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ABSTRACT

Alloying has been a powerful and practical strategy to widen the palette of physical properties available to semiconductor materials.
Thanks to recent advances in the synthesis of van der Waals semiconductors, this strategy can be extended to monolayers (MLs) of transition
metal dichalcogenides (TMDs). Due to their extraordinary flexibility and robustness, strain is another powerful means to engineer the electronic
properties of two-dimensional (2D) TMDs. In this article, we combine these two approaches in an exemplary metal dichalcogenide chalcogen-
alloy, WSSe. Highly strained WSSe MLs are obtained through the formation of micro-domes filled with high-pressure hydrogen. Such struc-
tures are achieved by hydrogen-ion irradiation of the bulk material, a technique successfully employed in TMDs and h-BN. Atomic force
microscopy studies of the WSSe ML domes show that the dome morphology can be reproduced in terms of the average of the elastic parame-
ters and adhesion energy of the end compounds WSe2 and WS2. Micro-photoluminescence measurements of the WSSe domes demonstrate
that the exceedingly high strains (ε � 4%) achieved in the domes trigger a direct-to-indirect exciton transition, similarly to WSe2 and WS2.
Our findings heighten the prospects of 2D alloys as strain- and composition-engineerable materials for flexible optoelectronics.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0216217

INTRODUCTION

The interest for two-dimensional (2D) materials, and, in par-
ticular, for monolayers (MLs) of transition metal dichalcogenides
(TMDs), has skyrocketed in the past decade. Thanks to their
sizable bandgap and strong spin–orbit interactions, 2D semicon-
ducting TMDs have prompted many opportunities for quantum
optoelectronics1 and valleytronic2 applications as well as for the
observation of interesting physical phenomena like those reported
in TMD heterostructures.3 The all-surface nature of TMD MLs
make them especially responsive to mechanical deformations. The
latter are an ubiquitous and very often inevitable presence in 2D
materials and, at the same time, a precious tool to modify the
sample’s physical properties.24 Alloying is also a widely employed
and efficacious method to modulate the electronic properties of
bulk and nanostructured semiconductors in general4 and of 2D

semiconductors in particular.5 Thanks to the recent progress in the
synthesis of TMD alloys,6–9 these materials are gaining increasing
interest since they provide a virtually seamless variation in the
properties of an alloyed MCA

2xC
B
2(1�x) ML between the end point

compounds MCA
2 and MCB

2 , where M is a metal, such as Mo and
W, and CA,B are chalcogen atoms, such as S, Se, and Te.10

Metal-alloys are also possible, where the varying atomic species is
that of the metal atom.11,12 In WS2xSe2(1�x)

13 and MoS2xSe2(1�x)
7

alloys, the compositional dependence of the optical gap energy
(derived by photoluminescence, PL, measurements) and the vibra-
tional mode frequencies (derived by Raman spectroscopy) show a
smooth dependence on x, with a correspondingly small bowing
parameter (i.e., small deviation from a linear behavior).6,9,14 A
sizable bowing was instead found for metal alloys.6,11,12 While the
bandgap and exciton states of TMD alloy MLs (along with infor-
mation on dark excitons and on the formation of localized excitons
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acting as quantum emitters) and their vibrational properties have
been investigated,6–14 much less is known about the effects of strain
on the materials’ electronic properties and—on strictly related
grounds—about the influence of alloying on the crystal’s adhesion
energy,15 which is a quantity of uttermost relevance for the process-
ing of TMDs and the fabrication of TMD-based heterostructures.

In this work, we focus on a chalcogen alloy WS2xSe2(1�x) ML
with x � 0:5 (WSSe), subjected to high strain fields. Strain is
achieved by exposing WSSe bulk flakes to a low-energy beam of
ionized hydrogen that leads to the formation of ML micro-/nano-
domes on the flake surface, as previously demonstrated for several
TMDs and for hBN.16,17 The quantitative analysis of the WSSe
dome shape permits to show that the elastic parameters and adhe-
sion energy of the WSSe alloy can be evaluated as an average
between those of WS2 and WSe2. Micro-photoluminescence (μ-PL)
measurements, performed also as a function of temperature, reveal
the presence of a direct (A)-to-indirect (I) exciton crossover caused
by the strain-induced transition of the valence band (VB)
maximum from the K to the Γ point of the first Brillouin zone.18

The energies of the A and I excitons are close to the average values
of the A and I excitons observed in WS2 and WSe2 domes.

