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We investigate the interplay between chirality and confinement induced by the presence of an external poten-
tial. For potentials having radial symmetry, the circular character of the trajectories induced by the chiral
motion reduces the spatial fluctuations of the particle, thus providing an extra effective confining mechanism,
that can be interpreted as a lowering of the effective temperature. In the case of non-radial potentials, for
instance, with an elliptic shape, chirality displays a richer scenario. Indeed, the chirality can break the parity
symmetry of the potential that is always fullfilled in the non-chiral system. The probability distribution dis-
plays a strong non-Maxwell-Boltzmann shape that emerges in cross-correlations between the two Cartesian
components of the position, that vanishes in the absence of chirality or when radial symmetry of the potential
is restored. These results are obtained by considering two popular models in active matter, i.e. chiral Active
Brownian particles and chiral active Ornstein-Uhlenbeck particles.

I. INTRODUCTION

Active matter, encompassing a wide range of self-
propelled entities, has emerged as a fascinating field
of study in soft matter and non-equilibrium statistical
physics1,2. Typical active systems are artificial parti-
cles, such as active colloids, active granular particles, and
drones, but also living systems with biological origins,
such as bacteria, sperms, and several animals. These sys-
tems usually self-propel by virtue of internal mechanisms
that convert energy to produce a net motion, through
chemical reactions, cilia, flagella, and internal motors, to
mention a few examples.
In several cases, the self-propelled motion is character-

ized by an almost straight path and a fluctuating orien-
tation that changes stochastically without a preferential
direction. This motion is induced by the breaking of the
translational symmetry at the single-particle level in the
body or in the swimming and running mechanism that
induces a net polarity in the particle. The physical or
biological systems displaying this motion are classified as
linear particles or swimmers. This is the standard sce-
nario for several bacteria, such as E. Coli, active colloids,
such as Janus particles, or polar active granular parti-
cles. However, in nature, several active systems show
trajectories systematically rotating clockwise or counter-
clockwise, the so-called chiral or circular self-propelled
particles3.
The concept of chirality or handedness was introduced

by Lord Kelvin more than one century ago in refer-
ence to the circular (helical) motion produced by solid
bodies with asymmetric shapes in two (three) dimen-
sions. Nowadays, chirality has been renewed in the
field of active matter4, being observed for instance in
proteins5, bacteria6,7 and sperms8 moving on a two-
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dimensional planar substrate, and L-shape artificial mi-
croswimmers9. In addition, even spherical (non-chiral)
particles can show circular (chiral) trajectories due to
asymmetry in their self-propulsion mechanism, as occurs
in colloidal propellers in a magnetic or electrical field10,
and cholesteric droplets11. In addition, granular sys-
tems such as spinners12,13 and Hexbug particles driven
by light14 usually display chiral motion.

Being ubiquitous in nature, the interest in chiral active
matter is recently showing exponential growth in time, in
different contexts ranging from the statistical properties
of single-particles to collective phenomena displayed by
interacting systems. Through the introduction of simple
models, the single-particle chiral active motion has been
explicitly explored9,15 with a focus on the mean-square
displacement16,17, in a viscoelastic medium18, in the pres-
ence of pillars19 or sinusoidal channels20. In channel ge-
ometries, chirality is also responsible for the reduction of
the accumulation near boundaries typical of active sys-
tems and for the formation of surface currents21,22. In the
case of interacting systems, chirality is able to suppress
the clustering typical of active particles23–26 but induces
novel phenomena, such as emergent vortices induced by
the chirality27,28 or a global traveling wave in the pres-
ence of a chemotactic alignment29. Chiral active parti-
cles exhibit fascinating phenomena also in the presence
of alignment interactions giving rise to pattern forma-
tion30,31 consisting of rotating macro-droplets32, chiral
self-recognition33, dynamical frustration34, and chimera
states35. In addition, chirality appears as a fundamen-
tal ingredient to observe the hyper-uniform phase36,37 in
active matter as well as emerging odd properties38,39 for
instance in the viscosity40–42, elasticity43, and mobility44.
Recently, the circular motion has been also investigated
in the framework of active glasses where it gives rise to a
novel oscillatory caging effect entirely due to the chiral-
ity45.

Chirality could play a fundamental role in several ap-
plications due to their emerging properties, such as sort-
ing46–49 and synchronization50,51. For instance, chiral
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microswimmers can be sorted according to their swim-
ming properties by employing patterned microchannels
with a specific chirality46. Chirality is also at the basis
of the ratcheting mechanism observed in an array of ob-
stacles52 even leading to translation at fixed angles with
respect to the substrate periodicity due to a periodic po-
tential53. Moreover, binary mixtures of passive and ac-
tive chiral particles, as well as mixtures of chiral parti-
cles with opposite chiralities show demixing54–57. Spon-
taneous demixing has been also observed experimentally
in a system of active granular particles, the so-called spin-
ners that are self-propelled because of the asymmetry of
internal components of their bodies58.
Despite the recent attention on chiral active matter,

the interplay between chirality and external confinement
due to an external potential has been less investigated59

to the best of our knowledge. Here, we focus on active
chiral particles in a radial (circular) and non-radial (ellip-
tic) potential, exploiting the influence of circular motion
on the properties of the system. In particular, we perform
a numerical and analytical study based on two popular
models in active matter, i.e. the chiral active Brownian
particles and chiral active Ornstein-Uhlenbeck particles.
We anticipate that for a radial potential, the chirality
induces only an increasing confinement in the particle’s
dynamics, effectively reducing the fluctuations of the sys-
tems and, thus its effective temperature (Fig. 1 (a)). In
contrast, in the case of non-radial potential, the chirality
is able to break the parity symmetry of an elliptic poten-
tial. This is reflected, for instance, in the occurrence of
strong correlations between different spatial components
of the system (Fig. 1 (b)). This effect is uniquely based
on the interplay between chirality and spatial asymmetry
of the potential.
The paper is structured as follows: in Sec. II, we intro-

