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Abstract—Neural networks (NNs) have been driving machine
learning progress in recent years, but their larger models present
challenges in resource-limited environments. Weight pruning
reduces the computational demand, often with performance
degradation and long training procedures. This work introduces
distilled gradual pruning with pruned fine-tuning (DG2PF),
a comprehensive algorithm that iteratively prunes pretrained
NNs using knowledge distillation. We employ a magnitude-
based unstructured pruning function that selectively removes a
specified proportion of unimportant weights from the network.
This function also leads to an efficient compression of the model
size while minimizing classification accuracy loss. Additionally,
we introduce a simulated pruning strategy with the same effects
of weight recovery but while maintaining stable convergence.
Furthermore, we propose a multistep self-knowledge distillation
strategy to effectively transfer the knowledge of the full, un-
pruned network to the pruned counterpart. We validate the
performance of our algorithm through extensive experimenta-
tion on diverse benchmark datasets, including CIFAR-10 and
ImageNet, as well as a set of model architectures. The results
highlight how our algorithm prunes and optimizes pretrained
NNs without substantially degrading their classification accuracy
while delivering significantly faster and more compact models.

Impact Statement—In recent times, NNs have demonstrated re-
markable outcomes in various tasks. Some of the most advanced
possess billions of trainable parameters, making their training
and inference both energy intensive and costly. As a result,
the focus on pruning is growing in response to the escalating
demand for NNs. However, most current pruning techniques
involve training a model from scratch or with a lengthy training
process leading to a significant increase in carbon footprint, and
some experience a notable drop in performance. In this article, we
introduce DG2PF. This unstructured pruning algorithm operates
on pretrained NNs, allows the user to choose the proportion of
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parameters to prune, and halts automatically when the pruned
network has achieved optimal performance, thereby preventing
excessive training time. We envision that with DG2PF even the
most sophisticated new NNs could become accessible to the
average user.

Index Terms—Artificial intelligence in computational sus-
tainability, deep learning, neural networks (NNs), supervised
learning.

I. INTRODUCTION

DEEP neural networks (NNs) have shown state-of-the-art
performance on various visual tasks, such as image classi-

fication [1], [2], [3], [4], object detection [5], [6], and semantic
segmentation [7], [8]. Despite their success, the substantial size
and computational demands of these models present a major
challenge for their implementation on resource-limited devices.
Several compression techniques have been developed to reduce
the size and computational demands of deep NNs while re-
taining their performance and to overcome the previously men-
tioned challenges. Neural architecture search (NAS) has been
explored as a method to design efficient architectures; for in-
stance, in [9] an optimization for specific hardware platforms is
proposed, and in [10] the curriculum search strategy is explored.
They support the expansion of the search space progressively.
Techniques such as the contrastive learning framework [11],
the “once-for-all” approach [12], and the neural architecture
Transformer [13] have further advanced the field. Last, the
disturbance-immune update strategy [14] addresses the per-
formance disturbance issue in weight-sharing NAS methods.
However, while NAS offers automated design, the need for
more direct compression techniques remains paramount. This
is where pruning comes into play. This work delves deeper into
the intricacies and advancements in pruning techniques.

The primary goal of weight pruning is to remove nonrelevant
weights from a NN. This process aims to reduce the network’s
size and computational requirements while minimizing the loss
of its performance. There are two types of pruning methods,
structured and unstructured. Structured pruning involves mod-
ifying or removing layers or parts of the network. This method
may lead to changes in the input and output dimensions of
the layers, which can cause issues in networks with long-range
dependencies among layers [15]. The solution to this problem is
often circumvented by constraining pruning into targeting only
layers that do not induce issues like filters [16] and channels
pruning [17], [18], or a mixed approach [19]. Whatever the
pruning method be, it usually involves careful fine-tuning [20]
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to maximize its performances. However, such constraints are
expected to decrease the efficiency of pruning. Unstructured
pruning, on the other hand, produces sparse matrices that are
difficult to accelerate [21], even if some recent works withdraw
this statement [22], [23]. In this context, different strategies
have been proposed throughout the years for unstructured prun-
ing in several application areas. The optimal brain damage algo-
rithm [24] and magnitude-based pruning algorithm [25] are two
popular unstructured pruning techniques. Other popular meth-
ods include Taylor expansion pruning [26], which prunes based
on the loss function’s second-order Taylor approximation, and
random pruning [25], which prunes randomly to improve com-
putation times. However, a simple pruning of the weights may
lead to a drop in performance. To this extent, weight recovery
between training cycles [27], [28] and fine-tuning the pruned
model through additional training has shown to be an effective
approach to mitigate this issue [29].

As a popular approach for model compression, knowledge
distillation has received significant attention in recent years
[30], [31]. The basic idea behind this technique is to train a
smaller model, referred to as the student model, and to mimic
the behavior of a larger model, referred to as the teacher model.
The student model is trained by minimizing the difference be-
tween its predictions and the predictions of the teacher model,
which is often a pretrained NN. Self-distillation refers to a
knowledge distillation approach where a NN is distilled into
a smaller, more compact version of itself [32].

