16 nm-radius tubule with a fairly long dynamin, and 8 nm-radius tubule with five 
short dynamins, set ∼ 90 nm apart (only two shown here). Arrow scale, show on the left, is 0.8 pN nm−3 . (d) 
Analytical prediction of the fission time, Eq. (2), compared with experimental  results18 shown by the points 
with error bars. The solid, shaded lines represent the analytical predictions for the different values of kb together 
with their uncertainties, provided by Ref.18. Here, dynamin characteristics are H = 200 nm (experiments state 
H > 150 nm ) and Nd × Fτ ≈ 15× 4 pN . The actual time scale of the simulations is determined by a direct 
comparison with osmotic pressure induced constriction  experiments6, as further discussed in “Methods” section 
and Supplementary Information.
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two dimples at the edges. We have already discussed how the fission locations are determined by such dimples 
(necks). Nevertheless, a rough estimate of the constricted radii can be obtained by looking at the cylindrical 
portion. The advantage, here, is that the constriction dynamics of the cylindrical tubule can be analytically 
evaluated in exact form from the relaxation dynamics of Eq. (1), with the mobility estimated as discussed in 
the “Methods” section and Supplementary Information, forced by the pressure field exerted by the dynamin. As 
detailed in the Supplementary Information, we ultimately obtain an (approximate) analytical formula for the 
expected fission time, namely the time elapsed from the beginning of constriction to complete fission, which, 
for the case of H > H⋆ , reads

w h e r e  γ̄ = γ + NdFτ /h  ,  t h e  s y s t e m  m o b i l i t y  i s  Msharp = 3.57 nm4/(s kBT)  ,  a n d 
α(Fτ ) = 1+ exp[(2.318 pN− Fτ )/0.805 pN] provides a small correction fitted on simulation data and vanish-
ing for the upper range of Fτ = 4 pN . Equation (2) highlights the dependency of the fission time on elastic and 
mesoscopic parameters and its predictive capability is shown in Fig. 5d through a direct comparison with the 
already cited experimentally measured fission times for long dynamins ( H > 150 nm ) in abundance of  GTP18. 
These data are depicted by the symbols with errorbars for different combinations of γ and kb while the theoreti-
cal predictions from Eq. (2) are shown as solid lines, with the shaded bands accounting for the experimental 
uncertainty on kb . The dynamin geometry and traction in Eq. (2), which are not explicitly indicated in Ref.18, 
are chosen here such that h = 10 nm and Nd × Fτ ≈ 15× 4 pN . Experimental fission times are reported to be 
independent of polymer length, at least in this scenario of H > 150 nm , consistently with our present estimates.

It is worth mentioning that we also provide in the Supplementary Information a more general formula 
accounting for the fission times of both long and short dynamins.

Discussion
Dynamin-driven fission of lipid tubules poses numerous challenges to both experimental and theoretical 
approaches inasmuch as it concurrently involves the molecular detail of the protein conformational changes 
and the full-scale elastic response of the lipid bilayer. In light of this, the mesoscopic model proposed in this 
work shall be understood as an attempt to effectively project the relevant physics of both these scales into a dif-
fuse and continuous picture.

The results we have presented point to the central role played by the elastic interpretation of lipid membrane 
mechanics, which is found to emerge even at scales comparable to that of its thickness and whose nonlinear 
aspects have proven central for correctly predicting and explaining phenomena permeating the recent literature. 
In this concern, the diffuse representation of the interface and related (elastic) energy content was key to achiev-
ing a quantitative comprehension of the critical membrane geometry preceding fission. This was found to be in 
accordance with nourished experimental  data36,41,72 and evidenced some recurring characteristics for a vast range 
of dynamin polymerization lengths (from tens to hundreds of nanometers). Beyond that, though the granular 
nature of the protein is lost along with the many molecular aspects, our results attest a surprising consistency of 
the adopted model in terms of mesoscale observables. In particular, this work hinges on a chain-inspired con-
striction mechanism activated by ratchet-like power strokes that take place between dynamin  dimers18,24,32,39, 
eventually projected on the membrane as a diffuse inward-pointing pressure. Noticeably, this interpretation is 
compatible both with a free tilting of the PH domains, observed in experiments and crucial for  fission19,33,44, and 
with an effort-free detachment between the polymer and the substrate, preventing the putative stabilization of 
super-constricted pre-fission  states4,33,40. This is due to the absence of an explicit constraint between the dynamin 
and the lipid membrane, hence allowing them to adapt and cooperatively search for the optimal route to  fission19.

