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Abstract

Among the passive vibration control strategies, base isolation is definitely the
most effective. This strategy consists in decoupling the motion of the structure
from that of the substructure/soil by introducing a layer of highly flexible ele-
ments between them. The high flexibility of the isolation layer interposed be-
tween the foundation and the structure causes an increase of the modal periods
of the latter, which produces a dual effect: a strong reduction of the accelera-
tions transmissibility and an increase of the displacement transmissibility. The
last effect is usually contrasted by the introduction of auxiliary damping devices.
A recently explored concept is the amplification of the damping of a structure
by the parallel application of negative stiffness devices, i.e., devices that exert a
force in the same direction of displacement. The main advantages that a negative
stiffness mechanism can provide to a seismic isolation system are the possibility
of reaching levels of flexibility of the isolation layer over the limit represented
by the deformability of the material of the bearing devices, i.e. the possibility of
obtaining acceleration transmissibility reductions otherwise not achievable with
the existing devices and the opportunities to introduce high levels of hysteretic
damping without performance losses caused by the initial stiffness increase, since
this increase is cancelled by the negative stiffness properly tuned. In the light of
the above, the intention is to exploit the characteristics of bistable mechanisms
together with super-elastic hysteresis to obtain an ideal seismic isolation system,
with high static stiffness, low dynamic stiffnesses and self-recentering capabili-
ties. The research objectives are, therefore, the study of the effects and limits of
applying mechanisms with negative stiffness and super-elastic hysteresis to seis-
mic isolated systems and the design of a new multidirectional and compact damper
with negative stiffness and super-elastic hysteresis. The performance of the pro-
posed isolation system has been evaluated by studying the response of a one-
degree-of-freedom oscillator having as restoring force the sum of the contributions
given by the elastomeric isolators, the bistable mechanism and the super-elastic
hysteresis, described by appropriate hysteretic models. The investigation first in-
volved the static characterization of the response of the dimensionless system in
terms of stability, stiffness and equivalent damping, highlighting the presence of
different types of stability in the space of the design parameters and the possibil-
ity of obtaining almost zero stiffness together with amplifications of the damping
up to overdamped responses. The second phase of the investigation involved the
dynamic response under impulsive and harmonic excitation and the search in the
space of the design parameters of the optimal configurations in terms of reduc-
tion of the forces transmissibility, revealing the possibility of obtaining strong
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improvements of the seismic isolation performances. These regions of optimal
design parameters have been validated through the study of the dynamic response
of a MDOF system, representative of a seismic isolated building, under seismic
forcing. Finally, the performances obtained by NS-SMA damping are compared
with the ones exhibited by the baseline isolation system equipped with classic
auxiliary damping devices. The last phase of the study was dedicated to the de-
velopment of a rheological device which would allow to achieve the dynamic
response of the proposed isolation system . Starting from the main weaknesses of
the existing negative stiffness dampers, i.e. the large size given by the prestressed
element, the monodirectional response or the dependence of the response on the
weight of the mass to be isolated, a new compact multidirectional damper with
super-elastic hysteresis has been designed. Finally, the analytical equations of the
force-displacement law of the device were derived and validated by comparison
with the response provided by a three-dimensional numerical model developed on
the software Abaqus.
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Chapter 1

Introduction

1.1 Seismic isolation
Base isolation is a seismic demand reduction technique consisting of decoupling
the motion of the structure from that of the substructure/soil by introducing a layer
of highly flexible elements between them. The most used seismic isolation devices
are:

• Elastomeric bearings: without lead core (Low and High Damping Rubber
Bearing LDRB, HDRB) and with lead core (Lead Rubber Bearing LRB).
While the first ones allow a lower stiffness and therefore a higher reduction
of the accelerations, the second ones allow, through the hysteresis of the
lead core, a higher damping.

• Sliding bearings: with flat or concave sliding surface (FSS or CSS, respec-
tively). The former allow almost zero stiffness post-activation and therefore
great reductions in input accelerations. On the other hand, these devices ex-
hibit almost zero re-centring capacity. This aspect is partly solved in devices
with a curved surface, where the curvature of the sliding surface causes that
the normal force acting on it produces a horizontal restoring force inversely
proportional to the radius of curvature of the surface.

In Tab.1.1 advantages and disadvantages of most common isolation bearing de-
vices are summarised. The high flexibility of the the isolator layer interposed
between the foundation and the structure causes an increase of the modal periods
of the latter, which produces a dual effect:

• strong reduction of the transmissibility in terms of accelerations;

• increase of the transmissibility in terms of displacement.

1
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The last effect is usually contrasted by the introduction of auxiliary damping de-
vices. Several studies in the literature show the effects of damping in seismic
isolation and different methods to optimize this contribution. In general, there ex-
ists an optimum damping point that can be introduced, beyond which, there is an
increase in transmissibility in accelerations, due to the stiffening effect of damp-
ing, and thus a loss of performance from the motion decoupling point of view
[1]-[29].

segatnavdasiDsegatnavdAsecived gniraeB

LDRB Cost effective, self re-centering, low stiffness Low damping capacities (5-10%)

HDRB  Self re-centering, low stiffness, discrete damping 
( 10-15%) Aging effect, expensive

LRB High damping capacities ( 30-45%) Residual displacements, high initial stiffness

FSS Very high damping capacities (60%), very low 
stiffness

Zero re-centering capacity, friction could cause 
inactivation and increase of transmissibility for high 

frequencies

CSS High damping capacities (20-30%), low stiffness
Residual displacements, friction could cause 

inactivation and increase of transmissibility for high 
frequencies 

Table 1.1: Advantages and disadvantages of most common isolation bearing de-
vices.

1.1.1 Damping techniques and devices in seismic isolation
There are different damping techniques and systems that can be grouped into three
macro-families depending on the type of operating principle:

• Dependent on velocity (VD): All devices that exploit a viscous type of
damping (viscoelastic materials, viscous fluids). The advantages of such
systems are the recentering capability and the no plasticization of internal
parts, the disadvantages are the high cost and the dependence of the re-
sponse on the velocity and therefore on the frequency content of the seis-
mic event. This problem is usually solved by using devices with non-linear
viscous damping (Fluid-Viscous Damper) which can exhibit a more homo-
geneous response as function of the velocity of the load.

• Dependent on the sign of the velocity (FRD): All devices that dissipate
through friction between components. The main advantage of this type of
device is the possibility to set a maximum force limit thanks to a rigid-
plastic response. On the other hand, the high pre-slip stiffness, exhibited by
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the mechanism at the moment of activation and at each inversion of the sign
of the speed in the cyclic response, may lead to an amplification of the ac-
celerations within the structure. Another problem, of technological nature,
is the potential oxidation over time of the sliding parts, which results in an
increase in friction and consequent inactivation of the sliding mechanism.