The research direction goes toward more complex pruning
and distillation strategies, but often with a large computational
cost; Srinivas et al. [28] tried to introduce a cyclical pruning
and weight recovery schedule, but significantly increasing the
complexity of the algorithm at a price of a slight classifica-
tion improvement.

We present a novel unstructured pruning algorithm that seam-
lessly integrates knowledge distillation techniques to achieve
significant model compression without compromising its accu-
racy. Our proposed method commences with a gradual weight
pruning phase that employs knowledge distillation to remove
unimportant weights and reduce the model size. Once the
desired sparsity level is achieved, the model undergoes a
distilled fine-tuning process until convergence. This is then
followed by a final fine-tuning process without the teacher.
We demonstrate that our approach outperforms the existing
methods in terms of compression-accuracy tradeoffs through
extensive experimental evaluations conducted on publicly avail-
able benchmark datasets. These results show that the algo-
rithm has a potential impact in the field of deep learning by
enabling the deployment of large, accurate models on a wide
range of devices with limited computational resources and to
average users.

To summarize, the contributions of this work are as follows.
1) We build upon a well-known baseline function exploiting

magnitude-based unstructured pruning to minimize mem-
ory and storage requirements by selectively removing a
specified proportion of weights from a pretrained NN.

2) We propose a unique simulated pruning technique.
This method stands out as it replicates the benefits of

weight recovery while consistently maintaining stable
convergence. Notably, this is achieved at each training
iteration, setting it apart from conventional practices in
weight recovery literature.

3) We introduce distilled gradual pruning with pruned
fine-tuning (DG2PF), a comprehensive algorithm that
integrates unstructured weight pruning and knowledge
distillation to prune pretrained NNs without incurring a
substantial reduction in performance.

4) We have conducted experiments on publicly available
benchmark datasets and models to validate the perfor-
mance of our method. The results of this evaluation
provide quantifiable evidence of the effectiveness of the
proposed algorithm.

The rest of this article is organized as follows: Section II
presents the related work, where we review and discuss the
existing literature and research relevant to our study; Section III
contains details about the proposed algorithm, comprehensive
of pseudocode; Section IV details the evaluation of DG2PF and
the comparative studies with the state-of-the-art pruning tech-
niques on two representative datasets; and Section V discusses
and presents the conclusion and future work.

II. RELATED WORK

Pruning in NNs can involve either structured pruning that
removes model structures or unstructured pruning that removes
individual parameters. In general, structured pruning methods
[16], [33] do not depend on specialized hardware. In contrast,
unstructured pruning approaches [34], [35] explicitly require
support for sparse computations. Recent advancements in struc-
tured pruning include [17], which aims to enhance network
performance through channel pruning by eliminating redundant
components. The work in [18] offers a distinctive method for
lossless channel pruning, drawing inspiration from neurobiol-
ogy, and ensures structured sparsity without sacrificing accu-
racy. Meanwhile, Liu et al. [36] introduce a combined approach
of discrimination-aware channel and kernel pruning. In the
context of unstructured pruning, there are three distinct pruning
schedules: one-shot, gradual, and cyclical pruning. One-shot
pruning [37] involves the simultaneous removal of unimportant
weights in a single step, followed by a final fine-tuning stage.
Gradual pruning [27] gradually prunes the network weights
over multiple iterations. This approach is interleaved with train-
ing steps and culminates in a final fine-tuning stage. Cyclical
pruning [28] involves multiple gradual pruning schedules, with
weight recovery at the beginning of each cycle. Parameter-
efficient masking networks [38] lead to a new paradigm for
model compression utilizing one random initialized layer,
accompanied by different masks, so the model can be expressed
as one-layer with a bunch of masks. The work in [39] smoothly
induces sparsity while learning pruning thresholds, providing a
nonuniform sparsity budget.

This article, inspired by [27], proposes an algorithm that
fuses pruning and knowledge distillation techniques, introduc-
ing a novel approach called simulated pruning. The simu-
lated pruning introduces weight recovery without the need for
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cyclical schedules. In [40] and [41], the authors suggest auto-
matically tuning thresholds for magnitude pruning to improve
global sparsity by removing unimportant weights based on their
absolute value. Alternative approaches to magnitude pruning,
such as second-order [24], [42] and Fisher-based [43], [44] of
the loss function, have been proposed. However, recent work
[45] suggests they may not be more effective, especially when
combined with fine-tuning. Probabilistic pruning approaches,
such as those described in [46] and [47], involve stochastic
relaxations, but research [48] shows they often perform sim-
ilarly to simple magnitude pruning-based methods. The works
described in [49] and [50] use gradient updates computed on a
sparse proxy model by exploiting the straight-through estimator
(STE), similar to [51] and [52], and claim that this method can
lead to weight recovery. These approaches make use of one-shot
pruning. However, Srinivas et al. [28] show weight recovery is
complicated to achieve in practice in this setting.

