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Abstract—In this ambitious paper, we present a groundbreak-
ing paradigm for human-computer interaction that revolutionizes
the traditional notion of an operating system. Within this innova-
tive framework, user requests issued to the machine are handled
by an interconnected ecosystem of generative AI models that
seamlessly integrate with or even replace traditional software ap-
plications. At the core of this paradigm shift are large generative
models, such as language and diffusion models, which serve as the
central interface between users and computers. This pioneering
approach leverages the abilities of advanced language models,
empowering users to engage in natural language conversations
with their computing devices.

By capitalizing on the power of language models, users can
articulate their intentions, tasks, and inquiries directly to the
system, eliminating the need for explicit commands or complex
navigation. The language model comprehends and interprets the
user’s prompts, generating and displaying contextual and mean-
ingful responses that facilitate seamless and intuitive interactions.

This paradigm shift not only streamlines user interactions
but also opens up new possibilities for personalized experiences.
Generative models can adapt to individual preferences, learning
from user input and continuously improving their understanding
and response generation. Furthermore, it enables enhanced
accessibility, as users can interact with the system using speech
or text, accommodating diverse communication preferences.

However, this visionary concept also raises significant chal-
lenges, including privacy, security, trustability, and the ethical
use of generative models. Robust safeguards must be in place to
protect user data and prevent potential misuse or manipulation
of the language model.

While the full realization of this paradigm is still far from being
achieved, this paper serves as a starting point for envisioning
the transformative potential of a human-computer interaction
paradigm centered around artificial intelligence. We discuss
the envisioned benefits, challenges, and implications, paving the
way for future research and development in this exciting and
promising direction.

Index Terms—AI generative models for operating systems, AI
generative models for human-computer interaction, AI generative
models as universal applications

I. INTRODUCTION

The evolution of human-computer interaction (HCI) has
undergone several transformations over the decades, with tech-

§Equal contribution.

nology continuously striving to make computers more user-
friendly and accessible. From the command-line interfaces of
the 1960s to the graphical user interfaces (GUI) of the 1980s
and, more recently, the touch interfaces on mobile devices,
each shift has represented a significant leap towards more
intuitive, efficient, and seamless user experiences. Today, as
we find ourselves at the precipice of another paradigm shift,
the question is not whether, but how, we continue to shape this
ongoing evolution to ensure a future where technology serves
us in increasingly human-centric ways.

In the current technological landscape, artificial intelligence
(AI) stands as a powerhouse of potential, particularly for
augmenting and redefining current operating systems and user
interfaces. The abilities of large generative models (LGMs),
such as large language models (LLMs) and diffusion models
(DMs), have given us a glimpse into a future where our inter-
actions with technology transcend the traditional boundaries.

LLMs, built upon vast data sets and sophisticated architec-
tures, are capable of completing complex tasks, demonstrating
chain-of-thought reasoning akin to human capabilities, and
displaying impressive generalization skills. Their proficiency
in comprehending and generating language makes them ideal
base-reasoners, capable of orchestrating diverse system com-
ponents to create a seamless, intuitive, and responsive user
interface.

Moreover, with advances in generative computer vision
models, especially DMs, our toolbox for enhancing human-
computer interaction has expanded. These models can generate
incredibly realistic outputs, setting the stage for them to serve
as the foundation for user interface generation: the ability to
generate personalized interfaces on-the-fly, that cater and adapt
to individual user preferences, their character, and mood marks
a shift toward highly customized and user-centric design, a
shift that promises to enrich user experiences significantly.

This new paradigm of human-computer interaction presents
exciting opportunities, such as enabling communication be-
tween systems that otherwise do not integrate the same API.
By utilizing natural language, a universal medium, we can
bridge the gap between disparate systems, fostering a more
unified, coherent, and efficient interaction landscape.



However, this shift in paradigm also brings its share of chal-
lenges. A prime example is the need to ensure data persistence
within these models. One key question when implementing
this new approach is how we can keep a consistent and ongo-
ing dialogue over time, especially when the system is working
on complicated or multi-stage tasks. This steady interaction is
crucial for a smooth user experience and for building trust in
the system’s ability to assist the user effectively. To make this
possible, we may need to step away from the methods we’re
used to and start thinking about new ways to improve the
performance of these generative models. For instance, current
methods of data management, such as storing files explicitly in
computers or data centers, may provide some benefits, but they
may not fully meet the unique needs of generative models,
which store their knowledge implicitly, compressed within
their parameters.

