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Abstract Spatio-temporal processes arise very naturally in a number of different ap-
plied fields, like Cosmology, Astrophysics, Geophysics, Climate and Atmospheric
Science. In most of these areas, the detection of structural breaks or regime shifts
in the data stream is key. To this end, in the present work, we aim at generalizing
the recently introduced SPHAR(p) process by allowing for temporal changes in its
functional parameters and variability structure. Our approach, which intrinsically
integrates the spatial and temporal dimensions, could give multiscale insights into
both the global and local behavior of changes, and its performance will be tested on
a real dataset of global surface temperature anomalies.
Abstract I processi spatio-temporali sorgono naturalmente in numerosi campi ap-
plicativi, come la Cosmologia, l’Astrofisica, la Geofisica, le Scienze del Clima e
dell’Atmosfera. In molti di questi ambiti, l’individuazione di break strutturali nella
serie dei dati è fondamentale. A tal fine, nel presente lavoro, ci proponiamo di gen-
eralizzare i processi SPHAR(p) introducendo cambiamenti temporali nei parametri
funzionali e nella loro struttura di variabilità. Il nostro approccio, oltre ad integrare
esplicitamente sia la dimensione spaziale che quella temporale del fenomeno in
studio, permette al contempo di estrarre informazioni multiscala che meglio qualifi-
cano e caratterizzano i punti di cambio individuati. Le prestazioni della modellistica
proposta saranno testate su un dataset reale relativo ad anomalie della temperatura
superficiale globale.
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1 Introduction

Over the last few decades, the study of random fields on the sphere has received
increasing attention because of their real-life applications in a variety of different
areas like Cosmology, Astrophysics, Climatology and many more. In most of these
areas, the detection of structural breaks or regime shifts in the data stream is key.
In Climate Sciences, for example, variations in the rate at which global surface
temperatures evolve is the most prominent and widely studied footprint of global
warming. Despite this, the vast majority of such analyses are purely temporal or do
not take into account the spatial dependence. A few notable exceptions are [2], [1]
and [9].

In the present work, we aim at generalizing the recently introduced SPHAR(p)
process by allowing for temporal changes in its functional parameters and variabil-
ity structure. Our approach, which intrinsically integrates the spatial and temporal
dimensions, could give multiscale insights into both the global and local behavior
of changes.

2 Materials and Methods

2.1 Spherical functional autoregressions

Working in a functional time series setup, we focus on time-varying spherical ran-
dom field {T (x, t) : (x, t) ∈ S2 ×Z} which exhibits a discrete temporal dynamics
over the unit sphere S2 so that, for every fixed t ∈ Z, the field Tt ≡ T (·, t) is a ran-
dom element of L2(S2) (the space of square-integrable functions on the unit sphere),
and admits a characterization in terms of spherical functional autoregressive models
as described in [6, 7].

Specifically, sphere-cross-time random fields belonging to the class of spherical
functional autoregressions of order p (SPHAR(p)) satisfy

T (x, t) =
p

∑
i=1

(ΦiTt−i)(x)+Z(x, t), ∀(x, t) ∈ S2 ×Z, (1)

where {Z(x, t) : (x, t) ∈ S2 ×Z} is a Gaussian isotropic spherical white noise and
{Φi : i = 1, . . . , p} are integral operators on L2(S2) associated with p continuous
isotropic kernels {ki : i = 1, . . . , p}; see [7] for more formal and detailed definitions.
Such processes can be interpreted as a generalization of autoregressive (AR(p))
processes, taking values on L2(S2), rather than on the real line (see also [3]).

The existence of a unique spatially isotropic and temporally stationary solution
for Equation (1) is guaranteed by assuming some conditions on the Φi’s. For in-
stance, when p = 1, a necessary and sufficient condition is given by ∥Φ∥op =
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maxℓ∈N |φℓ| < 1, where the φ ′
ℓs are the eigenvalues of Φ . See [5] for an in-depth

discussion.
It is well known that the following spectral representation holds in L2(Ω)

T (x, t) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

aℓ,m(t)Yℓ,m(x), ∀(x, t) ∈ S2 ×Z,

where the set {Yℓ,m(·) : ℓ % 0,m = −ℓ, . . . ,ℓ} is a standard basis for L2(S2) of real-
valued spherical harmonics (see, e.g., [11]), and {aℓ,m(·) : ℓ% 0,m =−ℓ, . . . ,ℓ} are
the (random) generalized Fourier coefficients defined as aℓ,m(t) = ⟨Tt ,Yℓ,m⟩L2 and
satisfying

E[aℓ,m(t)aℓ′,m′(s)] = 0, for ℓ ̸= ℓ′, m ̸= m′.

Moreover, for every fixed (ℓ,m), it is possible to show that

aℓ,m(t) =
p

∑
i=1

φℓ;iaℓ,m(t − i)+ εℓ,m(t), ∀t ∈ Z,

where {εℓ,m(t) = ⟨Zt ,Yℓ,m⟩L2 : t ∈Z} is a Gaussian white noise with variance σ2
ℓ > 0.

Note that the φℓ;i’s and σ2
ℓ do not depend on m, as a consequence of isotropy.