Knowledge distillation is a form of compression strategy that
transfers relevant feature representation from a larger teacher
network to a smaller student network, followed by fine-tuning.
This method was proposed by [53] for networks that tackle
the classification task. The approach introduces a distillation
loss that utilizes the softened output of the teacher network’s
last layer. In [30], the authors improved the performance of
this approach by using an intermediate representation of the
teacher model as a hint in addition to the output layer. In [54],
knowledge distillation is applied to the ResNet architecture by
minimizing the L2 loss of the Gramian feature matrix in the
ResNet modules between teacher and student. Like for our ar-
ticle, recent works [55], [56] try to mix pruning and distillation
for optimal performance.

III. PROPOSED METHOD: DG2PF

In this section, we will describe our proposed method, called
DG2PF. The algorithm is composed of two phases. The first
phase, called distilled gradual pruning (DGP) (Algorithm 1),
incorporates two distinct types of pruning mechanisms. The
first type of pruning is carried out according to the procedure
outlined in Section III.A. This pruning approach is gradually
applied, once per epoch, during the first phase, until the desired
sparsity level is attained. We called the other kind of pruning
“simulated,” as described in Section III.B. This type of pruning
is performed during each iteration of every epoch of the DGP
phase. It selectively removes and recovers a portion of the
weights that have not yet been pruned in the network. The
second phase is called pruned fine-tuning (PF) (Algorithm 2)
and starts upon completion of the previous one. Here, the net-
work has already been pruned to its intended sparsity level
and the simulated pruning strategy is terminated. This phase
aims at recovering most of the performance lost during DGP.
In Section III.C, a knowledge distillation strategy is presented.
It merges two knowledge distillation losses, named Kullback–
Leibler (KL) divergence and performance-weighted loss. In
Section III.D, we present DG2PF, our novel two-phase algo-
rithm that merges the techniques mentioned above.

Algorithm 1 Distilled Gradual Pruning
i← 1
δ ← linearly sample se numbers in [0, s]
while i≤ se or the score keeps improving do

if i≤ se then
prune δi percent of the model

end if
for b ∈ D(b)

t do
if i≤ se then

apply simulated pruning to the weights (2)
end if
y ← ground truth labels for the b-th batch
ŷ ← model’s predictions for the b-th batch
ŷ(t) ← teacher’s predictions for the b-th batch
L← KD loss (9)
Δθ ← gradients from L
if i≤ se then

recover the weights of the simulated pruning
end if
update unpruned weights with Δθ using AdamW

end for
score ← top-1 validation accuracy (10) on D(b)

v

i← i+ 1
end while

Algorithm 2 Pruned Fine-tuning
while the score keeps improving do

for b ∈ D(b)
t do

y ← ground truth labels for the b-th batch
ŷ ← model’s predictions for the b-th batch
L← CE loss (4)
Δθ ← gradients from L
update unpruned weights with Δθ using SGD

end for
score ← top-1 validation accuracy (10) on D(b)

v

end while

A. Pruning Function

In line with the previous research [40], [41], we operate
with the assumption that weights with magnitudes closer to
zero have less impact on the final output of a NN. There-
fore, we propose to prune these weights by collapsing them
to zero and flagging them as pruned [27], [28], [37]. The ra-
tionale behind this assumption is that the weights with smaller
magnitudes have minor effects on the output of the NN. It can
be deducted by considering the activation functions commonly
used in NNs. In these activation functions, the signal is passed
through a hard or soft threshold, which means that small
changes in the input signal do not or marginally affect the
output unless they cross this threshold. Thus, weights with
smaller magnitudes have a lower probability of crossing the
threshold and therefore are less influential in determining the fi-
nal output. Based on these assumptions, we can remove the
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Fig. 1. Histogram representation of the 90% of weights that would be
pruned on an unpruned ResNet-50 model [3]. The abscissa depicts the values
of the weights, while the ordinate depicts the frequency count of weights with
the corresponding value. The vertical bars represent the left and right margins,
respectively. The amount of the margin delimits the weights to the p-percentile
of the total weights, where p is the arbitrary percentage of pruning set to 0.9
in the plot.

weights with smaller magnitudes without a significant loss of
accuracy. Consequently, the number of parameters in the net-
work is reduced, improving its efficiency without significant
performance degradation.

Let s ∈ R be the chosen sparsity of the network, with 0 <
s < 1. Each weight θi of a NN parameterized by θ is pruned
as follows:

θi =

{
θi, if θi <ml and θi >mr

0, otherwise
(1)

where ml and mr ∈ R are the margins computed as (1 − s/2)th
and (s+ (1 − s/2))th percentiles of the weights θ, respectively.
The weights falling inside these margins are set to zero and
thus pruned. Fig. 1 shows an example of margins and weights
to prune on a pretrained network. Moreover, Fig. 2 depicts an
example of pruned and unpruned parameters within a layer of
a sparse network.

