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Abstract

The pairwise interaction paradigm of graph ma-
chine learning has predominantly governed the
modelling of relational systems. However, graphs
alone cannot capture the multi-level interactions
present in many complex systems and the expres-
sive power of such schemes was proven to be lim-
ited. To overcome these limitations, we propose
Message Passing Simplicial Networks (MPSNs),
a class of models that perform message passing on
simplicial complexes (SCs). To theoretically anal-
yse the expressivity of our model we introduce a
Simplicial Weisfeiler-Lehman (SWL) colouring
procedure for distinguishing non-isomorphic SCs.
We relate the power of SWL to the problem of
distinguishing non-isomorphic graphs and show
that SWL and MPSNs are strictly more power-
ful than the WL test and not less powerful than
the 3-WL test. We deepen the analysis by com-
paring our model with traditional graph neural
networks (GNNs) with ReLU activations in terms
of the number of linear regions of the functions
they can represent. We empirically support our
theoretical claims by showing that MPSNs can
distinguish challenging strongly regular graphs
for which GNNs fail and, when equipped with
orientation equivariant layers, they can improve
classification accuracy in oriented SCs compared
to a GNN baseline.

*Equal contribution 1Department of Computer Science
and Technology, University of Cambridge, UK 2Twitter, UK
3Department of Computing, Imperial College London, UK 4Max
Planck Institute for Mathematics in the Sciences, Leipzig, Ger-
many 5Institute of Natural Sciences and School of Mathemat-
ical Sciences, Shanghai Jiao Tong University, China 6School
of Mathematics and Statistics, University of New South Wales,
Sydney, Australia 7Department of Mathematics and Depart-
ment of Statistics, University of California, Los Angeles, USA.
Correspondence to: Cristian Bodnar <cb2015@cam.ac.uk>,
Fabrizio Frasca <ffrasca@twitter.com>, Yu Guang Wang
<yuguang.wang@mis.mpg.de>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

v5

v7

v6v10 v9

v8

v4

v3

v0

v1

v2

Figure 1. Message Passing with upper and boundary adjacencies
illustrated for vertex v2 and edge (v5, v7) in the complex.

1. Introduction
Graphs are among the most common abstractions for com-
plex systems of relations and interactions, arising in a broad
range of fields from social science to high energy physics.
Graph neural networks (GNNs), which trace their origins
to the 1990s (Sperduti, 1994; Goller & Kuchler, 1996; Gori
et al., 2005; Scarselli et al., 2009; Bruna et al., 2014; Li et al.,
2015), have recently achieved great success in learning tasks
with graph-structured data.

GNNs typically apply a local permutation-invariant func-
tions aggregating the neighbour features for each node, re-
sulting in a permutation equivariant function on the graph
(Maron et al., 2018). The design of the local aggregator is
important: if chosen to be an injective function, the resulting
GNN is equivalent in its expressive power to the Weisfeiler-
Lehman (WL) graph isomorphism test (Weisfeiler & Leman,
1968; Xu et al., 2019b; Morris et al., 2019). Due to their
equivalence to the WL algorithm, message-passing type
GNNs are unable to learn certain tasks on graphs. In partic-
ular, they are limited in their capability of detecting graph
structure such as triangles or cliques (Chen et al., 2020).
While other architectures equivalent to higher-dimensional
k-WL tests have been proposed (Maron et al., 2019), they
suffer from high computational and memory complexity,
and lack the key property of GNNs: Locality.

We tackle this problem by considering local higher-order
interactions. Among many modelling frameworks that have
been proposed to describe complex systems with higher-
order relations (Battiston et al., 2020), we specifically fo-
cus on simplicial complexes, a convenient middle ground
between graphs (which are a particular case of simplicial
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complexes) and more general hypergraphs. Importantly,
they offer strong mathematical connections to algebraic
and differential topology and geometry. The simplicial
Hodge Laplacian (Barbarossa & Sardellitti, 2020; Schaub
et al., 2020), a discrete counterpart of the Laplacian operator
in Hodge–de Rham theory (Rosenberg, 1997), provides a
connection with the theory of spectral analysis and signal
processing on these higher-dimensional domains.

We start by constructing a Simplicial Weisfeiler-Lehman
(SWL) test for distinguishing non-isomorphic simplicial
complexes. Motivated by this theoretical construction, we
propose Message Passing Simplicial Networks (MPSNs),
a message passing neural architecture for simplicial com-
plexes that extends previous approaches such as GNNs and
spectral simplicial convolutions (Bunch et al., 2020; Ebli
et al., 2020). We then show that the proposed MPSN is
as powerful as SWL. Strictly better than the conventional
WL test (Weisfeiler & Leman, 1968), MPSN can be used to
distinguish non-isomorphic graphs. We also show that the
SWL test and MPSN are not less powerful than the 3-WL
test (Cai et al., 1992; Morris et al., 2019).

Moreover, we explore the expressive power of GNNs and
MPSNs in terms of the number of linear regions of the
functions they can represent (Pascanu et al., 2013; Montúfar
et al., 2014). We obtain bounds for the maximal number
of linear regions of MPSNs and show a higher functional
complexity than GNNs and simplicial convolutional neural
networks (SCNNs) (Ebli et al., 2020), for which we provide
optimal bounds that might be of independent interest. Proofs
are presented in the Appendix.

2. Background
In this section, we focus on introducing the required back-
ground on (oriented) simplicial complexes. We assume
basic familiarity with GNNs and the WL test.

Definition 1 (Nanda (2021)). Let V be a non-empty vertex
set. A simplicial complex K is a collection of nonempty
subsets of V with the property that it is closed under taking
subsets and it contains all the singleton subsets of V .