duce and discuss the models, i.e. chiral active Brownian
particles and chiral active Ornstein-Uhlenbeck particles,
employed to perform the numerical and analytical study.
The dynamics in the radial and non-radial potentials are
analyzed in Sec. III and Sec. IV, respectively. We sum-
marize the results and report a conclusive discussion in
the final section V. Finally, for the sake of completeness
but also to render the presentation lighter, we reported
in an appendix the derivation of the Fokker-Planck equa-
tion governing the evolution of the probability distribu-
tion function of the chiral active model together with a
pair of simple illustrative cases.

II. MODEL

Active particles in the overdamped regime are de-
scribed by the following dynamics for the particle po-
sition x:

γẋ = F(x) + γ
√

2Dtw + γv0n , (1)

wherew is a Brownian white noise with unit variance and
zero average accounting for the random collisions with
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FIG. 1. Chiral active particles in external confine-

ment. Illustration of a chiral active particle displaying cir-
cular motion. In the presence of an external potential with
radial symmetry (circular cross-section), a decrease in the ef-
fective temperature is induced by the increase of the chirality.
In contrast, for non-radial external potential with an elliptic
cross-section, the chirality breaks the parity symmetry typical
of the potential leading to a non-Boltzmann probability distri-
bution with emerging correlations between different Cartesian
components of the position.

the particle of the solvent. The coefficient γ is the fric-
tion coefficient due to the solvent, while Dt is the transla-
tional diffusion coefficient of the system. The term F(x)
is the external force due to a potential U(x), such that
F = −∇U . The last force term in Eq. (1), namely v0γn,
known as active force, describes at a coarse-grained level
the chemical, biological or physical mechanism responsi-
ble for the self-propulsion. The constant v0 provides a
velocity scale to the dynamics and it is often referred to
in the literature as swim velocity, while the vector n is
a stochastic process with unit variance whose properties
and dynamics determine the active model considered. n
is an additional degree of freedom that is absent for equi-
librium systems where v0 = 0. Despite the generality of
Eq. (1), for simplicity, we restrict ourselves to two spatial
dimensions.
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A. Chiral active Brownian particles (ABPs).

In the ABP dynamics60–64 independently of the chi-
rality, the term n is a unit vector, such that |n| = 1,
usually associated with the orientation of the active par-
ticle. Since the modulus of n is unitary, the dynamics
of n can be conveniently expressed in polar coordinates.
In this representation, n = (cos θ, sin θ), where θ is the
orientational angle of the active particle that evolves as
a simple diffusive process:

θ̇ =

√

2

τ
ξ + ω , (2)

where ξ is a white noise with unit variance and zero av-
erage and the typical time τ can be identified with the
persistence time induced by the rotational diffusion coef-
ficient Dr = 1/τ .
In the ABP dynamics, the chirality is introduced by

adding an angular drift ω in Eq. (2), which breaks the
rotational symmetry of the active force dynamics and in-
duces a preferential rotation of the vector n in the clock-
wise or counterclockwise direction depending on the sign
of ω. As a consequence, the single-particle trajectories of
a chiral ABP tend to be circular. The value of |ω| deter-
mines the strength of chirality: the larger ω, the smaller
the typical radius of the circular trajectories of a single
particle, given by v0/ω.

B. Chiral active Ornstein-Uhlenbeck particles (AOUPs).

In the AOUP dynamics65–71, n is described by a two-
dimensional Ornstein-Uhlenbeck process that allows both
the modulus |n| and the orientation θ to fluctuate with
related amplitudes72. The AOUP distribution is a two-
dimensional Gaussian such that each component fluctu-
ates around a vanishing mean value with unit variance.
The resulting dynamics of the vector n reads:

ṅ = −
n

τ
+

√

1

τ
χ+ ω n× z (3)

where χ is a two-dimensional vector of white noises with
uncorrelated components having unitary variance and
zero average. Here, τ represents the persistence time
of the particle trajectory, i.e. the time that the parti-
cle, in the absence of angular drift, spends moving in the
same direction before a reorientation of the active force.
In the AOUP model the diffusion coefficient due to the
active force is obtained form the relation 2Da/τ = v20τ ,
which allows a simple comparison between AOUP and
ABP models72,73.
In the AOUP dynamics, the chirality is included by

adding the force ω n× z, where z is the direction orthog-
onal to the plane of motion and the parameter ω quanti-
fies the chirality of the particle21. Such a force is always
directed in the plane of motion, normal to z, and is or-
thogonal to n, so that it rotates the self-propulsion vector

in the clockwise or counterclockwise direction depending
on the sign of ω. Similarly to the chiral ABP model,
the chiral AOUP dynamics displays circular trajectories.
However, in contrast with the ABP dynamics, the typi-
cal circles observed by an AOUP are characterized by a
fluctuating radius, that on average is equal to the one of
the ABP and ≈ v0/|ω|. It is worth noting that the chiral
term in the AOUP dynamics is totally equivalent to the
chiral term in the ABP dynamics. Indeed, the constant
force ω n× z in polar coordinate affects only the dynam-
ics of the polar angle through a constant term equivalent
to the driving angular velocity written in Eq. (2).