• Dependent on displacement (HYD, SMAD): All devices that dissipate through
hysteretic damping i. e. through the plasticization of ductile elements. The
advantages of these systems are their low cost and the high damping capa-
bility, while the main disadvantages are the presence of residual displace-
ment and high initial pre-plasticization stiffness. In particular, the latter
produces an increase in the transmissibility of accelerations in the low-
amplitude displacement range and a consequent loss of performance for
smaller and more frequent seismic events. Residual displacement can be
cancelled using elements exhibiting super-elastic hysteresis, such as Shape
Memory Alloy spring.

Another technique used for displacement reduction in base isolated systems is
the use of a Tuned Mass Damper (TMD) on the ground floor of the building.
This device is promising in reducing both the displacements and the maximum
accelerations of the structure. In Tab.1.2 advantages and disadvantages of the
described damping techniques are summarised.

Damping 
techniques segatnavdasiDsegatnavdA

 VD Self-recentering Damping function of the velocity, increase of 
transmissibility for high frequencies

HYD Stable damping Residual displacements, high initial stiffness

SMAD ssenffits laitini hgiHgnipmad elbats ,gniretnecer-fleS

FRD Cost effective, stable damping Residual displacements, high initial stiffness, 
increase of transmissibility for high frequencies

TMD High damping capacities First impulse not well governed

Table 1.2: Advantages and disadvantages of classic damping techniques.

Recent developments of research on vibration absorption devices are:

• The Inerter: this device allows the amplification of the control force pro-
vided by the secondary mass through the flywheel effect provided by a gear
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mechanism. This results in a greater inertial mass with the same gravita-
tional mass and therefore a strong reduction in the mass required for optimal
control.

• Non-linear Energy Sink (NES): This device exploits the cubic stiffness,
which cannot be linearised, and the high initial deformability in order to
achieve a larger activation frequency band. The device is used, unlike the
TMD, not to provide a control force opposite to the motion of the structure,
but to dissipate energy through the motion of the secondary mass, which
must be therefore the most excitable possible.

For all the devices that exploit the contribution of a secondary mass, the phasing
of the secondary mass delays the activation of the device, thus allowing the first
seismic waves to reach the structure. This phenomenon, especially in the pres-
ence of near-fault seismic events, where the first waves have the highest energy
content, can lead to a reduction in the performance of the isolation system [30]-
[49]]. In order to obtain a recentering and dissipative system, research has recently
turned towards mechanisms that can produce Flag-Shape hysteretic cycles. This
type of hysteretic behaviour is usually achieved through the parallel application
of a bilinear elastic system to an elastoplastic one. Another way to achieve these
hysteretic cycles is through the use of shape memory alloys (SMA). These alloys,
most commonly made of Nickel and Titanium in approximately equal parts (NiTi-
Nol), exhibit superelastic hysteresis, i.e. with deformation recovery, thanks to the
austenitic-martensitic phase transformation of the alloy. There are several exam-
ples in the literature of the application of devices based on shape memory alloys
in parallel with seismic isolation systems. In all these examples, as well as in all
cases where hysteretic damping is employed, there is, due to the parallel addition
of the damping element, an increase in initial stiffness, which leads to a loss of
isolation performance, especially for low intensity earthquakes [50]-[71].

1.1.2 Negative stiffness
A recently explored concept is the amplification of the damping of a structure
by the parallel application of negative stiffness devices, i.e., devices that exert a
force in the same direction of displacement [72]-[81]. A necessary condition for
the existence of negative stiffness response branches is the negativity of the sec-
ond derivative of the potential energy of the mechanism, i.e. the existence of an
unstable equilibrium position. Mechanisms known in the literature that exhibit
negative stiffness are bistable mechanisms. These are deformable mechanisms,
whose response is therefore governed by geometric non-linearities, which exhibit
an unstable equilibrium position enclosed between two stable equilibrium posi-
tions. The best known example of this type of mechanism is the Von Mises truss.



1.2. STATE OF ART OF QZS ISOLATION 5

This structure exhibits the characteristic snap-through response of bistable mech-
anisms, namely a transition between the two stable equilibrium positions that oc-
curs through a negative stiffness response. Assuming to place this mechanism in
the unstable position, it will manifest a nonlinear behaviour well approximated by
a negative stiffness duffing oscillator, that is a negative linear stiffness in parallel
with a positive cubic stiffness. These mechanisms, when applied in parallel to a
structure, produce a double effect:

• Reduction of the stiffness and therefore of the accelerations and loads in-
duced in the system;

• Amplification of the equivalent damping achieved through the reduction of
stiffness with the same damping element.

A wide range of applications for bistable mechanisms has been proposed in recent
years, in the fields of energy harvesting, vibration control, dynamic monitoring
and actuation device. Most of the bistable mechanisms developed today are based
on the use of pre-stressed (springs) or pre-buckled (beam) deformable elements.
Other ways to achieve negative stiffness responses can be the use of reverse cur-
vature sliding surfaces or magnetorheological devices with linear voltage decay
[82]- [88].

1.2 State of art of QZS isolation
One of the first examples of the application of negative stiffness mechanisms in
structural control are the works of Reinhorn, Pasala, Nagarajaiah et al. [89]-[97],
where a mechanism with negative stiffness plus an initial activation gap is intro-
duced in parallel to a structure to produce an apparent plasticization of this one.
In particular, a bilinear spring is used in parallel with negative stiffness element to
achieve an initial gap in the restoring force of the device. The structure, for low
amplitudes, reacts with its stiffness thanks to the presence of the initial gap. For
larger amplitudes, negative stiffness is involved, thus emulating the plasticization
of the structure, i.e. a reduction in stiffness and therefore in the input loads, with-
out any real structural damage. There are several developments of this concept
applied to seismic isolation that show promising results in terms of reduction of
both accelerations and displacements transmissibilities [98, 99]. In [100]-[120] a
linear vertical isolation system was enhanced by introducing a negative stiffness
correction to obtain a high preload stiffness and a Quasi-Zero-Stiffness (QZS) in
the equilibrium position.
The nonlinear isolator response is usually described by a Duffing oscillator with
a vanishing linear stiffness. Donmez et al. [121] studied the dynamic response of



1.3. STATE OF ART OF NEGATIVE STIFFNESS DAMPER 6

a dry-friction QZS isolator, showing that the hysteretic damping ensures a better
performance than viscous damping in the out-of-resonance frequency range. In
all of these works, negative stiffness correction is used to achieve zero stiffness in
the equilibrium position, but as known, in typical civil applications dealing with
seismic horizontal isolation, this is undesirable because of the need of a wind re-
straint. By delaying the negative stiffness contribution through an initial gap, the
wind restraint is preserved, and transmissibility reduction can be achieved.
Liu et al. [122] proposed a novel isolation system composed by Shape Memory
Alloy (SMA) wires providing the superelastic effect and a prestressed spring. The
stiffness of the SMA wires overcomes the negative stiffness exhibited by the pre-
stressed spring until phase transformations occur. For larger displacements, the
stiffness of SMA wires vanishes and the overall stiffness becomes quasi zero. The
transmissibility of a SDOF with the proposed response was analytically evalu-
ated using a piece-wise linear constitutive law for the SMA response and a linear
elastic law for the negative stiffness contribution.