2.2 Spherical change-point detection

Under the assumptions described in the previous section, we introduce the spherical
autoregressive change-point model and the methodology to detect possible change-
points in the data. For the sake of simplicity, our arguments are presented for a
SPHAR(1) model, allowing a single change-point; however, the analysis can be
generalized to higher autoregressive orders and multiple change-points. In this set-
ting, the model is written as the composition of two stationary SPHAR segments
and takes the form

T (x, t) =

{
(Φ1Tt−1)(x)+Z1(x, t) t < τ
(Φ2Tt−1)(x)+Z2(x, t) t ≥ τ

,

that, given τ , are assumed to be independent; equivalently, thanks to the spectral
representation, one can jointly look at

aℓ,m(t) =

{
φℓ;1aℓ,m(t −1)+ εℓ,m;1(t) t < τ
φℓ;2aℓ,m(t −1)+ εℓ,m;2(t) t ≥ τ

, ℓ≥ 0, m =−ℓ, . . . ,ℓ.

The task consists in detecting the time-stamp τ at which the model parameters
have a variation in value. The optimal change-point is selected through a model
choice criteria based on information theory.
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Throughout this paper, we shall assume to be able to observe a finite set of Fourier
coefficients

α = {aℓ,m(t) : t = 1, . . . ,n, ℓ= 0, . . . ,L, m =−ℓ, . . . ,ℓ}.

Given τ and for fixed (ℓ,m), one can define the vectors

αℓ,m;1 = (aℓ,m(1), . . . ,aℓ,m(τ −1))T, αℓ,m;2 = (aℓ,m(τ), . . . ,aℓ,m(n))T,

of dimensions n1 and n2, respectively. Thus, for j = 1,2,

E[αℓ,m; jαT
ℓ,m; j] = σ2

ℓ; jVℓ; j,

where σ2
ℓ; j is the noise variance and Vℓ; j is a n j × n j symmetric and positive def-

inite matrix depending on φℓ; j. The likelihood function for the parameters θ =
{φℓ; j, σ2

ℓ; j, ℓ= 0, . . . ,L, j = 1,2} and τ is then

L(θ ,τ;α) =
L

∏
ℓ=0

ℓ

∏
m=−ℓ

2

∏
j=1

(2πσ2
ℓ; j)

−n j/2|Vℓ; j|−1/2 exp

{
− 1

2σ2
ℓ; j

αT
ℓ,m; jV

−1
ℓ; j αℓ,m; j

}
;

moreover, using the standard approximation to the log-likelihood for AR models
(see [4]), one gets

−2
n

logL(θ̂ ,τ;α) =
1
n

L

∑
ℓ=0

(2ℓ+1)
2

∑
j=1

n j log(2πσ̂2
ℓ; j)+(L+1)2 +oL(1),

with θ̂ = (φ̂ℓ; j, σ̂2
ℓ; j, ℓ= 0, . . . ,L, j = 1,2)T being the corresponding maximum like-

lihood estimate (MLE) of θ . Hence, τ̂ can be defined as the value that minimizes

R(τ) =
L

∑
ℓ=0

(2ℓ+1)
2

∑
j=1

n j log(2πσ̂2
ℓ; j). (2)

Note that this is equivalent to minimize the AIC score, since the number of pa-
rameters is constant. In addition, for computational reasons, one may replace the
MLE estimate of σ2

ℓ; j with the Yule-Walker or least squares estimates, due to their
equivalence in large sample size regimes.

3 Results

The methodology presented above was applied to global (land and ocean) sur-
face temperature anomalies. More in detail, the dataset is built starting from the
NCEP/NCAR monthly averages of the surface air temperature (in degrees Celsius)
from 1948 to 2020, over a global grid with 2.5◦ spacing for latitude and longi-
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tude, see [10]. Following the World Meteorological Organization policy, tempera-
ture anomalies are obtained by subtracting the long-term monthly means relative to
the 1981–2010 base period. They are then averaged over months to switch from a
monthly scale to an annual scale.

By means of the healpix package (see [8] and the official healpix website),
we converted the gridded data into spherical maps with a resolution of 12 ·NSIDE2

pixels (NSIDE = 16) and then we computed the Fourier coefficients up to L = 2 ·
NSIDE.

In order to handle possible anisotropies in the mean, for each segment j = 1,2, we
introduced an intercept µ j ∈ L2(S2), which has a representation in terms of spherical
harmonics

µ j =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

µℓ,m; jYℓ,m, in L2(S2),

with µℓ,m; j = ⟨µ j,Yℓ,m⟩L2 .
By minimizing (2) over τ ∈ {1953, . . . ,2016}, the best change point results to be

τ̂ = 1982. Then, we can estimate the functional parameters (µ j,Φ j) by solving the
following least-squares minimization problem, see [6, 7],

(µ̂ j, Φ̂ j) := argmin ∑
t∈T j

∥∥Tt −µ j;L −Φ j;LTt−1
∥∥2

L2(S2) ,

where µ j;L and Φ j;L are the truncated version of µ j and Φ j, respectively, and T j is
the set of time-stamps belonging to each segment, i.e. T1 = {1949, . . . , τ̂ − 1} and
T2 = {τ̂, . . . ,2020}.

The comparison between the two periods can be carried out by computing the
two mean surfaces

(IL − Φ̂ j)
−1µ̂ j =

L

∑
ℓ=0

ℓ

∑
m=−ℓ

µ̂ℓ,m; j

1− φ̂ℓ; j
Yℓ,m, j = 1,2.

Figure 1 shows the estimated mean surfaces pre and post τ̂ = 1982 (on the same
color scale) and their difference. A positive anomaly indicates that the observed
temperature was warmer than the reference value, while a negative anomaly indi-
cates that the observed temperature was cooler than the reference value.

The analysis suggests an overall increase in the mean surface temperature anoma-
lies, which is particularly evident for the North and South poles.
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