C. Relation between chiral AOUPs and chiral ABPs.

Despite the AOUP and ABP dynamics are different,
both are usually employed to describe active particles
and display similarities so that AOUP has been often
employed to derive analytical predictions suitable to de-
scribe ABP numerical results. The reason of this agree-
ment lies in the fact that the two-time self-correlations
of n of the two models are identical with an approprate
choice of parameters21,72,74. For both cases, we find

〈n(t) · n(0)〉 = e−
t
τ cos(ωt) . (4)

It is worth noting that, in Eq. (4), the chirality affects
the shape of the autocorrelation by inducing oscillations.
Despite ABP and AOUP have different dynamics and

are characterized by different steady-state distributions,
such dynamical properties are at the basis of a plethora of
similar phenomena observed for a single particle but also
for interacting systems. A comparison between the two
models has been established for a single non-chiral active
particle and a non-chiral active particle in a harmonic
potential, while, more generally, the relation between the
two models has been deepened in Ref.72. However, the ef-
fect of chirality in the two models confined in an external
potential has been poorly investigated in the literature.

III. CHIRAL ACTIVE PARTICLE IN A RADIAL
POTENTIAL

We start by considering chiral active particles con-
fined by a simple harmonic potential in two dimensions,
U(x) = kx/2, that exerts a linear force on the particle
directed towards the origin.
Both in chiral ABP and chiral AOUP simulations, it is

convenient to rescale time by the persistence time τ and
the position by the persistence length v0τ . In this way,
the chirality can be tuned by changing the dimension-
less parameter ωτ , which we call reduced chirality. The
other dimensionless parameters of the simulations are the
reduced stiffness of the potential kτ/γ and the ratio be-
tween passive and active diffusion coefficients, Dt/(τv

2
0).

For simplicity, we set Dt = 0 and eliminate Dt/(τv
2
0). In-

deed, the thermal noise is orders of magnitudes smaller
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than the diffusion due to the active force in several exper-
imental systems2. Finally, we set kτ/γ = 1. The effect
of this parameter has been explored in the AOUP case
analytically65, and in the ABP case numerically72 and
experimentally75 by considering an active Janus parti-
cle in an optical tweezer. Here, we focus on the role of
reduced chirality, ωτ .
Active particles in radial potentials76–82 have been

widely investigated in the absence of chirality for which
we summarize the results: the AOUP dynamics in a har-
monic potential can be solved exactly65,83–86, being fully
linear, and is described by a multivariate Gaussian dis-
tribution in x and n. As a consequence, the density p(x)
of the system is still Gaussian and the active force af-
fects the distribution by changing its effective tempera-
ture only65,87–89. The ABP dynamics in harmonic poten-
tial has been exactly solved only recently90,91 and leads to
a more intriguing scenario92,93. While in the small persis-
tence regime, (small τ or large Dr), the density is Gaus-
sian72 and similar to the one of the AOUP, in the large
persistence regime, ABPs accumulate far from the poten-
tial minimum, as confirmed experimentally by active col-
loids75,76, roughly at the distance where the active force
balances the potential force, i.e. at |x| ≈ v0γ/k . As a re-
sult, the two-dimensional density in the plane of motion
is characterized by a Mexican-hat shape while the den-
sity, projected onto a single coordinate, displays bimodal-
ity. The results observed in the ABP are reminiscent
to those originally obtained of considering Run&Tumble
particles94–96.

A. Spatial distribution

To investigate the role of chirality, we plot the proba-
bility distribution p(x, y) in the plane of motion for three
representative values of the reduced chirality, ωτ . This
analysis is performed both for the ABP (Fig. 2 (a)-(c) )
and AOUP (Fig. 2 (d)-(f)) models.
In the chiral AOUP case, the system is linear and, as a

consequence, p(x, y) is a Gaussian centered at the origin
in both spatial directions, independently of the value of
ωτ . The increase of the chirality induces a stronger con-
finement of the particle as if the potential was stiffer or
the dynamics governed by a lower effective temperature.
Indeed, the system is described by the following p(x, y)

p(x, y) = N exp
(

−
k(x2 + y2

2Teff

)

(5)

with effective temperature (in units of Boltzmann con-
stant, kB = 1)

Teff =
〈x2〉

k
=

1 + τ
γ k

(1 + τ
γ k)

2 + ω2τ2
τγv20 . (6)

The theoretical results (5) and (6) are derived in Ap-
pendix B, while the general method is described in Ap-
pendix B. The effective temperature Teff is consistent

with the expression for ωτ ≪ 1, which a decrease as
τ → 0 and an increase proportional to v20 . The effect of
chirality ω manifests itself as a decrease of the effective
temperature, consistently with Figs. 2 (a), (b), and (c).
As expected, the ABP case is richer: for small values

of ωτ . 1, chiral ABPs accumulate at a finite distance
from the minimum of the potential (Fig. 2 (a)) as al-
ready observed in the absence of chirality. The distri-
bution displays the typical Mexican-hat shape, i.e. the
particles accumulate on a ring roughly at distance ≈ v0/k
from the origin. In this regime, the increase of the chi-
rality broadens the width of the ring. The tendency of
particles to rotate (on average) in a clockwise (counter-
clockwise) direction hinders the ability of the particles to
accumulate out of the minimum: a particle accumulated
at a radial distance ≈ v0γ/k could change the direction
of the active due to the rotation induced by the chirality.
For larger values of ωτ ∼ 1, the rotations of the particles
are stronger and characterized by a smaller radius of the
circle. Thus, the accumulation is observed at a position
much closer to the minimum of the potential with respect
to the previous case (Fig. 2 (b)): particles cannot reach
the position v0γ/k before the chirality turns the direction
of the active force before the particles arrive at this posi-
tion. Finally, the accumulation is completely suppressed
for ωτ & 1, when the particle simply performs small cir-
cular trajectories around the minimum of the potential.
In the latter regime (Fig. 2 (c)), p(x, y) is again peaked at
the origin and the effect of chirality can be mapped again
onto an effective temperature. This occurs because the
radius of the circular trajectory, namely v0/ω is smaller
than the typical distance at which particles accumulate
v0/k. As a consequence, particles’ ability to climb on the
potential is contrasted by their tendency to spin and per-
form circular trajectories around the potential minimum.

