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Abstract: Low-grade endotoxemia by lipopolysaccharide (LPS) has been detected in COVID-19 and
could favor thrombosis via eliciting a pro-inflammatory and pro-coagulant state. The aim of this
study was to analyze the mechanism accounting for low-grade endotoxemia and its relationship
with oxidative stress and clotting activation thrombosis in COVID-19. We measured serum levels of
sNOX2-dp, zonulin, LPS, D-dimer, and albumin in 175 patients with COVID-19, classified as having
or not acute respiratory distress syndrome (ARDS), and 50 healthy subjects. Baseline levels of sNOX2-
dp, LPS, zonulin, D-dimer, albumin, and hs-CRP were significantly higher in COVID-19 compared
to controls. In COVID-19 patients with ARDS, sNOX2-dp, LPS, zonulin, D-dimer, and hs-CRP
were significantly higher compared to COVID-19 patients without ARDS. Conversely, concentration
of albumin was lower in patients with ARDS compared with those without ARDS and inversely
associated with LPS. In the COVID-19 cohort, the number of patients with ARDS progressively
increased according to sNOX2-dp and LPS quartiles; a significant correlation between LPS and
sNOX2-dp and LPS and D-dimer was detected in COVID-19. In a multivariable logistic regression
model, LPS/albumin levels and D-dimer predicted thrombotic events. In COVID-19 patients, LPS is
significantly associated with a hypercoagulation state and disease severity. In vitro, LPS can increase
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endothelial oxidative stress and coagulation biomarkers that were reduced by the treatment with
albumin. In conclusion, impaired gut barrier permeability, increased NOX2 activation, and low serum
albumin may account for low-grade endotoxemia and may be implicated in thrombotic events in
COVID-19.

Keywords: oxidative stress; NOX2 activation; albumin; D-dimer; gut permeability; low-grade
endotoxemia; thrombosis

1. Introduction

Coronavirus disease 2019 (COVID-19) is a serious lung disease that may be compli-
cated by severe acute respiratory syndrome (SARS-CoV-2) needing mechanical ventilation
and intensive care unit treatment. Among the clinical features of COVID-19, thrombotic
events in the venous and arterial are frequent complications that are associated with poor
clinical outcomes [1–6]. Warning signs of thrombosis include essentially elevated markers
of D-dimer, that is, expression of systemic fibrinolysis consequent to thrombin genera-
tion [7–9]; elevated markers of D-dimer have been consistently reported in COVID-19
patients and closely associated with thrombotic events and poor survival [10–15]. The
mechanism accounting for hypercoagulation in COVID-19 has not been clarified but may
include direct interaction of the virus or its components, such as spike protein, with cells
devoted to activating coagulation systems such as endothelial cells, platelets, and leu-
cocytes, or an abnormal response to virus injury with the production, for example, of
cytokines [16] or oxidative stress that may in turn activate the clotting system. Patients
with community-acquired pneumonia (CAP) display enhanced levels of lipopolysaccha-
rides (LPS) coincidentally with an ongoing prothrombotic state, suggesting that low-grade
endotoxemia may be implicated in the thrombotic complications occurring in CAP [17,18].
In addition, CAP patients also display enhanced levels of NOX2, one of the most important
cellular producers of reactive oxidant species (ROS) [19]. Increasing evidence has demon-
strated that dysregulation of ROS production can result in persistent inflammation and
tissue damage, particularly in barrier sites such as the lung, reducing the body’s ability
to clear viral infections [20]. Specifically, NOX2 can be activated during viral infections,
resulting in the production of hydrogen peroxide that suppresses the antiviral response
and favors viral replication [20,21].

Therefore, we speculated that NOX2-mediated oxidative stress and low-grade endo-
toxemia may be implicated also in COVID-19. Analysis of NOX2 and LPS in COVID-19
showed, in fact, that they are elevated compared to controls and associated with thrombosis,
suggesting that LPS could promote a hypercoagulation state [22]. The biological plausibility
of this hypothesis relies on an experimental model of thrombosis where low-grade endo-
toxemia enhanced thrombus growth via the LPS-specific receptor, i.e., Toll-like receptor
4 (TLR4) [23]. Previous studies [22,24,25] have linked higher intestinal translocation with
severe cases of COVID-19, describing a higher abundance of bacterial components in the
bloodstream compared to milder cases.

