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Abstract
This research considers the descent path of a space vehicle, from periselenium of its operational orbit to the lunar surface. 
The trajectory is split in two arcs: (a) approach, up to a specified altitude, and (b) terminal descent and soft touchdown. For 
phase (a), a new locally flat near-optimal guidance is used, which is based on iterative projection of the spacecraft position 
and velocity, and availability of closed-form expressions for the related costate variables. Attitude control is aimed at pursuing 
the desired spacecraft orientation, and uses an adaptive tracking scheme that compensates for the inertia uncertainties. Arc 
(b) is aimed at gaining the correct vertical alignment and low velocity at touchdown. For phase (b) a predictive bang-off-
bang guidance algorithm is proposed that is capable of guaranteeing the desired final conditions, while providing the proper 
allocation of side jet ignitions. Actuation of side jets is implemented using pulse width modulation, in both phases. Monte 
Carlo simulations prove that the guidance and control architecture at hand drives the spacecraft toward safe touchdown, in 
the presence of non-nominal flight conditions.

Keywords Lunar descent and landing · Guidance and control of space vehicles · Planetary probes

1 Introduction

In recent years, human and robotic missions to the Moon 
are attracting a renewed interest by the scientific commu-
nity, and some lunar missions are planned in this decade. 
The development of a safe and reliable guidance and control 
architecture for autonomous lunar descent and soft touch-
down represents a challenging and crucial issue for enabling 
in situ operations, with the prospect of establishing a perma-
nent lunar settlement.

The problem of guiding a spacecraft to safely land on 
the Moon, reaching the lunar surface with desired (small) 

velocity and adequate attitude, dates to the space-race years. 
Luna 9, the first spacecraft to succeed in surviving a lunar 
landing, relied on a simple guidance scheme, consisting 
in a single attitude maneuver at 8300 km of altitude and a 
powered descent phase, initiated at 75 km of altitude and 
terminated at 5 m of altitude [1]. This ensured touchdown 
with a velocity ranging between 4 and 7 m/s along the local 
vertical direction [2]. More sophisticated solutions were rap-
idly developed during the Apollo program, with the Apollo 
11 and the following missions relying on an explicit descent 
guidance, developed by Klumpp [3]. He designed the land-
ing trajectory as a sequence of two phases: (i) breaking and 
approach phase (near-optimal in the breaking arc), and (ii) 
terminal-descent phase, which was a hybrid automatic-man-
ual solution. Since then, Apollo-like algorithms were pro-
posed, and found a great benefit from the rapid development 
of computational capabilities in the last 50 years. Recent 
contributions on the study of guidance and control tech-
niques tailored to lunar descent and touchdown are due to 
Chomel and Bishop [4], who proposed a targeting algorithm 
based on generating a two-dimensional trajectory, used as a 
reference for three-dimensional guidance. Lee [5] assumed a 
continuous time-varying thrust profile and referred to a nom-
inal trajectory similar to that used in the Apollo 11 mission, 
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capable of guaranteeing safe touchdown conditions, together 
with acceptable fuel consumption, which was a free param-
eter in Klumpp’s guidance. The effects of external torques 
and limited thrust magnitude on the powered descent arcs 
was recently examined by Reynolds and Mesbahi [6], who 
designed a maneuver evolving onto an inertially fixed plane, 
similarly to what occurred in the Luna 9 mission. Hull [7] 
investigated optimal guidance for quasi-planar lunar descent 
with thrust throttling over a flat Moon. Several mission-ori-
ented publications dealt with effective terrain-relative navi-
gation techniques [8, 9], able to provide the measurements 
needed for a successful touchdown, or investigated solutions 
that include hazard detection and avoidance [10, 11]. With 
regard to the terminal descent and touchdown phase, Rijesh 
et al. [12] proposed a purely geometrical solution, which 
ensures soft touchdown and is an adaptation of the circular 
guidance formulated by Vincent [13].