1.3 State of art of negative stiffness damper
The state of the art for mechanical devices with negative stiffness is the result of
progress over the last three decades. In 1992, Platus studied and patented several
negative-stiffness mechanisms [123] made by assembling pre-compressed springs
and pre-buckled beam in the context of vibration isolation of small masses (ma-
chinery, telescopes, etc.). Subsequently, a large development of these devices
has been observed, and they can be divided into two macro-families. The first
macro-family includes all the devices that develop negative stiffness through the
introduction of two pre-compressed springs orthogonal to the controlled direction.
If the springs deviate from this direction, they will exert a force in the same di-
rection as the displacement, due to their pre-compression. Examples of such a
mechanism are the device proposed by Avshalom Suissa [124] in 2013 for im-
proving the performance of vehicle suspensions and the device presented by Zhou
Peng [125] in 2017 for controlling cable vibrations. In particular, in the latter
device, the structure composed of the pre-compressed spring pair, responsible for
the negative stiffness elastic contribution, is coupled to a viscous or hysteretic
damping device. A further development was proposed in 2020 by Yuhong [126],
who placed, in parallel to the pair of pre-compressed springs, shape memory al-
loy wires to exploit their superelastic hysteresis. Another application close to this
macro-family of devices is the damper proposed by Constantinou in 2013 [127].
This device is the first negative stiffness damper designed for vibration control on
a civil scale. A common limitation of these applications is the device’s monodi-
rectionality, i.e. the ability to exert the desired rheological behaviour in just one
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direction. The second macro-family of mechanical dampers with negative stiff-
ness is composed of all those devices that exploit the reverse curvature of two
surfaces, which are compressed together and relatively sliding. Examples of this
type of damper are the devices proposed by Sanxiu in 2006 [128] and by Iemura
in 2013 [129], where the compression between the two spherical caps is provided
by the weight of the mass to isolate, for which the damper acts as an auxiliary
support. The main advantage of this application is the multi-directionality of the
mechanism, while the limitation is the dependence of the device response, both
in terms of stiffness and damping, from the weight of the structure to be con-
trolled. This dependence, together with a difficulty in the design of the device,
also results in a sensitivity of the global response to vertical accelerations, which,
modifying the weight force acting on the caps, consequently modify in a random
way the response of the device. Other limiting aspects of the above-mentioned
devices are the absence of a tunable auxiliary damping body and of a stiffening
for large displacements (beneficial in order to slow down the mass in correspon-
dence of the last allowed displacement). These last two aspects are solved by the
device proposed by Cao Sa Sa in 2019 [130], where shape memory alloy wires
are inserted between the two caps in vertical configuration in order to limit large
displacements. On the other hand, the dependence of the response on the weight
of the structure persists.

1.4 Objectives
The main advantages that a negative stiffness mechanism can provide to a seismic
isolation system are:

• The possibility of reaching levels of flexibility of the isolation layer over the
limit represented by the deformability of the material of the bearing devices,
i.e. the possibility of obtaining acceleration transmissibility reductions oth-
erwise not achievable with the existing devices;

• The possibility to introduce high levels of hysteretic damping without per-
formance losses caused by the initial stiffness increase, since this increase
is cancelled by the negative stiffness properly tuned.

In the light of the above, the intention is to exploit the characteristics of bistable
mechanisms to obtain an ideal isolation system, which meets the following re-
quirements:

• High static stiffness that prevents excessive deformations for low excitations
and at the same time realizes a wind restraint,
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• Low dynamic stiffness to reduce accelerations,

• High end run stiffness to slow down the building and thus prevent the pound-
ing phenomenon

• Self recentering capability against residual displacements that can be detri-
mental particularly in case of aftershock events.

The proposal is to obtain this response by introducing in parallel to the most eco-
nomic isolation system, the elastomeric one, a damping system based on negative
stiffness (provided by bistable mechanisms) and superelastic hysteresis provided
by shape memory alloy elements. The research objectives are:

• The study of the effects and of the limits of the application of bistable mech-
anisms to seismically isolated systems;

• The optimization of the negative stiffness and of the superelastic hysteresis
in order to achieve the best performance in terms of transmissibility and
dynamic stability;

• The design and the optimization of a new multidirectional damper with neg-
ative stiffness and superelastic hysteresis.



Chapter 2

Negative stiffness-SMA damper for
seismic isolation

In previous works, a bilinear spring is used in parallel with the negative stiffness
in order to achieve an initial gap in the ensuing restoring force of the device. This
gap allows to maintain the virgin isolation stiffness for low amplitudes and to
realize a wind restraint. In this work, a superelastic spring is used instead of the
bilinear spring in order to realize the initial gap and, at the same time, to deliver
hysteretic damping to the system. The total restoring force f of the proposed
isolation system is the summation of the force fi provided by traditional seismic
elastomeric isolators, the superelastic force fs and the force fn provided by the
negative stiffness mechanism. It reads

f = fi +( fn + fs) = fi + fns, (2.1)

where fns = fn + fs is the overall force of the proposed rheological device. For
displacements below the gap amplitude, the stiffness of the superelastic element is
equal to the negative stiffness, hence the response is governed by the elastomeric
element. For displacements larger than the gap, corresponding to the superelastic
transition (i.e., where the stiffness drops), the negative stiffness strongly reduces
the total force and stiffness. For larger displacements, the cubic term tends to
overcome the negative stiffness contribution and the overall response returns to
follow the baseline backbone response of the elastomeric bearings (see Fig. 2.1).
In the subsequent sections, 3 types of isolated SDOF systems are studied and
compared. The baseline elastomeric isolation system (EIS) is referred to as S1 and
the associated restoring force is f = fi. S2 denotes the baseline isolation system
together with the superelastic spring alone whose associated restoring force is
f = fi + fs. Finally, S3 indicates the compound isolation system constituted by
the NS-SMA damper arranged in parallel with the elastomeric bearings and the
associated total restoring force is f = fi + fs + fn (see Fig. 2.2).

