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We apply the theory of semiparametric estimation to a Hong-Ou-Mandel interference experiment with a
spectrally entangled two-photon state generated by spontaneous parametric down-conversion. Thanks to the
semiparametric approach, we can evaluate the Cramér-Rao bound and find an optimal estimator for a particular
parameter of interest without assuming perfect knowledge of the two-photon wave function, formally treated as
an infinity of nuisance parameters. In particular, we focus on the estimation of the Hermite-Gauss components of
the marginal symmetrized wave function, whose Fourier transform governs the shape of the temporal coincidence
profile. We show that negativity of these components is an entanglement witness of the two-photon state.
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Introduction. Two-photon Hong-Ou-Mandel interference
[1–3] is the key effect that enables many quantum tech-
nologies based on photons and their manipulation [4–11].
Its distinctive coincidence dip profile is a signature of the
bosonic nature of the photons and, remarkably, its character-
istic length is dictated by the two-photon wave packet, not
by their wavelength, ensuring stable and reliable operation
even with modest control of the path lengths, thus allowing
for extensions to the multiphoton case [12–19].

This feature derives from a nontrivial dependence of the in-
terferometric signal on the two-photon spectral wave function.
However, since it ultimately relies on a symmetrization oper-
ation [2,20], it is an excellent test bed for verifying the degree
of indistinguishability and spectral purity of two independent
single-photon wave packets [21–34]. However complicated,
this dependence can be inverted to obtain the wave function in
the experiment, but this requires multiple Hong-Ou-Mandel
(HOM) profile acquisitions [20]. With a single acquisition,
some information can nevertheless be extracted, although in
a limited amount [35–37]; this can still be an appropriate
regime for estimating specific quantities relevant to the wave
function.

Applying parameter estimation to such cases benefits from
a generous pinch of salt when it comes to spelling out the
statement of the problem. Even if we wish to isolate one
particular parameter of the wave function, e.g., one of its mo-
ments, the estimation will unavoidably depend on the whole
function, thus requiring, in principle, infinitely many other
parameters for its full description. This apparently unsolvable
problem has an elegant and efficient solution in semiparamet-
ric estimation [38,39].
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In standard parameter estimation, one has to fix a sta-
tistical model, assuming a known dependence of the wave
function from a finite number of parameters. On the contrary,
the theory of semiparametric estimation deals with models
with an infinity of degrees of freedom. The goal is to extract
information about a finite number of parameters of interest,
making as few assumptions as possible on the underlying
model. A prototypical example is the estimation of the mean
of an unknown probability distribution with finite variance
[39]. In the context of quantum technologies, semiparametric
methods have recently been applied to super-resolution imag-
ing [40,41] and a fully quantum generalization of the theory
has been derived [42]. The related task of estimating a small
subset of a finite number of parameters, treating the others as
a nuisance, has also been recently studied in the context of
quantum estimation theory [43,44].

In this Letter, we apply semiparametric methods to estimat-
ing quantities pertinent to the frequency domain, based on the
time profile of the coincidence dip in HOM interferometry.
We show that certain quantities, e.g., certain raw moments,
cannot be successfully estimated due to the Fourier transform
needed to convert between the two domains. However, we find
other interesting quantities, essentially regularized moments,
that can be estimated and also provide useful information on
entanglement of the two-photon state. In light of the possible
applications of the HOM interference for time measurement
[45–47], we demonstrate that semiparametric methods offer
an intriguing solution for model-independent estimation.

Basics of HOM interference. The HOM effect consists of
a two-photon interference occurring when these arrive at the
same time on a beam splitter (BS) with reflectivity R and
transmittivity T = 1 − R from separate ports [1]. This results
in a suppression of the observed coincidence rate C, as mea-
sured by photon detectors at the two BS outputs. The effect is
generally studied by scanning the relative delay τ in the arrival
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times, producing an interference figure C(τ ), modulated from
C(τ ) = C0 for long delays to a minimum achieved for τ = 0:

C(τ ) = C0[1 − v f̃ (τ )], (1)

where v = 2RT/(R2 + T 2). We can write f̃ (τ ) =∫
eiωτ f (ω)dω, in which the function f (ω) is intimately

related to the spectral properties of the emission (see
Supplemental Material [48]).