This research considers the descent path of a space vehi-
cle, from periselenium of its operational orbit to the lunar 
surface, under the assumption that the descent path is planar. 
Although this can be regarded as a restrictive assumption, 
the terminal-descent path is nearly planar in real mission 
scenarios. The parking orbit about the Moon is properly 
selected in the preceding phases of the mission, and lies in 
an orbital plane that contains the expected landing site. It is 
worth remarking that along a two-dimensional trajectory, 
attitude motion is identified by a single angle. The descent 
trajectory is split in two arcs: (a) approach path, up to a 
specified altitude, and (b) terminal descent and soft touch-
down. For phase (a), a new local-flat near-optimal guid-
ance is used, which is based on iterative projection of the 
spacecraft position and velocity. A minimum-time problem 
is defined using the locally flat coordinates, and consists in 
finding the optimal thrust direction that minimizes the time 
of flight for achieving the desired conditions at the end of 
phase (a). Attitude control is aimed at pursuing the desired 
spacecraft orientation. This study employs an adaptive track-
ing scheme that compensates for the inertia uncertainties. 
Arc (b) is aimed at gaining the correct vertical alignment and 
low velocity and angular rate at touchdown. For phase (b) 
a predictive bang-off-bang guidance algorithm is proposed 
aimed at guaranteeing the desired final conditions, while 
providing the proper allocation of side jet ignitions. While 
the main motor is employed for decelerating the landing 
vehicle, side jets are used to gain the correct attitude and 
simultaneously reduce the horizontal velocity. Actuation of 
side jets is implemented using pulse width modulation, in 
both phase (a) and phase (b). Monte Carlo simulations are 
run, with the intent of demonstrating the effectiveness of 
the guidance, control, and actuation architecture at hand for 
lunar descent and safe touchdown, in the presence of non-
nominal flight conditions related to initial displacements on 
position, velocity, attitude, and angular rate.

2  Spacecraft Dynamics

The descent vehicle is subject to the only gravitational 
attraction of the Moon and is assumed to be equipped with 
a main thruster, aligned with the longitudinal axis, and four 
side jets (arranged in pairs). The main gravitational term 
and the J2 term of the selenopotential are included in the 
dynamical model. Let T and Ftot represent respectively the 
thrust magnitudes supplied by the main engine and by a pair 
of side jets. The mass ratio, denoted with � = m

/
m0 (where 

m0 is the initial mass) obeys �̇� = −nT∕cM − nSJ
/
cSJ , where 

nT ∶= T
/
m0 and nSJ ∶= Ftot

/
m0 . In this study T is constant 

and Ftot decreases exponentially with time due to propellant 
depletion. Symbols cM and cSJ denote the effective exhaust 
velocities of the main thruster and the side jets, respectively. 
Trajectory and attitude equations, reported in the next sub-
sections, govern the spacecraft dynamics.

2.1  Trajectory

The descent trajectory is described in the Moon-centered 
inertial reference frame, associated with the right-hand 
sequence of unit vectors 

(
ĉ1, ĉ2, ĉ3

)
 . Its origin is located at 

the center of the Moon and axes 
(
ĉ1, ĉ2

)
 identify the lunar 

equatorial plane. The initial elliptic orbit is assumed to be 
equatorial, with periselenium aligned with ĉ1 . Since the 
descent path is assumed to be planar, the position can be 
identified by the following two variables: radius r and right 
ascension � , taken counterclockwise from ĉ1 (cf. Fig. 1). The 
spacecraft velocity v

→

  can be projected into the rotating 
frame 

(
r̂, t̂

)
 , where r̂ is aligned with the position vector r

→

 and 
t̂ points toward the local horizontal (and is in the direction 
of the spacecraft motion). The components of v

→

 are denoted 
with 

(
vr, vt

)
 and termed respectively radial and transverse (or 

Fig. 1  Reference frames for trajectory and attitude
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horizontal) component. The descent vehicle is controlled 
through the thrust direction, identified by the angle � , taken 
clockwise from t̂ , as illustrated in Fig. 1. The governing 
equations for 

(
r, �, vr, vt

)
 are

where aT is the instantaneous thrust acceleration, given by 
aT =

(
nT∕�

)
 , whereas � , RM , and J2 are the lunar gravita-

tional parameter, equatorial radius, and oblateness coeffi-
cient, respectively. Descent is assumed to start from perisele-
nium of the lunar orbit, and this allows identifying the initial 
conditions for the four variables 

(
r, �, vr, vt

)
.

2.2  Attitude

This study considers only planar motion in the 
(
ĉ1, ĉ2

)
-plane. 