However, so far, the relationship between NOX2, LPS, and clotting activation has not
been investigated in COVID-19, nor has it clarified the reason for low-grade endotoxemia.

Albumin is the most relevant protein in human blood, which possesses anti-inflammatory,
antioxidant, and anticoagulant properties [26,27]. Also, albumin can neutralize LPS, pre-
venting its toxic effects [28,29]. Previous studies showed that in COVID-19, serum albumin
is seriously reduced during the acute phase of the disease and correlated with mortality
and thrombotic events [30,31]. Therefore, the aim of this study was to explore the interplay
between NOX2, LPS, and albumin and to assess if such interplay may be implicated in the
hypercoagulation state of COVID-19. In addition, we would aim to verify if NOX2 and LPS
could predict disease severity, especially ARDS.
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2. Materials and Methods
2.1. Study Design and Population

This is an observational retrospective cohort multi-center study performed in Ital-
ian hospitals devoted to COVID-19 care. This study was performed in non-intensive
care unit (ICU) medical wards. We enrolled consecutive patients, according to the inclu-
sion/exclusion criteria from the cohort from Rome Hospitals and Latina Hospital.

In this study, we included adult (>18 years) patients with laboratory-confirmed
COVID-19-related or SARS-CoV-2-related pneumonia, requiring or not mechanical ventila-
tion, consecutively hospitalized from March 2020 to May 2020. COVID-19 was diagnosed
based on the World Health Organization interim guidance. Patients were classified as
having or not having acute respiratory distress syndrome (ARDS), which was defined as
the acute onset of respiratory failure, bilateral infiltrates on chest radiograph, hypoxemia
as defined by a PaO2/FiO2 ratio ≤ 200 mmHg, and no evidence of left atrial hyperten-
sion or a pulmonary capillary pressure < 18 mmHg (if measured) to rule out cardiogenic
edema [32]. Healthy subjects matched for demographic characteristics and without acute
infections were used as controls; they were recruited for routine screening for cardiovas-
cular disease from the Division of I Clinica Medica, Atherothrombosis Center, Policlinico
Umberto I, Rome.

The routine analysis included P/F ratio and hs-CRP executed within 48 h from the
admission at the hospital. Ethical approval for this study was obtained from the Ethics
Committee of Azienda Ospedaliera Universitaria Policlinico Umberto I (ID Prot. 6192) and
was conducted in accordance with the Declaration of Helsinki.

2.2. sNOX2-dp Assay

sNOX2-dp concentration was measured with an ELISA method. Briefly, the assay
is based on coating standards and serum samples into an ELISA 96-well plate overnight
at 4 ◦C. After incubation, an anti-sNOX2dp–horseradish peroxidase (HRP) monoclonal
antibody was added. The immobilized antibody–enzyme conjugates were quantified by
adding tetramethylbenzidine (TMB) and a stop solution. The enzyme activity was mea-
sured spectrophotometrically at 450 nm; values were expressed as pg/mL. Intra-assay and
inter-assay coefficients of variation were <10%.

2.3. Hydrogen Peroxide (H2O2) Production

Hydrogen peroxide (H2O2) concentrations were determined by a colorimetric as-
say according to the manufacturer’s instructions (Abcam, Cambridge, UK). Values were
expressed as µM, and the intra- and inter-assay CV were both <10%.

2.4. LPS Assay

LPS levels were measured using a commercial ELISA kit (Cusabio, Wuhan, China) as
previously described [23]. Values were expressed as picograms per milliliter; intra-assay
and inter-assay coefficients of variation were <10%.

2.5. Zonulin Assay

Serum zonulin levels were measured using a commercial ELISA kit (Elabscience,
Houston, TX, USA). The amount of zonulin was measured with a microplate autoreader at
450 nm. Values were expressed as nanograms per milliliter; both intra-assay and interassay
coefficients of variation were <10%.

2.6. Plasma D-Dimer Assay

D-dimer levels in human plasma were measured using a commercial ELISA kit (Ab-
cam, Cambridge, UK). Values were expressed as micrograms per milliliter; intra-assay and
inter-assay coefficients of variation were <10%.
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2.7. Albumin Assay

Albumin levels in human serum were measured using a commercial colorimetric assay
kit (Abcam, Cambridge, UK). Values were expressed as grams per deciliter; intra-assay and
inter-assay coefficients of variation were <10%.