B. Simulated Pruning Function

We assume that the reduction of the importance of weights
likely to become zero during the upcoming pruning stage has
a comparatively minor impact on the network’s overall perfor-
mance. When we employ this technique, we essentially carry
out a cyclical pruning step in a single training iteration on a sin-
gle batch of data. It means that in each iteration we start with the
(simulated) pruning stage and we recover the pruned weights
by the end of the iteration. This methodology stands in contrast
to the approach presented in [28], where the pruning process
is initiated only after completing a predetermined number of
training epochs. In particular, in [28] each cycle spans several

Fig. 2. Illustration of pruned and unpruned parameters within a layer of a
70% sparse MobileNet V2 network. Each 3 × 3 matrix depicts a channel of
the layer’s weights. Within each filter, the pruned parameters are shaded in a
darker tone, whereas the unpruned parameters are highlighted in yellow.

training epochs and ensures that weights undergo a gradual
pruning, in order to only have a fraction restored at the end
of the cycle. A notable limitation emerges when these weights,
especially in the earlier stages of the cycle, are pruned based
on a constrained pool of information. It predominantly happens
when specific policies, such as magnitude-based pruning, are
adopted. Despite the evident efficacy of the cyclical pruning
mechanism, our methodology compares and rectifies its core
shortcomings. We guarantee that the heuristic responsible for
the pruning decision is perpetually equipped with a uniform
dataset for each weight, facilitating both the pruning and re-
covery within each iteration, ensuring an informed decision-
making process, and enabling more stable convergence. We use
straight through estimation (STE), thus allowing the gradient to
pass through the weights pruned in this phase. As theoretically
proved by [57], this technique speeds up the learning process
and helps ensure stability.

Let ssim ∈ R be the chosen simulated sparsity of the network,
with 0 < s < 1. At the start of each training step of the first
phase of the algorithm, a fraction ssim of unpruned weights are
pruned and then recovered after the backpropagation of the loss.
Each weight θi of a NN parameterized by θ is pruned according
to the probability

θi =

{
θi, if pi <ms

0, otherwise
(2)

where ms corresponds to the (1 − ssim)th percentile of a vector
p ∈ [0, 1]|θ| obtained as follows:

p= 1− abs(θ)
max(abs(θ))

(3)

where 1= [1]|θ| is a vector of the same length of θ where each
position is filled with 1.
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C. Knowledge Distillation Procedure

As will be described in Section III.D, the proposed method
follows two phases. The first one entails knowledge distilla-
tion from the original, unpruned model. The loss used to train
the student model during these steps combines a variation of
performance-weighted loss [58] and pointwise KL divergence
loss [59].

The rationale under their combination is to use performance-
weighted loss to get resilience against outliers and challenging
instances, and pointwise KL divergence to align the student
model’s distribution with the teacher model’s distribution.

The performance-weighted loss is a modification of the well-
known cross-entropy loss. The cross-entropy loss is commonly
used for training classification networks and is expressed math-
ematically as

LCE =− 1
B

B∑
i=1

yilog(ŷi) (4)

where B is the batch size, yi is the ground truth label vector for
the ith sample, and ŷi contains the predicted probabilities for
sample i. The logarithm in the formula is used to amplify the
loss when the model is highly confident but incorrect. In fact,
the logarithm grows as the predicted probability approaches 0,
penalizing the model for being overly confident in incorrect
predictions. As a more robust alternative to the cross-entropy
loss, during the distillation phase of the algorithm, an alternative
version of the performance-weighted loss [58] is employed. In
this procedure, each sample is given a proportional weight to
the teacher network’s confidence when classifying. Thus, the
weight wi of a sample of index i in a batch is defined starting
from the score of the teacher network for the correct class ci,
ŷ
(t)
i,ci

∈ R, as follows:

wi = (1 − ŷ
(t)
i,ci

)γ + β (5)

with γ > 0 set to 1 and β ∈ [0, 1] set to 0.1. Since (5) puts more
emphasis on incorrect labels, the original authors propose to
compare student network’s predictions to corrected soft-labels
ŷ∗
i instead of always the ground truth labels yi

ŷ∗
i =

{
ŷi, if the sample is correctly classified

yi, otherwise
(6)

where student network’s predictions ŷi are used instead of
the one-hot encoded ground truth vector yi where the model
has made a correct classification. Given that the modified
performance-weighted loss is defined as

LPW =
1
B

B∑
i=1

wi · LCE(ŷ
∗
i , ŷi) (7)

where B is the batch size, LCE is the cross-entropy function (4),
wi is the weight of the ith sample in the batch (5), and ŷ∗

i is
the corrected soft-labels vector (6).

The pointwise KL divergence loss measures the dissimilarity
between two probability distributions. It is commonly used in
knowledge distillation to match the soft predictions of a more
extensive, pretrained teacher network to those of a smaller

student network [53], [59]. The formula for the pointwise KL
loss is defined as follows:

LKL =
1
B

B∑
i=1

y
(t)
i · (log(y(t)

i )− yi) (8)

where B is the batch size, while y
(t)
i and yi, respectively,

contain the predictions of the teacher and the student networks
on the ith sample.

The final loss function utilized in the first two stages of
the procedure is a modified version of the one proposed in a
previous study [53], which is calculated as follows:

LKD = (α · LKL + (1 − α) · LPW) · τ 2. (9)

In this equation, LKD emerges as a linear combination of the
two sublosses LKL (8) and LPW (7), modulated by parameters
α ∈ [0, 1] and τ ∈ R. The coefficient α acts as a balancing fac-
tor, determining the proportional influence of LKL on the overall
loss. Meanwhile, τ functions as a temperature parameter. No-
tably, the combination is weighted by τ 2, thereby adjusting the
scale and sensitivity of the combined loss. In a broader sense,
α and τ adjust the balance and sensitivity of the loss function,
determining the importance of replicating the teacher network’s
behavior via LKL and classifying examples through LPW.