While the capabilities of LLMs in understanding and gen-
erating language are remarkable, they are not without their
limitations. These issues primarily originate from the data
employed for their pre-training, which is frequently obtained
from web crawls. This data can often contain biased, toxic,
or harmful content, consequently impairing models’ reliabil-
ity. Another limitation is the tendency to hallucinate, i.e.,
despite not having any explicit misinformation, LLMs may
generate outputs that are not entirely accurate or faithful.
This propensity to deviate from the input can occasionally
lead to responses that, while contextually plausible, might
misrepresent the user’s intent or the factual information at
hand.

Moreover, the promise of seamless interaction and com-
munication must balance with considerations of trustability,
privacy, security, and ethics. For this reason, developing new
protocols for information exchange becomes a necessity in
this envisioned future. These protocols must meet and surpass
current standards, protecting user data while simultaneously
ensuring private and secure interactions. The design of such
protocols also must anticipate and be resilient against potential
misuse of AI systems, providing robust safeguards to exploita-
tion and unethical practices.

These represent just a few of the challenges in harnessing
the full potential of LLMs in revolutionizing human-computer
interaction. As we venture into this exciting new territory, it is
essential to confront these challenges head-on, ensuring that
the solutions we develop are not just technologically advanced,
but also reliable, ethical, and user-centric.

The road ahead in this new paradigm is both promising
and challenging. This paper serves as an exploration into the
future of human-computer interaction – a future where our
interactions with technology become akin to a natural con-
versation. We delve deeper into the benefits, challenges, and
implications of this envisioned future in the following sections,
charting a course for continued research and development
in this transformative and exciting direction. In particular,
Section II reviews current work in this area, and provides
an idea of the current technological landscape; Sections III
and IV describe our vision and propose a possible architecture,

respectively. Section V questions the main challenges that may
arise; finally, Section VI concludes our discussion.

II. RELATED WORK

Recent years have seen the rise of Transformers as the
leading architecture for (deep) learning systems. Initially in-
troduced as a technique for machine translation [1], they have
soon been recognized as valuable for text-related downstream
tasks. Works such as [2, 3, 4, 5] pre-train a transformer on a
self-supervised task and finetune it on a specific downstream
task, usually using a small amount of data and achieving super-
human performance [6]. Others [7, 8, 9] have focused on using
transformers as generative LLMs. These models effectively
train to predict the next token sequence given a particular
context/input. This latter strategy has reached wide popularity,
even among the general public, thanks to recent successes
like [10]. These LLMs have fully exploited the transformer’s
capacity to scale to a huge number of parameters, allowing
them to have exceptional capabilities on many downstream
tasks, even in a zero-shot setting, i.e., without requiring further
supervision on the specific task. Even more surprisingly,
the models can improve these tasks using prompting [11].
Prompting consists in providing specific input to the LLM,
inducing a more accurate response by the model. We find other
techniques inside this paradigm, like that of in-context learning
[12], that is, to provide the LLM with a few examples of the
task in its input, sometimes greatly enhancing its performance.
We would like the reader to notice that these techniques do
not require any additional training and can be performed at
inference time. While these LLMs have shown impressive
capabilities, they also have several shortcomings. Above all,
the inability to deal with a large context/input [13] and the
tendency to hallucinate [14] has led researchers to look for
ways of augmenting them [15, 16, 17]. Among these, we find
most interesting for this work the line of researchers that aims
at augmenting LLMs with the use of tools [18, 19]. Under
this paradigm, the LLM can call for help in the form of APIs.
For instance, the model could call a calculator to perform a
mathematical operation.

In this paper, we want to move beyond this paradigm. While
the LLM can call for tools, they are imagined as strictly
rigid and static APIs. What we envision, instead, is to have
generative models that can communicate both with the user
and among each other in a natural manner; in other words, we
foresee the the end of programming [20] as we know it for
the average computer user.