The spacecraft instantaneous orientation is associated with 
the body frame 

(
x̂b, ŷb, ẑb

)
 , whose origin is in the instantane-

ous center of mass of the vehicle, its axes coincide with the 
principal axes of inertia, x̂b is aligned with the longitudinal 
axis, and ẑb coincides with the axis of rotation (orthogonal 
to 
(
ĉ1, ĉ2

)
 ). Therefore, the spacecraft attitude is identified 

through only angle � (cf. Fig. 1) which identifies the direc-
tion of x̂b and is taken counterclockwise from ĉ1 . The attitude 
equation is given by

where Jz is the moment of inertia of the spacecraft about ẑb 
and Mz is the torque component along the same axis; Mz is 
generated by the torque actuators.

3  Guidance Algorithms

The descent path is split into two arcs: (a) approach phase, 
starting from periselenium of the lunar orbit and ending with 
zero velocity at a specified altitude Hint, and (b) final descent 
and touchdown, from altitude Hint to the lunar surface. The 
junction condition corresponds to hovering at modest alti-
tude. This allows checking the spacecraft instrumentation 
and instantaneous flight conditions, and facilitates the design 
of an abort maneuver, in the presence of unfavorable contin-
gencies. Phase (a) is much longer than arc (b); nevertheless, 
phase (b) is crucial for the purpose of attaining the desired 
conditions at touchdown, i.e. vertical velocity magnitude not 
exceeding 1 m/s, zero horizontal velocity, longitudinal axis 
aligned with the vertical direction, and zero angular velocity. 
Two distinct algorithms are proposed in this work, for the 
two trajectory arcs.

(1)ṙ = vr �̇� =
vt

r
v̇r = −

𝜇

r2
+

v2
t

r
+ aT sin 𝛼 −

3𝜇

2r4
R2
M
J2 v̇t = −

vrvt

r
+ aT cos 𝛼

(2)J̇z�̇� + Jz�̈� = Mz

3.1  Phase (a): Locally‑flat near‑optimal guidance

For the approach phase (a), this research proposes a near-
optimal guidance scheme based on local projection of the 

spacecraft position and velocity. The guidance algorithm is 
run repeatedly and starts at equally-spaced discrete times {
tk
}
k=0,…,N−1

 . The symbol ΔtS denotes the sampling time 
interval, i.e. ΔtS = tk+1 − tk (k = 1,… ,N − 2) ; the last inter-
val is shorter, because the guidance and control algorithm 
stops when the desired conditions are reached with satisfac-
tory accuracy. At time tk , the spacecraft position and velocity 
r
→

 and v
→

 are denoted with r
→k

 and v
→k

 , and are associated with (
rk, �k, vr,k, vt,k

)
. Let 

(
x̂k, ŷk

)
 denote two unit vectors obtained 

from 
(
ĉ1, ĉ2

)
 through a counterclockwise rotation about ĉ3 

axis by angle �k . The locally flat variables 
(
x, y, vx, vy

)
 are 

introduced, with values at tk corresponding to the compo-
nents of r

→k
 and v

→k
 along 

(
x̂k, ŷk

)
 , i.e.

The locally flat variables are governed by the following 
equations of motion [9]

where angle � identifies the thrust direction in 
(
x̂k, ŷk

)
 , g 

denotes the (local) gravitational acceleration, and ãT is the 
thrust acceleration. In the context of locally flat coordinates, 
a different symbol is used for the latter variable, because a 
fundamental assumption on ãT will be proven to lead to fur-
ther remarkable analytical developments. Using 

(
x, y, vx, vy

)
, the desired conditions at the end of phase (a) are

where �M and RM denote respectively the lunar rotation rate 
and radius. The final condition on vy,f  considers the modest 
inertial velocity of a point on the lunar surface (at equator).

The optimal thrust angle � is sought that minimizes the 
time of flight needed to fulfill the boundary conditions, 
while holding the state Eq. (4), i.e.

where “*” denotes the optimal value of the related variable.
The problem at hand admits an analytical solution that 

depends on the initial values of the adjoint vector conjugate 
to the state Eq. (4), if ãT and g are assumed constant in 
Eq. (4). To prove this, a Hamiltonian H and the auxiliary 
function Φ are introduced,

