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Abstract: Electromagnetic waves propagating in a layered superconductor with arbitrary momen-
tum, with respect to the main crystallographic directions, exhibit an unavoidable mixing between
longitudinal and transverse degrees of freedom. Here we show that this basic physical mechanism
explains the emergence of a well-defined absorption peak in the in-plane optical conductivity when
light propagates at small tilting angles relative to the stacking direction in layered cuprates. More
specifically, we show that this peak, often interpreted as a spurious leakage of the c-axis Josephson
plasmon, is instead a signature of the true longitudinal plasma mode occurring at larger momenta.
By combining a classical approach based on Maxwell’s equations with a full quantum derivation of
the plasma modes based on modeling the superconducting phase degrees of freedom, we provide an
analytical expression for the absorption peak as a function of the tilting angle and light polarization.
We suggest that an all-optical measurement in tilted geometry can be used as an alternative way to
access plasma-wave dispersion, usually measured by means of large-momenta scattering techniques
like resonant inelastic X-ray scattering (RIXS) or electron energy loss spectroscopy (EELS).

Keywords: layered superconductors; far-infrared conductivity; anisotropic response; Josephson
plasmons; dielectric tensor

1. Introduction

In superconductors, the breaking of the continuous gauge symmetry below the super-
conducting (SC) critical temperature is accompanied by the emergence of two collective
modes, associated with the amplitude (Higgs) or phase (Goldstone) fluctuation of the com-
plex SC order parameter, whose absolute value at equilibrium defines the spectral gap for
single-particle excitations [1]. While the former is a massive excitation, the latter is massless
at a long wavelength, reflecting the infinity of possible ground states connected by a global
change of the order-parameter phase. Nonetheless, the coupling of the SC phase to the
electron density is directly affected by long-range Coulomb interactions between charged
electrons. This effect moves the phase mode to the plasma energy scale [2], which is usually
much larger than the spectral gap. As a consequence, optical signatures at the plasma
energy scale, i.e., at the zero of the dielectric function, are usually unaffected by the SC
transition. A rather different phenomenology is instead observed in anisotropically layered
superconductors, i.e., systems where the pairing mainly occurs within planes stacked along
the c direction, and the SC order is established below Tc thanks to a weak Josephson-like
inter-plane interaction. The hallmark of this category is represented by high-temperature
cuprates [3], where the marked anisotropy has been experimentally proven by different
optical probes, starting from linear optics, which measures two well-separated energy
scales for the plasma modes at long wavelengths for electric fields propagating in the CuO2
planes or perpendicular to them. In these systems, the incoherent quasiparticle hopping
along the stacking direction makes the c-axis response badly metallic: in contrast, below Tc,
the opening of a sizable spectral gap along with the weak inter-layer pair hopping leaves a
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rather sharp SC plasma edge at a frequency ωc of a few THz in the optical reflectivity, which
clearly testifies to the emergence of a well-defined SC Josephson plasmon. Even though
this feature has been experimentally observed already in the late 1990s [4–9], renewed
interest in the physics of Josephson plasmons has recently emerged. Such interest has
been triggered both by the applications to nano-plasmonic [10,11] and by the role played
by Josephson plasmons in non-linear THz spectroscopy[12–17]. In both cases, it becomes
theoretically relevant to understand the momentum dependence of the plasmon dispersion
at generic momentum, i.e., not along the main crystallographic axes. In this configuration,
one immediately realizes that the anisotropy leads to a non-trivial response of the system,
due to the fact that the current induced by the external electric field is no longer parallel to
the field itself. As extensively discussed in Refs. [18–20], this mechanism leads to a mixing
of the longitudinal and transverse responses inside the material, making the distinction be-

tween plasmons and polaritons blurred at momenta smaller than a scale k̄ ∼
√

ω2
ab − ω2

c /c
set by the anisotropy between in-plane ωab and out-of-plane ωc plasma frequencies. Since
usually ωab ≫ ωc, the effect is relevant for non-linear Josephson plasmonics in the THz
regime [21–24], but does not affect, e.g., the measurements of plasmons in RIXS [25–29] or
EELS [30–32], which usually measure momenta in a fraction of the Brillouin zone. In the
present manuscript, we investigate an additional consequence of the above-mentioned mix-
ing, showing how even linear optics can be used to disentangle the longitudinal-transverse
mixing in a reflection or transmission geometry, which highlights the emergence inside the
material of a longitudinal response induced by an external transverse electromagnetic wave.
The effect manifests as an absorption peak at a scale near ωc for an electromagnetic wave
traveling at a small angle with respect to the c direction. This feature has been measured
in the past in different samples of electron-doped cuprates [33–36] below Tc, and it has
often been interpreted as a leakage of the c-axis plasmon into the in-plane response [37].
Even more interestingly, the peak position has been shown to change by varying the wave
polarization in the plane of incidence, considerably challenging the interpretation of the
results. Here, we provide a full theoretical description of the microscopic mechanism
behind the anomalous absorption peak, and we show that it is a direct consequence of the
plasmon–polariton mixing in an anisotropically layered superconductor. We argue that this
effect can be used to indirectly probe the plasmon dispersion that usually appears in RIXS
and EELS experiments at much larger momenta and, by changing the light polarization, to
extract the in-plane and out-of-plane plasma frequencies. Our findings are benchmarked
against existing experimental data for cuprates. On a more general ground, our results offer
a novel perspective on the possibility of accessing collective polariton modes in complex
materials by properly engineering optical measurements.

2. Materials and Methods

We compute the optical conductivity for an anisotropic uniaxially layered supercon-
ductor as a response to an external electromagnetic wave traveling at a finite angle with
respect to the stacking direction. We first address the problem within the standard approach
of Maxwell’s equations, leading to a general expression of the response at the finite angle
as a function of the conductivity tensor along the main axes. To interpret the results in the
case of a layered superconductor, and to make a connection with the generalized plasma
modes discussed in Refs. [18–20], we address the same problem within a full-quantum
path-integral formalism. In superconductors, plasma modes can be studied via the fluctua-
tions θ of the phase of the SC order parameter. By coupling the electromagnetic field A to
the SC phase via the minimal-coupling substitution ∇θ → ∇θ + 2eA/c, we can take into
account electromagnetic interactions by properly including retardation effects, responsible
for the longitudinal/transverse mixing at low momenta. By introducing appropriate gauge-
invariant fields ψ = ∇θ + 2eA/c and after integrating out the matter degrees of freedom
represented by θ, we obtain directly the transverse dielectric tensor, which assumes a simple
expression in terms of the plasma modes of the systems and their large-momentum limit.
Finally, we discuss the experimental configuration that makes it possible to measure the
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plasma-mode dispersion and the in-plane and out-of-plane plasma frequencies by changing
the light polarization. By computing the Fresnel conditions in the case of samples grown at
a tilted angle, we demonstrate that our analytical results provide a quantitative estimate of
the measured response. Conversely, the effect does not appear for non-tilted samples when
the wave vector comes with a finite angle with respect to the stacking direction.

