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Abstract. Parallel learning, namely the simultaneous learning of multiple pat-
terns, constitutes a modern challenge for neural networks. While this cannot be
accomplished by standard Hebbian associative neural networks, in this paper
we show how the multitasking Hebbian network (a variation on the theme of
the Hopfield model, working on sparse datasets) is naturally able to perform
this complex task. We focus on systems processing in parallel a finite (up to
logarithmic growth in the size of the network) number of patterns, mirroring
the low-storage setting of standard associative neural networks. When patterns
to be reconstructed are mildly diluted, the network handles them hierarchic-
ally, distributing the amplitudes of their signals as power laws w.r.t. the pattern
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information content (hierarchical regime), while, for strong dilution, the signals
pertaining to all the patterns are simultaneously raised with the same strength
(parallel regime). Further, we prove that the training protocol (either supervised
or unsupervised) neither alters the multitasking performances nor changes the
thresholds for learning. We also highlight (analytically and by Monte Carlo sim-
ulations) that a standard cost function (i.e. the Hamiltonian) used in statistical
mechanics exhibits the same minima as a standard loss function (i.e. the sum of
squared errors) used in machine learning.

Keywords: machine learning, computational neuroscience,
optimization over networks, systems neuroscience
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1. Introduction

Typically, neural networks have to deal with several inputs occurring at the same time:
for instance, think about automatic driving, i.e. artificial neural networks, where they
have to distinguish and react to different objects (e.g. pedestrians, traffic lights, riders,
crosswalks) that may appear simultaneously. Likewise, when a biological neural network
learns, it rarely has to deal with one single input at a time7: for instance, while trained in
school to learn any single letter, we are also learning about the composition of our alpha-
bets. From this perspective, when stating that neural networks operate in parallel, some
caution on potential ambiguity should be paid. To fix these ideas, let us focus on the
Hopfield model [27], the harmonic oscillator of associative neural networks accomplish-
ing pattern recognition [12, 19]: its neurons indeed operate synergistically in parallel but
with the purpose of retrieving one single pattern at a time, not several simultaneously
[12, 14, 29]. Parallel processing, where multiple patterns are simultaneously retrieved,
cannot be accessible to the standard Hopfield networks as long as each pattern is fully
informative; namely, its vectorial binary representation is devoid of blank entries. On
the other hand, when a fraction of entries can be blank [6], multiple-pattern retrieval
is potentially achievable by the network. Intuitively, this can be explained by noticing
that the overall number of neurons making up the networks—and thus available for
information processing—equals the length of the binary vectors codifying the patterns
to be retrieved. Hence, as long as these vectors contain information in all their entries,
as one pattern is retrieved there will no longer be neurons available for retrieving other
patterns at the same time. Conversely, the multitasking neural networks, introduced in
[7], are able to overcome this limitation, and have been shown to succeed in retrieving
multiple patterns simultaneously just by leveraging the presence of lacunæ in the pat-
terns stored by the network. Their emerging pattern recognition properties have been
extensively investigated at medium storage (i.e. on random graphs above the percol-
ation threshold) [4] and at high storage (i.e. on random graphs below the percolation
threshold) [5], as well as on scale-free [33] and hierarchical [8] topologies.

7 It is enough to note that, should serial learning take place rather than parallel learning, Pavlov’s classical conditioning would not
be possible [6].
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While the study of the parallel retrieval capabilities of these multitasking networks
is now complete, comprehension of their parallel learning capabilities has just started,
and it is the main focus of the present paper. In this regard, it is important to stress that
the Hebbian prescription has been recently revised to turn it from a storing rule (built
on a set of already definite patterns, as in the original Amit–Gutfreund–Sompolinksy
(AGS) theory) into a genuine learning rule (where unknown patterns have to be inferred
by experiencing solely a sample of their corrupted copies), see e.g. [2, 11, 22]8.

In this work, we merge these extensions of the bare AGS theory and use definite pat-
terns, equipped with blank entries, to generate a sparse dataset of corrupted examples:
that is the only information experienced by the network. Given this setting, we aim
to highlight the role of lacunæ density and of the dataset size and quality on the net-
work performancein particular, deepening the way the network simultaneously learns
the patterns hidden behind the supplied examples. In this investigation, we focus on the
low-storage scenario (where the number of definite patterns grows sub-linearly with the
volume of the network) addressing both the supervised and the unsupervised setting.

The paper is structured as follows. In section 2, for the sake of completeness,
we review the multitasking associative network; after briefly summarizing its parallel
retrieval capabilities (section 2.1), we introduce a simple dataset that the network has
to cope with in order to move from the simpler storing of patterns to their learning from
examples (section 2.2). Next, in section 3 we provide an exhaustive statistical-mechanics
picture of the network’s emergent information-processing capabilities by taking advant-
age of Guerra’s interpolation techniques [3, 16, 25]. In particular, focusing on the cost
function (section 3.1), we face the big-data limit (section 3.1.1), we deepen the nature of
the phase transition the network undergoes as ergodicity breaking spontaneously takes
place (section 3.1.2), and we outline phase diagrams, namely plots in the space of the
control parameters where different regions depict different global computational cap-
abilities (section 3.2). Further, in section 3.3 we show how the network’s cost function
(typically used in statistical mechanics) can be strongly related to standard loss func-
tions (typically used in machine learning) to appreciate how parallel learning effectively
lowers several loss functions at once. Finally, in section 4 we summarize the results and
discuss outlooks.

In the appendices we consider several subtleties: in appendix A we provide a more
general setting for the sparse datasets considered in this research9, while in appendix B
we inspect the relative entropies of these datasets. Appendices C and D give details of
the calculations, plots and proofs of the main theorems.

8 While statistical learning theories appeared in the literature a long time ago, see e.g. [1, 23, 32] for the original works and [10,
18, 21, 30] for updated references, the statistical mechanics of Hebbian learning were not deepened in these studies and only
generalization capabilities were addressed [24].
9 In the main text we address the simplest kind of pattern dilution; namely, we just force to be blank the same fraction of their
entries whose position is preserved in the generation of the datasets (hence, whenever the pattern has a zero, in all the examples it
gives rise to, the zero will be kept), while in the appendix we relax this assumption (and blank entries can move along the examples
still preserving their amount). As in the thermodynamic limit the theory is robust w.r.t. these structural details we present as a
main theme the simplest setting and in appendix A the more cumbersome one.
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2. Parallel learning in multitasking Hebbian neural networks

2.1. A preliminary glance at the emergent parallel retrieval capabilities

Hereafter, for the sake of completeness, we briefly review the retrieval properties of the
multitasking Hebbian network in the low-storage regime, while we refer to [7, 9] for an
extensive treatment.

Definition 1. Given N Ising neurons σi =±1 (i = 1, . . .,N), and K random patterns ξµ

(µ= 1, . . .,K), each of length N, whose entries are i.i.d. from

P(ξµi ) =
(1− d)

2
δξµi ,−1+

(1− d)
2

δξµi ,+1+ dδξµi ,0, (2.1)

where δi,j is the Kronecker delta and d ∈ [0,1], the Hamiltonian (or cost function) of the
system reads as

HN (σ|ξ) :=− 1

2N

N,N∑
i,j
i ̸=j

(
K∑
µ=1

ξµi ξ
µ
j

)
σiσj. (2.2)

The parameter d tunes the ‘dilution’ in pattern entries: if d =0 the standard
Rademacher setting of AGS theory is recovered, while for d =1 no information is
retained in these patterns: otherwise stated, these vectors display, on average, a fraction
d of blank entries.

Definition 2. In order to assess the network retrieval performance, we introduce the K
Mattis magnetizations

mµ :=
1

N

N∑
i

ξµi σi, µ= 1, . . .,K, (2.3)

which quantify the overlap between the generic neural configuration σ and the µth
pattern.

Note that the cost function (2.2) can be recast as a quadratic form in mµ, namely

HN (σ|ξ) =−N
2

∑
µ

m2
µ+

1

2N

K,N∑
µ,i=1

(ξµi )
2
, (2.4)

where the last term on the r.h.s. stems from diagonal terms (i = j ) in the sum on the
r.h.s. of equation (2.2); its mean is K(1− d)/2 and in the low-load scenario (i.e. K grows
sub-linearly with N ) can be neglected in the thermodynamic limit N →∞.

As we will explain, the dilution ruled by d is pivotal for the network in order to
perform parallel processing. It is instructive to first consider a toy model handling
just K =2 patterns. Let us assume, for simplicity, that the first pattern ξ1 contains
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information (i.e. no blank entries) solely in the first half of its entries, and the second
pattern ξ2 contains information solely in the second half of its entries; that is,

ξ1 =

ξ11 , . . ., ξ1N/2︸ ︷︷ ︸
∈{−1,+1}

N
2

,0, . . .,0︸ ︷︷ ︸
∈{0}

N
2

 , ξ2 =

0, . . .,0︸ ︷︷ ︸
∈{0}

N
2

, ξ1N/2+1, . . ., ξ
1
N︸ ︷︷ ︸

∈{−1,+1}
N
2

 . (2.5)

Unlike the standard Hopfield reference (d =0), where the retrieval of one pattern
employs all the resources and there is no chance to retrieve any other pattern, not
even partially (i.e. as m1→ 1 then m2 ≈ 0 because patterns are orthogonal for large N
values in the standard random setting), here nor m1 neither m2 can reach the value
1 and therefore the complete retrieval of one of the two still leaves resources for the
retrieval of the other. In this particular case, the minimization of the cost function
HN (σ|ξ) =−N

2

(
m2

1+m2
2

)
is optimal when both the magnetizations are equal to one-

half, that is when they both saturate their upper bound. In general, for an arbitrary
dilution level d, the minimization of the cost function requires the network to be in one
of the following regimes:

• Hierarchical scenario: for values of dilution not too high (i.e. d < dc, vide infra), one
of the two patterns is fully retrieved (say m1 ≈ 1− d) and the other is retrieved to the
largest extent given the available resources, these being constituted by, approximately,
the Nd neurons corresponding to the blank entries in ξ1 (thus, m2 ≈ d(1− d)), and
so on if further patterns are considered.