(3)xk = rk yk = 0 vx,k = vr,k vy,k = vt,k

(4)ẋ = vx ẏ = vy v̇x = ãT sin 𝜃 − g v̇y = ãT cos 𝜃

(5)xf = RM + Hint vx,f = 0 vy,f = �MRM

(6)�∗ = argmin
�

tf subject to Eqs. (4) − (5)
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where 
{
�j
}
j=1,…,6

 and 
{
�j
}
j=1,…,5

 are respectvely the adjoint 
variables conjugate to the state Eq. (4) and to the boundary 

conditions (5). The necessary conditions for optimality 
include the boundary conditions for the adjoint variables 
[14],

accompanied by the adjoint equations

The Pontryagin minimum principle leads to expressing 
the control angles in terms of the adjoint variables,

The condition �4,0 = 0 leads to � = ±�∕2 , which implies 
violation of the final conditions, therefore �4,0 ≠ 0 . Hence, 
the closed-form expressions of 

{
�1, �3, �4

}
 can be scaled by 

�4,0 , to yield

(7)H = 𝜆1vx + 𝜆2vy + 𝜆3
(
ãT sin 𝜃 − g

)
+ 𝜆4ãT cos 𝜃

(8)
Φ = tf + �1

[
xf −

(
RM + Hint

)]
+ �2vx,f + �3

(
vy,f − �MRM

)

(9)�1,f = �1 �2,f = 0 �3,f = �2 �4,f = �3

(10)�̇�1 = −
𝜕H

𝜕x
= 0 ⇒ 𝜆1 = 𝜆1,0

(11)�̇�2 = −
𝜕H

𝜕y
= 0 ⇒ 𝜆2 = 𝜆2,0 = 𝜆2,f = 0

(12)�̇�3 = −
𝜕H

𝜕vx
= −𝜆1 ⇒ 𝜆3 = 𝜆3,0 − 𝜆1,0t

(13)�̇�4 = −
𝜕H

𝜕vy
= −𝜆2 ⇒ 𝜆4 = 𝜆4,0 − 𝜆2,0t = 𝜆4,0

(14)

�∗ = argmin
�

H ⇒ sin � = −
�3√

�2
3
+ �2

4

cos � = −
�4√

�2
3
+ �2

4

where �̃�j,0 = 𝜆j,0
/
𝜆4,0 (j = 1, 3) . The analytical expressions 

(15) are used in Eq. (4) and lead to obtaining closed-form 
solutions for all of the state variables [14],

The closed-form expression for y is not reported because 
it is useless in the subsequent steps. The preceding solutions 
for 

{
x, vx, vy

}
 are evaluated at tf  and inserted in the boundary 

conditions, to yield a system of 3 nonlinear equations in 3 
unknowns, i.e. 

{
�̃�1,0, �̃�3,0, tf

}
 . Numerical solvers (such as the 

embedded routine fsolve in Matlab) can be used to find the 
numerical solution of this system in extremely short times 
(on the order of 0.01 s), provided that a proper initial guess 
is supplied. To do this, the analysis described in [14] can be 
used. A suitable first-attempt solution is proven to be [14]

where �(G)
0

 and �(G)
f

 are two guess values for the thrust angle 
� at t0 and tf  , respectively; in this work, �(G)

0
= 180 deg and 

�
(G)

f
= 120 deg . The first value corresponds to a thrust direc-

tion pointing against the instantaneous velocity (at t0).
The guidance algorithm repeats the preceding solu-

tion process at each sampling time tk , which becomes the 
initial time t0 of the optimal control problem. The final 
time tf  can be regarded as the time-to-go, and will be 
denoted with tgo hence forward. However, constant values 
of g and ãT are needed in each guidance interval 

[
tk, tk+1

]
 , 

which has duration ΔtS . For the gravitational acceleration, 
the initial value is chosen, i.e. g = �

/
r2
k
 . Instead, for the 

(15)

sin 𝜃 = −
�̃�3,0 − �̃�1,0t√(
�̃�3,0 − �̃�1,0t

)2
+ 1

cos 𝜃 = −
1√(

�̃�3,0 − �̃�1,0t
)2

+ 1

(16)
x = x0 +

(
vx,0 −

ãT

�̃�1,0

√
1 + �̃�2

3,0

)
t − g

t2

2
−

ãT

�̃�2
1,0

[
�̃�3,0 − �̃�1,0t

2

√
1 +

(
�̃�3,0 − �̃�1,0t

)2
]

−
ãT

2�̃�2
1,0

sinh−1
(
�̃�3,0 − �̃�1,0t

)
+

ãT

�̃�2
1,0

[
�̃�3,0

2

√
1 + �̃�2

3,0
+

1

2
sinh−1

(
�̃�3,0

)]