3. Results
3.1. Anisotropic Linear Response of Layered System

As discussed in the introduction, several experiments in electron-doped cuprates [33–36]
have shown the emergence of a peak in the in-plane conductivity below Tc at a frequency close
to that of the out-of-plane plasma edge, with the position shifting when the light polarization
is changed. This peak is often interpreted as a spurious effect due to the leakage of the c-axis
plasmon into the in-plane response [37], and light polarization is used to remove the effect [36].
However, in Ref. [35], the problem was investigated in detail by intentionally growing a sample
with the stacking direction tilted with respect to the light wave vector, and a preliminary
interpretation related to such a tilted geometry has been provided. Here, we will follow the same
reasoning and study the response for a propagating wave vector at a tilted angle with respect to
the stacking direction. To fix the notation, in the following, we will use the convention where the
SC sheets are parallel to the ab-plane and stacked along the c-axis. We then assume, without loss
of generality, that the momentum k of the propagating wave is along the ac-plane (kb = 0). The
angle between k and the c-axis is denoted as η and the angle between the transverse current and
the b-axis is denoted as ϕJ (see Figure 1 for the notation followed in this manuscript). Although
discussing the Fresnel conditions at the sample/air boundary in such tilted geometries is not
straightforward, we will postpone this analysis to the last section, and we will focus here on
the behavior inside the sample. We are interested in determining the measured conductivity,
defined as the ratio between the current J induced in the field direction and the modulus of the
electric field E itself.

𝐤

𝑐

𝑎
𝑏

𝑙

𝑡

𝜂

𝑏

𝑡
𝜙J

𝐉𝑡𝑏

Figure 1. Sketch of the notation used in the manuscript to define the reference frames. The crystalline
orientation defines the frame (a, b, c), and the direction of the momentum defines (t, b, l). The angles
η and ϕJ are also represented. The tb-plane is highlighted in blue.

Because of anisotropy, the charge mobility within the planes is much higher than in
between stacked layers, and the current J in the material is, in general, not parallel to E,
unless propagation occurs along the principal axes of the crystal (a, b, c). Indeed, in general,
one can write the conductivity tensor as follows:Ja

Jb
Jc

 =

σab 0 0
0 σab 0
0 0 σc


Ea

Eb
Ec

, (1)

where σab and σc are the in-plane and out-of-plane conductivities, respectively. In the
following, we simplify the tensorial notation by writing the reference frame where a
quantity is considered as its subscript, e.g., Equation (1) reads Jabc = σ̂abcEabc. If the
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wave propagates perpendicularly to the planes (η = 0), the electric field oscillates within
the SC sheets and one directly extracts σab from the measured transmissivity/reflectivity;
analogously, with a wave propagating within the planes (η = π/2), one can measure σc.
However, for a generic value of the propagation angle, the measured conductivity will be a
combination of the two quantities. In other words, for k at a generic angle of η, the current J
will develop both longitudinal and transverse components with respect to the momentum.

To see this explicitly, we perform a rotation of angle η around the b-axis to move in
the reference frame (t, b, l), where l labels the longitudinal components and t labels the
transverse component with respect to the momentum in the ac-plane, while preserving the
second transverse component b. In this frame, Equation (1) transforms into Jtbl = σ̂tblEtbl ,
where the conductivity tensor now reads as follows:

σ̂tbl =

σab cos2 η + σc sin2 η 0 (σc − σab) sin η cos η
0 σab 0

(σc − σab) sin η cos η 0 σab sin2 η + σc cos2 η

. (2)

Notice that the components Jt and Jl are coupled to both Et and El , as one expects in
an anisotropic crystal, whereas the transverse Jb component only couples to Eb. As we
will detail below, what one determines experimentally is an effective conductivity defined
as the ratio between the transverse current and the transverse electric field. According
to Ampere’s law, 4π

c J + ε∞
c

∂E
∂t = 0, where c is the light velocity and ε∞ is the background

dielectric constant, ensuring that the current in the longitudinal direction is compensated
by the displacement current. We then derive the relation 4πJl − iωε∞El = 0, which can
be used to eliminate the longitudinal component and write a system that only takes the
transverse components t and b into consideration, Jtb = σ̂tbEtb. The transverse conductivity
tensor reads as follows:

σ̂tb =

(
σt 0
0 σab

)
, (3)

where

σt(ω, η) =
− iωε∞

4π

(
σab cos2 η + σc sin2 η

)
+ σabσc

− iωε∞
4π + σab sin2 η + σc cos2 η

. (4)

For an electric field polarized along t (Eb = 0), Equation (4) immediately gives the
conductivity we are looking for, σt = Jt/Et. This expression was first derived in Ref. [34]; its
real part displays a peak with the central frequency that moves with η. To show it explicitly,

we replace σab = iω
4π

ε∞ω2
ab

(ω+i0+)2 and σc =
iω
4π

ε∞ω2
c

(ω+i0+)2 , where ωab and ωc are the in-plane and
out-of-plane plasma frequencies, respectively: one then immediately sees that the real part
of σt(ω, η) peaks at a frequency of ωl(η), which reads as follows:

ω2
l (η) = ω2

ab sin2 η + ω2
c cos2 η. (5)

As we will discuss below, ωl does not define a plasma mode of the system; this
can be immediately understood within a classical approach, by writing explicitly the
dielectric function corresponding to the conductivity (4). By using σab = − iω

4π (εab − ε∞) and
σc = − iω

4π (εc − ε∞), we can write the in-plane εab and out-of-plane εc dielectric functions of
the SC system as follows:

εab(ω) = ε∞

(
1 −

ω2
ab

(ω + i0+)2

)
, (6)

and

εc(ω) = ε∞

(
1 − ω2

c
(ω + i0+)2

)
. (7)
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Thus, Equation (4) can be recast as σt = − iω
4π (εt − ε∞), where

εt(ω, η) = ε∞

(
(ω + i0+)2 − ω2

ab

)(
(ω + i0+)2 − ω2

c

)
(ω + i0+)2

(
(ω + i0+)2 − ω2

l (η)
) . (8)

In Equation (8), the frequency ωl(η) in Equation (5) appears as a divergence of the
dielectric function, while the plasma frequencies in the long-wavelength limit appear as
zeros of the dielectric function. This already proves that the scale ωl does not identify a true
plasma mode. However, as we will demonstrate below, it turns out that ωl provides a good
approximation for the finite-momentum longitudinal plasmon of the layered system at large
momenta, i.e., in the momentum regions where retardation effects are no longer relevant.
As a consequence, the present results show that the optical absorptive peak in the tilted
geometry, which appears as a linear response in the long-wavelength limit, can be used to
indirectly access the plasma-wave dispersions at large momenta. Notice that, in principle,
Equation (4) is valid, in general, for any collective mode in an anisotropic uniaxial system,
provided that the corresponding expressions of σab(ω) and σc(ω) are used.