• Parallel scenario: for large values of dilution (i.e. above a critical threshold dc), the
magnetizations related to all the patterns rise and the signals they convey share the
same amplitude.

In general, in this type of neural network, the pure state ansatz 10 m= (1,0,0, . . .,0),
that is, σi = ξ1i for i = 1, . . .,N , barely works, and parallel retrieval is often favored.
In fact, for K ⩾ 2, at relatively low values of pattern dilution dc and in the zero-noise
limit β→∞, one can prove the validity of the so-called hierarchical ansatz [7] as we
briefly discuss: one pattern, say ξ1, is perfectly retrieved and displays a Mattis magnet-
ization m1 ≈ (1− d); a fraction d of neurons is not involved and is therefore available
for further retrieval, with any remaining pattern, say ξ2, which yields m2 ∼ (1− d)d;
proceeding iteratively, one finds mℓ = dℓ−1(1− d) for ℓ= 1, . . ., K̂ and the overall num-

ber K̂ of patterns simultaneously retrieved corresponds to the employment of all the

resources. Specifically, K̂ can be estimated by setting
∑K̂−1

ℓ=0 (1− d)dℓ = 1, with the cutoff

at finite N as (1− d)dK̂−1 ⩾N−1, due to discreteness: for any fixed and finite d, this

implies K̂ ≲ logN , which can be thought of as a ‘parallel low-storage’ regime of neural
networks. It is worth stressing that, in the above-mentioned regime of low dilution, the
configuration leading to mℓ = dℓ−1(1− d) for ℓ= 1, . . ., K̂ is the one that minimizes the

10 In this state the neurons are aligned with one of the patterns and, without loss of generality, here we refer to µ=1.
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Figure 1. Numerical solutions of the two self-consistent equations (2.7) and (2.8)
obtained for K =2, see [7], as a function of d and for different choices of β: in the
d→ 0 limit the Hopfield serial retrieval is recovered (one magnetization with intens-
ity one and the other locked at zero), for d→ 1 the network ends up in the parallel
regime (where all the magnetizations acquire the same value), while for interme-
diate values of dilution the hierarchical ordering prevails (both the magnetizations
are raised, but their amplitude is different).

cost function. The hierarchical retrieval state m= (1− d)
(
1,d,d2,d3, . . .

)
can also be

specified in terms of neural configuration as [7]

σ∗
i = ξ1i +

K̂∑
ν=2

ξνi

ν−1∏
ρ=1

δξρi ,0 . (2.6)

This organization is stable until a critical dilution level dc is reached, where m1 ∼∑
k>1mk [7]. Beyond that level the network undergoes a rearrangement and a new

organization called a parallel ansatz supplants the previous one. Indeed, for high val-
ues of dilution (i.e. d→ 1) it is immediate to check that the ratio among the vari-
ous intensities of all the magnetizations stabilizes to the value one, i.e. (mk/mk−1)∼
dk−1(1− d)/dk−2(1− d)→ 1; hence, in this regime all the magnetizations are raised with
the same strength and the network is operationally set in a fully parallel retrieval mode:
the parallel retrieval state simply reads m= (m̄)(1,1,1,1, . . .). This picture is confirmed
by the plots shown in figure 1 and obtained by solving the self-consistency equations for
the Mattis magnetizations related to the multitasking Hebbian network equipped with
K =2 patterns that read as [7]

m1 = d(1− d)tanh(βm1)+
(1− d)2

2
{tanh[β (m1+m2)]+ tanh[β (m1−m2)]} , (2.7)

m2 = d(1− d)tanh(βm1)+
(1− d)2

2
{tanh[β (m1+m2)]− tanh[β (m1−m2)]} (2.8)

where β ∈ R+ denotes the level of noise.
We remark that these hierarchical or parallel organizations of the retrieval, beyond

emerging naturally within the equilibrium description provided by statistical mechanics,
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Figure 2. We report two examples of Monte Carlo dynamics until thermalization
within the hierarchical (upper plots, dilution level d =0.2) and parallel (lower plots,
dilution level d =0.8) scenarios, respectively. These plots confirm that the picture
provided by statistical mechanics is actually dynamically reached by the network.
We initialize the network sharply in a pattern as a Cauchy condition (represented
as the dotted blue Dirac delta peaked at the pattern in the second columns) and,
in the first column, we show the stationary values of the various Mattis magnetiz-
ations pertaining to different patterns, while in the second column we report their
histograms achieved by sampling 1000 independent Monte Carlo simulations: start-
ing from a sequential retrieval regime, the network ends up in a multiple retrieval
mode, hierarchical vs parallel depending on the level of dilution in the patterns.

are actually the real stationary states of the dynamics of these networks at work with
diluted patterns as shown in figure 2.

2.2. From parallel storing to parallel learning

In this section, we revise the multitasking Hebbian network [7, 9] in such a way that it
can undergo a learning process instead of a simple storing of patterns. In fact, in the
typical learning setting, the set of definite patterns, hereafter referred to as ‘archetypes’,
to be reconstructed by the network is not available; rather, the network is exposed to
examples, namely noisy versions of these archetypes.

As long as enough examples are provided to the network, this is expected to correctly
form its own representation of the archetypes such that, in further expositions to a new
example related to a certain archetype, it will be able to retrieve it and, since then,
suitably generalize it. This generalized Hebbian kernel has recently been introduced
to encode unsupervised [2] and supervised [11] learning processes and, in the present
paper, these learning rules are modified in order to deal with diluted patterns.

First, let us define the dataset that these networks have to cope with: the arche-
types are randomly drawn from the distribution (2.1). Each archetype ξµ is then used
to generate a set of M µ perturbed versions, denoted as ηµ,a with a= 1, . . .,Mµ and

https://doi.org/10.1088/1742-5468/ad0a86 8
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ηµ,a ∈ {−1,0,+1}N . Thus, the overall set of examples to be supplied to the network is

given by η = {ηµ,a}a=1,...,Mµ

µ=1,...,K . Of course, different ways to sample examples are conceiv-
able: for instance, one can require that the position of blank entries appearing in ξµ is
preserved over all the examples {ηµ,a}a=1,...,Mµ, or one can require that only the number

of blank entries
∑N

i=1 δξµi ,0 is preserved (either strictly or on average). Here, we face the
first case because it requires a simpler notation, but we refer to appendix A for a more
general treatment.

Definition 3. The entries of each example are drawn following

P(ηµ,ai |ξ
µ
i ) =

1+ rµ
2

δηµ,ai ,ξµi
+

1− rµ
2

δηµ,ai ,−ξµi , (2.9)

for i = 1, . . . ,N and µ= 1, . . . ,K. Notice that rµ tunes the dataset quality: as rµ→
1, examples belonging to the µth set collapse on the archetype ξµ, while as rµ→ 0,
examples turn out to be uncorrelated with the related archetype ξµ11.

As we will show in the next sections, the behavior of the system depends on the

parametersM µ and rµ only through the combination
1−r2µ
Mµr2µ

; therefore, as long as the ratio

1−r2µ
Mµr2µ

is µ-independent, the theory is not affected by the specific choice of the archetype.

Thus, for the sake of simplicity, hereafter we will consider r and M independent of
µ and we will pose ρ := 1−r2

Mr2 . Remarkably, ρ acts as an information-content control
parameter [11]: to see this, let us focus on the µth pattern and ith digit, whose related

block is ηµi = (ηµ,1i ,ηµ,2i , . . . ,ηµ,Mi ), the error probability for any single entry is P(ξµi ̸=
0)P(ηµ,ai ̸= ξµi ) = (1− d)(1− rµ)/2 and, by applying the majority rule on the block, we

get P(ξµi ̸= 0)P(sign(
∑
a
ηµ,ai )ξµi =−1) ≈

M≫1

(1−d)
2

[
1− erf

(
1/
√
2ρ
)]
. Thus, by computing

the conditional entropy Hd(ξ
µ
i |η

µ
i ) that quantifies the amount of information needed to

describe the original message ξµi given the related block ηµi , we get

Hd (ξ
µ
i |η

µ
i ) =−

[
1+ d

2
+

1− d
2

erf

(
1√
2ρ

)]
log

[
1+ d

2
+

1− d
2

erf

(
1√
2ρ

)]

−
[
1− d
2
− 1− d

2
erf

(
1√
2ρ

)]
log

[
1− d
2
− 1− d

2
erf

(
1√
2ρ

)]
(2.10)

which is monotonically increasing with ρ. Therefore, with a slight abuse of language, in
the following ρ shall be referred to as dataset entropy.

The available information is allocated in the synaptic coupling among neurons (as in
the standard Hebbian storing), as specified by the following supervised and unsupervised
generalization of the multitasking Hebbian network:

11 Strictly speaking, in this particular model, a minimal correlation still persists as rµ → 0 in the sense that the zeros are always
located at the same entries in the patterns. However, as proved in appendix A, by relaxing this assumption the same emerging
picture is not altered, but it is mathematically more cumbersome.
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Definition 4. Given N binary neurons σi =±1, with i ∈ (1, . . .,N), the cost function
(or Hamiltonian) of the multitasking Hebbian neural network in the supervised
regime is

H(sup)
N,K,d,M,r (σ|η) =−

1

2N

1

(1− d)(1+ ρ)

K∑
µ=1

N,N∑
i,j=1

(
1

Mr

M∑
a=1

ηµ,ai

)(
1

Mr

M∑
b=1

ηµ,bj

)
σiσj.