A member σ = {v0, . . . , vk} ∈ K with cardinality k + 1 is
called a k-dimensional simplex or simply a k-simplex. Geo-
metrically, one can see 0-simplices as vertices, 1-simplices
as edges, 2-simplices as triangles, and so on (see Figure 1).

Definition 2 (Boundary incidence relation). We say σ ≺ τ
iff σ ⊂ τ and there is no δ such that σ ⊂ δ ⊂ τ .

This relation describes what simplices are on the boundary
of another simplex. For instance vertices {v1}, {v2} are on
the boundary of edge {v1, v2} and edge {v5, v7} is on the
boundary of triangle {v5, v6, v7}.

In algebraic topology (Nanda, 2021) and discrete differen-

tial geometry (Crane et al., 2013), it is common to equip the
simplices in a complex with an additional structure called
an orientation. An oriented k-simplex is a k-simplex with
a chosen order for its vertices. They can be uniquely rep-
resented as a tuple of vertices (v0, . . . , vk). A simplicial
complex with a chosen orientation for all of its simplicies is
called oriented. We note that mathematically, the choice of
orientation is completely arbitrary.

Intuitively, orientations describe a walk over the vertices
of a simplex. For instance an edge {v1, v2} has two orien-
tations (v1, v2) and (v2, v1), conveying a movement from
v1 to v2 and from v2 to v1, respectively. Similarly, triangle
{v0, v1, v2} has six possible orientations given by all the
permutations of its vertices. However, some of these, like
(v0, v1, v2) and (v2, v0, v1), or (v0, v2, v1) and (v2, v1, v0),
are equivalent, because (ignoring the starting point) they
describe the same clockwise or counter-clockwise move-
ment over the triangle. These two equivalence classes can
be generalised to simplices of any dimension based on how
the vertices are permuted (see Hatcher (2000) for details).

Definition 3. An oriented k-simplex is positively oriented
if its vertices form an even permutation and negatively ori-
ented otherwise.

If K is oriented, we can equip ≺ with this additional in-
formation. Consider two oriented simplices with τ ≺ σ
and dim(σ) > 1. We say τ and σ have the same orien-
tation τ ≺+ σ if τ shows up in some even permutation
of the vertices of σ. Otherwise, we have τ ≺− σ. Edges
(vi, vj) are a special case and we have vj ≺+ (vi, vj) and
vi ≺− (vi, vj). The oriented boundary relations ≺+,≺−
can be encoded by the signed boundary matrices. The k-th
boundary matrix Bk ∈ RSk−1×Sk has entries Bk(i, j) = 1
if τi ≺+ σj , −1 if τi ≺− σj and 0, otherwise, where
dim(σj) = k, dim(τi) = k − 1, and Sk denotes the num-
ber of simplices of dimension k. Similarly, the boundary
relation ≺ is encoded by |Bk|, the unsigned version of the
matrixBk. The k-th Hodge Laplacian of the simplicial com-
plex (Lim, 2015; Barbarossa & Sardellitti, 2020; Schaub
et al., 2020), a diffusion operator for signals defined over
the oriented k-simplices is defined as

Lk = B>k Bk +Bk+1B
>
k+1. (1)

We note that L0 gives the well-known graph Laplacian.

3. Simplicial WL Test
The deep theoretical link between the WL graph isomor-
phism test and message passing GNNs are well known (Xu
et al., 2019b). We exploit this connection to develop a
simplicial version of the WL test with the ultimate goal of
deriving a message passing procedure that can retain the ex-
pressive power of the test. We call this simplicial colouring
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algorithm Simplicial WL (SWL). We outline below the steps
of SWL in the most general sense.

1. Given a complex K, all the simplices σ ∈ K are ini-
tialised with the same colour.

2. Given the colour ctσ of simplex σ at iteration t, we com-
pute the colour of simplex σ at the next iteration ct+1

σ ,
by perfectly hashing the multi-sets of colours belonging
to the adjacent simplices of σ.

3. The algorithm stops once a stable colouring is
reached. Two simplicial complexes are considered non-
isomorphic if the colour histograms at any level of the
complex are different.

A crucial choice has to be made about what simplices are
considered to be adjacent in step two. The incidence relation
from Definition 2 can be used to construct four types of
(local) adjacencies. While all these adjacencies show up in
graphs in some form, only one of them is typically used due
to the lack of simplices of dimension above one.

Definition 4. Consider a simplex σ ∈ K. Four types of
adjacent simplices can be defined:

1. Boundary adjacencies B(σ) = {τ | τ ≺ σ}.
2. Co-boundary adjacencies C(σ) = {τ | σ ≺ τ}.
3. Lower-adjacencies N↓(σ) = {τ | ∃δ, δ ≺ τ ∧ δ ≺ σ}
4. Upper-adjacencies N↑(σ) = {τ | ∃δ, τ ≺ δ ∧ σ ≺ δ}

To see how these adjacencies are already present in graphs,
we provide a few examples. The boundary simplices of an
edge are given by its vertices. The co-boundary simplices
of a vertex are given by the edges they are part of. The
lower-adjacent edges are given by the common line-graph
adjacencies. Finally, upper adjacencies between vertices
give the regular graph adjacencies.

Let us use these adjacencies to precisely define the multi-
sets of colours used in the update rule of SWL in step two.