D. Distilled Gradual Pruning With Pruned Fine-Tuning

The proposed algorithm is composed of two phases.
The first phase, called DGP, involves gradually removing

parts of the model while minimizing the loss in classification
performance. This process is executed by using self-distillation
to make sure the pruned model behaves as much like the original
model as possible. The algorithm works by gradually pruning
the model over a specific number of se epochs and then con-
tinuing to train until it reaches convergence. The procedure’s
pseudocode is shown in Algorithm 1. Let δ ∈ [0, s]se be a vector
containing se evenly spaced numbers in increasing order. At
the beginning of each epoch, i≤ se the model is pruned to a
sparsity of δi and then trained on the batched training dataset
D(b)

t . At the beginning of each training step, the model under-
goes an additional simulated pruning process, as explained in
Section III.B. This procedure happens only if epoch i≤ se and
targets the unpruned weights, reducing their sparsity to ssim.
Then, the algorithm makes predictions ŷ, ŷ(t) ∈ R

bs×c using
the pruned and teacher models, respectively, where bs denotes
the batch size and c is the number of labels in the datasets. These
predictions are compared to the actual labels y ∈ R

bs, and the
knowledge distillation loss L is calculated using (9). From this
loss, we compute the gradients Δθ and eventually restore the
weights set to zero during the simulated pruning step. After that,
the algorithm updates the unpruned weights and proceeds to
the next batch in the epoch. At the end of each training
epoch, the model is tested on the batched validation dataset
D(b)

v , and its top-1 accuracy score is saved. We use AdamW [60]
as the optimizer function to speed up convergence. The DGP
process ends when the maximum number of epochs has been
reached or if the top-1 accuracy score on the batched validation
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dataset D(b)
v does not improve after a fixed number of epochs,

triggering an early stop.
The second phase of the algorithm, known as PF, follows the

first phase of DGP. In this phase, the model is fine-tuned without
a teacher, allowing it to focus on classification scores without
being constrained by the teacher’s predictions. Additionally, the
model is not pruned further as the desired sparsity level was
achieved during the previous phase. The pseudocode for PF
is provided in Algorithm 2. The algorithm loops through the
batches of the training datasetD(b)

t with the same stopping crite-
ria as the previous phase. During training, the unpruned weights
are trained using the cross-entropy loss (4) to enhance clas-
sification performance. The unpruned parameters are updated
through stochastic gradient descent (SGD) with a low learning
rate. We opted for SGD over AdamW since our experiments
yielded better generalization performance.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our proposal on two widely
adopted datasets and compare them to several state-of-the-art
methods regarding unstructured pruning.

A. Datasets

CIFAR-10 [61] is a small dataset containing 60 000 train-
ing images and 10 000 test images, split into ten classes. The
images in CIFAR-10 are relatively simple and small, making
it a popular dataset for testing algorithms and architectures in
their early stages of development.

ImageNet (also known as ImageNet-1K) [62] is a much larger
and more complex dataset, containing over 1 million training
images and 50 000 validation images, split into 1000 classes.
ImageNet offers various classes, from ordinary objects to ab-
stract concepts, e.g., mountains and handwriting. The larger im-
age size of ImageNet provides a more realistic and challenging
benchmark for computer vision models.

B. Metrics

The metric we used to quantify the classification performance
of a model is the top-k accuracy. When classifying a sample,
the model outputs a probability distribution among the possible
labels and is trained to give more weight to the more plausible
labels. The top-k predictions Ŷi,k for a sample of index i are
the labels with the highest scores. This metric measures the
proportion of times the model predicts the correct label to be
among the top-k predictions

accuracy(k) =
1
N

N∑
i=1

{
1, if yi ∈ Ŷi,k

0, otherwise
(10)

where N is the number of samples in the dataset, with 1 ≤ i≤
N , yi is the true label for the ith sample, and Ŷi,k is the set of
the top-k predicted labels for the ith sample, with |Ŷi,k|= k.
According to typical practices in the related literature, we have
decided to present the top-1 accuracy results in comparison with
the state of the art in Section IV.E.

We assessed the effectiveness of our compression method
using the compression rate metric. The compression rate is
calculated using the target sparsity, which represents the per-
centage of weights that are pruned from the original model. The
metric is computed as follows:

compression rate =
1

1 − s
(11)

where 0 < s < 1 represents the target sparsity of the network.