2.8. Assessment of Intrahospital Ischemic and Embolic Events

The clinical course of the disease and its evolution were monitored during hospi-
talization. The appearance of new ischemic/embolic events was diagnosed as follows:
(i) pulmonary thromboembolism by lung computed tomography scan [33]; (ii) myocar-
dial infarction by electrocardiogram (ECG) changes associated with enhanced markers of
cell necrosis [34]; (iii) acute brain ischemia by onset of new focal neurological signs and
symptoms and confirmed, whenever possible, by nuclear magnetic resonance or computed
tomography imaging [35]; and (iv) acute limb ischemia diagnosed according to American
Heart Association guidelines [36].

2.9. In Vitro Study

HUVEC (Human Umbilical Vein Endothelial Cells) were purchased from Lonza (Am-
boise, France) and cultured in EGM-2 complete medium. Sub-confluent cultures (2500/cm2)
were expanded between passages 3–5. Cell morphology and growth were monitored by
light microscopy and assessed by Trypan Blue. To stimulate the cultures, cells were starved
overnight (endothelial basal medium (EBM), Lonza supplemented with 0.2% FBS). The
following day, starvation media was withdrawn, and HUVEC were treated with or without
LPS (160 pg/mL) in the presence or not of albumin (3–5 g/dL) [37]. As a negative control
(NC), the same percentage of albumin–diluent (1% PBS) was used.

After stimulation, HUVEC-derived supernatants were stored at −80 ◦C until use.
Each experiment was replicated five times. Supernatants were analyzed for sNOX2dp and
H2O2 concentration as previously described. Factor VIII was also measured by ELISA
used according to the manufacturer’s guidelines (Lifespan Bioscience, Seattle, WA, USA).
The values of the release of factor VIII were expressed as U/dL. Inter- and intra-assay
coefficients of variations were <10%.

2.10. Sample Size Calculation

We calculated the minimum sample size with respect to a two-tailed one-sample
Student’s t-test, considering (i) a relevant difference in LPS of 20 pg/mL; (ii) a standard
deviation of paired differences of 30 pg/mL; (iii) a type I error rate (α) of 0.05; and (iv) a
power (1 − β) of 0.90. This yielded a required sample size of n = 49 per group. The expected
LPS serum levels were conservatively estimated based on previously published data [22].

2.11. Statistical Analysis

All continuous variables were tested for normality with the Shapiro–Wilk test. Contin-
uous variables with normal distribution were reported as mean± standard deviation (SD),
non-parametric variables as median and interquartile range (IQR). Between-groups com-
parisons were performed using an unpaired T test for normally distributed variables and
using an appropriate non-parametric test for non-normally distributed variables (Mann–
Whitney U test). Correlations were performed by Spearman’s rank correlation coefficient
and described as Rs.

The prediction roles of serum LPS, zonulin, hs-CRP, and D-dimer were evaluated by
means of area under the curve (AUC) for the receiver operating characteristic curve for
predicting incident ARDS.

The bivariate and multivariate effects of prognostic factors on ARDS occurrence in
COVID-19 patients were also assessed by means of logistic regression models. Wald
confidence intervals and tests for odds ratios and adjusted odds ratios were computed
based on the estimated standard errors. The stochastic level of entry into the multivariable
model was set at 0.10.
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Only p values < 0.05 were considered statistically significant. All tests were 2-tailed,
and analyses were performed using computer software packages (IBM SPSS Statistics,
ver. 27).

3. Results

Clinical characteristics of patients with COVID-19 and controls are reported in Table 1.

Table 1. Characteristics of control subjects and COVID-19 patients.

Variable Controls COVID-19
Patients p Patients

Without ARDS
Patients

with ARDS p

N 50 175 100 75

Age (years) a 65.7 ± 12.7 64.9 ± 16.0 0.720 64.6 ± 15.9 65.2 ± 16.3 0.804

Female sex (%) 34 34 0.970 40 27 0.066

BMI a 26.6 ± 3.7 26.9 ± 3.6 0.701 26.0 ± 3.5 27.8 ± 3.5 0.087

Smokers 4 5 0.647 9 5 0.360

Hypertension (%) 0 27 <0.001 24 32 0.240

COPD (%) 0 10 0.022 15 4 0.006

Atrial fibrillation (%) 0 5 0.124 7 0.75 0.076

Diabetes (%) 0 18 0.001 19 16 0.607

ACE-inhibitors (%) 0 25 <0.001 20 31 0.105

Thrombotic events 0 21 <0.001 6 15 0.004

HS-CRP (mg/dL) b 1 [0.3–1.5] 3.8 [1.1–10.8] <0.001 2.1 [0.5–6.2] 6.7 [3.0–19.2] <0.001