EXPERIMENTAL DETAILS

WSSe thick flakes and MLs were mechanically exfoliated from
bulk crystals grown by the flux zone method and purchased from
2D semiconductors. The WSSe alloy composition was controlled
by energy dispersive x-ray analysis (EDX) using a ZEISS-Sigma300
scanning electron microscope (SEM) equipped with an Oxford
Instruments X-Act 100 mm energy-dispersive spectrometer. The
data were acquired with an acceleration voltage of 28 kV and ana-
lyzed by the INCA software. The alloy was found to be homoge-
neous over the whole investigated crystal with a x value of 0.57, see
supplementary note 1 in the supplementary material. WS2 and
WSe2 were purchased from 2D semiconductors and HQ graphene.

Strained MLs in the shape of domes were created by H-ion
low-energy (�10 eV) irradiation. Thick (tens to hundreds of layers)
flakes of the material were first mechanically exfoliated by the
scotch tape method and deposited on SiO2/Si substrates. The sub-
strates with the flakes were then mounted in a vacuum chamber,
heated to 150 �C, and exposed to H-ions. As detailed in Ref. 16,
protons penetrate through the topmost layer of bulk TMD crystals,
leading to the production and accumulation of molecular hydrogen
in the first interlayer region. The trapped gas coalesces, leading to
the formation of micro/nano-domes made of an ML directly lifted
from the underlying bulk crystal and filled with highly pressurized
H2 (tens to hundreds of atm).

The dome morphology was studied by atomic force micros-
copy (AFM). AFM measurements were performed in tapping
mode. We used a Veeco Digital Instruments Dimension D3100
microscope. The microscope uses monolithic silicon probes with a
nominal tip curvature radius of 5–10 nm and a force constant of
40 N/m. All the data were analyzed with the Gwyddion software,
and the convolution of the tip used was duly taken into account.

Temperature-dependent μ-PL measurements were performed
using a closed-circuit He cryostat by Montana Instruments equipped
with x–y nano-positiones by Attocube. The excitation laser was

provided by a single frequency Nd:YVO4 laser (DPSS series by
Lasos) emitting at 532 nm. The luminescence signal was spectrally
dispersed by a 20.3 cm focal length Isoplane 160 monochromator
(Princeton Instruments) equipped with a 150 grooves/mm and a
300 grooves/mm grating and detected by a back-illuminated
N2-cooled Si CCD camera (100BRX by Princeton Instruments).
The laser light was filtered out by a very sharp long-pass Razor
edge filter (Semrock). A 100� long-working-distance Zeiss objec-
tive with NA = 0.75 was employed to excite and collect the light,
in a backscattering configuration and using a confocal setup.

RESULTS

Figure 1 shows the results of the AFM study performed
on WSSe domes obtained with a hydrogen dose equal to
dH ¼ 1:5� 1016 ions=cm2. Panel (a) displays a 3D AFM map,
where large domes coexist with smaller ones. Each dome is charac-
terized by the ratio h0=R between the maximum height at the
dome center (h0) and the footprint radius (R), see top-right inset
in panel (a). In the same inset, the experimental AFM height
profile acquired along a diameter of the largest dome (light purple

FIG. 1. (a) 3D atomic force microscope (AFM) image of a WSSe flake
showing the formation of domes. Inset: AFM profile taken along the diameter
of the largest dome. h0 ¼ (198+ 2) nm, R ¼ (1:20+ 0:02) μm, and
h0=R ¼ 0:165+ 0:004. (b) Statistical analysis of the aspect ratio (h0=R) mea-
sured in 27 WSSe domes. A Gaussian fit to the histogram provides an average
value of 0:163+ 0:013. (c) Comparison between the average aspect ratio
measured in WSSe and those measured in WSe2 and WS2 domes in Ref. 15.
As discussed in the main text, the black line is a calculation performed via
Eq. (2) by assuming that the elastic parameters and adhesion energy of the
alloy scale linearly with x.