C. Implementation Details

The experiments were conducted on a high-performance
computer (HPC) equipped with an Nvidia Quadro RTX6000
GPU and 24 GB of VRAM. Minimal data augmentation was
applied to ensure a fair comparison with the previous literature
[3], [27], [28], [37]. In addition, this procedure also reduces
the potential confounding effects that could be introduced by
more complex data preprocessing and allows for a more fair
and comprehensive evaluation of the impact of the proposed
methods. The optimizer used during the self-distillation phase
is AdamW [60], with a learning rate of 10−5, β1 and β2 equal
to 9 × 10−1 and 9.99 × 10−1, and a weight decay of 10−2.
After the teacher is detached from the pruned model, AdamW
is replaced with plain SGD with a learning rate of 10−4, a
momentum of 9 × 10−1, and a weight decay of 5 × 10−4.
This optimization swap is motivated by the fact that in our
experiments AdamW tended to converge in fewer epochs while
SGD has shown better generalization capabilities. We made
this change to improve our model’s classification performance.
During all experiments, the max epochs were set to 100 to be
fair in comparison with other works, however thanks to the
early stop strategy and AdamW, no experiments reached the
max epochs limit.

D. Ablation Study

In this section, we assess the impact of the hyperparame-
ters used in the method’s pruning and distillation stages. To
conduct the ablation study, we selected the CIFAR-10 dataset
[61] and the ResNet-18 model, which are relatively small and
enable quicker and more comprehensive evaluation of various
combinations of hyperparameters. The model was initially con-
figured with 95% sparsity, 10% simulated sparsity percentage
during self-distillation with α= 0.75, and ten pruning epochs.
We trained and tested the model in this base configuration for
each experiment, varying single hyperparameters. Each table
row shows the mean and standard deviation of top-1 accuracy
obtained from three runs of the same experiment with different
seeds. The notation “acc@1” is utilized as an abbreviation for
the top-1 accuracy.

1) Effect of s for Sparsity: In this study, we have examined
how increasing the target sparsity s of the model affects classi-
fication accuracy. The results are presented in Table I. From the
results, we can observe that the loss in accuracy is negligible
for sparsity values up to 90%, after which the accuracy begins
to decline significantly. Specifically, the drop in accuracy from
90% to 95% amounts to 1.65%, which is consistent with the
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TABLE I
CLASSIFICATION PERFORMANCES OF

RESNET-18 ON CIFAR-10 AT INCREASING

TARGET SPARSITY s

s (%) Params Flops acc@1 (%)
20 9.2 M 0.8× 92.80 ± 0.08
40 6.9 M 0.6× 92.79 ± 0.01
60 4.6 M 0.4× 92.78 ± 0.02
80 2.3 M 0.2× 92.78 ± 0.04
90 1.15 M 0.1× 92.91 ± 0.01
95 0.57 M 0.05× 91.26 ± 0.03

TABLE II
CLASSIFICATION PERFORMANCES OF RESNET-18

ON CIFAR-10 AT INCREASING NUMBER OF

PRUNING EPOCHS se

se acc@1 (%)
1 90.16 ± 0.45
3 90.56 ± 0.23
5 90.43 ± 0.15
7 91.10 ± 0.04

se (%) acc@1 (%)
9 91.14 ± 0.13

11 91.14 ± 0.14
13 91.20 ± 0.23
15 91.49 ± 0.05

TABLE III
CLASSIFICATION PERFORMANCES OF RESNET-18 ON

CIFAR-10 AT INCREASING SIMULATED SPARSITY ssim

ssim (%) acc@1 (%)
0 90.89 ± 0.56
1 90.89 ± 0.54
3 91.22 ± 0.09

ssim (%) acc@1 (%)
5 91.17 ± 0.15

10 91.26 ± 0.03
20 90.78 ± 0.13

findings of other studies on unstructured pruning [27], [28],
[37]. These results demonstrate that while higher sparsity levels
can lead to a more compact and efficient model, there is a
tradeoff between sparsity and accuracy. Therefore, the target
sparsity s should be carefully selected, considering the specific
model, dataset, and desired tradeoff between size and accuracy.

2) Number of Pruning Epochs se: In this study, we have
investigated whether increasing the number of pruning epochs
leads to a more accurate model. The results are shown in Table II
and demonstrate a clear trend of higher accuracy with increased
pruning epochs. The peak gain of 1.33% was observed at
se = 15 compared to the one-shot pruning setting. The gradual
and careful selection of the parameters to prune explains this
improvement. However, it should be noted that this result may
be further improved if the pruning is performed multiple times
per epoch, as proved in [28]. However, it is a field of future
research and requires further investigation.

3) Simulated Sparsity ssim: The objective of this study was
to observe how the network behaves as the percentage of simu-
lated sparsity is increased. The outcomes of the experiments are
presented in Table III. The performance of the network without
simulated pruning was better than that with 20% simulated spar-
sity by 0.11% but inferior to that with 10% simulated sparsity
by 0.37%. It implies that the simulated sparsity level must be
cautiously selected, as a higher level may remove too many
parameters, making learning more difficult.