(2.11)

Definition 5. Given N binary neurons σi =±1, with i ∈ (1, . . .,N), the cost function
(or Hamiltonian) of the multitasking Hebbian neural network in the unsupervised
regime is

H(unsup)
N,K,d,M,r (σ|η) =−

1

2N

1

(1− d)(1+ ρ)

K∑
µ=1

N,N∑
i,j=1

(
1

Mr2

M∑
a=1

ηµ,ai ηµ,aj

)
σiσj. (2.12)

Remark 1. The factor (1− d)(1+ ρ) appearing in (2.11) corresponds to Eξ,E(η|ξ)
[
∑
a
ηµ,ai /(Mr)]2 and it acts as a normalization factor. A similar factor is also inserted

in (2.12).

Remark 2. By direct comparison between (2.11) and (2.12), the role of the ‘teacher’ in the
supervised setting is evident: in the unsupervised scenario, the network has to handle
all the available examples regardless of their archetype label, while in the supervised
counterpart a teacher has previously grouped examples belonging to the same archetype
together (whence the double sum on a= (1, . . .,M) and on b= (1, . . .,M) appearing in
equation (2.11), that is missing in equation (2.12)).

We investigate the model within a canonical framework: we introduce the
Boltzmann–Gibbs measure

P (sup,unsup)
N,K,β,d,M,r (σ|η) :=

exp
[
−βH(sup,unsup)

N,K,d,M,r (σ|η)
]

Z(sup,unsup)
N,K,β,d,M,r (η)

, (2.13)

where

Z(sup,unsup)
N,K,β,d,M,r (η) :=

∑
σ

exp
[
−βH(sup,unsup)

N,K,d,M,r (σ|η)
]

(2.14)

is the normalization factor, also referred to as the partition function, and the parameter
β ∈ R+ rules the broadness of the distribution in such a way that for β→ 0 (infinite
noise limit) all the 2N neural configurations are equally likely, while for β→∞ the
distribution is delta-peaked at the configurations corresponding to the minima of the
cost function.

The average performed over the Boltzmann–Gibbs measure is denoted as

ω
(sup,unsup)
N,K,β,d,M,r [·] :=

2N∑
σ

· P (sup,unsup)
N,K,β,d,M,r (σ|η) . (2.15)
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Beyond this average, we shall also take the so-called quenched average; that is, the aver-
age over the realizations of archetypes and examples, namely over the distributions (2.1)
and (2.9), and this is denoted as

E [·] = EξE(η|ξ) [·] . (2.16)

Definition 6. The quenched free energy of the network at finite network size N reads as

−βF (sup,unsup)
N,K,β,d,M,r =

1

N
E logZ(sup,unsup)

N,K,β,d,M,r (η) . (2.17)

In the thermodynamic limit we pose

F (sup,unsup)
K,β,d,M,r = lim

N→∞
F (sup,unsup)
N,K,β,d,M,r. (2.18)

Definition 7. The network capabilities can be quantified by introducing the following order
parameters, for µ= 1, . . . ,K,

mµ :=
1

N

N∑
i=1

ξµi σi,

nµ,a :=
1

(1+ ρ)r

1

N

N∑
i=1

ηµ,ai σi,

nµ :=
1

M

M∑
a=1

nµ,a =
1

(1+ ρ)r

1

NM

N,M∑
i,a=1

ηµ,ai σi, (2.19)

We stress that, beyond the fairly standard K Mattis magnetizations mµ, which
assess the alignment of the neural configuration σ with the archetype ξµ, we also need
to introduce K empirical Mattis magnetizations nµ, which compare the alignment of the
neural configuration with the average of the examples labeled with µ, as well as K ×M
single-example Mattis magnetizations nµ,a, which measure the proximity between the
neural configuration and a specific example. An intuitive way to see the suitability of
the nµ’s and nµ,a’s is by noticing that the cost functions H(sup) and H(unsup) can be
written as a quadratic form in, respectively, nµ and nµ,a; on the other hand, the mµ’s
do not appear therein explicitly as the archetypes are unknowns.

Finally, notice that no spin-glass order parameters are needed here, since we are
working in the low-storage regime [12, 19].

3. Parallel learning: the picture by statistical mechanics

3.1. Study of the cost function and its related free energy

To inspect the emergent capabilities of these networks, we need to estimate the order
parameters introduced in equation (2.19) and analyze their behavior versus the control
parameters K,β,d,M,r. For this task we need an explicit expression of the free energy
in terms of these order parameters so as to extremize the former over the latter. In this
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section we carry out this investigation in the thermodynamic limit and in the low-storage
scenario by relying upon Guerra’s interpolating techniques (see e.g. [3, 15, 16, 26]): the
underlying idea is to introduce an interpolating free energy whose extrema are the
original model (which is the target of our investigation but we are not able to address
it directly) and a simple one (which is usually a one-body model that we can solve
exactly). We then start by evaluating the solution of the latter and next we propagate
the obtained solution back to the original model by the fundamental theorem of calculus,
integrating on the interpolating variable. Usually, in this last passage, one assumes
replica symmetry, namely that the order-parameter fluctuations are negligible in the
thermodynamic limit as this makes the integral propagating the solution analytical. In
the low-load scenario replica symmetry holds exactly, making the following calculation
rigorous. In fact, as long as K/N → 0 while N →∞, the order parameters self-average
around their means [17, 34], which will be denoted by a bar; that is

lim
N→∞

PN,K,β,d,M,r (mµ) = δ (mµ− m̄µ) , ∀µ ∈ (1, . . .,K) , (3.1)

lim
N→∞

PN,K,β,d,M,r (nµ) = δ (nµ− n̄µ) , ∀µ ∈ (1, . . .,K) , (3.2)

where PN,K,β,d,M,r denotes the Boltzmann–Gibbs probability distribution for the observ-
ables considered. We anticipate that the centers of these distributions are independent
of the training (either supervised or unsupervised) underlying the Hebbian kernel.

Before proceeding, we slightly revise the partition functions (2.14) by inserting an
extra term in their exponents because it allows us to apply the functional generator tech-
nique to evaluate the Mattis magnetizations. This implies the following modification,
respectively, in the supervised and unsupervised settings, of the partition function:

Definition 8. Given the interpolating parameter t ∈ [0,1], the auxiliary field J and the
constants {ψµ}µ=1,...,K ∈ R to be set a posteriori, Guerra’s interpolating partition func-
tion for the supervised and unsupervised multitasking Hebbian networks is given,
respectively, by

Z(sup)
N,K,β,d,M,r(η;J,t)

=
∑
{σ}

ˆ
dµ(zµ)exp

J∑
µ,i

ξµi σi+
tβN(1+ ρ)

2(1− d)
∑
µ

n2µ(σ)+ (1− t)N
2

∑
µ

ψµnµ(σ)

.
(3.3)

Z (unsup)
N,K,β,d,M,r (η;J,t)

=
∑
{σ}

ˆ
dµ(zµ)exp

J∑
µ,i

ξµi σi+
tβN (1+ ρ)

2(1− d)M

K∑
µ=1

M∑
a=1

n2µ,a (σ)+ (1− t)N
∑
µ,a

ψµnµ,a (σ)

.
(3.4)

More precisely, we added the term J
∑

µ

∑
i ξ

µ
i σi that allows us to ‘generate’ the

expectation of the Mattis magnetization mµ by evaluating the derivative w.r.t. J of the
quenched free energy at J =0. This operation is not necessary for Hebbian storing, where
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the Mattis magnetization is a natural order parameter (the Hopfield Hamiltonian can be
written as a quadratic form in mµ, as standard in AGS theory [12]), while for Hebbian
learning (whose cost function can be written as a quadratic form in nµ, not in mµ, as the
network does not directly experience the archetypes) we need such a term as otherwise
the expectation of the Mattis magnetization would not be accessible. This operation
becomes redundant in the M →∞ limit, where mµ and nµ become proportional by
a standard central limit theorem argument (see also section 3.1.1 and [11]). Clearly,

Z(sup,unsup)
N,K,β,d,M,r(η) = limJ→0Z(sup,unsup)

N,K,β,d,M,r(η;J) and these generalized interpolating partition

functions, provided in equations (3.3) and (3.4), respectively, recover the original models
when t =1, while they return a simple one-body model at t =0.

As for the ψµ’s, their role is mimicking, as closely as possible, the true post-synaptic
field perceived by the neurons.

The partition functions (3.3) and (3.4) can be used to define a generalized measure

and a generalized Boltzmann–Gibbs average that we indicate by ω
(sup,unsup)
t [·]. Of course,

when t =1 the standard Boltzmann–Gibbs measure and related averages are recovered.
Analogously, we can also introduce a generalized interpolating quenched free energy as:

Definition 9. The interpolating free energy for the multitasking Hebbian neural network
is introduced as

−βF (sup,unsup)
N,Kβ,d,M,r (J,t) :=

1

N
E
[
lnZ(sup,unsup)

N,K,β,d,M,r (η;J,t)
]
, (3.5)

and, in the thermodynamic limit,

F (sup,unsup)
K,β,d,M,r (J,t) := lim

N→∞
F (sup,unsup)
N,K,β,d,M,r (J,t) . (3.6)

Obviously, by setting t =1 in the interpolating free-energy, we recover the original ones,

namely F (sup,unsup)
K,β,d,M,r (J) = F (sup,unsup)

K,β,d,M,r (J,t= 1), which we finally evaluate at J =0.