9
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Figure 2.1: Force-displacement cycles associated with (left) damper force fns
(black line) ensuing from fs (red line indicating the superelastic element) plus
fn (blue line indicating the negative stiffness element) and with (right) the overall
system response with and without damper (black and gray lines, respectively).

Figure 2.2: Schematic representation of the 3 different isolated systems referred
to as S1, S2 and S3, respectively.

2.1 Rheological models

2.1.1 Elastomeric isolators
Elastomeric isolation systems are usually described by the Bouc-Wen model of
hysteresis [131, 132] together with a linear viscous damping term. Therefore,
the adopted model is the direct summation of a viscous damping force, an elastic
force and a hysteretic force,

fi = cẋ+αKix+(1−α)Kiz, (2.2)

where the hysteretic force z is governed by

ż = ẋ[1− (γ +β sign(zẋ)]|z|n. (2.3)
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The term c is the viscous damping coefficient, α is the ratio between the post-
elastic and the stiffness Ki at the origin, γ and β control the shape of the hys-
teresis loops, n regulates the smoothness of transition between the initial elas-
tic and post-elastic stiffness. The upper and lower bounds of z are given by
zm =± n

√
(1−α)Ki/(γ +β ). In the present study, γ+β is restricted to be positive

in order to have a softening behaviour and n is set to 1 ( Fig. 2.3).

Isolation system parameters 

Ki Initial stiffness  

� 0.2 

 0.01 

! 0.09 

n 1 

c 0.1  

Figure 2.3: Force-displacement cycles of isolation devices where Ki indicates the
stiffness at the origin and αKi denotes the post-elastic stiffness.

2.1.2 Negative stiffness mechanism
In most passive bi-stable mechanisms, the negative stiffness is produced by ge-
ometric nonlinearities within a given displacement range while out of this, the
stiffness returns to be positive. In this work, the force exhibited over the displace-
ment amplitude x f , for which the force vanishes, is cancelled by means of a step
function. Its expression reads

fn = (−Knx+K3x3)
(1+ sign(x f −|x|))

2
(2.4)

where Kn is the negative linear stiffness, K3 is the positive cubic stiffness, and x f is
the displacement corresponding to a vanishing force and is equal to x f =

√
Kn/K3.

Another characteristic displacement is that leading to the maximum negative force
and is given by xn =

√
Kn/3K3 (see Fig. 2.4).
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Negative stiffness parameters 

Kn Negative stiffness 

xf Limit displacement 

K3 Kn/xf
2 

Figure 2.4: Force-displacement cycles provided by the negative stiffness force
where Kn indicates the negative stiffness while x f and xn denote the displace-
ments for which the force vanishes or achieves the maximum negative value, re-
spectively.

2.1.3 Superelastic spring
The superelastic response is modelled according to the phenomenological supere-
lastic model proposed by Charalampakis [133] given in rate form as:

ḟs = (1− s)Ks[ẋ−|ẋ|sign( fs−βs)(
| fs−βs|

Y )ns]+ sKmẋ, (2.5)

βs = Ksαs[x− fs
Ks
+ ft tanh(asx)[

1+sign(−xẋ)
2 ]], (2.6)

s = tanh[cs(|x|−xm)]+1
2 , (2.7)

where Ks is the initial stiffness during the austenitic phase, Y is the yielding force
and αs controls the post-elastic stiffness. The parameter ns regulates the smooth-
ness of transition from the initial elastic to the post-elastic phase while ft and as
controls the twinning hysteresis and super-elasticity and the pinching around the
origin along the cycle, respectively. Finally, Km indicates the stiffness during the
fully martensitic phase, xm is the displacement at which the transition from the
post-elastic to the fully martensitic phase occurs and cs controls the smoothness
of this transition (see Fig. 2.5).
Because of the large variability and dependence of ft and as on the remaining pa-
rameters, two new parameters with a more straightforward physical interpretation,
ys and ãs, are introduced. In terms of these parameters, ft and as are expressed as:

ft = (2Y − ysY )/(αsKs), (2.8)
as = tanh−1(ãsKs)/(Y − ysY ). (2.9)
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SMA wires parameters 

Y Yielding force 

xg Gap displ. 

Ks Y/xg 

αs 0.01 

ft 6000 

ns 3 

as 0.06 

Km 0.5 Ks 

cs 0.02 

xm Martensitic displ. 

Figure 2.5: Force-displacement cycles of the superelastic element.

The first parameter indicates the difference between the loading and unloading
forces and it is expressed as percentage of Y . The second allows to set the residual
displacement to a fixed value varying the other parameters (see Fig. 2.6). In par-
ticular, ãs indicates the value assumed by tanh(asx) where x is the displacement
at which the unloading branch with stiffness αsKs intersects the elastic loading
branch.

Figure 2.6: Variation of the superelastic force-displacement cycles with the nondi-
mensional parameters ys (left) and ãs (right).
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2.2 Design parameters
The main goal is to investigate the effects of the NS-SMA device in parallel with
traditional elastomeric devices. Thus, the stiffness Ki of the isolation system, the
gap displacement xg = Fw/Ki, (with Fw indicating the maximum expected wind
load) and the maximum allowed displacement xu are assumed as input parameters
(see Fig. 2.7). In this study, xg is set to 0.05xu. On the other hand, Kn, K3, Y and
ys are the design parameters. All the remaining parameters are set to fixed values
(c = 0.1, α = 0.2, β = 0.09, γ = 0.01, n = 1, αs = 0.01, ns = 3, ãs = 0.6, cs =
0.02) or determined according to the following expressions: xm = x f , Ks = Y/xg,
ft = (2Y − ysY )/(αsKs), as = tanh−1(ãsKs)/(Y − ysY ), and Km = 0.5Ks.

Input parameters 

Ki Initial stiffness 

xg Gap displacement 

xu 
Maximum 

displacement 

Design parameters 

Kn Negative stiffness

K3     Cubic stiffness  

Y Yielding force 

ys Hysteretic ratio 

Figure 2.7: Overall force-displacement cycles provided by S3 where the gap dis-
placement xg and the martensitic displacement xm are indicated.

2.3 Nondimensional equation of motion
The equation of motion of a SDOF mass m subject to the hysteretic restoring force
given by Eq. (1) reads:

mẍ+ cẋ+αKix+(1−α)Kiz+(−Knx+K3x3)
(1+ sign(x f −|x|))

2
+ fs = P(t).