4) Knowledge Distillation α: This study aimed to mea-
sure the impact of α in the knowledge distillation loss (9)
on the accuracy of the model. The results are in Table IV.
The experiments revealed that the best results were achieved

TABLE IV
CLASSIFICATION PERFORMANCES OF RESNET-18 ON

CIFAR-10 AT INCREASING DISTILLATION α IN (9)

α (%) acc@1 (%)
0 89.68 ± 0.51

10 91.10 ± 0.28
25 91.39 ± 0.07

α (%) acc@1 (%)
50 91.15 ± 0.19
75 91.26 ± 0.03
90 91.42 ± 0.07
100 91.10 ± 0.21

TABLE V
CLASSIFICATION PERFORMANCES OF RESNET-18
ON CIFAR-10 AT INCREASING TEMPERATURE τ

IN (9)

τ acc@1 (%)
0.1 92.65 ± 0.11
0.5 92.79 ± 0.08
1 92.59 ± 0.10

τ (%) acc@1 (%)
2 92.63 ± 0.07
4 92.70 ± 0.17
8 92.61 ± 0.10

with α values of 25% and 90%. Specifically, the mean
top-1 accuracy was improved by 1.71% and 1.74%, respec-
tively, compared to the undistilled setting. It was observed that
generally the experiments with an α greater than 0 showed
better mean top-1 accuracy and reduced standard deviation,
indicating that the application of knowledge distillation can
improve the model’s accuracy.

5) Loss Temperature τ : This study aimed to measure the im-
pact of τ in the knowledge distillation loss (9) on the accuracy of
the model. The results are in Table V. The experiments revealed
that the best result was achieved with a τ value of 0.5, where
the mean top-1 accuracy was 92.79%. The accuracy achieved
at this temperature was slightly higher than the others, with a
very low standard deviation of 0.08%, indicating a consistent
performance. Furthermore, it can be observed that varying the
temperature τ from 0.1 to 8 led to minimal variations in the
top-1 accuracy, with all values hovering around the 92.59% to
92.79% range. The standard deviations also were relatively low
for all the experiments, suggesting that the model’s performance
was stable across different τ settings. This suggests that the
knowledge distillation process is robust to changes in temper-
ature τ within the explored range for the ResNet-18 model on
the CIFAR-10 dataset.

E. Comparison With SOTA

In order to provide a quantitative assessment of the efficacy
of DG2PF, we conducted a comprehensive set of experiments
on two widely used benchmark datasets, namely CIFAR-10 [61]
and ImageNet [62]. We compared our proposed algorithm with
various state-of-the-art techniques to demonstrate its effective
performance in network pruning. Throughout our experiments,
we set the number of pruning epochs, denoted as se, to 15,
while ssim to 10%, the distillation factor α to 90% and the
temperature τ to 0.5. The results for the two datasets are shown
in Tables VI and VII. The tables show the baseline top-1 ac-
curacy (acc@1) for both the unpruned models and the pruned
ones, sided with the difference between the two. It is crucial to
note a few disparities when comparing pruning methods. While
we focused on keeping uniformity in our implementations,
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TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART ON THE CIFAR-10 DATASET. THE COMPRESSION RATE IS SHOWN

ALONGSIDE SPARSITY PERCENTAGES

Setting acc@1 (%)
Model Sparsity Method Params Flops Baseline Pruned Difference

VGG-16 95% (20×)

Iterative Pruning∗ [65]

6.9 M x0.05

- 81.46 -
Gradual Pruning∗ [27] - 90.56 -

One-Cycle Pruning [63] - 90.67 -
SNIP [64] 93.24 92.91 −0.33
DPF [52] 93.74 93.87 +0.13

DG2PF (ours) 93.45 93.68 +0.23

ResNet-18 95% (20×)

Iterative Pruning∗ [65]

0.57 M x0.05

- 87.54 -
Gradual Pruning∗ [27] - 92.04 -

One-Cycle Pruning [63] - 92.76 -
DG2PF (ours) 92.59 92.90 +0.31

ResNet-50 95% (20×)
GraNet [66]

1.28 M x0.05
94.75 94.44 −0.31

Opt [67] 94.75 94.56 −0.19
DG2PF (ours) 92.79 93.68 +0.89

Note: Models marked with ∗ are obtained from [63] reimplementing the original methods. Bold values indicate
better result in a column.

TABLE VII
COMPARISON WITH THE STATE-OF-THE-ART ON THE IMAGENET DATASET. THE COMPRESSION RATE IS SHOWN

ALONGSIDE SPARSITY PERCENTAGES

Setting acc@1 (%)
Model Sparsity Method Params Flops Baseline Pruned Difference

ResNet-18 90% (10×)

One-shot Pruning∗ [37]

1.15 M 0.10x

69.70 63.50 −6.20
Gradual Pruning∗ [37] 69.70 63.60 −6.10
Cyclical Pruning [28] 69.70 64.90 −4.80

DG2PF (ours) 69.70 65.22 −4.48

ResNet-50 90% (10×)

SWD [69] 2.56 M 0.10x - 73.10 -
MLPrune [71] 2.56 M 0.10x 77.01 60.98 −16.03

PBW [72] 2.56 M 0.10x 77.01 69.44 −7.57
RIGL [49] 2.56 M 0.13x 77.01 72.0 −5.01

Gradual Pruning∗ [37] 2.56 M 0.10x 76.16 71.90 −4.26
One-shot Pruning∗ [37] 2.56 M 0.10x 76.16 72.80 −3.36