Even though these considerations solve the problem of defining a transverse con-
ductivity at tilted angles for an electric field polarized along t, two main issues remain.
The first one regards the connection between the frequency of the peak (5) and the real
plasma modes of the anisotropic superconductor. The second point is to link these results
to the measured quantity in an experiment with a generic polarization of the electric field.
The first matter will be discussed in the next section using a quantum formalism based
on the description of electromagnetic modes via the SC phase degree of freedom. The
second issue will be the subject of the last section, where we will explicitly study the Fresnel
problem for transmission/reflection through a sample grown at a tilt. Furthermore, we will
discuss the dependence of the measurement on the polarization ϕ of the external incident’s
electric field.

3.2. Linear Response of Generalized Plasma Modes
3.2.1. Effective Action Description of Plasma Modes

To gain more physical insight into the results of the previous section, we will take
advantage of the description of the plasma modes in the SC state obtained via the phase
degrees of freedom. Indeed, as recently discussed in Refs. [18,19], this approach is both
powerful and elegant in describing the interplay between longitudinal and transverse
plasma waves in a layered superconductor, which leads to generalized plasma modes
with mixed character at low momenta. Here, we summarize the main ingredients of the
derivation, referring the reader to Refs. [18,19] and the references therein for a detailed
derivation of the layered phase-only model.

Below the critical temperature Tc, the neighboring SC planes interact with a Josephson-
like coupling [3,12,23,38–41] that is much weaker than the in-plane phase stiffness. Fol-
lowing the notation set above, we denote the in-plane superfluid stiffness by Dab and the
out-of-plane one by Dc, and we write the Gaussian action for the phase fluctuations θ
as follows [42–44]:

SG[θ] =
1
8 ∑

q

[
κ0Ω2

m + Dabk2
ab + Dck2

c

]
|θ(q)|2, (9)

where q = (iΩm, k) is the imaginary-time 4-momentum, with Ωm = 2πmT representing

the bosonic Matsubara frequencies. Here, kab =
√

k2
a + k2

b and kc are the in-plane and
out-of-plane momenta, respectively, and κ0 is the compressibility. In the following, we
will denote by |k|2 = k2

ab + k2
c . We introduce the electromagnetic field A by performing

in Equation (9) the minimal coupling substitution ikθ → ikθ + 2eA/c, where −e is the
charge of the electron, and we will also add the action of the free electromagnetic field [1],
as follows:
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Se.m.[A] =
1

8πc2 ∑
q

[
ε∞Ω2

m|A(q)|2 + c2|k × A(q)|2
]
, (10)

Both the minimal coupling substitution and Equation (10) are written in the Weyl
gauge where the scalar potential is zero. We then recast the coupling between the phase
fluctuations and the electromagnetic field by performing the substitution:

ψ(q) = ikθ(q) +
2e
c

A(q). (11)

These gauge-invariant fields provide a full description of the plasma modes once the
phase fluctuations are integrated out [18,19]. To provide simple analytical expressions, in the
following, we consider the limit for infinite compressibility. This is a good approximation in
single-layer cuprates, as the effects of finite compressibility on the properties of the generalized
plasma modes are negligible at small momenta [18]. Interestingly, these effects are actually
crucial when studying the optical absorptive peak of bilayer superconductors [4–9,13,15],
whose central frequency is significantly influenced by the compressibility [45,46] due to the
capacitive coupling between planes surviving at vanishing momentum [19]. In the basis

ψabc =
(

ψa ψb ψc

)T
, the action of the systems after the integration of θ reads as follows:

S[ψabc] =
1

32πe2 ∑
q

ψT
abc(−q)

Ω2
mεab + c2k2

c 0 −c2kakc
0 Ω2

mεab + c2|k|2 0
−c2kakc 0 Ω2

mεc + c2k2
a

ψabc(q), (12)

where we set the in-plane momentum along the a-direction (kb = 0) without loss of
generality, such that ψb is decoupled, in full analogy with the case of Equation (2). In the
action we have defined, using the Matsubara formalism, the in-plane dielectric function is
as follows:

εab(iΩm) = ε∞

(
1 +

ω2
ab

Ω2
m

)
, (13)

and the out-of-plane dielectric function is as follows:

εc(iΩm) = ε∞

(
1 +

ω2
c

Ω2
m

)
, (14)

where the plasma frequencies are linked to the in-plane and out-of-plane superfluid stiff-
ness, ω2

ab = 4πe2Dab/ε∞ and ω2
c = 4πe2Dc/ε∞, respectively. Indeed, these go back to

Equations (6) and (7) once the analytic continuation iΩm → ω + i0+ is performed. Notice
that the dielectric tensor is diagonal in the basis ψabc, as (a, b, c) is the reference frame of
the principal axes of the crystal. By their definition in Equation (11), the gauge-invariant
fields are formally proportional to the currents; thus, within the effective-action framework,
we can apply the same procedure used above in the classical approach, i.e., a change of
the reference frame to describe a transverse dielectric tensor. We, thus, perform a rotation
around the b-axis that combines the ψa and ψc components into transverse ψt and longi-
tudinal ψl components with respect to the momentum k. The matrix that performs the

change of basis ψabc → ψtbl =
(

ψt ψb ψl

)T
reads as follows:

U =

 kc/|k| 0 ka/|k|
0 1 0

−ka/|k| 0 kc/|k|

, (15)

and Equation (12) transforms in this basis as follows:

S[ψtbl ] =
1

32πe2 ∑
q

ψT
tbl(−q)D−1

tbl ψtbl(q), (16)

where the matrix of the coefficients reads
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D−1
tbl =

Ω2
m(εabk2

c + εck2
a)/|k|2 + c2|k|2 0 Ω2

m(εc − εab)kakc/|k|2
0 Ω2

mεab + c2|k|2 0
Ω2

m(εc − εab)kakc/|k|2 0 Ω2
m(εabk2

a + εck2
c)/|k|2

. (17)