We are now ready to state the first theorem:

Theorem 1. In the thermodynamic limit (N →∞) and in the low-storage regime
(K/N → 0), the quenched free energy of the multitasking Hebbian network—trained
under supervised or unsupervised learning—reads as

−βF (sup,unsup)
K,β,d,M,r (J) = E

{
ln

[
2cosh

(
J

K∑
µ=1

ξµ+
β

1− d

K∑
µ=1

n̄µη̂
µ

)]}
− β

1− d
(1+ ρ)

K∑
µ=1

n̄2µ, (3.7)

where E= EξE(η|ξ), η̂
µ =

1

Mr

∑M

a=1
ηµ,ai , and the values n̄µ must fulfill the following

self-consistent equations:

n̄µ =
1

(1+ ρ)
E

{
tanh

[
β

(1− d)

K∑
ν=1

n̄ν η̂
ν

]
η̂µ

}
, ∀µ ∈ (1, . . .,K) , (3.8)

as these values of the order parameters are extremal for the free energy

F (sup,unsup)
K,β,d,M,r (J = 0).
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Corollary 1. By considering the auxiliary field J coupled to mµ and recalling that
lim
N→∞

mµ = m̄µ, we obtain a self-consistent equation also for the Mattis magnetization

as m̄µ =−β∂JF (sup,unsup)
K,β,d,M,r (J)|J=0; thus, we have

m̄µ = E

{
tanh

[
β

(1− d)

K∑
ν=1

n̄ν η̂
ν

]
ξµ

}
, ∀µ ∈ (1, . . .,K) . (3.9)

For the proof of proposition 1 and of corollary 1 we refer to appendix D.1.
We highlight that the expressions of the quenched free energy for a network trained

with or without the supervision of a teacher do actually coincide. Intuitively, this hap-
pens because we are considering only a few archetypes (i.e. we work at low load);
consequently, the minima of the cost function are well separated and there is only a
negligible role of the teacher in shaping the landscape to avoid overlaps in their basins
of attractions. Clearly, this is expected to no longer be true in the high-load setting
and, indeed, it is proven not to hold for non-diluted patterns, where supervised and
unsupervised protocols give rise to different outcomes [2, 11].

The self-consistent equation (3.9) has been solved numerically for several values of
parameters and the results for K =2 and K =3 are shown respectively in figures 3
(where the values of the cost function are also reported) and 4. We also checked the
validity of these results by comparing them with the outcomes of Monte Carlo simu-
lations, finding an excellent asymptotic agreement; further, in the large M limit, the
magnetizations eventually converge to the values predicted by the theory developed in
the storing framework; see equation (2.6). Therefore, in both the scenarios, the hierarch-
ical or parallel organization of the magnetization’s amplitudes are recovered: beyond the
numerical evidence just mentioned, in appendix C an analytical proof is provided.

3.1.1. Low-entropy datasets: the big-data limit. As discussed in section 2.2, the para-
meter ρ quantifies the amount of information needed to describe the original message
ξµ given the set of related examples {ηµ,a}a=1,...,M . In this section we focus on the case
ρ≪ 1 that corresponds to a highly informative dataset; we recall that in the limit ρ→ 0
we get a dataset where either the items (r→ 1) or their empirical average (M →∞,
r finite) coincide with the archetypes in such a way that the theory collapses to the
standard low-load Hopfield reference.

As explained in appendix D.2, we start from the self-consistent equations (3.8)
and (3.9) and we exploit the central limit theorem to write η̂µ ∼ ξµ

(
1+λµ

√
ρ
)
, where

λµ ∼N (0,1). In this way we reach the simpler expressions given by:

Proposition 1. In the low-entropy dataset scenario, preserving the low storage and
thermodynamic limit assumptions, the two sets of order parameters of the theory, m̄µ

and n̄µ, become related by the following equations:

n̄µ =
m̄µ

(1+ ρ)
+β ′ ρn̄µ

(1+ ρ)
Eξ,Z

{[
1− tanh2 (g (β,Z, n̄))

]
(ξµ)2

}
, (3.10)

m̄µ = Eξ,Z {tanh[g (β,ξ,Z, n̄)]ξµ} , (3.11)
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Figure 3. The dependence of the cost function (upper plots) and the magnetiza-
tions (lower plots) on the pattern dilution d is shown, in the noiseless limit β→∞,
for datasets generated by K =2 archetypes and corresponding to different entropies
ρ. Starting at ρ=0.0 we see that the hierarchical regime (black lines) dominates at
a relatively mild dilution value (i.e. the energy pertaining to this configuration is
lower w.r.t. the parallel regime), while for d→ 1 the hierarchical ordering naturally
collapses to the parallel regime (red lines), where all the magnetizations acquire
the same values. Further note how, by increasing the entropy in the dataset (e.g.
for ρ=0.1 and ρ=0.4), the domain of validity of the parallel regime is enlarged
(much as increasing β in the network, see figure 1). The vertical blue lines mark
the transitions between these two regimes as captured by statistical mechanics: it
corresponds to switching from the white to the green regions of the phase diagrams
of figure 6.

where

g (β,ξ,Z, n̄) = β ′
K∑
ν=1

n̄νξ
ν +β ′Z

√√√√ρ
K∑
ν=1

n̄2ν (ξ
ν)2 (3.12)

where Z ∼N (0,1) is a standard Gaussian variable and, to lighten the notation and
assuming d ̸= 1 with no loss of generality, we pose

β ′ =
β

1− d
. (3.13)

The regime ρ≪ 1, beyond being an interesting one (e.g. it can be seen as a big data
M →∞ limit of the theory), offers a crucial advantage because of the above emerging
proportionality relation between n̄ and m̄ (see equation (3.10)). In fact, the model is
supplied only with examples—upon which the nµ’s are defined—while it is not aware
of archetypes—upon which the mµ’s are defined—yet we can use this relation to recast
the self-consistent equation for n̄ into a self-consistent equation for m̄ such that its
numerical solution in the space of the control parameters allows us to get the phase
diagram of such a neural network more straightforwardly.
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Figure 4. Behavior of the Mattis magnetizations as more and more examples
are supplied to the network. Monte Carlo numerical checks at fixed temperature
β=6.66 (colored dots, N =6000) for a diluted network with r =0.1 and K =3 are
in plain agreement with the theory: solutions of the self-consistent equation for the
Mattis magnetizations reported in corollary 1 are shown as solid lines. As the dilu-
tion increases, the network behavior departs from a Hopfield-like retrieval (d =0.1)
where just the blue magnetization is raised (serial pattern recognition) to the hier-
archical regime (d =0.25 and d =0.55) where multiple patterns are simultaneously
retrieved with different amplitudes, while for higher values of dilution the network
naturally evolves toward the parallel regime (d =0.75) where all the magnetizations
are raised and with the same strength. Note also the asymptotic agreement with
the dotted lines, whose values are those predicted by the multitasking Hebbian
storage [7].

Retaining the condition ρ≪ 1, we now seek an estimate of the minimal number of
examples (given the level of noise r, the number of archetypes to handle K, etc) that
guarantee that the network can safely infer the archetype from the supplied dataset. To
obtain these thresholds we have to deepen the ground-state structure of the network;
that is, we now handle equations (3.10) and (3.11) to compute their zero fast-noise limit
(β→∞). As detailed in appendix D.2 (see corollary 2), by taking the limit β→∞ in
equations (3.10) and (3.11) we get

m̄µ = Eξ

erf

( K∑
ν=1

m̄νξ
ν

)(
2ρ

K∑
ν=1

m̄2
ν (ξ

ν)2
)−1/2

ξµ
 . (3.14)

Once we reach a relatively simple expression for m̄µ, we can further manipulate it and
try to get information about the existence of a lower-bound value for M, denoted by
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M⊗, which ensures that the network has been supplied with sufficient information to
learn and retrieve the archetypes.

Setting β→∞, we expect that the magnetizations fulfill the hierarchical organiza-
tion, namely (m̄1, m̄2, . . .) = (1− d)(1,d, . . .) and (3.14) becomes

m̄µ ∼
1− d
2

E
ξν ̸=µ

erf

 dµ+
K∑
ν ̸=µ

dνξν

√
2ρ

√
d2µ+

K∑
ν ̸=µ

d2ν(ξν)2

+erf

 dµ−
K∑
ν ̸=µ

dνξν

√
2ρ

√
d2µ+

K∑
ν ̸=µ

d2ν(ξν)2


 , (3.15)

where we highlight that the expectation is over all the archetypes but the µth one under
inspection.

Next, we introduce a confidence interval, ruled by Θ, and we require that

m̄µ > (1− d)dµ−1erf [Θ] . (3.16)

In order to quantify the critical number of examplesMµ
⊗ needed for a successful learning

of the archetype µ, we can exploit the relation

E
ξν ̸=µ
{erf [f (ξ)]}⩾min

ξν ̸=µ
{erf [f (ξ)]} , (3.17)

where, in our case,

min
ξν ̸=µ
{erf [f (ξ)]}=min

ξν ̸=µ

erf


dµ+

K∑
ν ̸=µ

dνξν

√
2ρ

√
d2µ+

K∑
ν ̸=µ

d2ν (ξν)2

+erf


dµ−

K∑
ν ̸=µ

dνξν

√
2ρ

√
d2µ+

K∑
ν ̸=µ

d2ν (ξν)2




= 2 erf

dµ− K∑
ν ̸=µ

dν

(2ρ K∑
ν=1

d2ν

)−1/2
 . (3.18)

Thus, using the previous relation in (3.16), the following inequality must hold:

erf

[(
dµ−

K∑
ν ̸=µ

dν

)(
2ρ

K∑
ν=1

d2ν
)−1/2

]
= erf

[√
1+ d

2ρ(1− d)
2dµ−1− 1− 2dµ+ dK√

1− d2K

]
> dµ−1erf [Θ]

(3.19)

and we can write:

Proposition 2. In the noiseless limit β→∞ and for relatively small dilutions d < dc(K),
the critical threshold (in the number of required examples) for learning M⊗ depends on
the dataset noise r, the dilution d, the number of archetypes to handle K, and the
chosen confidence interval Θ, and reads as

Mµ
⊗ (Θ, r,d,K)> 2

(
erf−1

[
dµ−1erf [Θ]

])2(1− r2

r2

)
(1− d)

(
1− d2K

)
(1+ d)(2dµ−1− 1− 2dµ+ dK)

2 .