(17)

vx = vx,0 − gt +
ãT

�̃�1,0

[√
1 +

(
�̃�3,0 − �̃�1,0t

)2
−
√

1 + �̃�2
3,0

]

(18)vy = vy,0 +
ãT

�̃�1,0

[
sinh−1

(
�̃�3,0 − �̃�1,0t

)
− sinh−1

(
�̃�3,0

)]

(19)t
(G)

f
=

vy,f − vy,0

ãT

tan 𝜃
(G)

0
− tan 𝜃

(G)

f

sinh−1
(
tan 𝜃

(G)

f

)
− sinh−1

(
tan 𝜃

(G)

0

) �̃�
(G)

1,0
=

tan 𝜃
(G)

0
− tan 𝜃

(G)

f

t
(G)

f

�̃�
(G)

3,0
= tan 𝜃

(G)

0
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thrust acceleration, the average value of aT in 
[
tk, tk+1

]
 is 

employed. Let nk denote the thrust acceleration at tk , given 
by nk = nT

/
�k
(
�k ∶= �

(
tk
))

 . In 
[
tk, tk+1

]
 the thrust accelera-

tion aT equals nkcM
/[
cM − nk

(
t − tk

)]
 . Hence, in 

[
tk, tk+1

]
 the 

constant value ãT is set to

3.2  Phase (b): Predictive bang‑off‑bang guidance

Phase (b) starts at the end of arc (a), and is aimed at reaching 
the lunar surface with low vertical velocity, and zero hori-
zontal velocity and angular rate. The threshold value for vr , 
is denoted with vr,th . This means that the desired velocity at 
touchdown is constrained to [vr,th, 0[.

The main thruster is responsible for decelerating the 
spacecraft. However, especially at the very beginning of 
phase (b), the spacecraft has incorrect alignment, therefore 
it is convenient to use the main thruster for reducing the 
horizontal velocity, provided that x̂b ⋅ v

→k
< 0 . Instead, the 

side jets are used mainly for attitude maneuvering. Yet, when 
the correct alignment is attained, they can be ignited in pair 
(on the same side of the descent vehicle), to reduce the hori-
zontal velocity. The following steps, repeated iteratively at 
each sampling time tk , form the predictive bang-off-bang 
guidance scheme, aimed at identifying the ignition times for 
both the main thruster and the side jets:

1. evaluate the expected radial velocity at tk+1 , v
(E)

r,k+1
 , 

assuming vertical descent and no propulsion in 
[
tk, tk+1

]
;

2. evaluate the expected radial velocity at touchdown, v(E)
r,f

 , 
assuming vertical descent from time tk+1 and thrust 
always on and directed vertically; if touchdown does not 
occur and the altitude starts increasing, set v(E)

r,f
 to infin-

ity;
3. evaluate the direction cosine R11 defined by 

R11 ∶= x̂b ⋅ r̂k , with r̂k denoting the unit vector aligned 
with the radial direction (from the center of the Moon) 
at tk;

4. evaluate 𝜂M ∶= x̂b ⋅ v
→k

;
5. allocate the side jets (for either attitude maneuvering or 

horizontal velocity correction):

a. if 
(
R11 < 0.9

)
or

(||vt,k − 𝜔Mrk
|| < 0.1m∕s

)
 , then 

ignite the side jets for attitude maneuvering;
b. if 

(
R11 > 0.999

)
and

(||vt,k − 𝜔Mrk
|| > 0.1m/s

)
 , then 

ignite the side jets for horizontal velocity correction;

(20)

ãT =
1

ΔtS

tk+1

∫
tk

nkcM

cM − nk
(
t − tk

)dt = −
cM

ΔtS
ln

(
1 −

nk

cM
ΔtS

)

c. if 
(
0.9 ≤ R11 ≤ 0.999

)
and

(||vt,k − 𝜔
M
r
k
|| > 0.1m∕s

)
 , then 

allocate a fraction of the sampling time interval 
to attitude maneuvering, and the rest to horizontal 
velocity correction; the lengths of the two partitions 
of the sampling time interval depend on R11;

d. if 
(
R11 > 0.999

)
and

(||vt,k − 𝜔Mrk
|| ≤ 0.1m∕s

)
 , then 

switch off the side jets;