B. Projected density and moments of the distribution

In Fig. 3 the spatial density, p1(x), projected onto
a single spatial component are plotted for several val-
ues of reduced chirality ωτ . As expected, the ABP case
(Fig. 3 (a)) is richer than the AOUP case (Fig. 3 (b)).
The latter is characterized by a Gaussian p1(x), whose
variance varies with ωτ , while the former shows a tran-
sition from a bimodal distribution (characterized by two
lateral peaks) to a unimodal distribution, when ωτ & 1.
We consider the moment of this distribution both for
ABP and AOUP cases. By symmetry, the first mo-
ment is zero, while in both models, the variance 〈x2〉
of p(x) displays a monotonic decrease with ωτ starting
at ωτ ∼ 1. For the variance of the distribution, both
AOUP and ABP dynamics show consistent results. Fi-
nally, we study the kurtosis of the distribution 〈x4〉/〈x2〉2

in the AOUP and ABP to quantify the non-Gaussianity
of the latter. In the AOUP case, the kurtosis is equal
to 3 being the model Gaussian, whereas in the ABP, the
kurtosis is always smaller than 3 as a result of the non-
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FIG. 2. Probability distributions for an active chiral particle in a harmonic radial potential. Probability
distribution, p(x, y), as a function of the rescaled position, x/(v0τ ) and y/(v0τ ), for a chiral active particle in a harmonic
potential. Panels (a)-(c) are obtained by considering the ABP dynamics, while panels (d)-(f) are obtained by considering the
AOUP dynamics. The p(x, y) are shown for several values of the reduced chirality, ωτ , as indicated in the figure: ωτ = 0.5
(panels (a) and (d)), ωτ = 2 (panels (b) and (e)), ωτ = 5 (panels (c) and (f)). The remaining parameters of the simulations
are: kτ/γ = 1 and Dt/(v

2
0τ ) = 0.

Gaussian nature of the distribution. As ωτ increases the
kurtosis goes from a value ≈ 2 (when p1(x) is bimodal)
to a large asymptotic value sightly smaller than 3 (where
p1(x) is unimodal). This implies that the chirality re-
duces the non-Gaussianity of the distribution but that
the unimodal p1(x) observed for larger ωτ is still non-
Gaussian.

IV. CHIRAL ACTIVE PARTICLE IN A NON-RADIAL
POTENTIAL

In this section, we investigate the dynamics of an active
chiral particle in a potential that breaks the rotational
symmetry of the system. We consider a harmonic po-
tential with an elliptic shape: U(x, y) = 1

2 (kxx
2 + kyy

2).
Such a potential introduces an additional dimensionless
parameter, ky/kx, which quantifies the asymmetry of the
potential and chose ky/kx = 3. The remaining dimen-
sionless parameters are kyτ/γ = 1 and Dt/(τv

2
0) = 0.

Here, again we vary the reduced chirality ωτ to study the
interplay between chirality and asymmetry of the poten-
tial.
The asymmetry between the two orthogonal directions

in the corresponding equilibrium system would be fully
described by the Maxwell-Boltzmann distribution: parti-
cles fluctuate around the origin and explore larger regions
of space along the direction where the potential gradient
is weaker. The generalization to non-chiral active parti-
cles is rather straightforward both for AOUP and ABP
and does not present significant changes with respect to
the symmetric case. Indeed, the non-chiral AOUP in the
potential U(x, y) is characterized by a Gaussian distribu-
tion similar to the equilibrium case, while the non-chiral
ABP, displays accumulation away from the minimum on
an ellipsoidal domain rather than a circular one. Intu-
itively, the accumulation along the more confined direc-
tion will be stronger.

A. Spatial distribution and cross-correlations

The role of chirality in a harmonic elliptic potential is
analyzed by studying the two-dimensional density distri-
bution p(x, y). The analysis is performed both for ABP
and AOUP dynamics and for several values of the re-
duced chirality ωτ (Fig. 4).
In the AOUP case (Fig. 4 (e)-(h)), p(x, y) displays a
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FIG. 3. Longitudinal density and its moment for an

active chiral particle in a harmonic radial potential.
Panels (a) and (b): density distribution p(x) projected onto
the x axis as a function of the rescaled position x/(v0τ ) for
several values of the reduced chirality. Panels (a) and (b) are
obtained by considering the ABP and the AOUP dynamics,
respectively. Panel (c): variance of the distribution 〈x2〉 as
a function of ωτ . Panel (d): Kurtosis of the distribution
〈x4〉/〈x2〉2 as a function of ωτ . Both in panels (c) and (d),
ABP and AOUP are represented by red and blue symbols.
The black solid line in panel (c) represents the theoretical
prediction, Eq.(6), the dashed blue line in panel (d) marks the
value corresponding to the Gaussian prediction and finally,
the red dashed line is an eye-guide marking the asymptotic
value obtained by the Kurtosis of the ABP. The remaining
parameters of the simulations are: kτ/γ = 1 and Dt/(v

2
0τ ) =

0.