Definition 5. Let ct be a colouring of SWL for the simplices
in K at iteration t. We define the following multi-sets of
colours, corresponding to each type of adjacency:

1. ctB(σ) = {{ctτ | τ ∈ B(σ)}}.
2. ctC(σ) = {{ctτ | τ ∈ C(σ)}}.
3. ct↓(σ) = {{(ctτ , ctσ∩τ ) | τ ∈ N↓(σ)}}
4. ct↑(σ) = {{(ctτ , ctσ∪τ ) | τ ∈ N↑(σ)}}

Note that in the last two types of adjacencies, for adjacent
simplices σ and τ , we also include the colour of the common
simplex on their boundary (i.e. σ ∩ τ ) and the common
simplex they are both on the boundary of (i.e. σ ∪ τ ),
respectively.

Finally, we obtain the following update rule, which contains

the complete set of adjacencies:

ct+1
σ = HASH{ctσ, ctB(σ), ctC(σ), ct↓(σ), ct↑(σ)}.

Starting from this formulation, we will now show that cer-
tain adjacencies can be removed without sacrificing the
expressive power of the SWL test in terms of simplicial
complexes that can be distinguished.

Theorem 6. SWL with HASH
(
ctσ, c

t
B(σ), ct↑(σ)

)
is as

powerful as SWL with the generalised update rule
HASH

(
ctσ, c

t
B(σ), ctC(σ), ct↓(σ), ct↑(σ)

)
.

We note that other possible combinations of adjacencies
might also fully preserve the expressive power of the general
SWL test. Additionally, this result comes from a (theoreti-
cal) colour-refinement perspective and it does not imply that
the pruned adjacencies cannot be useful in practice.

However, this particular choice presents two important prop-
erties that make it preferable over other potential ones. First,
by not considering lower adjacencies, the test has a com-
putational complexity that is linear in the total number of
simplicies in the complex. These computational aspects
are discussed in more detail in Section 4. Second, when
the test is applied to 1-simplicial complexes, i.e. graphs,
and only vertex colours are considered, SWL corresponds
to the WL test. This is due to the fact that vertices have
no boundary simplices and upper adjacencies are the usual
graph adjacencies between nodes.

Figure 2. Two graphs that cannot be distinguished by 1-WL, but
have distinct clique complexes (the second contains triangles).

Clique Complexes and WL The clique complex of a
graph G is the simplicial complex K with the property
that if nodes {v0, . . . vk} form a clique in G, then simplex
{v0, . . . vk} ∈ K. In other words, every (k + 1)-clique in
G becomes a k-simplex in K. Evidently, this is an injective
transformation from the space of non-isomorphic graphs to
the space of non-isomorphic simplicial complexes. There-
fore, the SWL procedure can be used to distinguish a pair
of non-isomorphic graphs, by comparing their clique com-
plexes. We call this a lifting transformation. By taking this
pre-processing step, we can link the expressive powers of
WL and SWL:

Theorem 7. SWL with a clique complex lifting is strictly
more powerful than WL.

We present in Figure 2 a pair of graphs that cannot be distin-
guished by the WL test, but whose clique complexes can be
distinguished by SWL.
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Figure 3. Rook’s 4x4 graph and the Shrikhande graph: Strongly
Regular non-isomorphic graphs with parameters SR(16,6,2,2). Our
approach can distinguish them: only Rook’s graph (left) possesses
4-cliques (orange) and thus the two graphs are associated with
distinct clique complexes. The 3-WL test fails to distinguish them.

By applying SWL to clique-complexes, even harder exam-
ples of non-isomorphic graph pairs can be told apart. One
such example is the pair of graphs reported in Figure 3. This
pair corresponds to the smallest pair of Strongly Regular
non-isomorphic graphs with same parameters SR(16,6,2,2).
Our approach can distinguish the two graphs while the 3-WL
test fails, which is due to the fact that the two are associ-
ated with distinct clique complexes. This illustrates that
our approach is no less powerful than the 3-WL test. The
following theorem confirms this observation.

Theorem 8. SWL is not less powerful than 3-WL.

4. Message Passing Simplicial Networks
MPSN We propose a message passing model using the
following message passing operations based on the four
types of messages discussed in the previous section. For a
simplex σ in a complex K we have:

mt+1
B (σ) = AGGτ∈B(σ)

(
MB
(
htσ, h

t
τ

))
(2)

mt+1
C (σ) = AGGτ∈C(σ)

(
MC
(
htσ, h

t
τ

))
(3)

mt+1
↓ (σ) = AGGτ∈N↓(σ)

(
M↓
(
htσ, h

t
τ , h

t
σ∩τ
))

(4)

mt+1
↑ (σ) = AGGτ∈N↑(σ)

(
M↑
(
htσ, h

t
τ , h

t
σ∪τ
))
. (5)

Then, the update operation takes into account these four
types of incoming messages and the previous colour of the
simplex:

ht+1
σ = U

(
htσ,m

t
B(σ),mt

C(σ),mt+1
↓ (σ),mt+1

↑ (σ)
)
.

(6)
To obtain a global embedding for a p-simplicial complex
K from an MPSN with L layers, the readout function takes
as input the multi-sets of colours corresponding to all the
dimensions of the complex:

hK = READOUT({{hLσ}}dim(σ)=0, . . . , {{hLσ}}dim(σ)=p).

Orientations in Message Passing If the underlying com-
plex also has a particular orientation, the message, aggregate,

update and readout functions can be parametrised to use this
information. More specifically, they can make use of the
relative orientations between adjacent simplices, which can
be ±1. The relative orientations of the neighbours of the
i-th k-simplex are given by the non-zero entries in Bk(·, i)
(boundary adjacencies), Bk+1(i, ·) (co-boundary adjacen-
cies), B>k Bk(i, ·) (lower adjacencies), and Bk+1B

>
k+1(i, ·)

(upper adjacencies). For the last two adjacencies, the ma-
trix multiplications encode how two adjacent simplices are
oriented with respect to the lower- or higher-dimensional
simplex they share, respectively.