Before moving forward and studying the linear response, we will provide a brief
review of the generalized plasma modes that Equation (16) describes. This review will be
useful in the following to provide a physical interpretation of the finite-frequency peak in
the real part of the conductivity. The action identifies two longitudinal-transverse mixed
modes and one decoupled purely transverse mode along the b-direction. The former ones
cannot be studied separately, as the anisotropy of layered superconductors is such that
the ψt and ψl components are coupled for the generic directions of the momenta, i.e., the
off-diagonal elements of Equation (17) are nonvanishing. On physical grounds, this is
a manifestation of retardation effects: as seen in the previous section, at a generic wave
vector, the current induced in the system is not parallel to E. This induces a longitudinal
electric field in the system in response to a transverse perturbation, making longitudinal and
transverse responses unavoidably mixed. Since the displacement current scales as ∂E/∂(ct),
the corrections coming from retardation effects are also named relativistic, as they vanish
when c → ∞. The dispersion relations of the two modes obtained from Equation (17) read
as follows:

ω2
±(k) =

1
2

ω2
ab + ω2

c +
c2

ε∞
|k|2 ±

√
(ω2

ab − ω2
c )

2 +
c4

ε2
∞
|k|4 − 2

c2

ε∞
(k2

a − k2
c)(ω

2
ab − ω2

c )

, (18)

A detailed discussion of the properties of the generalized plasma modes of single-layer
anisotropic superconductors can be found in Ref. [18]. Nonetheless, it is important here to
stress the main physical outcomes of the present derivation. The generalized dispersions (18)
describe two regular functions of the momenta that give ω+(k → 0) → ωab and ω−(k →
0) → ωc. For generic propagation direction η and for momenta |k| ≲ k̄ =

√
ε∞(ω2

ab − ω2
c )/c,

these modes have mixed longitudinal/transverse character, with a degree of mixing that is
maximum at η = π/4 and vanishes as one moves along the main crystallographic direction
(ka = 0 or kc = 0), as one immediately realizes by the structure of the off-diagonal matrix
elements of Equation (17), scaling as kakc. Explicitly neglecting this coupling, i.e., setting the
off-diagonal elements to zero, would result in having the two modes uncoupled, one of which
is purely transverse and the other purely longitudinal. In this case, the dispersion relation of
the latter, by definition, the plasma mode of the system, can be found by setting to zero the
bottom-right element of D−1

tbl :

εab(ω)
k2

a
|k|2 + εc(ω)

k2
c

|k|2 = εab(ω) sin2 η + εc(ω) cos2 η = 0, (19)

where we have performed the analytic continuation iΩm → ω + i0+ and used kc = |k| cos η
and ka = |k| sin η. Using the definitions of the dielectric functions in Equations (13) and (14),
the solution of Equation (19) is exactly the frequency, i.e.,

ω2
l (k) = ω2

ab
k2

a
|k|2 + ω2

c
k2

c
|k|2 ≡ ω2

ab sin2 η + ω2
c cos2 η, (20)

as defined in Equation (5). In addition, one can easily see from Equation (18) that in the
limit c → ∞, i.e., in the regime where k̄/|k| → 0, retardation (or relativistic) effects can be
neglected; thus, one obtains the following:

ω−(k) → ωl(k), |k| ≫ k̄ =
√

ε∞(ω2
ab − ω2

c )/c. (21)
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In other words, the expression ωl(η) defines the longitudinal plasmon dispersion in a lay-
ered superconductor that one obtains by neglecting retardation effects, as one usually does
in the standard RPA approach where only Coulomb interactions are included [42–44,47–50].
We also note in passing that the limit of ωl(k) for k → 0 is non-regular as it depends on
the direction η of the momentum. As shown above, this is not the case for the real electro-
magnetic mode ω−, which is regular at |k| = 0. In Figure 2a, we show ω−(k) and ωl(η)
for small values of the propagation angle: as one can see, as |k| overcomes the k̄ scale, ω−
rapidly approaches the ωl limit and the mode becomes longitudinal. By using realistic
values of plasma frequencies in cuprates, one sees that k̄ ∼ µm−1. As such, this scale is
two orders of magnitude smaller than the momenta usually accessible in RIXS [25–29] or
EELS [30–32] experiments, which are not sensitive to the relativistic regime and probe the
plasmon dispersion given by Equation (20).

𝜔/𝜔𝑐
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Figure 2. (a) Dispersion of the Josephson plasma mode ω−(k) (solid lines) and ωl(η) (dashed
lines) for different small propagation angles, having chosen ωab/ωc = 100. (b) The real part of the
conductivity σt in the case of superconducting plasma modes for corresponding values of η of panel
(a). The conductivity spectra are normalized to the maximum value of the peak at η = 0.5◦. The
phenomenological damping parameter is taken as γ = 0.1ωc.

3.2.2. Interpretation of the Conductivity Peak Of Plasmons

From the action in Equation (16), we can perform the integration of ψl and work

with an action of the transverse components ψtb =
(

ψt ψb

)T
only. This procedure is

equivalent to using Ampere’s law as a condition to eliminate the longitudinal components;
see Equation (2) and the discussion below. One is left with an action that reads as follows:

S[ψtb] =
1

32πe2 ∑
q

ψT
tb(−q)

(
Ω2

mεt + c2|k|2 0
0 Ω2

mεab + c2|k|2

)
ψtb(q), (22)

where

εt(iΩm, η) =
εabεc

εab sin2 η + εc cos2 η
, (23)

is a dielectric function that describes the transverse linear response of the superconductor
along the t-axis. Indeed, by making use of the relation εα = ε∞ + 4πiσα/ω between the
optical conductivity and the dielectric function along the direction α [51], one recovers σt as
in Equation (4). Remarkably, the denominator of εt can be brought back to the left-hand side
of the characteristic Equation (19) for the uncoupled longitudinal mode. Indeed, by using
the explicit expressions in Equations (13) and (14) for the in-plane and out-of-plane dielectric
functions of plasma modes, and performing the analytic continuation iΩm → ω + i0+, one
can rewrite Equation (23) as εt(ω, η) = ε∞(ω2 − ω2

ab)(ω
2 − ω2

c )/[ω2(ω2 − ω2
l (η))], exactly

as in Equation (8) above.
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While this result has been formally obtained within Maxwell’s classical formalism
in the previous section, we can now identify the energy of the peak in the transverse
conductivity at vanishing momentum as the value of the longitudinal plasma mode in the
high-momentum regime. This is the same regime usually probed by EELS and RIXS since
ωl(η) is a good approximation of the dispersion of the lower mode ω−(k) for |k| ≫ k̄;
see Equation (21).