Gaussian shape, i.e. particles preferentially explore the
spatial regions close to the origin, i.e. the minimum of
the potential. For small ωτ ≪ 1 (Fig. 4 (e)), the findings
are consistent with the non-chiral scenario: active par-
ticles explore the elliptic region around the origin and
the chirality slightly decrease the spatial fluctuations as
seen in the case of a radial potential. The effect of the
chirality emerges for larger values of ωτ . As shown in
Fig. 4 (f)-(h), the chirality tilts the main axis of the el-
lipse where the particles accumulate. As a consequence,
p(x, y) has a non-Maxwell-Boltzmann shape, since the
distribution cannot be expressed as p(x, y) ∼ e−U/Teff ,
with kB = 1. As already remarked, this effect is absent
for non-chiral AOUP, and, thus, is purely induced by the
interplay between the chirality and the breaking of the
radial symmetry of the confining potential. In general,
we observe that the increase of ωτ increases the tilt angle
of the ellipsoid until it reaches a saturation value that by
symmetry cannot exceed π/4. Finally, for ωτ & 1 the
chirality leads to a stronger confinement and, thus, de-
creases the effective temperature of the system without
altering the ellipsoidal shape of the potential, as shown

from Fig. 4 (g) to Fig. 4 (h). The last observation is con-
sistent with the finding relative to the radial potential of
Sec. III.
The numerical results are confirmed by the expression

for the probability distribution p(x, y) that reads (see
Appendix B)

p(x, y) = C exp
(

−
1

2

〈y2〉x2 + 〈x2〉y2 − 2〈xy〉xy

〈x2〉〈y2〉 − 〈xy〉2

)

(7)

where the variances 〈x2〉 and 〈y2〉 are given by

〈x2〉 =
v20τγ

kx

(1 + τ
γ kx)

(1 + τ
γ kx)

2 +Ω2τ2
(8)

〈y2〉 =
v20τγ

ky

(1 + τ
γ ky)

(1 + τ
γ ky)

2 +Ω2τ2
. (9)

Expression (7) shows that the interplay between chirality
and elliptic confinement induces a cross-correlation 〈xy〉.
The shape deformation of the probability distribution ob-
served numerically in Fig. 4 is described analytically by
the formula:

〈xy〉 = ωτ
v20τγ

kx + ky

( 1

(1 + τ
γ ky)

2 + ω2τ2
−

1

(1 + τ
γ kx)

2 + ω2τ2

)

.

(10)
The cross-correlation vanishes for ω → 0 and displays
a non-monotonic behavior as a function of the reduced
chirality: it is positive or negative depending on the sign
of ω and on the ratio ky/kx, and vanishes when the radial
symmetry is restored (kx = ky).
As in the case of radial potential, the ABP dynam-

ics displays a richer scenario (Fig. 4 (a)-(d)). For small
reduced chirality ωτ ≪ 1 (Fig. 4 (a)), particles accumu-
late away from the potential minimum along the ellipsoid
determined by the potential. In particular, particles ac-
cumulate more along the x direction where the system is
more confined, with respect to the y direction. In this
regime, the increase of the chirality is able to change the
orientation of the accumulation area introducing an evi-
dent asymmetry in the shape of p(x, y) (Fig. 4 (b)). This
effect is enhanced when the reduced chirality is increased,
until the regime ωτ ∼ 1. Correspondingly, the tendency
of particles to climb on the potential is reduced and we
can observe larger spatial fluctuations (Fig. 4 (c)). The
mechanism that leads to the latter effect is equal to that
described in Sec. III. Finally, spatial fluctuations are con-
sistent (Fig. 4 (d)) as if the system was governed by a
smaller effective temperature until the accumulation far
from the potential minimum is completely suppressed.
Again, this is consistent with the results described for a
chiral particle in a radial potential.
Both AOUP and ABP dynamics are characterized by

a non-Maxwell-Boltzmann distribution with a breaking
of the parity symmetry with respect to the x (or y) axis
that characterizes the elliptic potential. In other words,
even if U(−x, y) = U(x, ), we have p(−x, y) 6= p(x, y) (or
equivalently p(x,−y) 6= p(x, y)). This effect emerges in
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FIG. 4. Probability distributions for an active chiral particle in a harmonic elliptic potential. Probability
distribution, p(x, y), as a function of the rescaled position, x/(v0τ ) and y/(v0τ ), for a chiral active particle in a harmonic
potential. Panels (a)-(d) are obtained by considering the ABP dynamics, while panels (e)-(h) are obtained by considering the
AOUP dynamics. The p(x, y) are shown for several values of the reduced chirality, ωτ , as indicated in the figure: ωτ = 0.2
(panels (a) and (e)), ωτ = 0.5 (panels (b) and (f)), ωτ = 2 (panels (c) and (g)), ωτ = 5 (panels (d) and (h)). The remaining
parameters of the simulations are: ky/kx = 3, kτ/γ = 1, and Dt/(v

2
0τ ) = 0.

the occurrence of spatial correlations between the Carte-
sian components of the positions and is purely due to the
interplay between chirality and asymmetry of the poten-
tial.