D-dimer (µg/mL) b 0.12 [0.07–0.23] 1.09 [0.54–2.25] <0.001 0.77 [0.46–1.38] 1.66 [0.79–2.81] <0.001

Albumin (g/dL) a 5.56 ± 1.14 3.62 ± 0.66 <0.001 3.82 ± 0.61 3.36 ± 0.63 <0.001

Zonulin (ng/mL) b 1.33 [0.98–1.88] 3.10 [2.10–4.22] <0.001 2.79 [2.0–3.54] 3.8 [2.37–5.60] <0.001

LPS (pg/mL) b 6.0 [3.7–11.7] 50.3 [29.4–71.7] <0.001 41.5 [20.0–60.5] 67.7 [46.3–83.9] <0.001

sNOX2-dp (pg/mL) b 21.9 [16.0–26.1] 38.9 [28.0–50.2] <0.001 34.8 [26.5–43.5] 43.2 [34.5–53.8] 0.001

ARDS, acute distress respiratory syndrome; BMI, body mass index; COPD, chronic obstructive pulmonary
disease. a Data are expressed as mean values ± standard deviation (SD). b Data are expressed as median and
interquartile range.

No significant differences were present in age, sex, body mass index, or smoking
habit between patients and controls. Conversely, significant differences were present for
prevalence of arterial hypertension, diabetes, atrial fibrillation, and chronic obstructive
pulmonary disease (COPD) between patients and controls. As expected, COVID-19 patients
with ARDS showed an increased prevalence of COPD, atrial fibrillation, and routine
markers of inflammation and hypercoagulation.

To assess the importance of gut permeability in the development of COVID-19 severity,
we analyzed two markers of intestinal barrier dysfunction, such as LPS and zonulin. Serum
LPS and zonulin were higher in patients with COVID-19 than in control subjects (Table 1);
in COVID-19 patients with ARDS, LPS and zonulin were significantly higher compared to
COVID-19 patients without ARDS (Table 1 and Figure 1A,B).
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Figure 1. LPS (A), zonulin (B), sNOX2-dp (C), D-dimer (D), albumin (E), and hs-CRP (F) concentra-
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are expressed as median and interquartile range #### < 0.0001; ### < 0.001; ## < 0.01 non-parametric
test (Kruskal–Wallis one-way ANOVA).

To analyze the interplay between oxidative stress and COVID-19 severity, we analyzed
NOX2 levels in patients with and without ARDS. Significant differences were found in base-
line levels of sNOX2-dp between controls and COVID-19 patients (Table 1 and Figure 1C).
The levels of sNOX2-dp were higher in patients with ARDS compared with those without
ARDS (Table 1 and Figure 1C).

In addition, to analyze the interplay between coagulation and inflammation and
COVID-19 severity, we analyzed levels of D-dimer, albumin, and hs-CRP in patients
with and without ARDS. Significant differences were found in baseline levels of D-dimer,
albumin, and hs-CRP between controls and COVID-19 patients (Table 1 and Figure 1D–F).
Among COVID-19, serum concentrations of D-dimer and hs-CRP were higher in patients
with ARDS (Table 1 and Figure 1D,F). Conversely, the serum concentration of albumin was
lower in patients with ARDS compared with those without ARDS (Table 1 and Figure 1E).

Overall, LPS correlated directly with sNOX2dp (Rs = 0.654; p < 0.001), zonulin
(Rs = 0.691; p < 0.001), D-dimer (Rs = 0.675; p < 0.001), and inversely with albumin
(Rs = −0.644; p < 0.001) (Figure 2A–D).

Moreover, NOX2 correlated directly with D-dimer (Rs = 0.525; p < 0.001) and, inversely,
with albumin (Rs = −0.443; p < 0.001).