Expressive Power by WL We now describe expressive
power of MPSNs in relation to SWL and WL. First, we
need to analyse the ability of MPSNs to distinguish non-
isomorphic simplicial complexes.

Lemma 9. MPSNs are at most as powerful as SWL in
distinguishing non-isomorphic simplicial complexes.

One may wonder whether MPSN can achieve the power of
SWL. The answer is affirmative:

Theorem 10. MPSNs with sufficient layers and injective
neighbourhood aggregators are as powerful as SWL.

This theorem, combined with Theorem 7, provides an im-
portant corollary showing that MPSNs are not only suitable
for statistical tasks on higher-dimensional simplicial com-
plexes, but could potentially improve over standard GNNs
on graph machine learning tasks.

Corollary 11. There exists an MPSN that is more powerful
than WL at distinguishing non-isomorphic graphs when
using a clique-complex lifting.

In particular, based on Theorem 6, it is sufficient for such an
MPSN to use boundary and upper adjacencies. This result
relies on MPSN’s ability of mapping multi-sets of colours
injectively and the fact that neural networks that can learns
such functions for multi-sets of bounded size exist (Xu et al.,
2019b; Corso et al., 2020).

Relation to Spectral Convolutions GNNs are also
known for their relationship with spectral convolution op-
erators on graphs obtained via graph Laplacian (Hammond
et al., 2011). Analogously to this, we show MPSNs gener-
alise certain spectral convolutions on graphs derived from
the higher-order simplicial Hodge Laplacian. The deriva-
tion and a more detailed discussion about simplicial spectral
convolution are deferred to Appendix C.

Theorem 12. MPSNs generalise certain spectral convolu-
tion operators (Ebli et al., 2020; Bunch et al., 2020) defined
over simplicial complexes.

Equivariance and Invariance We now discuss how MP-
SNs handle the symmetries present in simplicial complexes.
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We offer here a high-level view of how these manifest and
postpone a more rigorous treatment of both symmetries for
Appendix D.

Generalising GNNs, MPSN layers are equivariant with re-
spect to relabelings of simplices in the complex.
Theorem 13 (Informal). An MPSN layer is (simplex) per-
mutation equivariant.

Additionally, if the complex is oriented, from a mathemat-
ical point of view, the choice of orientation is irrelevant.
Therefore, MPSNs should be equivariant with respect to
changes in the orientation of the complex. Intuitively, this
amounts to changes in the signature of the boundary matri-
ces Bk and the signature of the features.
Theorem 14 (Informal). Consider an MPSN layer with a
message function that multiplies the features of the neigh-
bours by their relative orientation (i.e. ±1). If the mes-
sage, aggregate and update functions are odd (i.e. f(x) =
−f(−x)), the layer is orientation equivariant.

To construct an invariant model with respect to these sym-
metries, it suffices to stack multiple equivariant layers like
the ones above and to use an appropriate invariant readout
function (more in Appendix D).

Message Passing Complexity A d-simplex σ of a p-
complex has d+ 1 boundary simplices and there are

(
d+1
2

)
upper adjacencies between them. Then, a message pass-
ing procedure relying on Theorem 6, which considers
only these adjacencies, has a computational complexity
Θ
(∑p

d=0(d+ 1)Sd +
(
d+1
2

)
Sd
)

= Θ
(∑p

d=0

(
d+1
2

)
Sd
)
. If

we consider p to be a small constant, which is common for
many real-world datasets, then the binomial coefficients can
be absorbed in the bound, which results in a linear computa-
tional complexity in the size of the complex Θ(

∑p
d=0 Sd).

Including co-boundaries does not increase this complexity,
but lower adjacencies do. Because any d-complex can be
down adjacent to any other d-complex, the worst case com-
plexity is quadratic in the size of the complexO(

∑p
d=0 S

2
d).

Clique Complex Complexity The number of k-cliques
in a graph with n nodes is upper-bounded byO(nk) and they
can be listed in O(a(G)k−2m) time (Chiba & Nishizeki,
1985), where a(G) is the arboricity of the graph (i.e. a
measure of graph sparsity) and m is the number of edges.
Since the arboricity can be shown to be at most O(m1/2)
and m ≤ n2, all k-cliques can be listed in O(nk−2m).
In particular, all triangles can be found in O(m3/2). For
certain classes, such as planar graphs, where a(G) ≤ 3, the
complexity becomes linear in the size of the graph. Overall,
the fact that the algorithm takes advantage of the sparsity
of the graph makes its complexity strictly better than the
Ω(nk) of all k-GNNs (Morris et al., 2019; 2020b; Maron
et al., 2019).

5. Simplicial Networks by Linear Regions
While the WL test has been used for studying the expressive
power of GNNs, other tools have been used to study the
expressive power of conventional neural networks, like fully
connected and convolutional. One such tool is based on the
number of linear regions of networks using piece-wise linear
activations. This number has been used to draw distinctions
between the expressive power of shallow and deep network
architectures (Pascanu et al., 2013; Montúfar et al., 2014).
It can also be related to the approximation properties of the
networks (Telgarsky, 2016) and it has also been considered
to shed light into the representational power of (standard)
convolutional networks (Xiong et al., 2020). We show how
this tool can also be used to approximate the number of
linear regions of the functions represented by graph, simpli-
cial, and message passing simplicial networks. We focus on
the case where the message function is a linear layer and
AGG is sum followed by ReLU. We obtain new results in
all cases, showing superior capacity of MPSNs. The details
of the proofs of Theorems 15, 16, and 19 are relegated to
Appendix B.