6. define the ignition of the main engine in 
[
tk, tk+1

]
 , on the 

basis of an hysteretic scheme:

a. either if (thrust was off in 
[
tk−1, tk

]
 and 

vr,th ≤ v
(E)

r,f
≤ 0 ) or 

((
R11 < 0.9

)
and

(
𝜂M ≥ 0

))
 , then 

the main engine is off in 
[
tk, tk+1

]
;

b. either if (thrust was on in 
[
tk−1, tk

]
 and vr,th ≤ v

(E)

r,f
≤ 0 ) 

or 
((
R11 < 0.9

)
and

(
𝜂M < 0

))
 , then the main engine 

is on in 
[
tk, tk+1

]
;

c. either if ( v(E)
r,f

< vr,th ) and 
(
R11 ≥ 0.9

)
 , then the main 

engine is on in 
[
tk, tk+1

]
;

d. either if ( v(E)
r,f

> 0 ) and 
(
R11 ≥ 0.9

)
 , then the main 

engine is off in 
[
tk, tk+1

]
.

The previous conditions in steps (5) and (6) are checked 
sequentially, e.g. if condition (6)b is fulfilled, then the main 
engine is ignited in 

[
tk, tk+1

]
 , and conditions (6)c and (6)d 

need not to be checked. The preceding scheme yields a bang-
off-bang sequence of ignitions for the main thruster and the 
side jets. When the latter are used for attitude maneuvering, 
the attitude control algorithm, in conjunction with pulse 
modulation, identifies the actual ignition times in the time 
interval 

[
tk, tk+1

]
.

4  Attitude Control Algorithm

In this study, Jz and J̇z are not measured, thus the following 
adaptive attitude control algorithm is employed [15]:

in which Mc
z
 is the commanded torque for the torque actua-

tors, 𝛽0 > 0 and 𝛽1 > 0 are constant design gains, �c is the 
commanded attitude angle determined by the guidance algo-
rithm, whereas Ĵz and ̂̇Jz are adaptive parameters, subject to 
the following adaptation law:

(21)
Mc

z
= Ĵzz +

̂̇Jz�̇� where z = �̈�c − 𝛽1ė − 𝛽0e and e = 𝜓 − 𝜓c

(22)

[
̇̂
Jz
̇̇̂
Jz

]
= −𝛾

[
0 z

0 �̇�

]
P

[
e

ė

]
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where 𝛾 > 0 is a design gain, and P is the symmetric posi-
tive definite matrix that satisfies the Lyapunov equation 
�� + �

T
� = −�2×2 , with

The following steps lead to selecting the gains 𝛽0 > 0 
and 𝛽1 > 0 . When Jz = Ĵz, J̇z =

̇̂
Jz , and Mz = Mc

z
 , the atti-

tude closed-loop Eqs. (21)–(22) reduce to

which is a differential  equation of the form 
ë + 2𝜔n𝜁 ė + 𝜔2

n
e = 0 , in which � is the damping ratio, and 

�n is the natural angular frequency. Clearly, � and �n are 
related to �1 and �0 as follows: �1 = 2��n , �0 = �2

n
 . Thus, 

proceeding by trial-and-error the following values are 
selected: � = 0.7 and �n = 4 s−1 , which lead to �0 = 16 
�1 = 5.6 . The gain for the adaptation law is set to � = 100 
on a trial-and error basis.

5  Pulse‑Modulated Actuation

The control torque ( Mz ) is provided by a set of 4 monopro-
pellant thrusters, located in pairs at a distance D∕2 from the 
longitudinal axis of the spacecraft and producing a thrust 
onto the 

(
ĉ1, ĉ2

)
-plane. A pair of thrusters is ignited using the 

pulse width modulation (PWM) technique. PWM converts 
the commanded torque Mc

z
 into the ignition time tON of the 

pulsed thrusters,

where  DC denotes the duty cycle and represents a design 
parameter for the modulator [16], whereas Mmax = DFSJ , 
with FSJ denoting the thrust magnitude provided by each 
side jet. The sign of Mc

z
 determines which pair of side jets is 

ignited. Instead, t(min)

ON
 is the minimum duration of the duty 

cycle, which is a technological specification that depends on 
the maximum operational frequency of the pulsed thrusters 
[17]. Finally, Mmin ∶= DFSJ

(
t
(min)

ON

/
DC

)
 is the minimum 

torque provided by the actuators.