The ROC curve analyses showed that sNOX2-dp, LPS, zonulin, albumin, and D-
dimer predicted ARDS, with LPS showing the highest AUC (AUC for LPS: 0.760; 95% CI:
0.690–0.821; AUC for NOX2: 0.645; 95% CI: 0.562–0.728; AUC for zonulin: 0.675; 95% CI:
0.600–0.744; AUC for albumin 0.701; 95% CI: 0.627–0.767; AUC for D-dimer 0.685; 95% CI:
0.610–0.753) (Figure 3A–E).
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zonulin (C), albumin (D), and D-dimer (E) against prediction of ARDS. Dotted red line represents
AUC of 0.5.

To further characterize the relationship between serum sNOX2-dp and ARDS in
COVID-19 patients, we divided the COVID-19 cohort according to sNOX2-dp quartiles
(I quartile, n = 44; sNOX2-dp ≤ 28 pg/mL; II quartile, n = 43; sNOX2-dp > 28 and
≤38.9 pg/mL; III quartile, n = 44; sNOX2-dp > 38.9 and ≤50.2 pg/mL; IV quartile, n = 44;
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sNOX2-dp > 50.2 pg/mL). The number of patients with ARDS progressively increased
between the first and fourth quartiles (29%, 35%, 48%, and 59%, respectively; p = 0.024)
(Figure 4A). The AUC of NOX2 quartiles was 0.630 (95% CI: 0.554–0.701), with values ≥ III
quartiles predicting ARDS with a sensitivity of 63% and a specificity of 59% (Figure 4B).
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Moreover, we characterized the relationship between serum LPS and ARDS in COVID-
19 patients by dividing the COVID-19 cohort according to LPS quartiles (I quartile, n = 43;
LPS ≤ 29.4 pg/mL; II quartile, n = 44; LPS > 29.4 and ≤50.3 pg/mL; III quartile, n = 44;
LPS > 50.3 and ≤71.7 pg/mL; IV quartile, n = 44; LPS > 71.7 pg/mL). The number of
patients with ARDS progressively increased between the first and fourth quartiles (19%,
32%, 43%, and 77%, respectively; p < 0.001) (Figure 4C). The AUC of LPS quartiles was
0.739 (95% CI: 0.667–0.802), with values ≥ III quartiles predicting ARDS with a sensitivity
of 70.7% and a specificity of 65% (Figure 4D).

Finally, a multivariable logistic regression analysis showed that the IV quartile of LPS
was independently associated with an increased risk of ARDS, together with low albumin
serum levels and an increased hs-CRP, after adjusting for NOX2, D-dimer, age, sex, and
comorbidities (Table 2).

During a median follow-up of 18 days, 21 patients experienced thrombotic events,
15 with ARDS and 6 without ARDS. Among the 75 patients with ARDS, 15 patients
(20%) experienced thrombotic events in the arterial (n = 7) and venous circulation (n = 8)
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(interquartile range 11–27 days). Patients without ARDS (n = 100) had six (6%) (n = 6)
thrombotic events (in the arterial n = 2 and venous circulation n = 4).

Table 2. Logistic regression analysis: predictors of ARDS in COVID-19 patients.

Variables OR 95% CI p

II quartile LPS vs. I 1.852 0.660 5.202 0.242

III quartile LPS vs. I 2.158 0.772 6.035 0.143

VI quartile LPS vs. I 6.819 2.231 20.843 0.001

Albumin 0.520 0.280 0.966 0.039

hs-CRP 1.079 1.023 1.138 0.005

Of note, patients who experienced a thrombotic event showed higher levels of LPS
than patients without thrombotic events (75.5 [52.2–85.1] vs. 46.4 [26.3–67.6] pg/mL;
p < 0.001). In particular, the number of thrombotic events progressively increased from
the I to the IV quartile of serum LPS (2% in the I, 9% in the II, 9% in the III, and 27% in
the IV quartile, p < 0.001). Univariate logistic regression analyses showed that increased
levels of LPS (OR: 1.037; 95% CI: 1.017–1.057; p < 0.001) and D-dimer (OR: 2.239; 95% CI:
1.1569–3.194; p < 0.001) and decreased levels of albumin (OR: 0.350; 95% CI: 0.178–0.688;
p = 0.002) were associated with increased risk of thrombotic events.