GNN We start with the simple case of Graph Neural Net-
works (GNNs). A graph G = (V,E, ω) is a set of triplets
with vertices V = {vi}S0

i=1, edges E ⊆ V × V , and edge
weight function ω : E → R. The graph has an adjacency
matrix A with the (i, j)th entry aij = ω(vi, vj). Each
node has a d-dimensional feature, and we collect the feature
vectors into a matrix H in ∈ RS0×d. We consider a GNN
convolutional layer of the form

Hout = ψ
(
H(A,H in)W0

)
, (7)

where ψ is the entry-wise ReLU,H(A,H) is an aggregation
mapping, and W0 ∈ Rd×m are the trainable weights.

Theorem 15 (Number of linear regions of a GNN layer).
Consider a graph G with S0 nodes, node input features of
dimension d ≥ 1, and node output features of dimension
m. Suppose the aggregation functionH as function of H is
linear and invertible. Then, the number of linear regions of
the functions represented by a ReLU GNN layer (7) has the
optimal upper bound

RGNN =

(
2

d−1∑
i=0

(
m− 1

i

))S0

. (8)

This applies to aggregation functions with no trainable pa-
rameters including GCN convolution (Kipf & Welling, 2017),
spectral GNN (Defferrard et al., 2016; Bruna et al., 2014),
and traditional message passing (Gilmer et al., 2017).

The above result should be compared with the optimal up-
per bound for a standard dense ReLU layer without biases,
which for d inputs and m outputs is 2

∑d−1
i=0

(
m−1
i

)
.
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The invertibility condition for the aggregation function H
can be relaxed, but is satisfied by many commonly used
graph convolutions: i) For an undirected graph, the nor-
malised adjacency matrix has non-negative eigenvalues. If
the eigenvalues are all positive, the aggregation function
is invertible. ii) The Fourier transform is the square ma-
trix of eigenvectors, as used in the spectral GNN (Bruna
et al., 2014). When the graph Laplacian is non-singular,
the Fourier transform matrix is invertible. iii) For the trans-
form Φ by graph wavelet basis, Haar wavelet basis or graph
framelets, Φ is invertible in all cases (Xu et al., 2019a; Li
et al., 2020; Zheng et al., 2020a;b; 2021; Wang et al., 2020).
So the bound in Theorem 15 applies to them.

SCNN Simplicial Complex Neural Networks (SCNNs)
were proposed by Ebli et al. (2020). We consider a version
of their model using only the first power of a Laplacian
matrix, generically denoted here by Mn:

Hout
n = ψ

(
MnH

in
n Wn

)
, n = 0, . . . , p. (9)

In this type of layer, the features on simplices of different
dimensions n = 0, 1 . . . , p are computed in parallel.

Theorem 16 (Number of linear regions for an SCNN layer).
Consider a p-dimensional simplicial complex with Sn n-
simplicies for n = 0, 1, . . . , p. Suppose that each Mn is
invertible. Then the number of linear regions of the functions
represented by a ReLU SCNN layer (9) has the optimal
upper bound

RSCNN =

p∏
n=0

(
2

dn−1∑
i=0

(
mn − 1

i

))Sn
, (10)

where, for each of the n-simplices, dn is the input feature
dimension and mn is the number of output features.

The product over n in (10) reflects the fact that the features
over simplices of different dimensions do not interact. The
GNN bound in Theorem 15 is recovered as the special case
of the SCNN bound with p = 0.

It is instructive to compare the SCNN bound in Theorem 16
with the optimal bound for a dense layer. By Roth’s lemma
(Roth, 1934), vec(MnH

in
n Wn) = (W>n ⊗Mn) · vec(H in

n ),
where vec denotes column-by-column vectorization and ⊗
the Kronecker product. Hence, for each n, we can regard
the SCNN layer as a standard layer ψ(Ux) with weight
matrix U = (W>n ⊗ Mn) ∈ R(mnSn)×(Sndn) and input
vector x = vec(H in

n ) ∈ RSndn . Notice that for the SCNN
layer, the weight matrix has a specific structure. A stan-
dard dense layer with Sndn inputs and mnSn ReLUs with
generic weights and no biases computes functions with
2
∑Sndn−1
i=0

(
mnSn−1

i

)
regions.

GNN SCNN MPSN

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Regions over 2D slice ofGNN input space, S=3, d=1, m=3, p=2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Regions over 2D slice ofSCNN input space, S=3, d=1, m=3, p=2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Regions over 2D slice ofMPSN input space, S=3, d=1, m=3, p=2

Figure 4. A 2D slice of the input feature spaces of GNN, SCNN,
MPSN layers with S0 = S1 = 3, S2 = 1 (the complex is a
triangle), d0 = d1 = d2 = 1, m = 3, colored by linear regions of
the represented functions, for a random choice of the weights.

MPSN In our Message Passing Simplicial Network
(MPSN), the features on simplices of different dimensions
are allowed to interact. For a p-dimensional complex, de-
note the set of n-simplices by Sn with Sn = |Sn|. Denote
the n-simplex input feature dimension by dn, and the output
feature dimension by mn = m, n = 0, . . . , p. We consider
an MPSN layer with linear message functions, sum aggre-
gation for all messages and an update function taking the
sum of the messages followed by a ReLU activation. For
each dimension n, the output feature matrix Hout

n equals:

ψ
(
MnH

in
n Wn+UnH

in
n−1Wn−1+OnH

in
n+1Wn+1

)
, (11)

where ψ is an entry-wise activation (s 7→ max{0, s} for
ReLU), Wn ∈ Rdn×mn are trainable weight matrices and
Mn ∈ RSn×Sn , Un ∈ RSn×Sn−1 , and On ∈ RSn×Sn+1

are some choice of adjacency matrices for the simplicial
complex. These could be the Hodge Laplacian matrix Ln
and the corresponding boundary matricesB>n ,Bn+1, or one
of their variants (e.g. normalised).