This new proposed paradigm opens up a realm of possibility.
For example, thanks to recent advances in text-to-image gener-
ation [21], authors from [22] have proposed a GUI generated
at runtime and explicitly personalized for a particular user-
task-experience triplet. Even further, deep learning models are
now reaching multimodal capabilities beyond just images, with
methods proficient on audio [23, 24, 25], video [26, 27], and
3D [28, 29, 30]. In the following sections, we develop more
thoroughly this vision that promises to revolutionize system
design and human-computer interactions.



III. VISION

Let us consider a hypothetical scenario as an exemplification
to introduce this section. In the following, we will use the
term “agent” to indicate any generative AI model within our
ecosystem. We denote by Ac a client agent, which is a user’s
personal assistant, while As designates a set of server agents,
which provide specific services or resources.

We illustrate this through the following dialogue sequence,
where files and actions are represented by square brackets:

1) User to Ac: “Please find me a flight to Paris on the 16th
or 17th of July in the evening for less than 120 USD.
Don’t show me all the options; propose the cheapest one
directly”

2) Ac to [As1, As2, As3]: “My user would like a flight to
Paris, between the 16th and 17th of July, preferably in
the evening, at a cost not exceeding 120 USD. Who can
provide options?”

3) As1 to Ac: “No options available.”
As2 to Ac: “There are two flights, the first is on July
16th at 4 PM for 118 USD, the other on July 17th at 6
PM for 95 USD.”
As3 to Ac: “There is a flight on July 17th at 4 PM for
110 USD.”

4) Ac to As2: “Please send a quote for the second option
(the one on July 17th at 6 PM for 95 USD).”

5) As2 to Ac: [PDF][Secure payment link]
6) Ac to User: “Here is the quote for a 95 USD flight

[Display PDF]. Do you want to book?”
7) User to Ac: “Yes, and then print the ticket.”
8) Ac to As2: [Payment]
9) As2 to Ac: [Ticket PDF]

10) Ac to User: “Here is the ticket. [Display ticket
PDF][Print ticket PDF]”

This hypothetical scenario above is just one example of a
broader vision that is mappable to this framework. This system
could have enormous flexibility, for example, “find me a flight
to go to Thailand, Indonesia, Vietnam, or Cambodia around
mid-August for 14-16 days. When you find something less
than 700 USD, book it without asking for my confirmation,
and print me the ticket”.

In this scenario, Ac serves as the orchestrator, coordinating
with the server agents As to achieve the user’s goal. Ac,
empowered by LLMs and DMs, is capable of understanding
the user’s instructions, delegating tasks, and managing the
dialogue’s flow. Meanwhile, the server agents As, powered by
various specialized components/models, handle specific tasks
such as finding flights, handling payments, and generating
PDFs.

To further delineate our vision, let us delve deeper into
the integration of state-of-the-art computer vision systems and
their potential role in on-the-fly GUI rendering. Diffusion
models, which have demonstrated remarkable capabilities in
generating high-quality, realistic outputs, could serve as a
cornerstone for this task.

One of the exciting prospects that the adoption of such
models brings is the ability to customize and personalize the
interface in response to the user’s preferences, character, and
even mood. Given that these models can be trained to generate
a wide range of visual outputs, they could be directed to design
interfaces that echo a user’s aesthetic preferences or adapt to
their current mood. For instance, the system could switch from
a minimalist design with soft colors to a vibrant, dynamic
design as it detects a change in the user’s emotional state.

Such a degree of customization would revolutionize the con-
cept of user-centric design, moving away from static designs
to more fluid and responsive ones. This ability to generate
personalized interfaces on-the-fly represents a significant shift
towards a future where technology can deeply integrate into
our lives, responding to our needs and moods in real time.

Additionally, the integration of speech-to-text and text-
to-speech models can further enhance this future vision of
human-computer interaction. The coupling of these models
with a powerful language understanding system allows for
interactions that are more in line with natural, human conver-
sation. Users could convey their needs verbally, and the system
could respond in kind, further blurring the lines between
human-computer interaction and human-human conversation.

For instance, in the previously discussed scenario, the user
could verbalize their request for a flight booking, and the client
agent (Ac) could acknowledge, confirm, and execute these
instructions using spoken language. This seamless integration
of speech-to-text and text-to-speech models would provide
an interaction experience that is not just intuitive but also
highly efficient, especially for users with visual impairments or
those who are occupied with other tasks and prefer to interact
verbally with their devices.