(3.20)
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Figure 5. We plot the logarithm of the critical number of examples (required to
raise the first magnetization) M 1

⊗, evaluated for Θ = 1/
√
2 and for different loads

K = 2,3,4,5, as a function of the dilution of the networks, for different noise values
of the dataset (as shown in the legend). Note the divergent behavior of M 1

⊗ when
approaching the critical dilution level dc(K), as predicted by the parallel Hebbian
storage limit [7, 9]. This is the crossover between the two multitasking regimes,
hierarchical vs parallel; hence, at dc there is no sharp behavior to infer and, consist-
ently, the network cannot accomplish learning. This is confirmed by (3.20) where
the critical amount of examples to correctly infer the archetype is reported: its
denominator, for µ=1, reduces to 1− 2d+ dK and it vanishes when d→ dc.

The choice Θ= 1/
√
2 corresponds to the fairly standard condition EξE(η|ξ)[ξ

1
i hi(ξ

1)]>√
Var[ξ1i hi(ξ

1)] when µ=1, where hi(ξ
1) is the local field acting on a neuron i when

σ = ξ1.

To quantify these thresholds for learning, in figure 5 we report the required number
of examples to learn the first archetype (out of K = 2,3,4,50, as shown in the various
panels) as a function of the dilution of the network.

3.1.2. Ergodicity breaking: the critical phase transition. The main interest in the stat-
istical mechanics approach to neural networks lies in inspecting their emerging capab-
ilities that typically appear once ergodicity breaks down. As a consequence, finding the
boundaries of validity of ergodicity is a classical starting point to deepen these aspects.

For this task, hereafter, we provide a systematic fluctuation analysis of the order
parameters: the underlying idea is to check when, starting from the high-noise limit
(β→ 0, where everything is uncorrelated and simple probabilistic arguments apply
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straightforwardly), these fluctuations diverge, as that defines the onset of ergodicity
breaking as stated in:

Proposition 3. The ergodic region, in the space of the control parameters (β,d,ρ) is
confined to the half-plane defined by the critical line

βc =
1

1− d
, (3.21)

whatever the entropy of the dataset ρ.

Proof. The proof is based on Guerra interpolation, but this time the target observable
is rescaled fluctuations rather than the free energy. The rescaled fluctuations ñ2ν of the
magnetizations are defined as

ñν =
√
N (nν − n̄ν) . (3.22)

We recall that the interpolating framework we are using, for t ∈ (0,1), is defined via

Z (t) =
∑
{σ}

exp

[
β

2
tN (1+ ρ)

K∑
µ=1

n2µ+N (1− t)β (1+ ρ)Nµnµ

]
, (3.23)

and it is a trivial exercise to show that, for any smooth function F (σ), the following
relation holds:

d⟨F ⟩
dt

=
β

2
(1+ ρ)

(
⟨F
∑
ν

ñ2ν⟩− ⟨F ⟩⟨
∑
ν

ñ2ν⟩

)
, (3.24)

such that, by choosing F = ñ2µ, we can write

d⟨ñ2µ⟩
dt

=
β

2
(1+ ρ)

(
⟨ñ2µ
∑
ν

ñ2ν⟩− ⟨ñ2µ⟩⟨
∑
ν

ñ2ν⟩

)

=
β

2
(1+ ρ)

⟨ñ4µ⟩+ ⟨n̄2µ∑
ν ̸=µ

ñ2ν⟩− ⟨ñ2µ⟩2−⟨ñ2µ⟩⟨
∑
ν ̸=µ

ñ2ν⟩


= β (1+ ρ)⟨ñ2µ⟩2 (3.25)

Thus, we have

⟨ñ2µ⟩t =
⟨ñ2µ⟩t=0

1− tβ (1+ ρ)⟨ñ2µ⟩t=0
(3.26)
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where the Cauchy condition ⟨ñ2µ⟩t=0 reads

⟨ñ2µ⟩t=0 =NEξE(η|ξ)

∑
{σ}

 1

N 2 (1+ ρ)
2

∑
i,j

η̃µi η̃
µ
j σiσj + ñ2µ− 2

1

N (1+ ρ)

∑
i

η̂µi σi ñµ

exp

[
β
∑
ν

ñν
∑
i

η̃νi σi

]
∑
{σ}

exp

[
β
∑
ν

ñν
∑
i

η̃νi σi

]

=
1− d
(1+ ρ)

−N 2
µ . (3.27)

Evaluating ⟨ñ2µ⟩t for t =1, we finally get

⟨ñ2µ⟩t=1 =
1− d− (1+ ρ)N 2

µ[
1−β

(
1− d− (1+ ρ)N 2

µ

)] (3.28)

namely the rescaled fluctuations are described by a meromorphic function whose
pole is

β =
1

(1− d− (1+ ρ)N 2
µ)

Nµ=0−−−→ β
C
=

1

1− d
. (3.29)

3.2. Stability analysis via standard Hessian: the phase diagram

The set of solutions to the self-consistent equations for the order parameters (3.10)
describes as candidate solutions a number of different states whose stability must be
investigated to understand which solution is preferred as the control parameters are
made to vary: this procedure results in picturing the phase diagrams of the network.
In order to evaluate the stability of these solutions, we need to check the sign of the
second derivatives of the free energy. More precisely, we need to build up the Hessian,
a matrix A whose elements are

∂2F (n̄)

∂nµ∂nν
=Aµν . (3.30)

Then, we evaluate and diagonalize A at a point ñ, representing a particular solution
of the self-consistency equation (3.10): the numerical results are reported in the phase
diagrams provided in figure 6. Specifically, we find

Aµν = (1+ ρ)
[
[1−β (1− d)]+ ρβE

{
T 2
Kβ,ρ (n̄,z)(ξ

µ)2
}]
δµν +Qµν (3.31)

where we set TKβ,ρ(n̄,z) = tanh

(
β
∑K

λ=1 n̄λξ
λ+ zβ

√
ρ
∑K

λ=1(n̄λξ
λ)2
)

and
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Figure 6. Phase diagram in the dilution-noise (d,β−1) plane for different values ofK
and ρ. We highlight that different regions, marked with different colors, represent
different operational behaviors of the network: in yellow the ergodic solution, in
light-blue the pure state solution (that is, solely one magnetization different from
zero), in white the hierarchical regime (that is, several magnetizations differ from
zero and they all assume different values) and in light-green the parallel regime
(several magnetizations differ from zero but the amplitude is the same for all).

Qµν = βE
{[
T 2
Kβ,ρ (n̄,z)

]
ξµξν

}
(1− δµν)

+ 2ρβ2E
{
[TKβ,ρ (n̄,z)]

[
1−T 2

Kβ,ρ (n̄,z)
]
[n̄νξ

ν + n̄µξ
µ]ξµξν

}
+2ρ2β3n̄µn̄νE

{[
1− 3T 2

Kβ,ρ (n̄,z)
][
1−T 2

Kβ,ρ (n̄,z)
]
(ξµξν)2

}
(3.32)

In order to lighten the notation we will use TK,β,ρ(n̄,z) = TK and we will omit the
subscript whenever TK occurs to be independent of K. We can now inspect the domain
of stability of each possible solution of the self-consistency equation by plugging the
structure of the candidate solution in (3.31).

3.2.1. Ergodic state: n̄ = n̄d,ρ,β(0, . . . ,0). In this case the solution has the form
n̄= m̄= 0; consequently, the Hessian matrix is diagonal and it reads as

Aµν = δµν (1+ ρ) [1−β (1− d)] . (3.33)
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As its eigenvalues are all equal to (1+ ρ)[1−β(1− d)], if we require the matrix to be
positively definite, we must have

d >
β− 1

β
. (3.34)

Therefore, as d > 1−β−1, the ergodic solution is stable; this scenario is reported in the
phase diagrams provided in figure 6 as the yellow region. We stress that this result
in the ergodic region is in plain agreement with the inspection of ergodicity breaking
provided in proposition 3.

3.2.2. Pure state: n̄ = n̄d,ρ,β(1,0, . . . ,0). In this case the structure of the solution has
the form m̄µ = n̄µ = 0 for µ> 1; thus, the only self-consistency equation different from
zero is

n̄=
Eξ,Z [T ξµ]
(1+ ρ)

+β
ρn̄

(1+ ρ)
Eξ,Z

[(
1−T 2

)
(ξµ)2

]
, (3.35)

where T = tanh
[
βn̄ξµ(1+ z

√
ρ)
]
. It is easy to check that A becomes diagonal, with

Aµν =


(1+ ρ)−β (1− d)(1+ ρ) E

[
1−T 2

]
+4β2ρn̄(1− d)E

[
T
(
1−T 2

)]
+2β3ρ2n̄2 (1− d)E

[(
1− 3T 2

)(
1−T 2

)]
if µ= ν

(1+ ρ)−β (1− d)(1+ ρ) E
[
1− (1− d)T 2

]
if µ ̸= ν

. (3.36)

Notice that these eigenvalues do not depend on K since T does not depend on K.
Requiring positivity for all the eigenvalues, we get the region in the plane (d,β−1),
where the pure state is stable: this corresponds to the blue region in the phase diagrams
reported in figure 6.

We stress that these pure state solutions, namely the standard Hopfield-type ones, in
the ground state (β−1→ 0) are never stable whenever d ̸=0 as the multi-tasking setting
prevails. Solely at positive values of β, this single-pattern retrieval state is possible
as the role of the noise is to destabilize the weakest magnetization of the hierarchical
displacement, vide infra).

3.2.3. Parallel state: n̄ = n̄d,ρ,β(1, . . . ,1). In this case, the structure of the solution has
the form of a symmetric mixture state corresponding to the unique self-consistency
equation for all µ= 1, . . .K; namely,

n̄=
Eξ,Z {tanh[g (β,ξ,Z, n̄)]ξµ}

(1+ ρ)
+β

ρn̄

(1+ ρ)
Eξ,Z

{[
1− tanh2 (g (β,ξZ,n̄))

]
(ξµ)2

}
,

(3.37)

where

g (β,ξ,Z, n̄) = βn̄

 K∑
λ=1

ξλ+βZ

√√√√ρ
K∑
λ=1

(
ξλ
)2 . (3.38)
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Then, the matrix A displays the following structure:

A=


a b · · · b b
b a · · · b b
...