Semiparametric estimation. The estimation of any parame-
ter θ connected to f (ω) without assuming a specific form for
it implicitly relies on the knowledge of many other parameters
η = [η1, η2, . . . , ηM] needed for describing the spectral func-
tion. An example could be the estimation of one given moment
of f (ω), with all the others acting as nuisance parameters.
Here the problem lies in the fact that M could be too large for
practical purposes, with the genuine semiparametric setting
being achieved when M → ∞. In the standard parametric
approach, it would be natural to try to write the Fisher infor-
mation matrix F of the vector of parameters [θ, η] and obtain
the Cramér-Rao bound (CRB) for an unbiased estimator of θ

by means of its inversion,

�2θ̌ � 1

N
(F−1)θθ , (2)

with N being the number of repetitions of the experiment.
When the dimension of the Fisher matrix M is large, inversion
could be difficult and prone to numerical instabilities, or even
unfeasible in the semiparametric limit due to its large size.
This bound is written in terms of the classical Fisher informa-
tion and thus pertains to a specific choice of the measurement,
and should not be confused with the quantum version, which
is independent of the setting of the experiment.

The theory of semiparametric estimation assists us in ob-
taining an expression for the bound (2) without manipulating
large, formally infinite-dimensional matrices. The evaluation
of the CRB is based on geometrical considerations: instead
of evaluating and inverting the Fisher information matrix of
multiple parameters, the optimal bound is obtained by Hilbert
space methods [38,39]. While the complete details of the the-
ory are quite technical, we rely on the treatment in Sec. II-III
of Ref. [40], which deals with the semiparametric estimation
of the moments of an incoherent light source with an arbitrary
spatial distribution. Here we adopt the same approach, but we
have the time-delay variable τ rather than a spatial distribu-
tion.

Consider a generic parameter defined as θ =∫
f (ω)ϑ (ω)dω, by means of a known function ϑ (ω).

Our aim is to estimate θ relying only on its definition, but
without assuming a particular functional form for f (ω).
Since in practice we have access to the function f̃ (τ ) in the
conjugate domain of times, we can write

θ =
∫

dω ϑ (ω)
1

2π

∫
dτ e−iωτ f̃ (τ )

=
∫

dτ f̃ (τ )ϑ̃ (τ ),

(3)

meaning that the parameter θ can equivalently be determined
by the known function ϑ̃ (τ ) in the time domain. This param-
eter is, strictly speaking, defined by integrating in τ over the

FIG. 1. Coincidence dip profile, normalized to C0 coincidences,
obtained scanning the relative delay between the two photons
when arriving at the BS. The photon pairs are detected through
avalanche photodiodes after passing two interference filters (fourth-
order super-Gaussian profile, 7.3 nm width). The coincidence counts
are collected in 5 s, with C0 = 4653 coinc. The dotted line is the
interpolation; the dashed line is a fit with the function reported in
(see Supplemental Material and Refs. [48,49]).

whole real line, but in practice we will approximate this with
an integral in a finite range [−T, T ], symmetric around 0. In
the following, for convenience, instead of θ we consider the
parameter

θ ′ =
∫

dτ ϑ̃ (τ )
C(τ )

C0

= −v θ +
∫

dτ ϑ̃ (τ ),

(4)

which is more closely related to the experimental data, i.e., the
coincide profile C(τ ).

Formally we can introduce a “detector space” T ⊂ R [40],
which describes the possible settings of the detection: in our
case, the time delay τ ∈ T . We then introduce two mea-
sures on this space, i.e., two ways of weighting the settings:
dμ(τ ) which considers the actual experimental choices, and
a random measure dn(τ ), which accounts for the registered
intensities, and presents Poisson statistics with mean dn̄(τ )
[50]. The semiparametric estimation theory ensures that given
the distribution p(τ ) = dn̄(τ )/dμ(τ ), the CRB is readily
found as

�2θ ′ �
∫

dτ p(τ )[ϑ̃ ′(τ )]2, (5)

without resorting to matrix inversion. In our case, the natural
description of the detector space is a continuous set dμ(τ ) =
dτ , but the data are collected at discrete delays. An interpola-
tion Č(τ ) can then employed, but care must be taken as this is
not a genuine distribution, and simply using an integral would
lead to miscalculating the number of resources N . The correct
expression is found by the analogy with the discrete case (see
Supplemental Material [48]).