Furthermore, these systems could extend beyond serving
individual users and facilitate interactions between groups of
users. For instance, they could be deployed in conference
calls or group meetings, transcribing the conversation, sum-
marizing the key points, and even responding to queries in
real time. This transition to more natural and fluid forms of
communication holds immense promise for both personal and
professional contexts, signaling a future where our interaction
with technology is as natural and intuitive as speaking with a
friend or colleague.

This concept of personalized, responsive, and accessible
interfaces could even extend to other sensory modalities, such
as haptics, further broadening the scope of HCI. With advance-
ments in AI and ML, the future of HCI could encompass an
array of sensory interactions, each tailored to individual user
needs and preferences, creating an immersive and inclusive
technological environment.

Despite these potential advancements, it is important to
keep in mind that such a high level of customization and
personalization carries with it a host of challenges related
to privacy, security, and ethics. Addressing these challenges
is essential to ensure the successful implementation of this
vision. These challenges and potential solutions are discussed
in greater detail in Sections V and IV.



IV. PROPOSED ARCHITECTURE

As the trajectory of human-computer interaction continues
to evolve, we propose a novel architecture that shifts the
paradigm of traditional system design. This architecture is
visualized in Figure 1, highlighting the integration of an LLM
directly above the system call layer of the operating system,
fundamentally altering how users (and current standalone
applications) interface with low-level computing resources.

Operating System

Services

Program
execution

I/O
operations

Error
detection

Resource
allocation. . .

System calls

LLMMulti-modal
Neural Database

Text-to-speech Speech-to-text Graphical processor
(Diffusion-based model)

Legacy
Database

Hardware

Fig. 1. A representation of the proposed architecture highlighting the
operating system, system calls, LLM, and its integration with a multi-modal
neural database and other integrated components.

A. High-Level to Direct LLM Interface

Referring to Figure 1, traditionally, user requests, translated
by standalone applications, would interface with the operating
system through system calls. Our proposed architecture envi-
sions an LLM layer sitting atop the system call layer. This
LLM would harness the power of system calls to communi-
cate with the operating system directly. By introducing this
intermediary LLM layer, we can achieve several advantages:

• Reduction in Redundancy: Redundancies inherent in
maintaining multiple application layers, especially those
with overlapping backend processes, can be significantly
reduced.

• Simplified Communication: LLMs, acting as universal
mediators, can execute user commands across various
platforms, obviating the need for shared APIs.

• Natural Interaction: Users can employ natural language,
moving away from domain-specific commands, promot-
ing a more human-centric design.

B. Transitioning Away from Standalone Applications

While the LLM becomes the primary interface, standalone
applications will not vanish but transform. They could serve
as specialized plug-ins or tools for the LLM. For complex
tasks, such as advanced graphic design, specialized applica-
tions might still be employed. However, initiation and basic
interactions can be handled in natural language, seamlessly
integrating these applications with the LLM.

C. Integrated Components

In addition to the LLM, our architecture encompasses:
• Graphical Processor based on Diffusion Models: This

caters to visual tasks, allowing for the generation and in-
terpretation of personalized user interfaces and graphical
content, ensuring a multi-modal interaction platform.

• Multi-modal Neural Database: Integral to our proposed
architecture, as visualized in Figure 1, is the connection of
the LLM to a multi-modal neural database. This database
serves as persistent memory storage for the LLM, ensur-
ing consistent user experiences across sessions. Unlike
traditional databases that store explicit data, this neural
database retains information in a format amenable to di-
rect neural processing, facilitating immediate and efficient
data retrieval and modification by the LLM.

• Text-to-Speech and Speech-to-Text Systems: These
components allow for auditory interactions, where users
can speak to and receive vocal feedback from the system.

The outlined architecture supports adaptability and user-
centricity, with components continuously refining their oper-
ations based on feedback. Data security, consistency, and the
reliability of LLM-mediated interactions remain pivotal, and
will be discussed in more detail in the next section.

V. CHALLENGES

Developing an operating system that integrates generative
AI models like the one sketched in Figure 1 promises to
reshape system design dramatically. Therefore, realizing this
vision is not without its challenges, which span technological,
security, privacy, and ethical domains. In this section, we
delve deeper into these obstacles, highlighting the complex
and multifaceted work required to bring this vision to fruition.