...
. . .

...
...

b b · · · a b
b b · · · b a

 (3.39)

with diagonal terms

a= (1+ ρ)−β (1− d)(1+ ρ)+β (1+ ρ) E
[
T 2 (ξµ)2

]
+4β2ρn̄E

[
T
(
1−T 2

)
ξµ
]
+2β3ρ2n̄2E

[(
1− 3T 2

)(
1−T 2

)
(ξµ)2

]
, (3.40)

and off-diagonal terms

b= βE
[
T 2 (ξµξν)

]
+2ρ2β3n̄2E

[(
1− 3T 2

)(
1−T 2

)
(ξµξν)2

]
. (3.41)

This matrix always has only two kinds of eigenvalues, namely a − b and a+(K − 1)b;
thus, for the stability of the parallel state, after computing (3.40) and (3.41), we have
only to check for which point in the (d,β−1) plane both a − b and a+(K − 1)b are
positive. In the phase diagrams of figure 6, the region where the parallel regime is
stable is depicted in green.

3.2.4. Hierarchical state: n̄ = n̄d,ρ,β((1− d),d(1− d),d2(1− d), . . .). In this case the
solution is of the form n̄= n̄d,ρ,β((1− d),d(1− d),d2(1− d), . . .) and the region left
untreated so far in the phase diagram, namely the white region in the plots of figure 6,
is the room left to such hierarchical regime.

3.3. From the cost function to the loss function

We finally comment on the fact that, in the present approach, the quantifiers related to
the assessment of pattern recognition of neural networks, i.e. the Mattis magnetization,
are good quantifiers of the learning process too. The standard cost functions used in
statistical mechanics of neural networks (e.g. the Hamiltonians) can be related one-
to-one to standard loss functions used in machine learning (i.e. the squared-sum error
functions); namely, after introducing the two loss functions L+

µ := (1/2N)||ξµ−σ||2 =
1−mµ and L−

µ = (1/2N)||ξµ+σ||2 = 1+mµ
12, it can immediately be shown that

HN (σ|ξ) = −1
2N

N,N∑
i,j

K∑
µ

ξµi ξ
µ
j σiσj ≡−N

K∑
µ

(
1−L+

µ ·L−
µ

)
.

Thus, minimizing the former implies minimizing the latter in such a way that, if we
extremize w.r.t. the neurons we are performing machine retrieval (i.e. pattern recog-
nition), while if we extremize w.r.t. the weights we are performing machine learning.

12 Note that in the last passage we naturally highlighted the presence of the Mattis magnetization in these loss functions.
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Figure 7. Left: parallel minimization of several (mean squared error) loss functions
L± = ||ξµ±σ||2 (each pertaining to a different archetype) as the noise in the data-
set r is varied. Here M =25, N = 10000. The horizontal gray dashed lines are the
saturation level of the loss functions, namely 1− d

2 − (1− d)dµ−1. We get r⊗ (the
vertical black line) by the inversion of (3.20). Right: parallel minimization of several
(mean squared error) loss functions L± = ||ξµ±σ||2 (each pertaining to a different
archetype) as the dataset size M is varied. As M grows, the simultaneous min-
imization of more than one loss function takes place, unlike learning via standard
Hebbian mechanisms where one loss function—dedicated to a single archetype—is
minimized at a time. Orange and blue lines pertain to loss functions of other pat-
terns that, at these levels of dilution and noise, cannot be minimized along with
the previous ones.

Indeed, at least in this setting, learning and retrieval are two faces of the same coin
(clearly the task here, from a machine learning perspective, is rather simple as the
network is only asked to correctly classify the examples and possibly generalize).

In figure 7 we inspect what happens to these loss functions, pertaining to the various
archetypes, as the cost function is minimized. We see that, in contrast to the stand-
ard Hopfield model (where only one loss function at a time diminishes its value), in
this parallel learning setting, several loss functions (related to different archetypes) are
simultaneously lowered, as expected with a parallel learning machine.

4. Conclusions

Since AGS seminal works in the mid ’80s [13, 14], attractor neural networks have exper-
ienced unprecedented growth, and the bulk of techniques developed for spin glasses in
the last four decades (e.g. replica trick, cavity method, message passage, interpolation)
now act as a prosperous cornucopia for explaining the emergent information processing
capabilities that these networks show as their control parameters are tuned. However,
while the original AGS theory remains a solid pillar and a paradigmatic reference in the
field, several extensions are required to keep it up to date and to face modern challenges.

The first generalization we need is to move from a setting where the machine stores
already defined patterns (as in the standard Hopfield model) toward a more realistic
learning procedure where these patterns are unknown and have to be inferred from
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examples: the Hebbian storage rule of AGS theory quite naturally generalizes toward
supervised and an unsupervised Hebbian learning prescriptions [2, 11]. This enlarges
the space of the control parameters from α,β (or K, N, β) of the standard Hopfield
model toward α,β,ρ (or K, N, β, M, r) as we now deal also with a dataset where we
have M examples of mean quality r for each pattern (archetype) or, equivalently, we
speak of a dataset produced at a given entropy ρ.

Once this is accomplished, the second strong limitation of the original AGS theory
that must be relaxed is that patterns share the same length and, in particular, this
equals the size of the network (namely in the standard Hopfield model there are N
neurons to handle patterns, whose length is exactly N for all of them): a more general
scenario encompasses patterns that contain different amounts of information; that is,
patterns are diluted. The information-processing capabilities of Hebbian networks at
work with diluted patterns have been extensively investigated in the last decade [4, 5,
7, 8, 20, 28, 31, 33, 35] and, in particular, they are shown to be able to retrieve several
patterns in parallel (a key property of neural networks that is not captured by standard
AGS theory).

In this paper, we combine these features and address the parallel learning of diluted
patterns, focusing on the low-storage regime; that is, when the number of patterns scales
at most logarithmically with the size of the network. Note that this further enlarges the
space of the control parameters by introducing the dilution d : we have several control
parameters because the network information processing capabilities are enriched w.r.t.
the bare Hopfield reference13.

Here we proved that, if we supply the network with a diluted dataset, containing
on average a fraction d of blank entries, the network spontaneously undergoes parallel
learning and behaves as a multitasking associative memory able to learn, store and
retrieve multiple patterns in parallel. In fact, the Hamiltonian of the model (acting as a
cost function for the neuronal dynamics) can be recast as a mean squared error (acting
as a loss function for synapsis dynamics), in such a way that—when experiencing a
diluted dataset—the network can simultaneously lower the loss functions related to
different patterns.

For mild values of dilution, the most favored displacement of the Mattis magnetiz-
ations is a hierarchical ordering ; namely, the intensities of these signals scale as power
laws w.r.t. their information content mK ∼ dK · (1− d), while at high values of dilution
a parallel ordering, where all these amplitudes collapse to the same value, prevails: the
phase diagrams of these networks properly capture these different working regions.

Remarkably, in the low-storage regime (where glassy phenomena can be neglected),
the presence (or the lack) of a teacher does not alter the above scenario and the threshold
for a secure learning, namely the minimal required amount of examples (given the

13 However, we clarify how it could be inappropriate to speak about structural differences among the standard Hopfield model and
the present multitasking counterpart; ultimately, these huge behavioral differences are just consequences of the different nature of
the datasets provided to the same Hebbian network during training.
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constraints; that is, the noise in the dataset r, the amount of different archetypes K to
cope with, etc) M⊗ that guarantees that the network is able to infer the archetype and
thus generalize, is the same for supervised and unsupervised protocols and we estimated
its value.
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Appendix A. A more general sampling scenario

The way in which we add noise over the archetypes to generate the dataset in the
main text (see equation (2.9)) is a rather peculiar one as, in each example, it preserves
the number but also the positions of lacunæ already present in the related archetype.
This implies that the noise cannot affect the amplitudes of the original signal, i.e.∑

i (η
µ,a
i )2 =

∑
i (ξ

µ
i )

2 holds for any a and µ, while we do expect that with more general
kinds of noise this property is not preserved sharply.

Here we consider the case where the number of blank entries present in ξµ is pre-
served on average in the related sample {ηµ,a}a=1,...,M but lacunæ can move along the
examples: this more realistic kind of noise gives rise to cumbersome calculations (still
analytically treatable) but should not strongly affect the learning, storing and retrieving
capabilities of these networks (as we now prove).

Specifically, here we define a new kind of example η̃µ,ai (that we can identify from
the previous ones ηµ,ai by labeling them with a tilde) in the following way:
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Definition 10. Given K random patterns ξµ (µ= 1, . . .,K), each of length N, whose entries
are i.i.d. from

P(ξµi ) =
(1− d)

2
δξµi ,−1+

(1− d)
2

δξµi ,+1+ dδξµi ,0, (A.1)

we use these archetypes to generate M ×K different examples {η̃µ,ai }a=1,...,M whose
entries are depicted following

P(η̃µ,ai |ξ
µ
i =±1) =A± (r,s)δη̃µ,ai ,ξµi

+B± (r,s)δη̃µ,ai ,−ξµi +C± (r,s)δη̃µ,ai ,0

P(η̃µ,ai |ξ
µ
i = 0) =A0 (r,s)δη̃µ,ai ,ξµi

+B0 (r,s)δη̃µ,ai ,+1+C0 (r,s)δη̃µ,ai ,−1 (A.2)

for i = 1, . . . ,N and µ= 1, . . . ,K, where we pose

A± (r,s) =
1+ r

2

[
1− d

1− d
(1− s)

]
+
d(1− s)(1− r)

4(1− d)
, A0 (r,s) =

1+ s

2
,

B± (r,s) =
1− r
2

[
1− d

1− d
(1− s)

]
+
d(1− s)(1+ r)

4(1− d)
, B0 (r,s) =

1− s
4

,

C± (r,s) =
d

2(1− d)
(1− s) , C0 (r,s) =

1− s
4

,

(A.3)

with r,s ∈ [0;1] (whose meaning we specify soon, vide infra).