Due to the functional interplay between LPS and albumin, we evaluated the role of the
LPS/albumin ratio as a predictor of thrombotic events. In a multivariable logistic regression
model, both LPS/albumin levels (OR: 1.045; 95% CI: 1.005–1.087; p = 0.029) and D-dimer
(OR: 2.002; 95% CI: 1.369–2.926; p < 0.001) predicted thrombotic events. The ROC curve
analyses showed that the LPS/albumin ratio showed a higher AUC than LPS albumin
alone (LPS/albumin AUC: 0.768; 95% CI: 0.699 to 0.829; p < 0.0001; LPS AUC: 0.745; 95%
CI: 0. 0.673 to 0.808; p < 0.0001; albumin AUC: 0.712; 95% CI: 0. 0.638 to 0.778; p = 0.0003)
(Figure 5).
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In particular, the LPS/albumin ratio > 18.5 showed a sensitivity of 76.2% and a
specificity of 74.7% to detect a thrombotic event. Interestingly, overall, the correlation
between the LPS/albumin ratio and D-dimer was stronger (Rs = 0.687; p < 0.001) than the
correlation between the correlation between LPS and D-dimer (Rs = 0.675; p < 0.001) and
albumin and D-dimer (−0.596; p < 0.001). Dotted red line represents AUC of 0.5.

In Vitro Study

After stimulation with LPS (160 pg/mL), we observed an increase in sNOX2dp, H2O2
production, and FVIII (Figure 6A–C) compared to unstimulated cells.
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Albumin-treated endothelial cells before the stimulation with LPS showed a signif-
icant decrease in NOX2 activation (Figure 6A), H2O2 production (Figure 6B), and FVIII
(Figure 6C) compared to LPS-stimulated cells; this effect was only evident at concentrations
of 5 g/dL.

4. Discussion

The main findings of the present study show that (1) LPS and oxidative stress are
significantly associated with a hypercoagulation state; (2) LPS and NOX2 are inversely
associated with serum albumin; (3) LPS and NOX2 are significantly associated with disease
severity; and (4) LPS/albumin ration significantly predicts thrombotic events.

LPS is a glycolipid component of the outer membrane of Gram-negative gut bacteria
and is composed of carbohydrates and a portion of lipid A [38]. LPS may increase into
systemic circulation depending upon the diet typology; after a high-fat-rich diet, its ele-
vation is associated with enhanced intestinal biosynthesis of apolipoprotein B48, which
serves to transport chylomicrons in the peripheral circulation [39]. Gut dysbiosis and/or
impaired gut barrier dysfunction are key factors in determining LPS translocation into
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systemic circulation with ensuing low-grade endotoxemia and systemic inflammation [39].
In addition to metabolic diseases, systemic infections may contribute to gut dysbiosis and
low-grade endotoxemia, as shown in patients with community-acquired pneumonia and
more recently by COVID-19 [39]. Previous studies suggested that virus binding and entry
into human cells occurs through the angiotensin-converting enzyme 2 (ACE2) receptor,
which also localizes in the gastrointestinal tube [40]. Therefore, SARS-CoV-2 can invade and
propagate in intestinal epithelial cells, weakening the mechanical barrier [41]. Moreover,
the interaction between SARS-CoV-2 and the ACE2 receptor induces deep alterations to the
intestinal microflora at phylogenetic and metabolomic levels [41].

Thus, the present study supports and extends a previous study from our group show-
ing that endotoxemia is detectable in the early phase of COVID-19 disease with a significant
association with D-dimer, suggesting that LPS contributes to the hypercoagulation state
of COVID-19 patients. As above outlined, the increase in LPS in patients with pneumo-
nia may depend on several mechanisms, including gut dysbiosis and/or impaired gut
barrier dysfunction secondary to systemic infection or inflammation. Our previous data,
which are confirmed by the present study, suggest a role for gut barrier dysfunction as
a mechanism accounting for LPS translocation into systemic circulation, as indicated by
the significant increase in zonulin, an indirect marker of gut barrier dysfunction [39], and
its correlation with LPS. However, impaired gut permeability is not the only mechanism
accounting for endotoxemia. Thus, the reduction in albumin may also play a role, as
albumin serves to blunt LPS, hindering its toxic effects. Among the functions of albumin,
its activity as an acute reactant protein largely explains its serum reduction during the
acute phase of the disease [42]. This change may have deleterious clinical effects in several
ways, “in primis”, by favoring LPS toxicity contributing to the systemic inflammation via
LPS-induced overproduction of cytokines such as interleukin 6 or TNF-alpha [43].