The real part of the conductivity σt is shown in Figure 2b, where we also introduce
a finite damping parameter γ when performing the analytic continuation iΩm → ω + iγ.
We emphasize once more that such a peak is not a direct manifestation of the Josephson
plasmon of the superconductor [33–36], which, as discussed above, for vanishing momen-
tum is at frequency ωc for every direction η. Indeed, plasma modes appear as zeroes of the
dielectric function and do not lead to finite-frequency peaks in the conductivity. Instead,
the absorptive peak at ωl(η) is a manifestation of the mixing mechanism between in-plane
and out-of-plane plasma modes described in the previous section, as the dielectric function
in Equation (8) comes directly from the action for the coupled modes in Equation (16). On
a more general ground, our derivation clarifies that a signature of a longitudinal nature
appears in the transverse response whenever the longitudinal mode is coupled to the
transverse one without directly participating in the detection, i.e., the degree of freedom is
integrated out.

It is worth mentioning that our derivation is not restricted to electron-doped cuprates,
where the peak has already been experimentally reported [33–36], but it is valid for any
single-layer superconductor, like the hole-doped LSCO. We also point out that the results
could be extended to bilayer superconductors like YBCO, which display two Josephson
plasmons at frequencies ωc1 and ωc2. Indeed, by using the out-of-plane bilayer dielectric
function [5] εc = ε∞(ω2 −ω2

c1)(ω
2 −ω2

c2)/[ω
2(ω2 −ω2

T)], with ω2
T = ω2

c1d2 + ω2
c2d1 and d1,2

representing the intra- and inter-bilayer spacings, one can predict two absorptive peaks in
the conductivity. These peaks are centered at the high-momentum values of the dispersions
of the Josephson modes [19]. The high-energy peak follows the same trend as the peak
in single-layer superconductors, moving with η from ωc1 to ωab. The low-energy one
quickly moves from ωc2 to ωT even for small values of η and does not disappear for
η = π/2 [4–9,13,15]. As mentioned above, finite compressibility corrections are crucial for
optical measurements in bilayer superconductors [45,46], and they must be taken into
account to correctly fit the experimental data [19].

3.3. Fresnel Equations at Normal Incidence on a Tilted-Grown Sample

To link the results obtained in the previous sections to experiments, we must consider
the measured quantity, which is the electric field transmitted or reflected through the
sample relative to the incident wave, and relate it to the conductivity σt. Moreover, one
might argue that due to the fact that the system is anisotropic, both angles η and ϕJ that
define the current propagation within the material differ, respectively, from ηin, the angle
between the incident momentum of the external wave and the normal to the planes, and ϕ,
the angle between the b-axis and the electric field that describes its polarization. To this aim,
we must write the Fresnel conditions at the boundaries of the sample. In this section, we
analyze the configuration where a THz pulse is at normal incidence on a thin-film layered
superconductor, grown with tilted planes at a small angle η [33–36], and we show that in
this case, the theoretical results can be easily related to experiments; see Appendix A.

Following the notation set above, we define the reference frame (t, b, l) such that the
tb-plane corresponds to the interface and the l-axis is perpendicular to it, see Figure 3a. At
normal incidence, ηin = η immediately, as the momentum of the wave does not change
direction when crossing the interface. Within the material, the b-polarized and t-polarized
electric fields are decoupled and travel with different values of the wave vector; see
Equation (16) and the discussion below. In particular, from Equation (17), the equations of
motion read |k|2 = ω2εab/c2 for the former and |k|2 = ω2εt/c2 for the latter [22], with εt
defined in Equation (23). We then impose the continuity of the tangential components of
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the electric fields, Et and Eb, and of the magnetic fields, Bt and Bb, at interfaces l = 0 and
l = d, with d denoting the sample thickness. By solving the system set by these conditions,
one finds the transmission and reflection coefficients for the t and b components of the field
in the thin-film configuration, which read as follows:

Tt =
TtT ′

t eintωd/c

1 −R2
t e2intωd/c , (24)

Rt =
Rt(1 − e2intωd/c)

1 −R2
t e2intωd/c , (25)

Tb =
TbT ′

b einbωd/c

1 −R2
be2inbωd/c , (26)

Rb =
Rb(1 − e2inbωd/c)

1 −R2
be2inbωd/c , (27)

where nα =
√

εα is the refractive index along the direction α, Tα = 2/(1 + nα) is the
transmission coefficient going from the vacuum to the material, T ′

α = 2nα/(1 + nα) is—
analogously—the transmission coefficient from the sample to the vacuum, and
R2

α = 1 − TαT ′
α accounts for the Fabry–Perot interference within the thin film. The ra-

tios Tt/Tb and Rt/Rb carry the information on the rotation of the polarization of the
transmitted or reflected wave. By definition of the dielectric function εt in Equation (23),
one has that εt ≃ εab under the assumption of the small tilt angle of the planes. Then
nt ≃ nb and the ratios are approximately 1: one can, thus, conclude that the polarization
of the transmitted or reflected wave does not differ significantly from one of the incident
waves in the experiment. With the same reasoning, σt ≃ σab, so that the transverse current
is approximately parallel to the field; see Equation (3). We can conclude that ϕ ≃ ϕJ.
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Figure 3. (a) Sketch of the experimental configuration with a THz wave at normal incidence on a
tilted-grown sample of thickness d. The reference frame (t, b, l) for this configuration is also shown to
highlight the direction of the external electric field Ein that defines the polarization angle ϕ. (b) The
real part of the measured conductivity as a function of frequency and the polarization angle as in
Equation (30). The solid black line corresponds to ωr(η, ϕ) as in Equation (32). In this plot, η = 0.25◦,
d = 0.150 µm, ωab/ωc = 100 and γ = 0.1ωc. (c) The fit of experimental data from Ref. [36] with
σ(ω, η, ϕ) for different polarization angles. Fitting parameters are extracted at once from the following
measurements: ωab/2π = 60 THz, ωc/2π = 0.6 THz, η = 0.26◦, γ = 0.075 THz.

In an experiment, the measured quantity (see Appendix A) is either the transmissivity,
as follows:

T = Tb cos2 ϕ + Tt sin2 ϕ, (28)

or, analogously, the reflectivity, as follows:
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R = Rb cos2 ϕ + Rt sin2 ϕ. (29)

From these quantities, one can define the measured transverse conductivity. Indeed,
under the assumption of film-thickness d, which is much smaller than the wavelength of
the radiation inside the material and its penetration depth, one finds the following [36]:

σ(ω, η, ϕ) =
2

Z0d

(
1
T
− 1
)

, (30)

where Z0 = 4π/c is the impedance of free space. This proportionality establishes the
link between the measured quantity and the theoretical conductivity we are looking for.
Moreover, regarding cuprates, one can numerically estimate T ≪ 1 in Equation (28), and
then approximate σ ∝ 1/T. Since σab ∝ 1/Tb and σt ∝ 1/Tt, from (28), one can express the
measured transverse conductivity as follows:

σ(ω, η, ϕ) ≃ σabσt

σab sin2 ϕ + σt cos2 ϕ
. (31)