Equation (A.2) codes for the new noise, and the values of the coefficients presented
in (A.3) have been chosen in order that all the examples contain on average the same
fraction d of null entries as the original archetypes. To see this, it is enough to check
that the following relation holds for each a= 1, . . . ,M , i = 1, . . . ,N and µ= 1, . . . ,K

P(η̃µ,ai = 0) =
∑

x∈{−1,0,1}

P(η̃µ,ai = 0|ξµi = x)P(ξµi = x) = C± (r,s)(1− d)+A0 (r,s)d= d.

(A.4)

After defining the dataset, the cost function follows straightforwardly in Hebbian
settings as:

Definition 11. After introducing N Ising neurons σi =±1 (i = 1, . . .,N) and the dataset
considered in the definition above, the cost function of the multitasking Hebbian network
equipped with not-preserving-dilution noise reads as

H(sup)
N,K,M,r,s,d (σ|η̃) =−

1

N

1

(1− d)(1+ ρ̃)

K∑
µ=1

N,N∑
i,j=1

(
1

r̃M

M∑
a=1

η̃µ,ai

)(
1

r̃M

M∑
b=1

η̃µ,bj

)
σiσj,

(A.5)
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where

r̃ =
r

(1− d)

[
1− d

2
(5− 3s)

]
(A.6)

and ρ̃ is the generalization of the dataset entropy, defined as

ρ̃=
1− r̃2

Mr̃2
. (A.7)

Definition 12. The suitably re-normalized example’s magnetizations nµ read as

nµ :=
1

(1+ ρ̃)

1

N

N∑
i=1

(
1

r̃M

M∑
a=1

η̃µ,ai

)
σi . (A.8)

En route toward the free energy, still preserving Guerra’s interpolation as the under-
lying technique, we give the next definition:

Definition 13. After introducing the noise β ∈ R+, an interpolating parameter t ∈ (0,1),
the K +1 auxiliary fields J and ψµ (µ ∈ (1, . . .,K)), the interpolating partition function
related to the model defined by the cost function (A.5) reads as

Z(sup)
β,N,K,M,r,s,d(ξ, η̃;J,t)

=
∑
{σ}

exp

J K,N∑
µ,i=1

ξµi σi+ tβN
(1+ ρ̃)

2(1− d)

K∑
µ=1

n2µ(σ)+ (1− t)N
K∑
µ=1

ψµnµ(σ)

 . (A.9)

and the interpolating free energy Fβ,K,M,r,s,d = lim
N→∞

Fβ,N,K,M,r,s,d induced by the parti-

tion function (A.9) reads as

−βFβ,N,K,M,r,s,d (J,t) =
1

N
E
[
lnZ(sup)

β,N,K,M,r,s,d (ξ, η̃;J,t)
]

(A.10)

where E= EξE(η̃|ξ).

Remark 3. Of course, as in the model studied in the main text still with Guerra’s inter-
polation technique, we aim to find an explicit expression (in terms of the control and
order parameters of the theory) of the interpolating free energy evaluated at t =1 and
J =0.

We thus perform computations following the same steps as the previous investiga-
tion: the t derivative of interpolating free energy is given by

−βdFβ,K,M,r,s,d (J,t)

dt
=

β

2(1− d)
(1+ ρ̃)

K∑
µ=1

⟨n2µ⟩t−
K∑
µ=1

ψµ⟨nµ⟩t. (A.11)

fixing

ψµ =
β

1− d
(1+ ρ̃) n̄µ (A.12)
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and computing the one-body term

−βFβ,K,M,r,s,d (J,t= 0) = E ln

[
2cosh

(
K∑
µ=1

ψµ
1

(1+ ρ̃)

1

r̃M

M∑
a=1

η̃µ,ai + J
K∑
µ=1

ξµ

)]

= E ln

{
2cosh

[
β

1− d

K∑
µ=1

n̄µ

(
1

r̃M

M∑
a=1

η̃µ,ai

)
+ J

K∑
µ=1

ξµ

]}
.

(A.13)

We get the final expression as N →∞, such that we can state the next theorem:

Theorem 2. In the thermodynamic limit (N →∞) and in the low-load regime
(K/N → 0), the quenched free energy of the multitasking Hebbian network equipped
with not-preserving-dilution noise, regardless of the presence of a teacher, reads as

−βFβ,K,M,r,s,d (J) = E

{
ln

[
2cosh

(
β ′

K∑
µ=1

n̄µη̂
µ+ J

K∑
µ=1

ξµ

)]}
− β

′

2
(1+ ρ̃)

K∑
µ=1

n̄2µ.

(A.14)

where β ′ = β/(1− d), E= EξE(η̃|ξ) and η̂
µ =

1

r̃M

∑M

a=1
η̃µ,ai and the values n̄µ must

fulfill the following self-consistent equations:

n̄µ =
1

(1+ ρ̃)
E

{[
tanh

(
β

′
K∑
ν=1

n̄ν η̂
ν

)]
η̂µ

}
for µ= 1, . . . ,K , (A.15)

that extremize the free energy Fβ,K,M,r,s,d(J = 0) w.r.t. them.

Furthermore, the simplest path to obtain a self-consistent equation also for the
Mattis magnetization mµ is by considering the auxiliary field J coupled to mµ; namely
m̄µ =−β∇JFβ,K,M,r,s,d(J)|J=0, to get

m̄µ = E

[
tanh

(
β ′

K∑
ν=1

n̄ν η̂
ν

)
ξµ

]
for µ= 1, . . . ,K . (A.16)

We do not plot these new self-consistency equations as, in the large M limit, there are
no differences w.r.t. those obtained in the main text (please refer to figure 8).
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Figure 8. Comparison of the numerical solution of the selfconsistency equations
related to the Mattis magnetization in the two models: the upper panel relates to
the first model (reported in the main text), and the lower panel reports on the
second model (deepened here). Aside from the different transient at small M, the
two models behave essentially in the same way.

Appendix B. On the dataset entropy ρ

In this appendix, focusing on a single generic bit, we deepen the relation between
the conditional entropy H(ξµi |η

µ
i ) of a given pixel i regarding archetype µ and

the information provided by the dataset regarding such a pixel, namely the block
(ηµ,1i ,ηµ,2i , . . . ,ηµ,Mi ), to justify why we called ρ the dataset entropy in the main text.
As the calculations are slightly different between the two analyzed models (the one pre-
serving the dilution position provided in the main text and the generalized one given in
the previous appendix) we repeat them model by model for the sake of transparency.

B.1. I: Multitasking Hebbian network equipped with not-affecting-dilution noise

Let us focus on the µth pattern and the ith digit, whose related block is

ηµi =
(
ηµ,1i ,ηµ,2i , . . . ,ηµ,Mi

)
; (B.1)

the error probability for any single entry is

P(ξµi ̸= 0)P(ηµ,ai ̸= ξµi ) = (1− d)(1− r)/2 (B.2)
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and, by applying the majority rule on the block, it is reduced to

P(ξµi ̸= 0)P

[
sign

(∑
a

ηµ,ai ξµi

)
=−1

]
≈

M≫1

(1− d)
2

[
1− erf

(
1√
2ρ

)]
. (B.3)

Thus,

Hd,r,M (ξµ|ηµ) =− [x(d,r,M) log2x(d,r,M)+ y (d,r,M) log2 y (d,r,M)] (B.4)

where

x(d,r,M) =
(1− d)

2

[
1− erf

(
1√
2ρ

)]
, y (d,r,M) = 1−x(d,r,M) . (B.5)

B.2. II: Multitasking Hebbian network equipped with not-preserving-dilution noise

Let us focus on the µth pattern and the ith digit, whose related block is

η̃µi =
(
η̃µ,1i , η̃µ,2i , . . . , η̃µ,Mi

)
; (B.6)

the error probability for any single entry is

P(ξµi ̸= 0)P(η̃µ,ai ξµi ̸=+1|ξµi ̸= 0)+P(ξµi = 0)P(η̃µ,ai ̸= 0|ξµi = 0) = d(1− s) . (B.7)

By applying the majority rule on the block, it is reduced to

P(ξµi ̸= 0)
[
1−P

(
sign(η̂µi ξ

µ
i ) = +1

∣∣∣ξµi ̸= 0
)]

+P(ξµi = 0)P
(
sign[|η̂µi |] = +1

∣∣∣ξµi = 0
)

≈
M≫1

(1− d)
2

{
1− erf

[(
2ρ̃− d(1− s)

(1− d)Mr̃2

)−1/2
]}

+
d

2

{
1− erf

[(
1− s
Mr̃2

)−1/2
]}

.

(B.8)

Thus,

Hd,r,s,M (ξµi |η̃
µ
i ) =− [x(d,r,s,M) log2x(d,r,s,M)+ y (d,r,s,M) log2 y (d,r,s,M)] (B.9)

where

x(d,r,s,M) =
(1− d)

2

{
1− erf

[(
2ρ̃− d(1− s)

(1− d)Mr̃2

)−1/2
]}

+
d

2

{
1− erf

[(
1− s
Mr̃2

)−1/2
]}

y (d,r,s,M) = 1−x(d, ρ̃) . (B.10)

Whatever the model, the conditional entropies Hd,r,M (ξµi |η
µ
i ) and Hd,r,s,M (ξµi |η̃

µ
i ) are

monotonic increasing functions of ρ and ρ̃, respectively, hence the reason for calling ρ
and ρ̃ the entropy of the dataset.
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Appendix C. Explicit calculations and figures for the cases K = 2 and K = 3

In this appendix, we collect the explicit expression of the self-consistent equations
in (3.10) and (3.11) (focusing only on the cases of K =2 and K =3) and some figures
obtained from their numerical solution.