(23)� =

[
0 1

−�0 −�1

]

(24)ë + 𝛽1ė + 𝛽0e = 0

(25)tON =

⎧
⎪⎪⎨⎪⎪⎩

DC if
���Mc

z

��� ≥ Mmax

�Mc
z �

Mmax

DC ifMmin <
���Mc

z

��� < Mmax

0 if
���Mc

z

��� ≤ Mmin

6  Numerical Simulations

The Peregrine lander [18] is selected as the prototypi-
cal vehicle. Although its geometry is more complex, it 
can be modeled as a cylinder, with diameter D of 2 m and 
height of 2 m. Its initial mass and principal moments of 
inertia [19] equal m0 = 1283 kg , Ixx,0 = 1827 kgm2 , and 
Iyy,0 = Izz,0 = 819 kgm2 . At the initial time, the main engine 
provides a thrust of 4730 N, whereas each side jet supplies 
200 N [20]. The respective effective exhaust velocities are 
cM = 3 km∕s and cSJ = 2.158 km∕s . For the main thruster, 
the preceding value corresponds to an average thrust accel-
eration (approximately) equal to 0.5 g0

(
g0 = 9.8m∕s2

)
 . For 

the side jets, decrease of the thrust magnitude due to reduc-
tion of the pressurant gas is modeled, and obeys an exponen-
tial law with time constant equal to 7027 s [21]. The latter is 
a characteristic parameter that depends on the tank volume 
and the fluid properties [22].

At the initial time, the spacecraft travels an elliptic, 
equatorial lunar orbit, with periselenium and aposelenium 
altitudes equal to 15 km and 100 km, respectively. The 
nominal initial attitude corresponds to zero angular veloc-
ity and �0 = −90 deg . Moreover, actuation devices are char-
acterized by the following paramteters: t(min)

ON
= 0.01 s and 

DC = 0.1 s.
The guidance, control, and actuation architecture pro-

posed in this study is tested in the presence of non-nominal 
flight conditions, namely errors in (i) the initial components 
of position and velocity and (ii) initial attitude and angular 
rate. The sampling time interval is set to 5 s for phase (a) 
and 0.2 s for phase (b). The intermediate altitude Hint is set 
to 50 m, whereas the threshold velocity is vr,th ∶= −1m∕s . 
The J2 harmonic of the selenopotential is responsible of fur-
ther deviations from the nominal flight conditions, because 
the guidance algorithm considers only a piecewise constant 
gravitational acceleration. A Monte Carlo campaign, com-
posed of 100 simulations, is run, with the intent of testing 
the G&C methodology at hand. Initial stochastic displace-
ments on the position and velocity variables are assumed, 
with zero mean and the following standard deviations: 
r
(�)

0
= 2 km and v(�)

0
= 50m∕s , where � (�)

0
 denotes the initial 

standard deviation of the generic variable � and  v(�)
0

 repre-
sents the standard deviation on the initial velocity magni-
tude; the random direction of the displacement on the ini-
tial velocity has uniform distribution in the interval [0, 2�] . 
Similarly, the initial attitude is perturbed by introducing 
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stochastic displacements to � and �̇� , with zero mean and 
standard deviations � (�)

0
= 30 deg and �̇� (𝜎)

0
= 10 deg/s.

Figure 2 portrays the time histories (obtained in the MC 
campaign) of altitude and velocity components in phase 
(a), as well as the commanded and actual attitude angles 
�c and � (in a single MC simulation), which are nearly 
indistinguishable for the entire time of flight. The relative 
transverse velocity, illustrated in Figs. 2 and 3, is defined as 
vt,R = vt − �Mr and takes into account the (modest) rotation 
rate of the Moon. Figure 2 depicts the time histories of alti-
tude velocity components, and angular rate 𝜔z (= �̇�) (from 
the MC campaign) in phase (b), whereas Fig. 4 portrays the 

time history of the modulated torque (in a single MC run), 
in phase (b). Finally, Fig. 5 illustrates the zoom on the time 
histories of altitude, velocity components, and angular rate, 
in the last seconds before touchdown.

The final altitude of the center of mass equals 0.95 m, and 
takes into account its actual position inside the descent vehi-
cle. The statistics on the final values at touchdown regard 
the velocity components for both the center of mass and the 
four pads that touch the lunar surface. Tables 1 and 2 report 
these statistics, which unequivocally testify to the excellent 
performance of the guidance, control, and actuation archi-
tecture at hand.