Hermite-Gauss parameter estimation. For a straightfor-
ward characterization of f (ω), it would be convenient to
extract its moments, defined as the integrals of ωn f (ω) over
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FIG. 2. Estimation of HG parameters obtained with the semiparametric method from the measured data as a function of the width of the
HG functions determined by ξ . The plots show the estimate for (a) the zero-order one, (b) the second-order term, and (c) the fourth-order
one, which shows a negative region witnessing the presence of entanglement. The shading under the curve indicates the uncertainty on the
estimated parameters.

the frequency space. In this case, the associated semiparamet-
ric estimators are the nth derivative of the Dirac δ function,
according to (3). Since the corresponding experimental esti-
mate would not be a well-defined quantity, the semiparametric
approach cannot be applied in similar instances. Instead, we
can focus on the decomposition of f (ω) in Hermite-Gauss
(HG) functions,

HGn(ω) = e−ξ 2ω2
Hn(ξω), (6)

where Hn(x) is the nth Hermite polynomial and we have

H̃Gn(τ ) = (−i)ne
− τ2

4ξ2 τ n

ξ n+1 [51], and ξ is a positive scale pa-
rameter with units of time. These quantities measure the
contribution of modulating terms in the spectral function
f (ω), with an exponential providing the necessary regularity.
Due to the Hermitianity of f (ω), we expect all odd-n terms
to vanish. The extraction of any particular HG component,
independently of the others by making no assumptions on the
density profile C(τ ), is a semiparametric problem: the abstract
parameter θ will correspond to h2n for different n.

We can exploit the fact that for a separable wave func-
tion, the following condition must hold (see Supplemental
Material [48]):

h2n = (−1)n
∫

HG2n(ω) f (ω) � 0. (7)

The semiparametric estimation of one parameter h2n violating
the positivity condition acts as a witness of spectral entan-
glement. We notice that this is equivalent to observed values

f̃ (τ ) < 0, i.e., C(τ ) > C0, which is a well-known fact [35,52].
However, our approach recasts this entanglement criterion
in different quantitative terms, remarkably, by considering
the whole shape of the interferogram, rather than individual
points.

Results. Our setup is the standard HOM interferometer in
which two photons from a down-conversion crystal (β bar-
ium borate, 3 mm length, degenerate type-I phase matching
at λ = 810 nm) arrive on a beam splitter; this was chosen
with reflectivity R ∼ 2/3, thus setting the visibility in (1) to
v = 0.81. The use of a CW pump makes the wave func-
tion almost monochromatic along , as enforced by energy
conservation, while two interference filters define the wave
function in the ω direction, since the intrinsic bandwidth
of the down-conversion emission, as dictated by the crystal
length, is much wider. The HOM dip profile C(τ )/C0 has
been reconstructed at different points, as shown in Fig. 1.
The delay τ was controlled by means of a translation stage.
The interference figure is collected at a sampling rate of
δτ = 13.4 fs, as reported in Fig. 1, and then interpolated by
means of third-order polynomials. This constitutes the data
set we use for estimation of generalized momenta of the order
of n = 0, 2, 4, seconding the expected symmetry.

In Fig. 2, we plot the semiparametric estimates of hn, as
a function of the parameter ξ , as obtained by the integral
estimator based on the interpolated function: the semipara-
metric method offers reliable estimates, and h4 is the first
to witness the presence of entanglement in the state, taking
negative values for a wide range of ξ .