B. Moments of the distribution

To quantify this effect we consider the moments of the
distribution for x and y coordinates (Fig. 5). Specifi-
cally, Fig. 5 (a) displays the variances 〈x2〉 and 〈y2〉 as
a function of the reduced chirality ωτ . The results are
similar for both ABP and AOUP and agree with the the-
oretical prediction Eq. (8) and Eq. (9). The variances
of the distribution that can be interpreted as the effec-
tive temperature of the system decrease for both x and
y components approximatively when ωτ ≈ 1. However,
the effect of chirality manifests itself for smaller values of
ωτ when the system is less confined, i.e. along the y com-
ponent. For ωτ ≫ 1, the chirality decreases the effective
temperature of the system as ∼ ω−2.
Similarly to Fig. 4, to quantify the non-Gaussian na-

ture of the system we study the kurtosis along x and
y components, defined as 〈x4〉/〈x2〉2 and 〈y4〉/〈y2〉2. In
agreement with our intuition, the kurtosis of the AOUP
model for every value of ωτ , is equal to 3. In the ABP

case, the two kurtosis display the same qualitative behav-
ior observed in the case of the radial potential in Sec. III.
They start from values close to 2, when the system dis-
plays accumulation far from the potential minimum, and
then increase with ωτ , until reach an asymptotic value
slightly smaller than 3. Here, the non-Gaussian nature
of the chiral ABP is more evident along the x axis when
the system is more confined.
Finally, we plot the cross-correlation 〈xy〉, as a func-

tion of ωτ , where again, the ABP and AOUP display
similar results. The cross-correlation of both models is
reproduced by the theoretical prediction (10) that shows
a non-monotonic behavior. In the regime of small re-
duced chirality, ωτ ≪ 1, the cross-correlation starts from
zero and then grows almost linearly until reaches a max-
imum around ωτ ≈ 1. From here, further increase of
ωτ reduces the value of 〈xy〉 with a scaling ∼ ω−2 until
vanishes.

C. Conditional moments of the distribution

To underpin the breaking of the parity symmetry of
the distribution induced by the interplay between chiral-
ity and potential asymmetry, we study the conditional
distribution of the system, p(y|x), i.e. the distribution
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the reduced chirality ωτ . Panel (b): Kurtosis of the distribution for x and y components, i.e. 〈x4〉/〈x2〉2 and 〈y4〉/〈y2〉2, as
a function of ωτ . Panel (c): Cross-correlation 〈xy〉 as a function of ωτ . In all the panels, results are presented both for ABP
and AOUP dynamics as indicated in the legend. The remaining parameters of the simulations are: ky/kx = 3, kτ/γ = 1, and
Dt/(v

2
0τ ) = 0.

calculated at fixed x, defined as p(y|x) = p(x, y)/p1(x)
(Fig. 6) and the corresponding first conditional moment.
Fig. 6 (b) and (f) show p(y|x) for ωτ = 2 for three posi-
tions x/(v0τ) = 0, 0.2, 0.5 considered as examples. Panel
(b) refers to the ABP dynamics (whose joint distribu-
tion, p(x, y), is reported in Fig. 6 (a)) while panel (c)
refers to the AOUP dynamics (whose p(x, y) is reported
in Fig. 6 (e)).
In the AOUP case, the distribution has a Gaussian

shape in all the cases. However, for x/(v0τ) = 0, the
Gaussian is centered in the origin while by increasing
x/(v0τ), the center of the Gaussian shifts to values larger
than zero. In other words, the parity symmetry (charac-
terizing the elliptic potential) is broken at fixed x/(v0τ),
i.e. p(y|x) 6= p(−y|x). This is consistent with our ana-
lytical prediction

p(y|x) = C′ exp
(

−
1

2

〈xy〉2x2 + 〈x2〉2y2 − 2〈xy〉〈x2〉xy

(〈x2〉〈y2〉 − 〈xy〉2)〈x2〉

)

(11)
and

〈y(x)〉 =
〈xy〉

〈x2〉
x (12)

is the first conditional moment of the distribution, i.e.
the average y at fixed x, as a function of x.
As clear from the shape of p(x, y) and known results

in the absence of chirality, the ABP has a non-Gaussian
distribution. The conditional distribution of both models
shows a similar degree of asymmetry and, in particular,
the breaking of the parity symmetry in the distribution
p(y|x) 6= p(−y|x). Indeed, at x/(v0τ) = 0, the p(y|x) dis-
plays a fully symmetric bimodal profile. For larger values
of x/(v0τ), the spatial shape of p(y|x) displays intrinsic
asymmetry: the right peak of the distribution becomes
larger than the left until the left peak is completely sup-
pressed.
To characterize this asymmetry, we study the first con-

ditional moment of the distribution 〈y(x)〉. This analysis

is reported in Fig. 6 (g) and (h) for the AOUP case and
in Fig. 6 (c) and (d) for the ABP dynamics for several
values of the reduced chirality ωτ . In both cases, 〈y(x)〉
is described by a linear profile with the same slope, in
agreement with our theoretical prediction Eq.(12). 〈y(x)〉
shows an almost flat profile for ωτ ≪ 1, as expected from
the non-chiral case. The slope is an increasing function
of the chirality until reaches a maximum for ωτ = 2.
For larger values of ωτ , the slope decreases again un-
til becomes almost flat. This non-monotonicity explains
the one observed in the behavior of the cross-correlation
〈xy〉 (Fig. 5 (c)). Indeed, the non-zero conditional mo-
ment 〈y(x)〉 induces global cross-correlations in the full
distribution and thus, the larger 〈y(x)〉, the larger 〈xy〉.