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 135, 244304 (2024); doi: 10.1063/5.0216217 135, 244304-2

© Author(s) 2024

 20 Septem
ber 2024 10:30:11

https://doi.org/10.60893/figshare.jap.c.7254610
https://pubs.aip.org/aip/jap


circles) is reproduced by the model (solid black line) presented in
Ref. 15 and given by

h(r) ¼ h0 1� r
R

� �qh i
, (1)

with r being the radial coordinate. R, h0, and q are fitting parameters,
with q being generally � 2:2 for TMD domes.15 Figure 1(b) shows a
statistical analysis of the dome aspect ratio h0=R. A Gaussian fit to
the histogram provides the average value of 0:163+ 0:013 for WSSe
domes. This quantity is compared in panel (c) with the values
obtained in WS2 and WSe2 domes in Ref. 15. Noticeably, the
obtained value is closer to the aspect ratio estimated for WS2 than
that estimated for WSe2.

This can be rationalized considering that

h0
R

¼ α(ν) � γ

E2D

� �1=4

, (2)

where α(ν) is a function of Poisson’s ratio ν (see Ref. 15 for the
explicit form), γ is the adhesion energy between the ML and the
bulk flake, and E2D is the 2D Young modulus of the ML. For WS2
and WSe2, the following parameters were estimated: νWS2 ¼ 0:219,
νWSe2 ¼ 0:196 (computed theoretically19,20), E2D,WS2 ¼ 162 N/m,
E2D,WSe2 ¼ 103 N/m (obtained by an average of the experimentally
measured values15,21–23), and γWS2 ¼ (16:8+ 7:8) meV/Å,
γWSe2 ¼ (6:5+ 2:9) meV/Å (measured experimentally15). If we
assume that the elastic parameters and the adhesion energy of

WSSe are an average of those of WS2 and WSe2, i.e.,

yWSSe ¼ x � yWS2 þ (1� x) � yWSe2 (3)

(where y ¼ ν, E2D, γ), we would expect the behavior reported in
Fig. 1(a) as a black line, leading to an average aspect ratio of 0.162
for our WSSe crystal, in excellent agreement with the value mea-
sured experimentally. The knowledge of the aspect ratio and elastic
parameters is necessary for the quantification of strain. In particu-
lar, the maximum strain is achieved at the dome centre, and it is
given by

εmax
tot ¼ 2f (ν) � h0

R

� �2

¼ (3:9+ 0:6)%, (4)

where f (ν) is a function of Poisson’s ratio ν15 (estimated to be
equal to 0.73 for our WSSe crystal). The strain then decreases while
going toward the edge [where a strain value εmin

tot ¼ (1:8+ 0:6)% is
reached]. The high strain values achieved in the domes can affect
the optoelectronic properties of the ML significantly.18 To investi-
gate the effect of strain on the ML, we performed μ-PL measure-
ments. Some exemplary room-temperature μ-PL spectra of WSe2,
WSSe, and WS2 domes are displayed in Fig. 2(a). Each panel refers
to a different material and displays two spectra obtained by focus-
ing the laser on different regions of the domes. Two recombination
bands are observed and indicated as A and I on the high- and low-
energy sides, respectively. As already reported for the end com-
pounds,18,24 the A band is due to the direct exciton recombination
involving an electron and a hole at the K points of the conduction

FIG. 2. (a) Room-temperature μ-PL
spectra of WSe2, WSSe, and WS2
domes, showing the direct (A) and indi-
rect (I) exciton for all the three com-
pounds. Excitation wavelength equal to
532 nm and laser power equal to 1 μW.
(b) Average exciton energy for
W-based MLs, compared to their
respective A and I exciton energies.
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band (KCB) and valence band (KVB), respectively. The I band corre-
sponds to the recombination of the indirect exciton formed by an
electron at KCB and a hole at the ΓVB point of the valence band.
The latter crosses KVB at sufficiently high strain (ε * 2:5%), thus
becoming the topmost valence band. The recombination of the
A or I excitons can be evidenced by exciting the edge or the center
of the domes, respectively. Indeed, the strain reaches a maximum
value of ε � 4% at the center of the domes, where the direct
exciton is at higher energy with respect to the indirect one, which
becomes energetically favored and thus dominates the emission
spectrum.18 On the edge of the domes ε � 2%, which is still below
the value necessary to change the VB maximum from Γ to K and,
therefore, the direct exciton dominates the PL spectrum. It is worth
adding that the strain values present in the domes lead to near
energy resonant conditions between the A and I excitons.25

Consequently, the two exciton species admix largely25 accounting for
the sizable oscillator strength (i.e., large PL intensity) retained by the
I despite its indirect character. This is confirmed by time-resolved
μ-PL measurements performed on a WSSe dome (see supplementary
note 2 in the supplementary material) showing that the I band has
an overall slightly longer decay time with respect to the A band con-
firming the mixed electronic characteristics of the two excitons.