FIG. 3. Uncertainty on the estimation of HG parameters obtained with a Monte Carlo simulation over 1000 repetitions considering
Poissonian noise to the measured data. The red dotted line shows the relative CRB. The shaded gray area identifies the one in which a
bias can be expected, and may show as a violation of the CRB.
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The corresponding uncertainties are analyzed in Fig. 3,
which show the standard deviation �hn on the estimated pa-
rameters. This is assessed by means of a bootstrap method,
consisting of Monte Carlo repetitions of the experiment, based
on the registered experimental counts; this smoothly accounts
for the contribution to the uncertainty due to the interpolation
step. This reveals that although the curves of the average
values appear regular, a bias occurs, manifesting as a viola-
tion of the semiparametric CRB (5). We hence conclude that
our estimator is not an unbiased estimator of the parameter
since the discrete nature of the original data still affects it
in the interpolation needed to obtain the estimator Č(τ ) for
the continuous density. This means that if we keep spending
resources to increase the precision on the punctual estimates
of the rates C(τi ) without reducing δτ , the approximated pa-
rameter will eventually reveal its difference from the true one.
Our statistical model assumes that uncertainties on the data
are purely statistical, whereas the interpolation is affected by
errors of a different kind. This idea that one needs to balance
between interpolation error and punctual statistical errors is
quite general, and was recently reported in the context of
function estimation with multiple phase measurements [53].

The discrepancy with the CRB depends strongly on the
value of ξ . We can derive an argument illustrating what
the region is in which we can neglect our bias. In fact, the
width of HG2n(ω) increases as ξ is reduced, and the spacing
δτ eventually becomes too large to capture variations—this
effectively imposes a low-pass filter. Since these functions
have no compact support, we cannot use a Shannon-Nyquist
criterion rigorously to evaluate the quality of the sampling;
however, we can take as a guiding principle the fact that
the sampling frequency 1/δτ must exceed the width of the
Gaussian in (6), leading to ξ > δτ/

√
2. Below this value,

we cannot rely on our estimate, even if an interpolation is
used. Conversely, for a target parameter, the bandwidth of the
corresponding function determines what sampling step can be
judged satisfactory. The interval in which h4 witness entan-
glement, on the other hand, is safely outside this unreliability
region, revealing the validity of our witness.

The estimates of the parameters (6) can serve the purpose
of using the HOM profile for the measurement of small time
delays, without resorting to fitting the coincidence curve to
a specific model [45]. Considering an extra delay τ0 shifting
the coincidence curve as f̃ (τ − τ0), we can evaluate what
uncertainty �τ0 can be obtained by measuring the three
Hermite-Gauss parameters h0, h2, or h4. For small shifts,
these can be evaluated as �τ0 = |�hi/∂τ0 hi|τ0=0|, which are
shown in Fig. 4 as a function of ξ . As a general rule, higher
modes provide lower uncertainties, when xi is properly set;
notice that this optimization for h0 is akin to a standard fit
enforcing a Gaussian shape. It should be noted that higher
HG terms would be less reliable: since they consider modu-
lations with shorter periods in τ , they would be more affected
by fluctuations of the level of the signal. Further, since the

FIG. 4. Uncertainty on the estimation of an extra delay τ0 ob-
tained through h0 (blue solid line), h2 (orange dotted line), and h4

(green dash-dotted line) as a function of ξ .

bandwidth of the HG functions grows with the order, finer
sampling could be required. Our analysis shows that with the
collected number of events, one can reduce the statistical un-
certainty to the point where instrumental effects—notably, the
reproducibility of the translation stage movements—become
the main source of error. On the other hand, this technique
requires a complete scan of the coincidence profile, as well as
a calibration step at τ0 = 0, differently from model-dependent
techniques [9].

Conclusions. We have presented a semiparametric analy-
sis of the Hong-Ou-Mandel interference profile. The use of
Fourier transforms curtails the adoption of semiparametric
methods; nevertheless, an analysis in terms of Hermite-Gauss
functions can be effectively carried out. This brings about a
reinterpretation of a standard entanglement witness in terms
of spectral properties. The possible use of this analysis for
delay measurements has been illustrated.

In this respect, tools from statistical classical and quantum
estimation theory have already proven to be extremely useful
for analyzing and engineering metrological schemes based on
HOM interference [9,46,47,54–56]. Accordingly, we expect
that delving into more advanced statistical methods will also
bring further insights to such applications.
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