It is convenient to write the entire layer output in standard
form. Using Roth’s lemma and concatenating over n we
can write (11) as (details in Appendix B)

Hout = ψ(WH in), (12)

where H in = vec([H in
0 |H in

1 | · · · |H in
p ]) ∈ RN , N =∑p

n=0 Sndn, Hout = vec([Hout
0 |Hout

1 | · · · |Hout
p ]) ∈ RM ,

M =
∑p
n=0 Snm, and

W =


W>0 ⊗M0 W>1 ⊗O0

W>0 ⊗U1 W>1 ⊗M1 W>2 ⊗O1

W>1 ⊗U2 W>2 ⊗M2 W
>
3 ⊗O2

. . .

 . (13)

We study the number of linear regions of the function (12)
with ReLU based on the matrix W ∈ RM×N . For each of
the output coordinates i ∈ {1, . . . ,M}, the ReLU splits the
input space RN into two regions separated by a hyperplane
{H in ∈ RN : Wi:H

in = 0} with normal W>i: ∈ RN .

In order to count the total number of regions, we will use re-
sults from the theory of hyperplane arrangements. Zaslavsky
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(1975, Theorem A) shows that the number of regions r(A)
defined by an arrangement A of hyperplanes in RN is

r(A) = (−1)NχA(−1),

where χA is the characteristic polynomial of the arrange-
ment. By virtue of a theorem of Whitney (see Stanley 2004,
Theorem 2.4 and Orlik & Terao 1992, Lemma 2.55), it can
be written as χA(t) =

∑
(−1)|B|tN−rank(B), where the

sum runs over subarrangements B ⊆ A that are central (hy-
perplanes in B have a nonempty intersection), and rank(B)
denotes the dimension spanned by the normals to the hyper-
planes in B. In our case, A is a central arrangement with
normals given by the rows of the matrix W in (13). Hence:

Lemma 17. The number of linear regions of the function
(12) with W ∈ RM×N and ψ being ReLU is equal to

r(A) =
∑

B⊆{1,...,M}

(−1)|B|−rank(WB:),

where WB: denotes the submatrix of rows i ∈ B.

This formula counts the linear regions of any particular
function represented by our layer. Some interesting cases
can be computed explicitly. For instance:

Proposition 18. Consider some K ≤ N . If rank(WB:) =

min{|B|,K} for any B, then r(A) = 2
∑K−1
j=0

(
M−1
j

)
.

We obtain the following bounds.

Theorem 19 (Number of linear regions of an MPSN layer).
With the above settings, the maximum number of linear
regions of the functions represented by a ReLU MPSN layer
(12) is upper bounded by

RMPSN ≤
p∏

n=0

2

dn−1+dn+dn+1−1∑
i=0

(
m− 1

i

)Sn

,

where we set d−1 = dp+1 = 0. We also note the ‘trivial’ up-
per bound, with N :=

∑p
n=0 Sndn and M :=

∑p
n=0 Snm,

RMPSN ≤ 2

N−1∑
j=0

(
M − 1

j

)
.

Moreover, if rank((On)C:) ≥ rank((Mn)C:) for any selec-
tion C of rows and dn+1 ≥ dn, for n = 0, . . . , p− 1, then
for networks with outputs Hout

0 , . . . ,Hout
p−1 we have

RMPSN ≥ RSCNN. (14)

By a more careful analysis of the rank conditions it is pos-
sible to obtain improvements of these bounds in specific
cases, an endeavor that we leave for future work.

We note that the MPSN lower bound (14) surpasses the
SCNN upper bound (10). The GNN bound (8) is a special
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Figure 5. Failure rate on the task of distinguishing SR graphs; log-
scale, the smaller the better. GIN fails to distinguish all graph
pairs in all families.

case of the SCNN bound (10) with p = 0. The regions for
the three network architectures are illustrated in Figure 4
for a complex with S0 = S1 = 3 and S2 = 1, each input
dimension 1 and output dimension m = 3. It shows that
from GNN, SCNN to MPSN the number of linear regions
increases in turn, which is consistent with the theory.

MPSN with Populated Higher-Features We also con-
sider a situation of interest where we are given a simplicial
complex but only vertex features. To still exploit the struc-
ture of the simplicial complex, we can populate the higher
features as linear functions of the vertex features. We show
this strategy can increase the functional complexity, i.e.
RMPSN ≥ RSCNN. See Proposition 32 in Appendix B.

6. Experiments
Strongly Regular Graphs We experimentally validate
our theoretical result on the expressive power of our pro-
posed architecture on the task of distinguishing hard pairs of
non-isomorphic graphs. In particular, similarly to Bouritsas
et al. (2020), we benchmark it on 9 synthetic datasets com-
prising families of Strongly Regular (SR) graphs. Strongly
Regular graphs represent ‘hard’ instances of graph isomor-
phism, as pairs thereof cannot provably be distinguished by
the 3-WL test (we refer readers to Section A.1 for a formal
proof). In the experiments, we consider two graphs to be
isomorphic if the Euclidean distance between their repre-
sentations is below a fixed threshold ε. In particular, each
graph is lifted to a d-dimensional simplicial complex, with
(d+ 1) the size of the largest clique in the family it belongs
to. Lifted graphs are embedded by an untrained MPSN ar-
chitecture parameterised similarly to GIN (Xu et al., 2019b),
which we refer to as Simplicial Isomorphism Network (SIN).
Details are included in Appendix F.