Figure 2(b) shows the dependence of the A and I exciton energy
on the dome composition (the energy of the direct A exciton of the
unstrained ML for the corresponding materials is also displayed as a
reference). The values shown in the figure are obtained by an average
over different domes and measurements. Like for the elastic parameters
discussed before, one may wonder up to what extent the compositional
disorder influences the effect of strain on the electronic properties. The
data shown in Fig. 2(b) indicate that the energy of the A exciton in the
domes varies from WSe2 to WS2 showing a trend close to that of the
direct exciton energy of the strain-free MLs. Furthermore, both the
direct and indirect excitons exhibit a similar dependence on the
sample composition. These findings indicate that the presence of strain
does not alter appreciably the way the electronic properties change
upon alloying, thus echoing the results discussed in Fig. 1.

The emission properties of the alloyed domes were also
studied as a function of temperature. In particular, we investigated
the temperature dependence of the μ-PL spectra of two WSSe
domes, each characterized by different prevailing exciton transi-
tions. Figure 3(a) shows the spectra of the two domes recorded
with the same exciting laser power of 20 μW and temperature
ranging from T = 5 K to room temperature (290 K). In one case,
the indirect I exciton is the dominant band (blue line), and in the
other case, only the direct A exciton can be observed (red line).
This is likely due to different strain values acting on the
dome-shaped WSSe ML. Since the direct-to-indirect transition
occurs rather sharply as a function of strain,18 domes with different
aspect ratio (hence, strain value15) may show predominantly one
exciton type or the other. Indeed, the dome ensemble is character-
ized by a distribution of aspect ratios as displayed in Fig. 1(b).
Interestingly, Fig. 3(a) shows that in the range from T = 5 K to
40 K, the spectra of the two domes overlap. As a matter of fact, in
this temperature interval, the domes deflate due to the liquid phase
of H2 and the PL arises likely from wrinkled WSSe MLs. However,
when T increases, liquid H2 turns gas and strain establishes again
quickly. The center of mass of the spectrum is shown in Fig. 3(b)

for both domes. In the dome displaying the indirect transition, one
can notice a faster thermal shift of the emission band as compared
to that of the other dome, where the direct exciton dominates. This
behavior arises from the nearly double (negative) shift rate induced
by the strain in the indirect bandgap energy with respect to the
strain shift rate of the direct bandgap, as previously reported.18,26–28

Indeed, as the temperature increases, H2 expands and transfers an
increasingly larger amount of strain to the ML dome.29 In turn,
this extra strain adds to the thermal shift of the bandgap of the
I exciton in a more relevant manner than for the A exciton.
Eventually, at room temperature, the two exciton bands differ by
about 150 meV, similar to the data shown in Fig. 2(b).

CONCLUSIONS

In this work, we investigated the combined action of alloying
and strain in WSSe and compared the effects observed therein with

FIG. 3. (a) PL spectra as a function of temperature of two WSSe domes dis-
playing the indirect (I) exciton and direct (A) exciton. Excitation wavelength
equal to 532 nm and laser power equal to 20 μW. (b) I and A exciton energy for
the two domes of panel (a) and comparison with the A exciton behavior in an
unstrained flat WSSe ML.
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those of the end compounds WSe2 and WS2. To this end, we
studied the elastic and electronic properties of ML domes fabricated
by H-ion irradiation. The domes turn out to be a practical and
effective means to address up to what extent the mechanical defor-
mations alter the way the elastic and electronic properties of TMD
chalcogen-alloy MLs change with composition. Our results indicate
that strain and composition combine in a “linear” manner and
together widen considerably the range of tunability of the mechani-
cal and electronic properties of TMD alloys. Such tunability could
be exploited, e.g., for the design of TMD-based mechanical resona-
tors30 with tailored characteristics or for the achievement of strain-
and composition-engineered quantum emitters10,29,31 emitting at
specific wavelengths.

SUPPLEMENTARY MATERIAL

See the supplementary material for the elemental analysis of the
WSSe crystal investigated (supplementary Note 1) and time-resolved
μ-PL measurements of a WSSe dome (supplementary note 2).
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