V. CONCLUSIONS

In summary, we have studied a chiral active particle
confined in an external potential, with and without ra-
dial symmetry. For radial potentials, the chirality affects
the effective temperature of the system both for ABP and
AOUP dynamics. Specifically, in the AOUP case, the dy-
namics displays Gaussian properties due to the linearity
of the system with an effective variance that decreases
with the chirality. In the ABP case, the chirality reduces
the non-Gaussianity of the system, by suppressing the ac-
cumulation far from the minimum of the potential typical
of the non chiral confined ABP. In other words, the chi-
rality induces a transition from a bimodal to a unimodal
density.
For non-radial potentials, the scenario is richer due

to the interplay between chirality and asymmetry of the
potential which is able to break the parity symmetry in
the probability distribution of the system. As a conse-
quence, a non-Maxwell-Boltzmann distribution is found
both for chiral ABP and chiral AOUP dynamics. This ef-
fect emerges in cross-correlations between the Cartesian
components of the position that are present both for chi-
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2
0τ ) = 0.

ral ABP and chiral AOUP. The linearity of the AOUP
makes possible analytical calculations that allow us to
analytically predict the first two moments of the chiral
ABP in a harmonic potential.
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Appendix A: Derivation effective equation for the
probability distribution function

Although the linear models can be solved by consider-
ing the Langevin equation for the coordinates and then
deriving the distribution function from the first non van-
ishing cumulants, an equivalent description is possible
in terms of an effective Fokker-Planck equation (FPE)
for the distribution function. At the linear level, the
two methods yield equal results and the choice between
them is a matter of taste, but when the potential is non
quadratic the FPE method is simpler to implement.
Here, we develop the second method in the case of

chiral active particles. For the sake of completeness,
we briefly illustrate the basic assumptions leading to
a closed equation for the probability density distribu-

tion97–99. The equation of motion (1) for Dt = 0 can
be written for each component as

γ
dx̄m(t)

dt
= Fm + ηm(t) (A1)

where the index m marks denotes different Cartesian
components (for instance, m = x, y in two dimensions)
and ηm is a component of the active force γv0n. By
standard manipulations, we derive the equation for the
associated probability distribution function

∂

∂t
p({x}, t) = −

1

γ

∑

m

∂

∂xm
Fm({x})p({x}, t)

−
∑

m

∂

∂xm
〈ηm(t)ρ̂({x}, t)〉 . (A2)

where ρ̂({x}, t) = Πmδ(x̄m(t) − xm), with xm the lo-
cal value assumed by x̄m, and p({x}, t) = 〈ρ̂({x}, t)〉.
The average 〈·〉 is performed over the realizations of the
stochastic process ηm and the curly brackets are used to
denote a dependence over all the components of a vector.
Since Eq. (A2) is not a closed equation for the proba-

bility distribution function, we employ the Novikov for-
mula100 to evaluate the average appearing in the last
term. This formula is valid for arbitrary Gaussian ran-
dom functions (Note that the ABP is not described by a
Gaussian noise):

〈ηm(t)R[{η}]〉 =

∫ t

0

dt′
∑

n

Cmn(t, t
′)

〈

δR[{η}]

δηn

〉

(A3)
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where R[{η}] denotes a functional of {η} and on the right
hand side is the variational derivative of this functional.
The term

Cmn(t, t
′) = 〈ηm(t)ηn(t

′)〉 (A4)

is the active force correlation function. Employing
Eq. (A3) and the definition of ρ̂({x}, t), we get

〈ηm(t)ρ̂({x}, t)〉 (A5)

=

∫ t

0

dt′
∑

n

Cmn(t, t
′)
∑

k

〈

δ(ρ̂({x}, t))

δx̄k

δx̄k(t)

δηn(t′)

〉

= −
∑

k

∑

n

∂

∂xk

∫ t

0

dt′ Cmn(t, t
′)

〈

ρ̂({x}, t)
δx̄k(t)

δηn(t′)

〉

.

The functional derivative of x̄k(t) with respect to ηn(t
′)

is given by the following expression valid for for t > t′

δx̄k(t)

δηn(t′)
= θ(t− t′)

[

exp

∫ t

t′
ds J(s)

]

kn

(A6)

where the matrix J(s) has elements Jkl(t) =
1
γ
∂Fk({x(t)})

∂xl(t)
.

Combining Eq. (A6) with Eq. (A6), we find

〈ηm(t)ρ̂({x}, t)〉 = −
∑

k

∑

n

∂

∂xk
(A7)

∫ t

0

dt′
[

Cmn(t, t
′)

〈

ρ̂({x}, t)

(

exp

∫ t

t′
dsJ(s)

)

kn

〉]

.

The expressions obtained up to here are exact but not
close. Therefore, we employ a closure scheme to obtain
a theoretical prediction for the probability distribution.
To achieve this goal, we estimate the Eq. (A7) as follows:

〈

ρ̂({x}, t) exp

(
∫ t

t′
dsJ(s)

)

kn

〉

≃
〈

ρ̂({x}, t)
〉(

exp
〈

J(t)
〉

(t− t′)
)

kn
. (A8)

Here, we have performed three approximations: 1) the
factorization of the averages; 2) the replacement of the
average of the exponential with the exponential of the
average. 3) we have treated J(s) as a constant in the
time integral in the exponent. Let us remark that the
above approximations are exact in the case of quadratic
potentials because J(t) = const and not an approxima-
tion as in the general case. Going back to Eq. (A6), we
find

〈ηm(t)ρ̂({x}, t)〉 = −
∑

k

∂

∂xk
p({x}, t)Dmk(t)(A9)

where we have defined the following matrix elements:

Dmk(t) =
∑

n

[

∫ t

0

dt̃Cmn(t̃)
(

exp
〈

J(t)
〉

t̃
)

nk

]

(A10)

Finally, we obtain a closed equation for the probability
distribution

∂

∂t
p({x}, t) = (A11)

−
∑

m

∂

∂xm

Fm({x})

γ
p+

∑

mk

∂

∂xm

[ ∂

∂xk
Dmkp

]

.