(2.10)
By choosing a characteristic displacement x0 = xu and a characteristic stiffness
Ki (i.e., the initial stiffness of the isolation system, equal to the initial stiffness
of the Bouc-Wen model), the following nondimensional variables are introduced
x̃ = x/x0, t̃ = ωt, where ω =

√
Ki/m while the characteristic force is N0 = Kix0.
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By dividing the equation of motion by N0, the following nondimensional equation
of motion is obtained:

¨̃x+ζ ˙̃x+α x̃+(1−α)z̃+(−K̃nx̃+ K̃3x̃3)
(1+ sign(x̃ f −|x̃|))

2
+ f̃s = P̃(t̃), (2.11)

with P̃ = P/N0, Ω̃g = Ωg/ω . Consequently, the nondimensional elastomeric iso-
lators force becomes

f̃i =
fi

N0
= ζ ˙̃x+α x̃+(1−α)z̃, (2.12)

where ζ = cω/Ki. Equation (3) can be rewritten in nondimensional form as

˙̃z =
ż

x0ω
= ˙̃x[1− (γ̃ + β̃ sign(z̃ ˙̃x))|z̃|n], (2.13)

where z̃= z
x0
, γ̃ = γxn

0, β̃ = βxn
0.The nondimensional form of equation (4) becomes

f̃n =
fn

N0
= (−K̃nx̃+ K̃3x̃3)

(1+ sign(x̃ f −|x̃|))
2

, (2.14)

with K̃n =
Kn
Ki
, K̃3 =

K3x2
0

Ki
, x̃ f =

x f
x0

. Finally, also Eqs. (5), (6) and (7) are rendered
nondimensional as follows:

˙̃fs = (1− s̃)K̃s[ ˙̃x−| ˙̃x|sign( f̃s− β̃s)(
| f̃s−β̃s|

Ỹ )ns]+ s̃K̃m ˙̃x, (2.15)

β̃s = K̃sαs[x̃− f̃s
K̃s
+ f̃t tanh(ãsx̃)[

1+sign(−x̃ ˙̃x)
2 ]], (2.16)

s̃ = tanh[c̃s(|x̃|−x̃m)]+1
2 , (2.17)

after introducing the following nondimensional parameters:
K̃s =

Ks
Ki
, K̃m = Km

Ki
,Ỹ = Y

N0
, f̃t =

ft
x0
, ãs = asx0, c̃s = asx0, x̃m = xm

x0
.

The nondimensional equations of motion (2.11), (2.13) and (2.15) can be writ-
ten in the state space formulation introducing the state space variable ỹ defined as:

ỹ =


x̃
˙̃x
z̃
f̃s

 (2.18)

The equations of motion in the form

˙̃y = f (ỹ, t) (2.19)
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becomes

˙̃y1 = ỹ2, (2.20)
˙̃y2 = P̃(t̃)− (ζ ˙̃x+α x̃+(1−α)z̃+(−K̃nx̃+ K̃3x̃3)

(1+sign(x̃ f−|x̃|))
2 + f̃s),(2.21)

˙̃y3 = ˙̃x[1− (γ̃ + β̃ sign(z̃ ˙̃x))|z̃|n], (2.22)

˙̃y4 = (1− s̃)K̃s[ ˙̃x−| ˙̃x|sign( f̃s− β̃s)(
| f̃s−β̃s|

Ỹ )ns]+ s̃K̃m ˙̃x. (2.23)



Chapter 3

Static analysis

3.1 Analytical equilibrium response
In order to investigate the stability characteristics of the system, the hysteretic
response of the system can be thought of as the sum of the equilibrium response
without dissipative effects, the underlying conservative system, and the hysteresis
providing dissipation. With this assumption, the underlying conservative response
can be identified with the median force of the hysteretic cycle. Although the force-
displacement laws are first-order differential equations, the equilibrium response
can be properly described in closed-form by a piece-wise analytical equation. In
particular, the response is described by f̃e1(x̃) for x̃ < x̃gapm = Ỹ (2− ys)/(2K̃s),
by f̃e2(x̃) for x̃gapm < x̃ < x̃ f and by f̃e3(x̃) for x̃ > x̃ f where

f̃e1(x̃) = (α + K̃s + K̃n)x̃+ K̃3x̃3 (3.1)
f̃e2(x̃) = (α + K̃n)x̃+αsK̃s(x̃− x̃gapm)+ K̃sx̃gapm + K̃3x̃3 (3.2)
f̃e3(x̃) = α x̃+αsK̃s(x̃− x̃gapm)+ K̃sx̃gapm + K̃m(x̃− x̃ f ). (3.3)

Integrating and differentiating the three equations, the potential energy and the
tangent stiffness for each branch are, respectively, obtained as

W̃1(x̃) = 1
2 x̃2 (α + K̃s + K̃n

)
+ 1

4K̃3x̃4, (3.4)

W̃2(x̃) = 1
2 x̃2 (α +αsK̃s + K̃n

)
+ 1

4K̃3x̃4 + x̃(1−αs) x̃gapmK̃s−
−1

2 (1−αs) x̃2
gapmK̃s, (3.5)

W̃3(x̃) = 1
2 x̃2 (α +αsK̃s + K̃m

)
+ 1

4K̃3ũ4
f +

1
2 ũ2

f
(
K̃m + K̃n

)
− x̃ũ f K̃m−

−1
2 (1−αs) x̃2

gapmK̃s + x̃(1−αs) x̃gapmK̃s. (3.6)

17
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while the piece-wise tangent stiffness for each branch is given by

K̃t1(x̃) = α + K̃s + K̃n +3K̃3x̃2, (3.7)
K̃t2(x̃) = α +αsK̃s + K̃n +3K̃3x̃2, (3.8)

K̃t3(x̃) = α + K̃m. (3.9)

Figure 3.1: Analytical vs. numerical (in black and red dashed lines, respectively)
equilibrium response, tangent stiffness and energy profile. Gray lines indicate the
branches of the hysteresis loop.