Results are illustrated in Figure 5, where we show perfor-
mance on our isomorphism problem in terms of failure
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Figure 6. Two samples from the two different classes of trajecto-
ries. The two trajectories correspond to approximately orthogonal
directions in the space of harmonic functions of L1 associated with
the two holes.

rate, that is the fraction of non-distinguished pairs. The
experiment is performed for 10 different random weight-
initialisations and we report mean failure rate along with
standard error (vertical error bars). We additionally report
the performance of an MLP model with sum readout on
the same inputs to assess the contribution of message pass-
ing to the disambiguation ability. As it can be observed,
our (untrained) architecture is able to distinguish the ma-
jority of graph pairs in all families, since, in contrast to
standard GNNs, it is able to access information related to
the presence and number of cliques therein. Additionally,
SIN outperforms the strong ‘MLP-sum’ baseline on certain
families, showing the favourable inductive bias intrinsic in
simplicial message passing.

Edge-Flow Classification We now turn our attention to
two applications involving edge flows, which are repre-
sented as signals on oriented simplicial complexes. First,
inspired by Schaub et al. (2020), we generate a synthetic
dataset of trajectories on the simplicial complex in Figure
6, where we treat each triangle as a 2-simplex. All trajec-
tories pass either through the bottom-left or the top-right
corner, thus giving rise to two different classes that we aim
to distinguish. Due to the two holes present in the com-
plex, the trajectories of the two classes approximately cor-
respond to orthogonal directions in the space of harmonic
eigenfunctions of the L1 Hodge-Laplacian (Schaub et al.,
2020). Therefore, we hypothesise, that an orientation in-
variant MPSN network with orientation equivariant layers
should be able to distinguish the two classes. The dataset
contains 1000 train trajectories and 200 test trajectories. To
make the task more challenging for non orientation invariant
models, all the training complexes use the same orientation
for the edges, while the test trajectories use random orienta-
tions. More details are in Appendix F.

Additionally, we consider a real-world equivalent of the syn-
thetic benchmark above. Again, we adapt a benchmark from
Schaub et al. (2020) containing ocean drifter trajectories
around the island of Madagascar between years 2011-2018.
To obtain a simplicial complex, we discretise the surface of

Table 1. Trajectory classification accuracy. Models with triangle
awareness and orientation equivariance generalise better.

Method Synthetic Flow Ocean Drifters
Train Test Train Test

GNN L0-inv 63.9±2.4 61.0±4.2 70.1±2.3 63.5±6.0
MPSN L0-inv 88.2±5.1 85.3±5.8 84.6±4.0 71.5±4.1
MPSN - ReLU 100.0±0.0 50.0±0.0 100.0±0.0 46.5±5.7
MPSN - Id 88.0±3.1 82.6±3.0 94.6±0.9 73.0±2.7
MPSN - Tanh 97.9±0.7 95.2±1.8 99.7±0.5 72.5±0.0

the map into a simplicial complex containing a hole in the
center, representing the island. The task is to distinguish
between the clockwise and counter-clockwise flows around
the island. As in the previous benchmark, the presence of
the hole makes the harmonic signal associated with it ex-
tremely important for solving the task. The dataset has 160
train trajectories and 40 test trajectories. As before, the test
flows use random orientations for each trajectory to make
the task more difficult for non-invariant models.

We evaluate multiple MPSN models with lower and up-
per adjacencies, each being orientation invariant. The first
model, MPSN L0-inv, is made invariant from the first layer
by simply using the absolute value of the features and ignor-
ing the relative orientations between simplices. Two other
MPSN models have equivariant layers like in Theorem 14
and use odd activation functions (Id and Tanh). They end
with a final permutation invariant readout layer. The last
MPSN model is similar to the previous two, but uses a ReLU
activation function, which breaks its invariance. We also
consider a GNN baseline operating in the line graph, un-
aware of the triangles. Like the first MPSN baseline above,
it is made invariant by using absolute values.

Results for both benchmarks over 5 seeds are shown in
Table 1. We notice that the GNN’s unawareness of the
triangles makes it perform worse, since it cannot extract the
harmonic part of the signal. The L0-inv model performs
well on both benchmarks, but it generally lags behind the
models that have equivariant layers (i.e. Id and Tanh) and
use a final invariant layer. Among these last two, wee see
that the non-linear model generally performs better. Finally,
we remark the ReLU model perfectly fits the training dataset
of both benchmarks, which use a fixed orientation, but does
not generalise to the random orientations of the test set.

Real-World Graph Classification Finally, we study the
practical impact of considering higher-order interactions
via (non-oriented) clique-complexes and report results for
a few popular graph classification tasks commonly used
for benchmarking GNNs (Morris et al., 2020a). We follow
the same experimental setting and evaluation procedure
described in Xu et al. (2019b). Accordingly, we report
the best mean test accuracy computed in a 10-fold cross-
validation fashion. We employ a SIN model similar to
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Table 2. Graph classification results on the TUDatasets benchmark.
The table contains: dataset details (top), graph kernel methods
(middle), and graph neural networks (bottom).