Altogether, the proposed model is based on a reduced set of mesoscopic quantities that turned out to be suf-
ficient for describing the relevant phenomenology. The polymerization length, for instance, distinguishes whether 
a dynamin is expected to successfully cleave a membrane neck and how efficiently this happens. In particular, we 
have delineated the existence of a minimal pathway to fission comprising a critical neck radius and geometry as 
well as a definite activation energy. This pathway is only accessible by dynamins with 1.5 to 3.5 rungs, suggesting 
this might be the reason why similar structures are believed to be optimal for  fission19 and are found in in vivo 
processes, e.g. in clathrin-mediated  endocytosis60,73. Longer coats, instead, trigger a bifurcation in the fission 
pathway coming along with an increased energy expenditure and a transition of the fission site from the center 
to the edge of the coat. Membrane elastic coefficients and the imposed surface tension, readily tunable by directly 
measuring the undeformed tubule radius, are found to control this bifurcation through nonlinear elasticity 
effects. Real-time conductance  analyses6,19 are faithfully reproduced by the model, which also provides a fission 
time consistent with in vivo  observations60. Moreover, the experimental dependence on the elastic  parameters18 
is reproduced and the optimality of short dynamin collars confirmed, eventually substantiating that the overall 
fission process can be described at the mesoscale level.

Methods
Ginzburg–Landau free energy functional for membrane elasticity
As discussed in the main text, the elasticity of the lipid membrane is characterized via an effective, coarse-
grained, Ginzburg–Landau type of free energy. Based on a diffuse interface approach, we exploit this model for 
its ability to reproduce in a regularized way the effects of Gaussian curvature during topological transitions of the 
bilayer, otherwise inaccessible with classical, sharp elasticity descriptions like the Canham–Helfrich  model48,49. 
The contributions of bending energy, Fb[φ]46,47,67,68, the Gaussian energy, FG[φ]50, and the membrane tension 

(2)tf = α(Fτ )
R2
in

2Msharp

(

γ + γ̄

γ̄ 2

)
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energy, Fγ [φ] , were extensively discussed on both a physical and a mathematical basis in Bottacchiari et al.50, 
and alternative formulations for the bending and tension energies were proposed in  literature75,76. For the reader 
convenience, we restate here their expressions appearing in the elastic free energy, Fe[φ] , as

with ψb and ψG two functions of φ expressed as

In this model, ǫ is a parameter related to the width of the diffuse interface separating the φ = −1 and φ = 1 
regions of the space � . In the limit of vanishing ǫ , the diffuse free energy in Eq. (12) converges to the sharp 
Canham-Helfrich functional appearing in Eq. (1). The Canham–Helfrich model uniquely depends on a macro-
scopic length scale, such as perhaps the typical lateral extension of the membrane or curvature radius. However, 
the occurrence of a fission event—or, in general, the proximity to a topological change—brings into play an 
additional physical scale that pertains to the width of the bilayer, lme ≈ 5 nm . Therefore, as detailed in Ref.50, we 
introduce this quantity in the phase field energy by requiring a matching between the diffuse interface thickness, 
identified by lpf ≈ 6ǫ , and that of the actual bilayer. As a result, we set 6ǫ = 5 nm.