Previous reports showed that LPS may elicit a hypercoagulation state acting at the level
of several cell lines, such as platelets, leucocytes, and endothelial cells, that upon activation
are involved in thrombin generation via NOX2-related platelet activation, macrophage
Tissue Factor overexpression and factor VIII, and von Willebrand secretion by endothelial
cells [39,44]. Therefore, oxidative stress leads to the dysregulation of coagulation and
fibrinolysis processes, increasing the risk of thrombus formation [45]. According to our
previous studies, we show significant differences between controls and COVID-19 patients
in NOX2 levels that were higher according to COVID-19 severity. Moreover, we found
a significant association between sNOX2-dp and D-dimer, suggesting a role of NOX2 in
eliciting the hypercoagulation state in these patients.

The clinical consequence of this phenomenon is the worsening of systemic inflamma-
tion with a negative impact on infection progression; in accordance with this hypothesis
is the significant association between LPS and COVID-19 severity, i.e., higher was LPS
and more frequent was the occurrence of ARDS. The reduction in serum albumin is also
important in the context of hypercoagulation of COVID-19. Thus, albumin possesses anti-
coagulant and antiplatelet effects by inhibiting the liver biosynthesis of coagulation factors
or reducing the platelet biosynthesis of eicosanoids [46,47]; experimental studies in hu-
mans demonstrated that albumin supplementation exerts antiplatelet and anticoagulant
effects [27,48,49]. Thus, the concomitant reduction in albumin along with the increase in
LPS is a negative combination of factors that strongly contribute to enhanced thrombin
generation and hypercoagulation and eventually higher thrombotic risk. To investigate this
issue, we analyzed the impact of both variables on the thrombotic risk of our patients and
found that the LPS/albumin ratio was more predictive of thrombotic risk than the single
variable. The combined changes of LPS and albumin could seriously influence thrombotic
outcomes in COVID-19.

Finally, we conducted an in vitro study to confirm the role of the LPS/NOX2 axis in
hypercoagulation and the effect of albumin. LPS increases endothelial oxidative stress and
coagulation biomarkers that were reduced in the presence of albumin (5 g/dL).
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This study has implications. Reduction in LPS or Reduction in LPS could contribute
to lower systemic inflammation and hypercoagulation state; thereby, further study should
be addressed to modulate these two variables in COVID-19. A preliminary study with
albumin supplementation showed a significant reduction in D-dimer, but the sample size
as well as the study methodology did not allow a definite conclusion [49].

Our results could also be applied to several clinical conditions where endotoxemia
and oxidative stress have been recognized as risk factors. Indeed, low-grade endotoxemia
and enhanced oxidative stress have been the most widely investigated as they are associ-
ated with many inflammation-driven conditions, including atherosclerotic cardiovascular
diseases, obesity, liver diseases, and diabetes [50,51].

Finally, in this context, measuring oxidative stress levels by NOX2 could help monitor
and moderate the impact of LPS-related damage.

5. Limitations

This study has some limitations that warrant acknowledgment. Firstly, the sample size
was relatively small, considering the numerous interactions observed among the different
biomarkers analyzed. A larger study is warranted to further explore the relationships
between LPS, NOX2, zonulin, and ARDS in this context. Some AUCs, particularly that of
sNOX2dp in predicting ARDS, were not notably high compared to those for LPS levels.
The reasons for these differing associations were not thoroughly investigated. It is likely
that endotoxemia increases the risk of ARDS through multiple mechanisms, only partially
involving enhanced NOX2-mediated oxidative stress.

We found an increase in circulating levels of zonulin, suggesting dysfunctionality of
the gut barrier. However, further studies are necessary to investigate if factors intrinsic
and/or extrinsic to gut microbiota are involved in low-grade endotoxemia in COVID-19.

Finally, we did not provide experimental evidence that the combination of high LPS
and low albumin enhances the activation of intrinsic and/or extrinsic coagulation pathways
more than a single variable; thereby, further study is necessary to explore this issue.

6. Conclusions

Patients with COVID-19 show a simultaneous increase in LPS and NOX2 activity
associated with a reduction in albumin that may contribute to a hypercoagulation state and
eventually increase the thrombotic risk. Interventional studies to lower LPS, NOX2 activity,
or increase albumin are warranted to assess if this approach may reduce the thrombotic risk.
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