Dataset Proteins NCI1 IMDB-B IMDB-M RDT-B RDT-M5K

Avg4 27.4 0.05 392.0 305.9 24.8 21.8
Med4 21.0 0.0 119.5 56.0 11.0 11.0

RWK 59.6±0.1 >3 days N/A N/A N/A N/A
GK (k=3) 71.4±0.31 62.5±0.3 N/A N/A N/A N/A
PK 73.7±0.7 82.5±0.5 N/A N/A N/A N/A
WL kernel 75.0±3.1 86.0±1.8 73.8±3.9 50.9±3.8 81.0±3.1 52.5±2.1

DCNN 61.3±1.6 56.6±1.0 49.1±1.4 33.5±1.4 N/A N/A
DGCNN 75.5±0.9 74.4±0.5 70.0±0.9 47.8±0.9 N/A N/A
IGN 76.6±5.5 74.3±2.7 72.0±5.5 48.7±3.4 N/A N/A
GIN 76.2±2.8 82.7±1.7 75.1±5.1 52.3±2.8 92.4±2.5 57.5±1.5
PPGNs 77.2±4.7 83.2±1.1 73.0±5.8 50.5±3.6 N/A N/A
Natural GN 71.7±1.0 82.4±1.3 73.5±2.0 51.3±1.5 N/A N/A
GSN 76.6 ± 5.0 83.5 ± 2.0 77.8 ± 3.3 54.3 ± 3.3 N/A N/A

SIN (Ours) 76.5 ± 3.4 82.8 ± 2.2 75.6 ± 3.2 52.5 ± 3.0 92.2 ± 1.0 57.3 ± 1.6

that employed in the SR graph experiments. We lift the
original graphs to 2-complexes by considering 3-cliques
(triangles) as 2-simplices (see Appendix F for more details).
The performance of SIN are reported in Table 2, along with
those of graph kernel methods (RWK (Gärtner et al., 2003),
GK (Shervashidze et al., 2009), PK (Neumann et al., 2016),
WL kernel (Shervashidze et al., 2011)) and other GNNs
(DCNN (Atwood & Towsley, 2016), DGCNN (Zhang et al.,
2018), IGN (Maron et al., 2018), GIN (Xu et al., 2019b),
PPGNs (Maron et al., 2019), Natural GN (de Haan et al.,
2020), GSN (Bouritsas et al., 2020)). We observe that our
model achieves its best results on the IMDB datasets, which
have the largest mean and median number of triangles. In
contrast, on datasets like NCI1, where the number of higher-
order structures is close to zero, the model shows the same
mean accuracy as GIN. Overall, we observe SIN to perform
on-par with other GNN approaches.

7. Discussion and Conclusion
Provably Powerful GNNs In order to overcome the lim-
ited expressive power of standard GNN architectures, sev-
eral works have proposed variants inspired by the higher-
order k-WL procedures (see Appendix). Maron et al. (2019)
introduced a model equivalent in power to 3-WL, Mor-
ris et al. (2019) proposed k-GNNs, graph neural networks
equivalents of set-based k-WL tests. By performing mes-
sage passing on all possible k-tuples of nodes and across
non-local neighborhoods, these models trade locality of
computation for expressive power, and thus suffer from high
spatial and temporal complexities. Local k-WL variants
were introduced by Morris et al. (2020b), and distinguish
local and global neighbors. The authors also propose prov-
ably powerful neural counterparts. Although more efficient,
in contrast to our method, this approach still accounts for
all possible node k-tuples in a graph. An alternative ap-
proach to improving GNN expressivity has been adopted
in (Bouritsas et al., 2020), where isomorphism counting
of graph substructures is employed as a symmetry break-
ing mechanism to disambiguate neighbours. Similarly to

ours, this approach retains locality of operations; however,
message passing is only performed at the node level.

Beyond Pairwise Interactions We note that other graph
lifting transformations could also be used for applying SWL
and MPSNs to graph domains. While clique complexes
are the commonest such transformation, many others exist
(Ferri et al., 2018) and they could be used to emphasise mo-
tifs that are relevant for the task (Milo et al., 2002). More
broadly, the transformation could target a much wider out-
put space such as cubical complexes (Kaczynski et al., 2004)
(see Appendix E), or cell complexes (Hatcher, 2000), for
which a message passing procedure has already been pro-
posed (Hajij et al., 2020). One can study even more flexible
structures described by incidence tensors (Albooyeh et al.,
2020), which can also encode simplicial complexes. Alter-
natively, if the goal is to learn higher-order representations,
one could also do so in an unsupervised manner directly
from pairwise interactions (Cotta et al., 2020) or by ex-
plicitly modelling subgraphs (Alsentzer et al., 2020). We
conclude this part by mentioning a large body of work on
neural networks for hypergraphs, which subsume simplicial
complexes (Yadati et al., 2019; Feng et al., 2019; Zhang
et al., 2020; Yadati, 2020). However, none of these study
their expressive power in relationship to the WL hierarchy.

Conclusion We introduce a provably powerful message
passing procedure for simplicial complexes relying on local
higher-order interactions. We motivate our message pass-
ing framework by the introduction of SWL, a colouring
algorithm for simplicial complex isomorphism testing, gen-
eralising the WL test for graphs. We prove that when graphs
are lifted in the simplicial complex space via their clique
complex, SWL and MPSNs are more expressive than the
WL test. We also analyse MPSNs through the lens of sym-
metry by showing they are simplex permutation equivariant
and can be made orientation equivariant. Furthermore, we
produce an estimate for the number of linear regions of
GNNs, SCNNs and MPSNs, which also reveals the superior
expressive power of our model. We empirically confirm
these results by distinguishing between challenging non-
isomorphic SR graphs, on real-world graph classification
benchmarks, on edge flow classification tasks, and by com-
puting 2D slices through the linear regions of the models.
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