GMP [73]† 2.56 M 0.10x 77.01 73.91 −3.1
DNM [74]† 2.56 M 0.10x 77.01 74.0 −3.01

Cyclical Pruning [28] 2.56 M 0.10x 76.16 73.30 −2.86
STR [70] 2.49 M 0.09x 77.01 74.31 −2.7

GraNet [66] 2.56 M 0.16x 76.8 74.2 −2.6
DG2PF (ours) 2.56 M 0.10x 76.13 73.62 −2.51

MobileNet V2 70% (3.33×)

Gradual Pruning∗ [37]

1.03 M 0.33x

71.70 61.30 −10.40
One-shot Pruning∗ [37] 71.70 62.70 −9.00
Cyclical Pruning [28] 71.70 64.40 −7.30

DG2PF (ours) 71.71 65.59 −6.12

Note: Models marked with ∗ are obtained from [28] reimplementing the original methods. Method with superscript †

indicates that the data reported is obtained from reimplementation by [70]. Bold values indicate better result
in a column.

the baseline accuracy among models with the same architec-
ture may differ. This variation stems from different pretrained
weights adopted by each study. As a significant number of these
weights are inaccessible to the public, the replication of the ex-
act initializations is unfeasible. Based on these assumptions, our
evaluation criteria do not involve directly comparing the best
scores between models with the same architecture but possibly
different weights. Instead, we gave prominence to the relative
accuracy difference between the pruned and unpruned versions
of the same model, offering a more insightful measure of a
method’s efficacy.

1) CIFAR-10: We compared VGG-16 [2], ResNet-18, and
ResNet-50 [3] architectures for CIFAR-10 [61] classification
and evaluated our DG2PF algorithm against One-Cycle Pruning
[63], SNIP [64], Iterative Pruning [65], Gradual Pruning [27],

and DPF [52]. The performance comparisons are presented in
Table VI. The results of our experiments showed that DG2PF
outperformed all the benchmarked models, achieving the high-
est top-1 accuracy on all the tested architectures given the
same sparsity levels. Specifically, on VGG-16, our algorithm
achieved an improvement of 0.23% top-1 accuracy over the
baseline and 0.1% over [52]. ResNet-18 and ResNet-50 both
overcome the baseline by 0.31% and 0.89%, respectively. To
the best of our knowledge and also according to a recent review
[65], our work is the first one which deals with the ResNet-50
architecture in this specific application area.

2) ImageNet: As part of our research, we tested several
deep learning architectures for ImageNet [62] classification,
including ResNet-18, ResNet-50 [3], and MobileNet v2 [68].
We evaluated the effectiveness of our DG2PF algorithm against
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state-of-the-art pruning techniques, such as One-Shot Pruning
[37], Gradual Pruning [27], Cyclical Pruning [28], and SWD
[69]. The performance comparison is shown in Table VII.
We can see that DG2PF outperforms the competitors on all
the benchmarked models, yielding an improvement of 0.32%
top-1 accuracy on ResNet-18 and ResNet-50, and 1.19% on
MobileNet V2 against the previous best scores of [28]. The
results show that DG2PF performed well on this more extensive
dataset, achieving better accuracy than existing methods.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORKS

We have introduced DG2PF, a novel and comprehensive
algorithm that gradually prunes pretrained NNs using
magnitude-based unstructured pruning techniques and
knowledge distillation. The method has been designed to
minimize performance loss due to compression. Based on a
well-known pruning function, a specified proportion of weights
from a pretrained NN is selectively removed to minimize
memory and storage requirements. A novel simulated pruning
strategy with the advantages of weight recovery and without the
disadvantages of unstable convergence has also been presented.
The combination of those techniques is used in the DGP phase
of the algorithm. Then, the PF phase further supports the
performance recovery due to the pruning. The algorithm’s
effectiveness has been rigorously evaluated on publicly
available benchmark datasets and models, demonstrating
significant improvements in memory usage and computational
efficiency while maintaining high accuracy. Consequently, this
method provides a promising avenue for optimizing pruned
pretrained NNs with potential applications in various domains.

For future works, there are several areas to explore. One
avenue is to investigate different pruning functions to deter-
mine their effectiveness in reducing memory and storage re-
quirements while maintaining accuracy. The simulated pruning
strategy can also be enhanced to achieve even better weight
recovery and convergence properties. Additionally, exploring
domain-specific applications and scaling up the algorithm to
larger models would further validate its effectiveness. This
study supports the following assumption: weights closer to
zero have less impact on the final prediction in comparison to
larger values for magnitude-based pruning methods [27], [28],
[45]. Despite the actual results shown in this method and the
related work, it is crucial to recognize the limitations of this
assumption. For instance, research indicates that Transformer-
based networks typically achieve a lower level of sparsity using
this class of pruning algorithms [75], [76], [77]. Acknowledged
that our method can indeed be adapted to different activation
functions and network architectures, the correct adjustments
might be essential to accommodate the specific attributes of
these networks in future work findings. Last, integrating the
algorithm with other optimization techniques, such as quanti-
zation and network architecture search, could yield even better
results. Overall, the DG2PF algorithm presents a comprehen-
sive solution for optimizing pruned pretrained NNs, and future
research can further improve its performance and applicability
in various domains.
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