Interaction energy and dissipative dynamics
The effect of dynamin pressure on the lipid tubule is modeled via a suitable interaction term, I[φ] , appearing in 
the free energy of the system. In order to properly spread the external pressure over the full width of the diffuse 
interface, we define a mediating term, h(φ) , as

therefore obtaining

The nature of this forcing term might be explained via a comparison with classical, sharp elasticity theory. 
The elastic reaction force (per unit of surface) far from topology changes is expressed  as77

with nŴ the surface normal to Ŵ and �π its associated Laplace-Beltrami operator. Notably, the differential terms 
within the square brackets in the right-hand side of Eq. (11) correspond to the variational derivative of Eq. (1), 
required to vanish at equilibrium in the so-called shape equation. When subjected to external pressure distri-
butions, pext , classical elasticity identifies the new equilibrium as the configuration where f e + pextnŴ = 0 . 
Analogously, it is possible to show that the elastic reaction forces (per unit of volume) arising from the diffuse 
interface model are expressed  as50

with δFe[φ]/δφ the functional derivative of the elastic energy in Eq. (3). The gradient of the phase field defines 
the unit normal to its iso-surfaces as ∇φ/|∇φ| = n , hence n|φ=0 = nŴ is the unit normal to membrane midplane. 
Now, evaluating
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minimization of the complete free energy functional, F[φ] = Fe[φ] + I[φ] , leads to f e(φ)+ f ext(φ) = 0 . In 
other words, f ext(φ) is the external force field spread over the diffuse interface width, which is the equivalent in 
the diffuse interface context of the pressure applied to the sharp model. Indeed, as ǫ/Rin → 0 , we obtain in the 
weak limit the distribution 3/4 (1− φ2)|∇φ| W−→δ(d(x)) , where δ(d) is the Dirac delta function of the signed 
distance from Ŵ.

These results show that the equilibrium configurations of a perturbed bilayer found by classical sharp models 
or by the proposed diffuse interface approach are equivalent in the small thickness limit. This correspondence 
can be extended to the whole dynamics since, under the same assumptions, the Allen–Cahn dynamics of the 
phase field, see Eq. (14) below, can be shown to correspond to the sharp interface evolution of the  membrane78. 
The Allen–Cahn dynamics, also known as gradient descent or maximum dissipation rate dynamics, reads

where Mpf  is the mobility of the system. As shown in the “Results” section and Supplementary Information, the 
Allen–Cahn dynamics provides physically relevant results also for finite membrane thickness, where it allows 
to describe topological rearrangements.

Equation (14) can be given a straightforward physical interpretation. After multiplying by ∇φ and using 
Eqs. (12) and (13), the equation is rearranged as f e + f ext = −1/Mpf ∂φ/∂t∇φ , which, on account of the defini-
tion of displacement velocity u = −∂φ/∂t∇φ|∇φ|−2 , is rewritten as

where f visc = −νu|∇φ|2 is a friction force linear in the velocity and localized by |∇φ|2 on the surface Ŵ , with 
ν = 1/Mpf  the friction coefficient.

A direct comparison with experimental data concerning real-time constriction of a lipid tubule 
under the influence of osmotic  pressure6 allows us to estimate Mpf = 4.04 nm3/(s kBT) which yields 
Msharp = 3ǫMpf/

√
8 = 3.57 nm4/(s kBT) for the sharp interface counterpart (see Supplementary Information 

for the complete discussion).

Constriction of cylindrical structures as a modified membrane tension
In the long coats branch of Fig. 2a, the central region of the constricted tubule takes the shape of a cylinder with 
axial extension L and a radius R = Rc , substantially independent of H. Neglecting edge effects ( H/Ldec ≫ 1 ), this 
cylindrical, highly constricted region is the result of an axially-uniform pressure p(r) = (NdFτ )/(h r) . Thereby, 
the Hamiltonian of the cylindrical patch reads

revealing that dynamin constriction effectively results in a modification of the surface tension as γ̄ = γ + NdFτ /h . 
By minimizing Eq. (16) with respect to R, we find the constricted equilibrium radius

Noticeably, since NdFτ /h ≫ γ and since the estimated rupture tension of lipid bilayers is well below γ̄6, 
directly applying a membrane tension would not allow to achieve such intense constrictions.