With σt from Equation (4) and using the expressions of σab and σc for the supercon-
ductor, one finds that the real part of the conductivity has a peak at a resonance frequency
ωr(η, ϕ) that depends on both η and ϕ:

ω2
r (η, ϕ) =

ω2
ab sin2 η sin2 ϕ + ω2

c (1 − sin2 η sin2 ϕ)

1 − sin2 η cos2 ϕ +
(

ωc
ωab

)2
sin2 η cos2 ϕ

. (32)

In Figure 3b, we show the real part of Equation (30) as a function of the external polar-
ization angle and we compare the peak in the measured conductivity with Equation (32).
Indeed, the approximated expression (31) provides an excellent description of the experi-
mental data in Refs. [33–36], and the frequency Equation (32) establishes a link between the
peak of the experimental conductivity and the plasma frequencies ωab and ωc, which can
then be extracted as fitting parameters given the angles η and ϕ. In Figure 3c, we fit experi-
mental data from Ref. [36] to provide an estimate of the in-plane and out-of-plane plasma
frequencies of the overdoped La1.87Ce0.13CuO4 (Tc = 21 K) at 5 K. We clarify that the exper-
imental fit is not meant to draw any conclusion on the symmetry of the superconducting
order parameter, which is still debated in the context of electron-doped cuprates[36,52].
Equation (9), which is our starting point, can be derived from a microscopic model, which
admits a modulation of the superconducting gap[19]. At the level of Equation (9), the gap
symmetry influences the temperature dependence of the superfluid stiffnesses Dab and
Dc, which are primarily controlled by quasiparticle excitations, while barely affecting the
charge compressibility κ0. In addition, the gap symmetry can impact the quasiparticle
damping of the plasmon, controlling the phenomenological broadening γ, even though
other mechanisms can determine its value independently of the gap symmetry. However,
once the proper gap symmetry is embedded in the plasma frequencies ωab and ωc, the
structure of the modes in Equation (18) is general.

So far, it has been empirically observed in Ref. [33] that the data could be well fit-
ted using an effective conductivity σt(ω, ηeff) having the same functional form as Equa-
tion Equation (4), but with an effective tilt angle ηeff = η sin ϕ. This result follows from
Equation (31) in the case of a small angle η between the momentum and the c-axis of the
crystal, which is indeed the configuration of Ref. [33]. In this case, the frequency of the
peak in Equation (32) can be approximated as follows:

ω2
r (η, ϕ) ≃ ω2

ab sin2 ηeff + ω2
c cos2 ηeff = ω2

l (ηeff), (33)

where again ηeff = η sin ϕ.
At first, one might consider the configuration where the THz pulse is incident at a

small angle on a c-axis grown sample. However, computing the Fresnel conditions in this
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scenario results in featureless transmissivity and reflectivity, and no peak appears in the
real part of the conductivity (see Appendix A for details)

4. Discussion

In this manuscript, we studied the optical absorption in layered superconductors
within a tilted geometry, where light propagates inside the sample by forming a small angle
with the stacking direction. We demonstrated that such a geometry enables observation
with optics—a fundamentally zero-momentum probe—of a direct signature of the plasmon
dispersion at momenta of the order of a fraction of the Brillouin zone, which is typically
probed by RIXS or EELS. The basic physical mechanism behind this observation is the
intrinsic mixing between transverse and longitudinal electromagnetic modes in a layered
material due to the anisotropy between the in-plane and out-of-plane response. Such
mixing, which is absent when light propagates along the main crystallographic axes, leads
to the emergence of an absorption peak in the transverse optical conductivity in tilted ge-
ometry. Interestingly, we can analytically show that the peak frequency moves as a function
of the tilting angle according to the functional law that the physical longitudinal plasmon
displays at momenta larger than the scale where transverse/longitudinal mixing is relevant.
In cuprates, where the SC c-axis plasmon is weakly affected by Landau damping due to the
opening of a large spectral gap below Tc, the peak is well-defined at a small tilting angle,
and it has indeed been observed in several electron-doped cuprates [33–36]. Here, we
argue that the same effect can be seen in any layered sample, provided that the appropriate
Fresnel geometry is implemented. In addition, we provide an analytical expression for
the peak frequency as a function of both tilting angle and light polarization, which can be
used to derive from a single set of measurements the relevant scales for plasma excitations
in these systems. It is worth stressing that in recent years, after charged plasmons were
detected for the first time with high-resolution RIXS [25–29] and EELS [30–32] experiments,
an intense discussion emerged on the nature of charge fluctuations in these correlated
materials [31,32]. The all-optical measurement proposed here is in principle a bulk probe;
it is not affected by the lack of sensitivity at small momenta associated with plasmon mea-
surements via charge-detecting probes and allows for precise control over the momentum
value, which can be problematic, e.g., with EELS [32]. As a consequence, the experimental
verification of this idea could provide an additional tool to explore charge fluctuations in
cuprates and their possible interplay with other collective modes of the systems.
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Appendix A

In this appendix, we calculate the transmitted electric field for two experimental
configurations, where the electromagnetic wave travels at a finite angle with respect to the
stacking direction of the planes, using standard Fresnel-like boundary conditions applied
to a uniaxial film. Let us consider a transmission experiment on a superconductor placed
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in the region 0 < z < d, as in Figure A1. The electric field satisfies Maxwell’s equations,
as follows: ∇2E − 1

c2
∂2E
∂t2 = 0 z < 0, z > d

∇2E −∇(∇ · E)− 1
c2

∂2(ε̂E)
∂t2 = 0 0 < z < d

, (A1)

where ε̂ is the dielectric tensor of the uniaxial material. By expanding the electric field on
a basis of plane waves, Equation (A1) becomes a linear system for the Cartesian Fourier
components of the electric field, as follows:(|k|2 − ω2/c2)δαβEβ = 0 z < 0, z > d

(|k|2δαβ − kαkβ − ω2εαβ/c2)Eβ = 0 0 < z < d
. (A2)
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Figure A1. Sketch of the two possible experimental configurations discussed in this appendix.
In both cases, the reference frame (x, y, z) is defined such that xy is the vacuum-sample interface
and xz is the plane of incidence. For graphical purposes, only TM-polarized waves are depicted.
(a) Geometry of the configuration where the THz pulse incident at normal incidence on a thin-film
crystal is grown with layers tilted at an angle η with respect to the vacuum-sample interface, as in
Section 3.3. In this case, the (x, y, z) reference frame corresponds to the (t, b, l) frame introduced in
the main text. (b) The geometry of the configuration where the incident field is at oblique incidence
with angle ηin on a thin-film sample with planes parallel to the interface. In this case, the (x, y, z)
reference frame corresponds to the crystallographic (a, b, c) frame.