The method developed here (and in particular the ap-
proximations 1), 2) and 3) in Eq. (A8)) are exact in the
case of a chiral AOUP particle confined in a harmonic
potential with radial or non-radial (elliptic) shape. In
constrast, for non-linear forces, 1), 2) and 3) are ap-
proximations whose accuracy depends on the potential
considered. Finally, the method represents only an ap-
proximation for the ABP because the Novikov formula,
Eq. (A3), does not hold. Indeed, the ABP is governed by
a non-Gaussian noise because n is an orientation with a
non-fluctuating unit modulus.

Appendix B: Application to simple cases.

The general method presented in the previous ap-
pendix is applied to a confining potential (with ra-
dial and non-radial symmetry) studied in Sec. III and
Sec. IV. First, we estimate the components of the time-
autorocorrelation of the active force Cmn(t− t′):

Cmn(t− t′) =

v20 e
−|t−t′|/τ

(

cos(ω(t− t′)) − sin(ω|t− t′|)
sin(ω|t− t′|) cos(ω(t− t′))

)

.(B1)

Then, we estimate Dmk(t) for a rather general form of
central potential, U(r), applying the definition (A10) and
taking the limit t → ∞. We obtain the following matrix
elements

Dxx =
v20τ

r2

[

y2uI − xywI + x2uII + xywII

]

(B2)

Dyy =
v20τ

r2

[

x2uI + xywI + y2uII − xywII

]

(B3)

Dxy =
v20τ

r2

[

wIx
2 − xyuI + wIIy

2 + xyuII

]

(B4)

Dyx = −
v20τ

r2

[

wIy
2 + xyuI + wIIx

2 − xyuII

]

(B5)

where we used the abbreviations:

uII =
(1 + τ U ′′

γ )

(1 + τ U ′′

γ )2 + ω2τ2
(B6)

uI =
(1 + τ U ′/r

γ )

(1 + τ U ′/r
γ )2 + ω2τ2

(B7)

wII =
ωτ

(1 + τ U ′′

γ )2 + ω2τ2
(B8)

wI =
ωτ

(1 + τ U ′/r
γ )2 + ω2τ2

. (B9)
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and the primed symbols stand for the first and second
derivatives of U(r). After eliminating x and y in favor of

the radial coordinate r =
√

x2 + y2, the resulting effec-
tive Fokker-Planck equation is conveniently written as:

∂

∂t
p =

1

r

∂

∂r

[

r
U ′(r)

γ
p+ v20τ

(

(uII − uI)p+ r
∂

∂r
(uIIp)

)]

.

(B10)

The time independent solution of Eq. (B10) is obtained
by imposing the vanishing of the radial component,
Jrad, of the probability current (i.e. minus the expres-
sion contained in the square parenthesis in the r.h.s.
of Eq. (B10)). For the particular case where is har-
monic (U(r) = kr2/2), expression (B10), the difference
(uII − uI) vanishes and the explicit solution is:

p(r) = ρ0 exp
(

−
(1 + τ

γ k)
2 + ω2τ2

(1 + τ
γ k)

1

τγv20

kr2

2

)

, (B11)

while for arbitrary central potentials the problem can al-
ways be reduced to a simple quadrature. Interestingly,
it is easy to verify that due to the handedness of the
system the tangential component of the probability cur-
rent does not vanish whenever ωτ 6= 0. In other words,
the presence of a radial gradient in the probability den-
sity induces a circulation of the particles in the direc-
tion orthogonal to it, but such a current does not affect
the probability distribution itself. The tangential current
reads:

Jtan = v20τ
ωτ

(1 + τ
γ k)

2 + ω2τ2
∂

∂r
p(r) (B12)

By expressing p(r) as a function of the Cartesian compo-
nents we obtain Eq. (5).
By contrast , in the case of the elliptic quadratic confin-

ing potential, U(r) = (kxx
2+kyy

2)/2, one cannot exploit
the radial symmetry of the problem and the equation for
the probability density reads:

∂

∂t
p(x, y, t) =

∂

∂x

kxx

γ
p+

∂

∂y

kyy

γ
p (B13)

+v20τ
[ (1 + τ

γ kx)

(1 + τ
γ kx)

2 + ω2τ2
∂2

∂x2
+

(1 + τ
γ ky)

(1 + τ
γ ky)

2 + ω2τ2
∂2

∂y2

+(
ωτ

(1 + τ
γ ky)

2 + ω2τ2
−

ωτ

(1 + τ
γ kx)

2 + ω2τ2
)

∂2

∂x∂y

]

p .

The steady probability p(x, y) can be obtained by first
determining its cumulants (Eqs. (8), (9), (10)) from
Eq. (B14) and using this information to express the pdf
as in Eq. (5).
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J. Tailleur and F. Van Wijland, Phys. Rev. E, 2021, 103,

032607.
67C. Maggi, U. M. B. Marconi, N. Gnan and R. Di Leonardo, Sci.

Rep., 2015, 5, 10742.
68R. Wittmann, J. M. Brader, A. Sharma and U. M. B. Marconi,

Phys. Rev. E, 2018, 97, 012601.
69L. Caprini, U. Marini Bettolo Marconi, A. Puglisi and A. Vulpi-

ani, J. Chem. Phys., 2019, 150, 024902.
70Y.-E. Keta, R. L. Jack and L. Berthier, Phys. Rev. Lett., 2022,

129, 048002.
71Y.-E. Keta, R. Mandal, P. Sollich, R. L. Jack and L. Berthier,

Soft Matter, 2023, 19, 3871–3883.

72L. Caprini, A. R. Sprenger, H. Löwen and R. Wittmann, J.
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