Comparing the numerical results with the analytical ones a good match is found
(see Fig. 3.1). A small gap between the two results exists across the discontinuity
x̃gapm and x̃ f because of the smoothness of the numerical response. Along the
second branch, in addition to x̃gapm, three characteristic displacements exist x̃k0,
x̃ f 0d and x̃ f 0u. For a displacements equal to x̃gapm and to x̃k0 tangent stiffness
vanishes and the restoring force has the local maximum and the minimum values,
respectively. In the potential energy profile, these two points correspond to flexion
points. The points x̃ f 0d and x̃ f 0u denote the displacements where the force is equal
to zero and correspond, respectively, to the biased unstable and stable equilibria.
Solving k̃t1(x̃) = 0 and f̃e1(x̃) = 0 the formulas furnishing x̃k0, x̃ f 0d and x̃ f 0u are
obtained as

x̃k0 =
√

α+αsK̃s+K̃n
3K̃3

(3.10)

x̃ f 0d = 2√
3

√
− K̃n+αsK̃s+α

K̃3
sin

[
1
3 sin−1

(
3
√

3x̃gapm(K̃s−αsK̃s)
2K̃3

(
− K̃n+αsK̃s+α

K̃3

)
3/2

)]
(3.11)

x̃ f 0u =
2√
3

√
− K̃n+αsK̃s+α

K̃3
cos

[
1
3 sin−1

(
3
√

3x̃gapm(K̃s−αsK̃s)
2K̃3

(
− K̃n+αsK̃s+α

K̃3

)
3/2

)
+ π

6

]
(3.12)



3.1. ANALYTICAL EQUILIBRIUM RESPONSE 19

Using these equations, it is possible to track the locations of the characteristic
points upon variation of the main design parameters, K̃n and K̃3, and obtain useful
information about the stability of the response.

3.1.1 Effects of K̃n on stability
Firstly, the effects of parameter K̃n on stability are studied. Figure 3.2 shows the
evolution of the characteristic points versus K̃n.

Figure 3.2: (left) Elastic equilibrium response of the system with K̃n =
(−0.15,−0.22,−0.32,−0.45) and K̃3 = −2e−06K̃n (red, violet, blue and gray
lines, respectively). (right) Analytically obtained x̃k0, x̃ f 0d and x̃ f 0u vs. negative
stiffness coefficient K̃n.

For low levels of negative stiffness, K̃n =−0.15, only the local maximum point
exists at x̃gapm, the tangent stiffness is positive and the equilibrium is unique. This
type of response is a mono-stable response (MSr). For larger levels of negative
stiffness, K̃n = −0.22, a local minimum appears at x̃k0. This implies the exis-
tence of branches of negative tangent stiffness that cause snap-through phenom-
ena. This type of response is a snap-through response (STr). With K̃n = −0.32
two lateral equilibrium positions are born, hence the system is tri-stable (TSr).
Finally increasing further K̃n =−0.45 the stiffness at the origin becomes negative
so the trivial equilibrium loses stability and the system become bi-stable (BSr).
Therefore, four different types of response exist (MSr, STr, TSr and BSr) and the
transition values of K̃n between the different types of response is predictable in an
analytical fashion (see Fig. 3.3). In particular, the intersection between the curves
x̃k0(K̃n) and x̃gapm(K̃n) determines the finish of the mono-stable region and the
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beginning of the snap-through region, the point of intersection between x̃k0(K̃n),
x̃ f 0d(K̃n) and x̃ f 0u(K̃n) determines the onset of the tri-stable region and finally the
intersection between x̃gapm(K̃n) and x̃ f 0d(K̃n) identifies the onset of the bi-stable
region.

Figure 3.3: (left) Potential energy profile of the system with K̃n =
(−0.15,−0.22,−0.32,−0.45) and K̃3 = −2e−06K̃n (red, violet, blue and gray
lines, respectively). (right) Analytically obtained x̃k0, x̃ f 0d and x̃ f 0u vs negative
stiffness coefficient K̃n and bounding values between stability types.

3.1.2 Effects of K̃3 on stability
By fixing the negative stiffness coefficient K̃n and changing the ratio K̃3/K̃n, the
effects of K̃3 on stability are investigated next. Depending on the value of K̃n upon
changing K̃3, three different types of response can be obtained, namely, MSr, STr
and TSr (see Fig. 3.4).

3.1.3 Type of stability in the (K̃n, K̃3, K̃s) 3D space
By imposing ad hoc conditions on the tangent stiffness, transition values between
the four response types (MSr, STr, TSr and BSr) are analytically obtained.
Transition value between MSr and STr

min(K̃t(x̃)) = 0⇒ K̃t2(x̃gapm) = 0
K̃n MS→ST =−α−αsK̃s−3K̃3x̃2

gapm (3.13)
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Figure 3.4: (left) Equilibrium response for the system with K̃3 =−(2,4,60)K̃n and
K̃n = −0.32 (red, violet, blue and gray lines, respectively). (right) Analytically
obtained x̃k0, x̃ f 0d and x̃ f 0u as function of negative stiffness coefficient K̃n.

Transition value between STr and T Sr

min( f̃b2(x̃)) = 0⇒ f̃b2(x̃02) = 0 with x̃02 : K̃t2(x̃02) = 0

K̃n ST→T S =−α−αsK̃s−3
3
√

(−1+αs)2K̃3K̃2
s x̃2

gapm
4 (3.14)

Transition value between T Sr and BSr

K̃t1(0) = 0
K̃n T S→BS =−α− K̃s (3.15)

In the design parameters (K̃n, K̃3, K̃s) 3D space these equations represent three
surfaces, that divide the latter in four regions corresponding to the different sta-
bility behaviours (MSr, STr, TSr and BSr). In Fig. 3.5 are reported analytically
obtained transition surfaces, together with their traces with a (K̃n, K̃3) plane and a
(K̃n, K̃s) plane.
Increasing the value of K̃s an expansion of the ST and TS regions and a compres-
sion of the BS region are noticed, while the transition curve MS→ ST remains
unaffected (see Fig. 3.5b). On the other hand, an increase of the value of K̃3 causes
a shift of the curve ST → T S to the left and the associated expansion of ST region,
while the curves MS→ ST and T S→ BS remain unaltered (see Fig. 3.5c).

A useful and common method for studying the stability of a nonlinear oscil-
lator is the characterisation of Hamiltonian orbits. The Hamiltonian orbits are
the orbits described by the underliyng conservative oscillator in the state space
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MSr

MSr

STr

STr

TSr

TSr

BSr

BSr

a) b)

c)

MS   ST

ST   TS

TS   BS

Figure 3.5: Analytical transition surfaces between MSr, STr, TSr and BSr (in red,
violet and blue, respectively) in the (K̃n, K̃3, K̃s) parameters space.(b) Traces of
transition surfaces with (K̃n, K̃3) plane for K̃s = 0.2,0.32 (solid and dashed lines,
respectively). (c) Traces of transition surfaces with (K̃n, K̃s) plane for K̃3/K̃n =
0.5,10 (solid and dashed lines, respectively).