A. Trustability and Safety

LLMs have shown remarkable capabilities in understanding
and generating human-like text. This remarkable prowess
stems from their training on enormous, diverse web data,
which allows them to assimilate an impressive understanding
of language structure, context, and information.

However, this training approach can also present substantial
risks [31, 32, 33]. Uncontrolled web data, which is often part
of large pre-training corpora, can introduce the possibility of
biased, harmful, or toxic behavior. For instance, if the training
data includes prejudiced viewpoints or false information, the
LLM might inadvertently absorb these biases and misinfor-
mation, potentially affecting the quality and trustworthiness
of the content it generates.

Moreover, LLMs can sometimes generate plausible yet
inaccurate content, a phenomenon often referred to as hallu-
cination. Users may overlook minor inaccuracies in the short
term, but persistent or significant misrepresentations can erode
trust in the system. This challenge becomes even more acute
when the system handles sensitive or critical tasks, where
accuracy and reliability are paramount.

Developing methods to reduce these hallucinations, in-
crease the trustworthiness of generated content, and provide



transparency into the system’s decision-making process is a
significant, non-trivial challenge in realizing this vision.

B. Technological Challenges

1) Data Persistence: Current LLMs are stateless, meaning
they do not maintain a memory of past interactions. While this
is not an issue for single, isolated tasks, it poses a substantial
challenge for complex, multi-stage tasks that require an on-
going dialogue with the user. In these scenarios, maintaining
a consistent “conversation thread” is crucial for the system
to function effectively and provide a smooth, seamless user
experience.

More generally, LGMs encode their knowledge implicitly
within their model parameters, effectively compressing vast
amounts of information into a highly condensed form. While
this approach allows the model to generate rich, contextually-
aware content, it also presents a significant challenge in
retrieving and using this information effectively.

Innovative solutions for data persistence and memory man-
agement are essential for achieving smooth, natural human-
computer interactions. These solutions could involve novel
data storage and retrieval mechanisms, new ways of repre-
senting and tracking dialogue states, or creative uses of meta-
learning to adapt and personalize the system over time.

2) Hardware Considerations: The integration of LGMs
into operating systems entails careful consideration of both
low-level and high-level hardware aspects. At the low level,
the system’s design must efficiently manage the available
hardware resources. Running LGMs in real-time could demand
substantial computational resources, potentially stretching the
limits of current systems. Innovative technologies to build
small and specialized models for this new kind of operating
system should be devised, as we cannot make any use of an
LGM that will exhaust the system resources available.

At a high level, the envisioned system would necessitate a
radical shift in software-hardware interaction. The generated
user interfaces must work seamlessly across diverse hardware
configurations, demanding extensive adaptability and compat-
ibility. Ensuring the system’s efficacy and efficiency across a
wide range of hardware poses a significant technical challenge.

C. Security and Privacy

1) Communication Security: As we move towards a new
paradigm of human-computer interaction, secure communi-
cation becomes even more critical. Current communication
protocols, like certificate-based authentication, provide robust
mechanisms for ensuring that an agent is legitimate before
starting communication. However, as we transition to a sys-
tem centered around LLMs, these protocols will need to be
augmented or replaced with new techniques tailored to the
unique challenges and opportunities of this paradigm.

2) AI-Social Engineering: The sophistication of LGMs can
potentially be exploited in AI-social engineering attacks. In
such scenarios, a malicious user might attempt to deceive
the AI system into revealing sensitive information or execute
harmful actions. These attacks can take many forms and can

be challenging to anticipate or prevent, given the diverse and
unpredictable nature of human interaction.

Preventing these attacks will require careful system design,
including setting strict parameters on the system’s behavior,
determining which data can be shared and under what condi-
tions, and designing mechanisms for user consent and control
over the system’s actions.

D. Ethics
The integration of LGMs into operating systems also raises

numerous ethical concerns. One significant concern is their po-
tential to displace human workers in specific professions. Such
displacement could lead to widespread job losses, contributing
to economic inequalities and causing societal disruption on a
potentially large scale.

Moreover, the power of these technologies to synthesize and
manipulate data poses unique risks. For example, LGMs can
be harnessed to create deepfakes and fake news, which can
then be used for nefarious purposes, including disinformation
campaigns or identity theft. These models can generate ma-
licious content, such as automated phishing emails or hate
speech, exacerbating existing social and ethical dilemmas.