A propagating solution is allowed whenever the determinant of this system is zero.
For the experimental configuration in Figure A1a, where the frame (x, y, z) corresponds
to (t, b, l), as in Section 3.3, the incoming momentum is along the z (or l) direction. In this
geometry, the dielectric tensor is defined as follows (see Equations (2) and (17)):

ε̂ =

εab cos2 η + εc sin2 η 0 (εab − εc) cos η sin η
0 εab 0

(εab − εc) cos η sin η 0 εab sin2 η + εc cos2 η

. (A3)

From Equation (A2), one can see that the subspace associated with Ey is decoupled
from the ones associated with Ex and Ez. As a consequence, one can see immediately that
y-polarized electric fields in the material propagate with wave vector |k|2 = ω2εab/c2,
while x- and z-polarized electric fields propagate with wave vector |k|2 = ω2εt/c2, where

εt =
εabεc

εab sin2 η + εc cos2 η
, (A4)
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as in Equation (23) in the main text. Conversely, for the experimental configuration in
Figure A1b, where the frame (x, y, z) corresponds to the crystallographic frame (a, b, c),
the dielectric tensor is diagonal ε̂αβ = εαδαβ (see Equations (1) and (12)). As the wave
vector belongs to the xz-plane, in this case, the equation for Ey is decoupled from the
other two components. In both cases, one can then solve the system separately for the
transmission of the y− and the mixed xz− polarized components of E. In the following,
we will refer to the former component as the transverse electric (TE) field and to the
latter as the transverse magnetic (TM) field, as one would commonly do in the oblique
incidence configuration where the plane of incidence is xz. Notice that the transmitted
wave ET is generically polarized along a direction ϕ′ that differs from the polarization
ϕ of the incident wave Ein, although the experiment is still set to measure the outgoing
ϕ-polarized wave ET′

. Assuming that the TE and TM transmission coefficients are known,
such that ET

TE,TM = TTE,TMEin
TE,TM (see Figure A2 for the notation), one finds the measured

transmitted field polarized along ϕ as

ET′
= ET cos (ϕ′ − ϕ)

= ET cos ϕ′ cos ϕ + ET sin ϕ′ sin ϕ

= TTEEin
TE cos ϕ + TTMEin

TM sin ϕ

= (TTE cos2 ϕ + TTM sin2 ϕ)Ein ≡ TEin. (A5)

Analogously, one can express the reflected field in a similar way. For the config-
uration discussed in Section 3.3, see Figure A1a, the TE and TM components stand
for the b and t components, respectively, and one obtains Equation (28) from the main
text. We now explicitly compute the transmission coefficients TTE and TTM for the two
configurations separately.

TE

TM

𝐄𝑖𝑛
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ETE
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(𝑎)
TE
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T

ETE
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𝐄T
′
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(𝑐)𝑧 < 0 𝑧 > 𝑑 𝑧 > 𝑑
(detection)

Figure A2. (a) Incoming electric field Ein at a generic polarization angle ϕ with respect to the TE
axis (corresponding to the y-axis and the crystallographic b-axis in both configurations of Figure A1).
(b) The transmitted electric field ET is found using the appropriate set of boundary conditions. The
transmitted field still lies in the TM-TE plane due to the conservation of the parallel component of
the incident momentum, but ET is generically polarized with angle ϕ′ ̸= ϕ. (c) Comparison between
the directions of the transmitted field ET and the projected field ET′

along the incoming polarization,
which is the measured quantity in a transmission experiment.

For the first configuration (Figure A1a), TTE ≡ Tb and TTM ≡ Tt; thus, the TE and
TM components propagate with different refractive indices, nb =

√
εab and nt =

√
εt,

respectively. Imposing the continuity of the tangential components of the electric E and
magnetic B fields, one recovers the usual expression for transmission at normal incidence
on a slab, namely the following:

Tα =
TαT ′

α einαωd/c

1 −R2
αe2inαωd/c , (A6)
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where Tα = 2/(nα + 1) is the transmission coefficient from vacuum n = 1 to a medium with
refractive index nα, and T ′

α = 2nα/(nα + 1) is analogously the transmission coefficient from
the medium to the vacuum. The denominator accounts for the Fabry–Perot interference
inside the slab of thickness d, with R2

α = 1 − TαT ′
α . Equation (A6) can also be expressed

as follows:

Tα =
2nα

2nα cos ζα − i(n2
α + 1) sin ζα

, (A7)

where ζα = nαωd/c. Given the approximation d ≪ |nα|ω/c, meaning that the thickness
of the film is much smaller than both the wavelength of the radiation inside the material
λ = Re(nα)ω/c and the skin depth δ = Im(nα)ω/c, one can approximate to the first order
in ζα

1
Tα

≈ 1 − i
n2

α + 1
2nα

ζα = 1 − i
(n2

α + 1)ωd
2c

. (A8)

Using the relation between the refractive index and conductivity σα = ω
4πi (n

2
α − 1),

one can rewrite Equation (A8) as follows:

1
Tα

= 1 +
4πdσα

2c
− i

2ωd
c

≈ 1 +
4πdσα

2c
, (A9)

where, again, we consider ωd/c ≪ 1. Consequently, one finds the following:

σα =
2

Z0d

(
1

Tα
− 1
)

, (A10)

where Z0 = 4π/c. This relation between the conductivity and the transmissivity is valid
along both the b and t directions. On the other hand, one can imagine extracting an
experimental conductivity from the experimental transmissivity T as in Equation (A5) by
applying the same relation, see, e.g., Ref. [36], where Equation (30) is used.

In the second configuration (Figure A1b), the interface is parallel to the ab-plane of
the crystal, and one needs to solve a wider set of continuity conditions. Indeed, one must
impose the continuity of the tangential components of the electric E and magnetic B fields
as with the previous configuration; additionally, the continuity of the normal component of
the displacement field D must be maintained [53,54]. To understand how the transmission
occurs in this case, let us first recall the results expected for an isotropic film, where the
propagation of the electromagnetic wave inside the sample is defined by a unique refractive
index n. In this case, one easily finds that T(iso) ≡ ET′

/Ein reads as follows:

T(iso)(ηin, n) =
T T ′einωd cos η/c

1 −R2e2inωd cos η/c , (A11)

where η is the propagation angle inside the material, see Figure A1b, while ηin is the external
angle of incidence. Here, we define T = 2 cos ηin/(n cos ηin + cos η) as the transmission
coefficient from the vacuum to the medium, and analogously, T ′ = 2n cos η/(n cos ηin +
cos η) as the transmission coefficient from the medium to the vacuum. The denominator of
Equation (A11) accounts for the Fabry–Perot interference inside the slab of thickness d, with
R2 = 1 − T T ′. In Equation (A11), we explicitly state the dependence of the transmissivity
T on the incident angle and the refractive index n only. Indeed, the propagation angle
inside the sample is automatically defined by these two quantities thanks to Snell’s law,
which states that sin η = sin ηin/n (notice that in the isotropic case, one has to define η
with respect to the normal to the interface as there are no planes, but we retain the notation
to emphasize the analogy between the two cases. However, in the uniaxial case depicted
in Figure A1b, Snell’s relation is not valid, since due to the anisotropy of the refractive
indices, components kab and kc of the momentum are rescaled differently. This makes the
transmission coefficient a function of ηin, nb, and nc. More specifically, for the TM wave, one
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finds that TTM has an expression analogous to Equation (A11), provided that one replaces
n → nb =

√
εab and sin η → sin ηin/nc = sin ηin/

√
εc:

TTM(ηin, nb, nc) =
T T ′einbωd cos η/c

1 −R2e2inbωd cos η/c , (A12)

with T and T ′ retaining the same functional dependence on η, ηin as before. In this situation,
the argument of the complex exponential in Equation (A12) reads as follows:

ζ = nb
ωd
c

cos η = nb
ωd
c

√
1 − sin2 ηin

n2
c

. (A13)

One can observe that for THz frequencies around the Josephson plasma frequency
ω ∼ ωc, the divergence in the square root when ηin ̸= 0 is weakened by the residual
quasiparticle damping, γ, so that we obtain ζ ≪ 1. Then, evaluating 1/TTM from (A12) at
small ζ, one has the following:

1
TTM

≈ 1 − i
ωd
2c

εab cos2 ηin + 1 − sin2 ηin/εc

cos ηin
. (A14)

Similar reasonings can be made for the TE component, which is expressed as in Equation (A12),
provided that sin η → sin ηin/nb = sin ηin/

√
εab. Also, in this case, one can approximate the

transmission coefficient along this direction as follows:

1
TTE

≈ 1 − i
ωd
2c

εab cos2 ηin + 1 − sin2 ηin/εab
cos ηin

. (A15)

Even though Equations (A14) and (A15) still depend on a combination of εab and εc,
these structures do not lead to the pole observed in the transverse dielectric function εt,
as opposed to Equation (A8) obtained in the first configuration. In the end, by explicit
numerical computation with realistic parameter values for cuprates of the transmissivity
TTM and TTE in Equation (A12), with the corresponding definitions of η, we can verify that
the corresponding conductivities, expressed as in Equation (A10), are featureless, and no
finite-frequency peaks are observed.
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46. Dulić, D.; Pimenov, A.; van der Marel, D.; Broun, D.M.; Kamal, S.; Hardy, W.N.; Tsvetkov, A.A.; Sutjaha, I.M.; Liang, R.; Menovsky,
A.A.; et al. Observation of the Transverse Optical Plasmon in SmLa0.8Sr0.2CuO4−ffi. Phys. Rev. Lett. 2001, 86, 4144–4147.
[CrossRef] [PubMed]

47. Benfatto, L.; Toschi, A.; Caprara, S. Low-energy phase-only action in a superconductor: A comparison with the XY model. Phys.
Rev. B 2004, 69, 184510. [CrossRef]

48. Fertig, H.A.; Das Sarma, S. Collective modes in layered superconductors. Phys. Rev. Lett. 1990, 65, 1482–1485. [CrossRef]
[PubMed]

49. Fertig, H.A.; Das Sarma, S. Collective excitations and mode coupling in layered superconductors. Phys. Rev. B 1991, 44, 4480–4494.
[CrossRef] [PubMed]

50. Hwang, E.H.; Das Sarma, S. Collective modes and their coupling to pair-breaking excitations in layered d-wave superconductors.
Phys. Rev. B 1995, 52, R7010–R7013. [CrossRef]

51. Melnyk, A.R.; Harrison, M.J. Theory of Optical Excitation of Plasmons in Metals. Phys. Rev. B 1970, 2, 835–850. [CrossRef]
52. Fan, J.Q.; Yu, X.Q.; Cheng, F.J.; Wang, H.; Wang, R.; Ma, X.; Hu, X.P.; Zhang, D.; Ma, X.C.; Xue, Q.K.; et al. Direct observation of

nodeless superconductivity and phonon modes in electron-doped copper oxide Sr1−xNdxCuO2. Natl. Sci. Rev. 2021, 9, nwab225.
[CrossRef] [PubMed]

53. Mosteller, L.P.; Wooten, F. Optical Properties and Reflectance of Uniaxial Absorbing Crystals. J. Opt. Soc. Am. 1968, 58, 511–518.
[CrossRef]

54. Schützmann, J.; Somal, H.S.; Tsvetkov, A.A.; van der Marel, D.; Koops, G.E.J.; Koleshnikov, N.; Ren, Z.F.; Wang, J.H.; Brück,
E.; Menovsky, A.A. Experimental test of the interlayer pairing models for high-Tc superconductivity using grazing-incidence
infrared reflectometry. Phys. Rev. B 1997, 55, 11118–11121. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevLett.93.107003
http://dx.doi.org/10.1016/S0370-1573(01)00022-9
http://dx.doi.org/10.1103/PhysRevB.62.6786
http://dx.doi.org/10.1103/PhysRevB.63.174513
http://dx.doi.org/10.1103/PhysRevResearch.2.023413
http://dx.doi.org/10.1103/PhysRevLett.87.177003
http://www.ncbi.nlm.nih.gov/pubmed/11690296
http://dx.doi.org/10.1103/PhysRevLett.86.4144
http://www.ncbi.nlm.nih.gov/pubmed/11328116
http://dx.doi.org/10.1103/PhysRevB.69.184510
http://dx.doi.org/10.1103/PhysRevLett.65.1482
http://www.ncbi.nlm.nih.gov/pubmed/10042277
http://dx.doi.org/10.1103/PhysRevB.44.4480
http://www.ncbi.nlm.nih.gov/pubmed/10000102
http://dx.doi.org/10.1103/PhysRevB.52.R7010
http://dx.doi.org/10.1103/PhysRevB.2.835
http://dx.doi.org/10.1093/nsr/nwab225
http://www.ncbi.nlm.nih.gov/pubmed/35530436
http://dx.doi.org/10.1364/JOSA.58.000511
http://dx.doi.org/10.1103/PhysRevB.55.11118

	Introduction
	Materials and Methods 
	Results
	Anisotropic Linear Response of Layered System
	Linear Response of Generalized Plasma Modes
	Effective Action Description of Plasma Modes
	Interpretation of the Conductivity Peak Of Plasmons

	Fresnel Equations at Normal Incidence on a Tilted-Grown Sample 

	Discussion
	Appendix A
	References