Fig. 2  Time histories of altitude, velocity components, and attitude angle (phase (a))
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7  Concluding Remarks

This work proposes and applies a new guidance, control, 
and actuation architecture for autonomous lunar descent 
and landing. The descent path is split in two phases: (a) 
approach and (b) terminal descent and touchdown. In phase 
(a), an explicit near-optimal guidance, based on the local 
projection of the spacecraft velocity and position, is pro-
posed and applied. A minimum-time problem is defined 
using the locally flat coordinates, and consists in finding the 
optimal thrust direction that minimizes the time of flight for 
achieving the desired hovering conditions at the end of phase 
(a). The optimal control problem is amenable to a closed-
form solution, which is a fundamental prerequisite for the 
guidance implementation as a real-time iterative process. 

Fig. 3  Time histories of altitude, velocity components, and angular rate (phase (b))

Fig. 4  Time history of the torque component, in a single MC simula-
tion (phase (b))
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Availability of closed-form expressions allows translating 
the minimum-time (differential) problem of interest into 
three nonlinear equations in three unknowns. Their numeri-
cal values can be obtained as a real-time process, because 
a suitable guess, related to intuitive dynamical variables, is 
available. The method at hand iteratively yields a closed-
form function of time for the thrust angle, which identifies 
the near-optimal (commanded) thrust direction. The latter 
represents the desired alignment condition for the space-
craft longitudinal axis. This is pursued by the attitude control 

Fig. 5  Zoom on time histories of altitude, velocity components, and angular rate (phase (b))

Table 1  Lunar descent and touchdown: statistics obtained from the 
MC campaign ( Δ�

f
 = mean value of the error on the desired final 

value of � ; � (�)

f
 = standard deviation of the final value of � ; t

f
 = mean 

value of the time of flight; t(�)
f

 = standard deviation of the time of 
flight)

____

Δv
r,f (m∕s)

____

Δv
t,R,f (m∕s)

____

Δ�
f (deg)

____

Δ�̇�
f (deg∕s) t

f
(s)

 − 0.603 1.14 ⋅ 10−2 −2.82 ⋅ 10−3 1.29 ⋅ 10−2 378.3

v
(�)

rf
(m∕s) v

(�)

tf
(m∕s) �

(�)

f
(deg) �̇�

(𝜎)

f
(deg∕s) t

(�)

f
(s)

0.182 5.86 ⋅ 10−2 0.195 0.385 5.8

Table 2  Lunar descent and touchdown: statistics obtained from the MC campaign for the four pads ( Δ�
f
 = mean value of the error on the desired 

final value of � ; � (�)

f
 = standard deviation of the final value of �)

Pad 1 Pad 2 Pad 3 Pad 4 Pad 1 Pad 2 Pad 3 Pad 4
____

Δv
r,f (m∕s)

____

Δv
t,R,f (m∕s)

 − 0.603  − 0.603  − 0.603  − 0.603 1.12 ⋅ 10−2 1.12 ⋅ 10−2 1.12 ⋅ 10−2 1.12 ⋅ 10−2

v
(�)

r,f
(m/s) v

(�)

t,R,f
(m/s)

0.182 0.182 0.184 0.181 5.84 ⋅ 10−2 5.84 ⋅ 10−2 5.85 ⋅ 10−2 5.84 ⋅ 10−2
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system, which includes an adaptive tracking scheme (capa-
ble of compensating for the inertia uncertainties) and side 
jets as actuation devices. Arc (b) is aimed at gaining simul-
taneously (i) correct vertical alignment, (ii) low velocity, and 
(iii) reduced angular rate at touchdown. In phase (b) a pre-
dictive bang-off-bang guidance algorithm is proposed and 
applied to reach the desired final conditions, while providing 
the proper allocation of side jet ignitions. While the main 
thruster is employed for decelerating the landing vehicle, 
side jets are used to gain the correct attitude and simulta-
neously reduce the horizontal velocity. Actuation of side 
jets is implemented using pulse width modulation, in both 
phase (a) and phase (b). Monte Carlo simulations are run, 
and demonstrate the effectiveness of the guidance, control, 
and actuation architecture at hand for lunar descent and safe 
touchdown, in the presence of significant non-nominal flight 
conditions related to initial displacements on position, veloc-
ity, attitude, and angular rate.
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