These ethical issues highlight the importance of establish-
ing robust safeguards, regulations, and guidelines to prevent
misuse and manage the societal impact of these technologies.

VI. CONCLUSION

The evolution of human-computer interaction, enhanced
by the capabilities of LGMs such as LLMs and DMs, has
the potential to reshape system design and the dynamics of
communication, interaction, and collaboration between users
and machines. Through the integration of AI into operating
systems, we envision a future where interfaces are not only
intuitive but also deeply personalized, adapting to individual
needs and preferences, allowing for seamless and coherent in-
teractions. This paper offers a glimpse of such a transformative
future, emphasizing both its unprecedented benefits and its
multifaceted challenges.

Yet, the roadmap to such a future is not without its intri-
cacies. Harnessing the full potential of AI-enhanced human-
computer interaction requires navigating a landscape replete
with challenges, ranging from data persistence, model reliabil-
ity, bias, to the paramount concerns of trust, privacy, and eth-
ical considerations. Addressing these challenges is not merely
a technical exercise but a broader call for interdisciplinary
collaboration. The complexity of these issues suggests that our
current understanding and strategies may only be scratching
the surface, necessitating a paradigm shift in our approach.

Despite these hurdles, this journey is of primary importance.
The convergence of AI and HCI within system design can
lead to a profound enhancement in the quality of our digital
experiences, shifting from transactional commands to natural,
conversation-like engagements. We envision a world where
technology is a responsive collaborator, attuned to human
needs and preferences. While this paper has just scratched
the surface of this promising frontier, we hope that it serves
as a catalyst, inspiring and guiding future research endeavors.



ACKNOWLEDGMENT

This work was partially supported by:
• DRONES AS A SERVICE for FIRST EMERGENCY

RESPONSE Project (Ateneo 2021);
• projects FAIR (PE0000013), SERICS (PE00000014), and

IR0000013-SoBigData.it under the MUR National Re-
covery and Resilience Plan funded by the European
Union NextGenerationEU.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” Advances in neural informa-
tion processing systems, vol. 30, 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[3] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning,
“Electra: Pre-training text encoders as discriminators
rather than generators,” arXiv preprint arXiv:2003.10555,
2020.

[4] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
“Roberta: A robustly optimized bert pretraining ap-
proach,” arXiv preprint arXiv:1907.11692, 2019.

[5] C. Campagnano, S. Conia, and R. Navigli, “SRL4E – Se-
mantic Role Labeling for Emotions: A unified evaluation
framework,” in Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 4586–4601, 2022.

[6] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and
S. R. Bowman, “Glue: A multi-task benchmark and
analysis platform for natural language understanding,”
arXiv preprint arXiv:1804.07461, 2018.

[7] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language
models are few-shot learners,” 2020.

[8] A. Radford, K. Narasimhan, T. Salimans, and
I. Sutskever, “Improving language understanding
by generative pretraining,” 2018.

[9] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
and I. Sutskever, “Language models are unsupervised
multitask learners,” OpenAI Blog, 2019.

[10] OpenAI, “Chatgpt by openai,” 2021.
[11] Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp,

“Fantastically ordered prompts and where to find them:
Overcoming few-shot prompt order sensitivity,” arXiv
preprint arXiv:2104.08786, 2021.

[12] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang,
X. Sun, J. Xu, L. Li, and Z. Sui, “A survey on in-context
learning,” 2023.

[13] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilac-
qua, F. Petroni, and P. Liang, “Lost in the middle:
How language models use long contexts,” arXiv preprint
arXiv:2307.03172, 2023.

[14] M. Zhang, O. Press, W. Merrill, A. Liu, and N. A.
Smith, “How language model hallucinations can snow-
ball,” 2023.

[15] G. Mialon, R. Dessı̀, M. Lomeli, C. Nalmpantis, R. Pa-
sunuru, R. Raileanu, B. Rozière, T. Schick, J. Dwivedi-
Yu, A. Celikyilmaz, et al., “Augmented language models:
a survey,” arXiv preprint arXiv:2302.07842, 2023.

[16] G. Trappolini, A. Santilli, E. Rodolà, A. Halevy, and
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