C.1. K = 2

Fixing K =2 and explicitly calculating the mean with respect to ξ, (3.10) and (3.11)
read as

n̄1 =
m̄1

(1+ ρ)
+
β ′ (1− d)ρn̄1

(1+ ρ)

[
1− dS2 (n̄1,0)−

(1− d)
2
S2 (n̄1,−n̄2)−

(1− d)
2
S2 (n̄1, n̄2)

]

n̄2 =
m̄2

(1+ ρ)
+
β ′ (1− d)ρn̄2

(1+ ρ)

[
1− dS2 (0, n̄2)−

(1− d)
2
S2 (n̄1,−n̄2)−

(1− d)
2
S2 (n̄1, n̄2)

]

m̄1 =
(1− d)2

2
[T2 (n̄1, n̄2)+ T2 (n̄1,−n̄2)] + d(1− d)T2 (n̄1,0)

m̄1 =
(1− d)2

2
[T2 (n̄1, n̄2)−T2 (n̄1,−n̄2)] + d(1− d)T2(0, n̄2) (C.1)

where we used

T2 (x,y) = Eλ tanh
[
β ′
(
x+ y+λ

√
ρ(x2+ y2)

)]
,

S2 (x,y) = Eλ tanh2
[
β

′
(
x+y+λ

√
ρ(x2+y2)

)]
.

(C.2)

Numerically solving this set of equations, we construct the plots presented in figure 9.

C.2. K = 3

Moving on to the case ofK =3, by following the same steps as in the previous subsection,
we get

n̄1 =
m̄1

(1+ ρ)
+
β ′ (1− d)ρn̄1

(1+ ρ)

{
1− d(1− d)

2
[S3 (n̄1, n̄2,0)+S3 (n̄1,0, n̄3)+S3 (n̄1,−n̄2,0)

+ S3 (n̄1,0,−n̄3)]− d2S3 (n̄1,0,0)−
(1− d)2

4
[S3 (n̄1, n̄2, n̄3)+S3 (n̄1, n̄2,−n̄3)

+ S3 (n̄1,−n̄2, n̄3)+S3 (n̄1,−n̄2,−n̄3)]

}
,
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Figure 9. Numerical resolution of the system of equation (C.1) for K =2: we plot
the behavior of the magnetization m̄ versus the degree of dilution d for fixed r =0.2
and different values of β (from right to left β = 1000,6.66,3.33) and ρ (from top to
bottom ρ= 0.8,0.2,0.0). We stress that for ρ=0.0 we recover the standard diluted
model presented in figure 1.

m̄1 =
(1− d)3

4
[T3 (n̄1, n̄2, n̄3)+ T3 (n̄1, n̄2,−n̄3)+ T3 (n̄1,−n̄2, n̄3)+ T3 (n̄1,−n̄2,−n̄3)]

+ d
(1− d)2

2
[T3 (n̄1, n̄2,0)+ T3 (n̄1,0, n̄3)+ T3 (n̄1,−n̄2)+ T3 (n̄1,0,−n̄3)]

+ d2(1− d)T3(n̄1,0,0) , (C.3)

where we used

T3 (x,y,z) = Eλ tanh
[
β ′
(
x+ y+ z+λ

√
ρ(x2+ y2+ z2)

)]
,

S3 (x,y,z) = Eλ tanh2
[
β ′
(
x+ y+ z+λ

√
ρ(x2+ y2+ z2)

)]
.

(C.4)

In order to lighten the presentation, we report only the expression of m̄1 and n̄1, and
the related expressions of m̄2(m̄3) and n̄2(n̄3) can be obtained by making the simple
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Figure 10. Numerical solution of the system of equation (C.3) for K =3: we plot
the behavior of the magnetization m̄ versus the degree of dilution d for fixed r =0.2
and different values of β (from left to right β = 1000,6.66,3.33) and ρ (from top to
bottom ρ= 0.8,0.2,0.0).

substitutions m̄1←→ m̄2(m̄3), and n̄1←→ n̄2(n̄3) in (C.3). The numerical solution of
the previous set of equations is depicted in figure 10.

Appendix D. Proofs

D.1. Proof of theorem 1

In this subsection we show the proof of proposition 1. In order to prove the aforemen-
tioned proposition, we put in front of it the following:

Lemma 1. The t derivative of interpolating free energy is given by

−β
dF (sup,unsup)

N,K,β,d,M,r

dt
=

β

2(1− d)
(1+ ρ)

K∑
µ=1

Eωt
[
n2µ
]
−

K∑
µ=1

ψµEωt [nµ] . (D.1)

Since the computation is lengthy but not cumbersome we omit it.

Proposition 4. In the low-load regime, in the thermodynamic limit the distribution of the
generic order parameter X is centered at its expectation value X̄ with vanishing
fluctuations. Thus, since ∆X =X − X̄, in the thermodynamic limit, the following
relation holds:

Eωt
[
(∆X)2

]
−−−−→
N→+∞

0 . (D.2)

Remark 4. We stress that afterwards we use the relations

Eωt
[
(nµ− n̄µ)2

]
= Eωt

[
n2µ
]
− 2 n̄µEωt [nµ] + n̄2µ . (D.3)

which are computed with brute force with Newton’s binomial.
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Now, using these relations, if we fix the constants as

ψµ =
β

1− d
(1+ ρ) n̄µ (D.4)

in the thermodynamic limit, due to proposition 4, the expression of derivative w.r.t. t
becomes

−β
dF (sup,unsup)

K,β,d,M,r

dt
=− β

2(1− d)
(1+ ρ)

K∑
µ=1

n̄2µ. (D.5)

Proof. Let us start from finite-size N expression. We apply the fundamental theorem of
calculus:

F (sup,unsup)
K,β,d,M,r = F (sup,unsup)

K,β,d,M,r (t= 1) = F (sup,unsup)
K,β,d,M,r (t= 0)+

1ˆ

0

∂sF (sup,unsup)
K,β,d,M,r (s)

∣∣∣
s=t

dt. (D.6)

We have already computed the derivative w.r.t. t in equation (D.5). It only remains to
calculate the one-body term:

Z(sup,unsup)
N,K,β,d,M,r (t= 0) =

N∏
i=1

∑
{σ}

exp

[(
K∑
µ=1

ψµ
2(1+ ρ)

η̂µ+ Jξµ

)
σi

]

= 2N coshN

(
K∑
µ=1

ψµ
2(1+ ρ)

η̂µ+ Jξµ

)
. (D.7)

Using the definition of quenched free energy (3.5) we have

−βF (sup,unsup)
K,β,d,M,r (J,t= 0) = ln

[
2cosh

(
K∑
µ=1

ψµ
2(1+ ρ)

η̂µ+ Jξµ

)]

= E

[
ln2cosh

(
β

1− d

K∑
µ=1

n̄µη̂
µ+ Jξµ

)]
(D.8)

where E= EξE(η|ξ). Finally, adding in (D.6), (D.8) and (D.5), we reach the thesis.

D.2. Proof of proposition 1

In this subsection we show the proof of proposition 1.

Proof. For large datasets, using the central limit theorem we have

η̂µ ∼ ξµ (1+√ρ Zµ) . (D.9)
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where Z µ is a standard Gaussian variable Zµ ∼N (0,1). Replacing equation (D.9) in the
self-consistency equation for n̄, namely equation (3.8), and applying Stein’s lemma14 in
order to recover the expression for m̄µ, we get the large dataset equation for n̄µ, i.e.
equation (3.10).

We will use the relation

Eλµ

[
F

(
a+

K∑
µ=1

bµλµ

)]
= E

Z

F
a+Z

√√√√ K∑
µ=1

b2µ

 , (D.11)

where λµ and Z are i.i.d. Gaussian variables. In doing so, we obtain

g (β,ξ,Z, n̄) = β
′
K∑
ν=1

n̄νξ
ν +β

′√
ρ

K∑
ν=1

Zνn̄
2
ν (ξ

ν)2 = β
′

(
K∑
ν=1

n̄νξ
ν +Z

K∑
ν=1

√
ρn̄2ν (ξ

ν)2
)
,

(D.12)

and thus we reach the thesis.

Corollary 2. The self-consistency equations in the large dataset assumption and
null-temperature limit are

m̄µ = Eξ

erf

( K∑
ν=1

m̄νξ
ν

)(
2ρ

K∑
ν=1

m̄2
ν (ξ

ν)2
)−1/2

ξµ
 . (D.13)

Proof. In order to lighten the notation, we rename

C = tanh2 [g (β,ξ,Z, n̄)] . (D.14)

We start by assuming finite the limit

lim
β ′→∞

β ′ (1−C) =D ∈ R (D.15)

and we stress that as β ′→∞ we have C→ 1. As a consequence, the following repara-
metrization is found to be useful:

C = 1− δC
β ′ as β ′→∞. (D.16)

14 This lemma, also known as Wick’s theorem, applies to standard Gaussian variables, say J ∼N (0,1), and states that, for a
generic function f (J ) for which the two expectations E (Jf(J)) and E (∂Jf(J)) both exist, then

E (Jf (J)) = E
(
∂f (J)

∂J

)
. (D.10)

.
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Therefore, as β ′→∞, it yields

n̄µ =
m̄µ

1+ ρ− ρδC (1− d)

m̄µ = EξEZ

[
sign

(
K∑
ν=1

n̄νξ
ν +Z

K∑
ν=1

√
ρn̄2ν (ξ

ν)2
)
ξµ

]
;

(D.17)

to reach this result, we have also used the relation

Ezsign[A+Bz] = erf

[
A√
2B

]
, (D.18)

where z is a Gaussian variable N (0,1) and the truncated expression n̄µ = m̄µ/(1+ ρ)
for the first equation in (D.17).
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