Linearized elasticity predictions
Linearized elasticity is crucial for determining the origin of fission pathway bifurcation in long coats, i.e. the 
transition from a single neck to multiple ones, coming along with the formation of an enclosed, constricted, 
and cylindrical structure. First, an axisymmetric expression for the perturbed shape equation of the elastic 
Canham–Helfrich functional in Eq. (1) is  retrieved79 and suitably parametrized in terms of the distance r(z) 
from the symmetry axis and the angle ψ(z) between the r-axis and the tangent to the midplane profile. This reads

with s = sinψ , c = cosψ , and p the imposed pressure distribution, itself function of r and ψ . This dif-
ferential equation is then expanded in a weakly perturbed, nearly cylindrical approximation, where 
p = α p̄ , r(z) = R + αu(z) , ψ ∼ π/2 , p̄ is O(1), and α is small. In the limit for α → 0 , Eq. (18) provides 
R = Rin =

√

kb/(2γ ) . Then, retaining only the linear terms in α , the above equation greatly simplifies to
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where the superscript in u(4) refers to the differentiation order with respect to z. The Green’s function of the 
unforced equation, p̄ = 0 , under the boundary conditions of finite and flat perturbation far from the center of 
the tubule, z → ±∞ , is thence

with y the position of the disturbance. This equation reveals that g(z − y) is an even function and that the lipid 
tubule response to a weak perturbation decays exponentially with an elastic relaxation length 

√
2Rin , as shown in 

Fig. 6a. Moreover, the trigonometric functions in Eq. (20) provide the oscillations in the membrane deformation 
which are are now shown to be at the origin of the fission site splitting.

Indeed, the deformation resulting from a constant, rectangular-windowed pressure, p̄(z) = −kb/R
4
in �(z/H) 

with �(z/H) the rectangular function of width H, may be computed as the convolution

The resulting deformation has infinite stationary points. Analytically finding the maximum constriction sites, 
namely the necks, is not an easy task, since one should start from solving

for zc the stationary points. Nonetheless, we are only interested in predicting the value H⋆
l.e. above which the maxi-

mum constriction sites are more than one and located at z  = 0 . Figure 6b provides some examples of deformed 
profiles for different perturbation widths H. As evident from the sequence of green-black-red-blue curves, while 
increasing H the minimum of the plot shifts from z = 0 to z > 0 . This suggests that there is a smooth transition 
condition where the minima are very close to z = 0 . Under this hypothesis, we expand the above equation for 
zc about z = 0 and obtain, in the limit zc → 0,

Equation (23) is solved at the zeroth order in zc → 0 by all values of H. This is the trivial solution since the 
deformation is always an even function and admits a null derivative in z = 0 thereof. When looking for stationary 
points close but not equal to zero, we need to solve for the first order in zc → 0 . This requires H = 2

√
2πRink , 

with k an integer number. The smallest positive value of this set is what we called threshold height for the lin-
earized elasticity problem, therefore
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Figure 6.  Linearized elasticity analyses. (a) Graph of the Green function, expressed in Eq. (20), for the 
linearized elastic problem in Eq. (19). (b) Deformations obtained under a squared perturbation of unitary 
intensity and different widths, see Eq. (21). The green, black, red, and blue curves correspond to perturbation 
of widths 0, 2Rin , 2

√
2πRin , and 3

√
2πRin , respectively. The red curve marks the separation between the 

deformations with a unique maximum constriction site, or neck, at z = 0 (like the black curve) and those with 
two distinct necks at z  = 0 (like the blue curve). Only the positive semi-axis z > 0 is shown in the two panels 
since the problem is symmetric with respect to z = 0.
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Numerical implementation
Equation (14) is numerically implemented with a FFT-based spectral differentiation on cell-centered grids and 
evolved through a semi-implicit Euler single-step scheme. This provides sufficient accuracy especially when 
evaluating the high-order derivatives arising from Eq. (8), as discussed in Ref.50. All axisymmetric simulations 
(apart from the one with Rin = 29 nm in Fig. 4a) where performed on a 30 nm× 1400 nm computational domain 
with a 108× 5040 homogeneous grid. The initial configuration represents the undeformed cylindrical tubule as 
φ(r, z) = tanh

(

(Rin − r)/(
√
2ǫ)

)

.

Data availability
The main data are provided within the manuscript. The raw data from which figures have been generated is 
available from the corresponding author on reasonable request.
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