(x̃, ˙̃x) and are distinguished by the conservation of mechanical energy (H), that is
defined as

H(x̃, ˙̃x) = T ( ˙̃x)+W (x̃), (3.16)

where T = 1
2m ˙̃x2 is the kinetic energy of the oscillator and W is the potential en-

ergy. By computing the Hamiltonian in the instant corresponding to the condition
of maximum potential energy and null kinetic energy for a given maximum orbit
displacement x̃0 as

H0(x̃0, ˙̃x = 0) = T (0)+W (x̃0) =W (x̃0), (3.17)

and considering the conservation of mechanical energy

H(x̃, ˙̃x) = H0(x̃0, ˙̃x = 0) =W (x̃0), (3.18)

the state space orbits can be defined as follows

ṽ =

√
2

W (x̃0)−W (x̃)
m

. (3.19)
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Saddle point
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Figure 3.6: Stability regions in the (K̃n, K̃3) and (K̃n, K̃s) planes (a, b) and Hamilto-
nian orbits of the system with K̃3 =−10K̃n and K̃s = 0.2 for values of K̃n equal to
0.28 (c), to 0.29 (d), to 0.32 (e) and to 0.42 (f) (ST, TS and BS state, respectively).

In Fig. 3.6 the Hamiltonian orbits for configurations belonging to the STr, TSr and
BSr are shown. The ST configuration exhibit one equilibrium center in zero and
a strecthing of the orbits near the loci of null tangent stiffness (x̃k0). The Hamil-
tonian orbits associated with the Tri-stable configuration are characterized by the
existence of lateral saddle joints and lateral equilibrium centers, located at x̃ f 0d
and x̃ f 0u respectively. In particular, the orbit passing through the lateral saddle
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joints divides the state space in intra-well and inter-well orbits. The first group are
the orbits within the central or lateral wells, while the second group are those that
travel on trajectories outside the wells. In the Bi-stable region, the lateral saddle
joints coalesce and replace the trivial equilibrium center. The reliability of the an-
alytical predictions on the stability behaviour of system are validated numerically
through the computation of the basins of attraction in free oscillations of the real
(hysteretic) oscillator. The equations of motion are numerically integrated for a
grid of initial conditions. The initial conditions, in terms of displacement and ve-
locity, that lead to different attractors are denoted by different colors. In Fig. 3.7
the basins computed for configurations associated with a ST, to a TS and to a BS
state are shown.

Figure 3.7: Numerically obtained basins of attraction in free oscillations of the
system with K̃3 = 2K̃n, K̃s = 0.2 and K̃n =−0.25 (left), K̃n =−0.3 (left) and K̃n =
−0.41.

In particular, the initial conditions that lead to the right equilibrium are denoted
by black dots, the ones that lead to the lateral left equilibrium by white dots and,
finally, the initial conditions that lead to the trivial equilibrium are indicated by
gray dots. The basin corresponding to the ST state is almost totally gray, this
denotes the self-recentering capacity of the selected configuration and the unicity
of the trivial equilibrium center. The basin of attraction of the TS configuration
shows three distinct attractors, while those associated with the BS configuration
shows only the two non trivial equilibria given the instability of the trivial state.

3.2 Equivalent stiffness and damping
Given the dependence in nonlinear oscillators of stiffness and damping on the
amplitude of motion, a useful way to characterize the dynamic behavior of the
hysteretic oscillator is to make use of the equivalent linearization. The equivalent
linear stiffness (Keq) for a given displacement amplitude (U) has been calculated
by considering the equivalence between the elastic energy of the real nonlinear
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oscillator (W (U)) and the one of the equivalent linear oscillator (Wel(U)). The
elastic energy of the real and of the equivalent oscillator can be defined as

W (U) =
∫U

0 fm(x)dx, (3.20)
Wel(U) = 1

2Keq(U)U2, (3.21)

where fm(x) denotes the median force between loading and unloading branch of
the hysteretic cycle. The equivalent damping is obtained as the ratio between the
damped energy during a cycle (Ed) and the associated elastic work (4W ) multiply-
ing π . The equivalent linear stiffness and damping ratio can be defined as function
of the displacement amplitude (U) as

Keq(U) =
2W (U)

U2 ,ξ (U) =
Ed(U)

4πW (U)
, (3.22)

Firstly, the equivalent stiffness and damping for the system composed by supere-
lastic element alone arranged in parallel with the elastomeric device (system S2)
are investigated. In order to clarify the effects of the design parameters, three dif-
ferent cases are reported in Fig. 3.8: (Y = Zm, K̃s = α,ys = 0.2) (red dashed line),
(Y = Zm, K̃s = α,ys = 0.8) (red solid line), (Y = 1.6Zm, K̃s = 1.6α,ys = 0.8) (red
dashed dotted line).

Figure 3.8: Equivalent nondimensional stiffness vs. nondimensional displacement
amplitude (left) and equivalent damping vs. nondimensional amplitude (right)
for S1 (black line), S2 with Y = Zm,ys = (0.2,0.8) (dashed and solid red lines,
respectively) and with Y = 1.6Zm,ys = 0.8 (dashed-dotted red line). The sub-
figures show the hysteresis loops of device (a) and system (b) for the parameters
described above.

The trends of equivalent stiffness and damping in Fig. 3.8 show that, for low ratios
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of super-elastic hysteresis (ys) (see dashed red curve), the only effect is an increase
in stiffness that causes a reduction of equivalent damping in the low amplitude
range. For greater ratios of superelastic hysteresis, a small increase of damping
is achieved for moderate and large displacements, whereas, for low amplitudes, a
decrease of damping persists. Increasing the yielding force (Y ) entails an increase
of initial stiffness; hence, the damping reduction at low amplitudes is more signifi-
cant. Moreover, a damping increment is exhibited for large displacements. The in-
troduction of the superelastic element within the isolation system, regardless from
its hysteresis contribution, causes a decrease in seismic isolation performance for
low intensity earthquakes characterized by high frequency of occurrence (because
of an increase in stiffness and a subsequent decrease of the damping). On the
other hand, a slight improvement of performance is obtained for medium and
high intensity earthquakes. By considering next the case (Y = Zm,ys = 0.8), Fig-
ure 3.9 shows that the introduction of negative stiffness drastically amplifies the
equivalent damping. In fact, while the maximum increase of damping achieved
with the superelastic element alone was of ' 2%, with K̃n = −(0.5,1,1.2)α and
K̃3 =−2K̃n, the achieved increments are ' (10,30,90)%, respectively.

Figure 3.9: Equivalent nondimensional stiffness vs. nondimensional displacement
amplitude (left) and equivalent damping vs. nondimensional amplitude (right)
for S1 (black line), S2 with Y = Zm,ys = 0.8 (red line), S3 with K̃3 = −2K̃n and
K̃n = −(0.5,1,1.2)α (magenta, violet, blue lines, respectively); the blue dashed-
lines represent the case K̃n = −1.2α,Y = Zm,ys = 0.2, the blue dashed-dotted
lines represent the case K̃n = −1.2α,Y = 1.6Zm,ys = 0.8, while the sub-figures
show the hysteresis loops for the assigned parameters.

As already seen for the system S2, the increase of the hysteresis ratio ys entails
an increase of the equivalent damping, while the increase of the yielding force Y
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gives rise to an increase of the initial stiffness and thus a drop of the equivalent
damping over a broad range of displacements. In addition, it is possible to note
that the system with K̃3 =−2K̃n, K̃n =−1.2α (ST configuration) exhibits an over-
damped behaviour. In Fig. 3.10 it is shown that, for K̃n =−1.2α , the response is
still mono-stable but exhibits a negative stiffness range and the damped energy
profile along the associated branch is greater than the potential profile, determin-
ing an over-damped condition. For values of K̃n <−1.2α , the median line of the
hysteresis loops intersects the abscissa line (i.e., the force vanishes), 2 lateral min-
ima in the energy profile appear and the system becomes globally tri-stable. This
means that exists a shift between the ST → T S transition surface and the surface
bounding the under-damped and the over-damped regions.

Figure 3.10: (left) Force displacement cycles together with the average force in
dashed-dotted lines and (right) potential energy profiles of system S3 with Y =
Zm,ys = 0.8, K̃3 = −2K̃n and K̃n = (1,1.2,1.3)α represented by magenta, blue,
and violet lines, respectively. The gray dashed lines denotes the damped energy
profile

Figure 3.11 shows the evolution of the minimum value of equivalent stiffness
curve and of the maximum value of damping curve as function of the value of
K̃n for a system S3 with K̃3 = −2K̃n,Y = Zm,ys = 0.8. By increasing negative
stiffness level is possible to obtain strong reduction of equivalent stiffness up to
Keq ≤ 0 and drastic amplification of damping up to ξ ≥ 1. The minimum value of
equivalent stiffness curve shows a quasi-linear trend, while the maximum value of
damping curve exhibits an exponential evolution. This means that most of damp-
ing amplification is obtained in a small range of negative stiffness values. In fact,
an increase of K̃n from 0 to 0.15 produce an amplification of only' 10% in damp-
ing, while, in the range between 0.15 and 0.22, corresponding to the ST region,
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the increase obtained is ' 70%. It is shown also that an increase of K̃s, hence of
the value of superelastic yielding force Y , as well as a decrease of the hysteresis
ratio ys, induces a delay in the damping amplification. Two distinct regions asso-

Negative stiffness

region 

Over-damped region 

Figure 3.11: Evolution of the minimum value of equivalent stiffness curve (left)
and of the maximum value of damping curve (right) in function of the value of
K̃n for system S3 with K̃3 =−2K̃n,Y = Zm,ys = (0.2,0.8) (dashed and solid lines
respectively) and with K̃3 =−2K̃n,Y = 1.6Zm,ys = 0.8 (dashed-dotted lines).

ciated with a negative equivalent stiffness and with an over-damped response are
identifiable in the 3D space of design parameters. As shown in Fig. 3.12, both the
boundary surface between positive and negative equivalent stiffness regions and
the boundary surface between under-damped and over-damped regions are offset
of the ST → T S surface. The first surface, associated with Keq ≤ 0, lies within the
TS region, while, the surface associated with ξ ≥ 1, lies in the ST region. This
means that the configurations belonging to the intersection portion of parameter
space between the over-damped region and the ST region exhibit simultaneously
self-recentering capabilities and over- damped behaviour, that is a promising and
desirable combination of features for an isolation system.
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Figure 3.12: Contour levels of the minimum value of equivalent stiffness curve
(up) and of the maximum value of damping curve (bottom) in the (K̃n, K̃3) plane
when K̃s = 0.2 and in the (K̃n, K̃s) plane with K̃3 =−2K̃n. In gray are denoted the
negative equivalent stiffness region (up) and the over-damped region (bottom).

3.3 Conclusions
The first step of the investigation has involved the static characterization of the re-
sponse of the dimensionless system in terms of stability, stiffness and equivalent
damping, highlighting the presence of different types of stability in the (K̃n, K̃3,
K̃s) design parameters space. In particular, depending from the design parameters
selected, it is possible to obtain Mono-Stable, Snap-Trough, Tri-Stable and Bi-
Stable types of response. In addition, is proven the possibility of obtaining almost
zero stiffness together with amplifications of the damping up to over-damped re-
sponses. Of particulare interest results the existence of a compenetration region
between the Snap-Trough and the over-damped regions, which allow to obtain
self-recentering and highly damped responses.



Chapter 4

Nonlinear dynamic response to
harmonic excitation

The frequency-response curves (FRCs) of the described hysteretic oscillators en-
dowed with the rheological devices S1, S2, S3 are numerically obtained for several
excitation levels employing a continuation procedure based on the Poincarè map.
The Poincarè map and the associated monodromy matrix are computed via the
fourth-order Runge-Kutta integration scheme and the finite difference method, re-
spectively. The stability and the bifurcations along the path of periodic solutions
are ascertained according to the eigenvalues of the monodromy matrix [134]. In
the next subsections, a full parametric analysis is carried out to investigate the
sensitivity of the FRCs with respect to the design parameters.

4.1 Effects of design parameters on dynamic response

4.1.1 Linear and nonlinear negative stiffness
Figure 4.1 shows the displacement and acceleration FRCs for the baseline isola-
tion system (S1) (denoted by black lines), for the isolation system with the SMA
damper (S2) assuming K̃s = α, x̃g = 0.05,ys = 0.2, (denoted by red lines) and
for the isolation system with the same SMA damper plus the negative stiffness
(S3) with K̃n = (0.5,1,1.2)α and K̃3 = −2K̃n under two excitation amplitudes,
Ãg = (0.01,0.015). As expected, the addition of the superelastic element induces
an increase of stiffness that is larger for low amplitudes, and results in a shift of
the curves to the right with an increase of the acceleration and a decrease of the
displacement (see the red lines in Fig. 4.1). The addition of negative stiffness im-
plies a reverse shift of the curves to the left, a decrease of the acceleration and

30
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an increase of the displacement. It is interesting to note that, despite the stiff-
ness of S3 being much lower than that of the baseline system S1, the maximum
displacement is always smaller, at most equal, thanks to the beneficial effect of
the augmented damping. The peak of absolute accelerations transmissibility, or
force transmissibility, defined as the ratio between absolute acceleration and base
acceleration, results for the S1 configuration equal to 2.5 and 7, for low and high
excitation (Ãg = (0.01,0.015)) respectively, while for the S2 configuration is equal
to 3.3 and 6.1. The S3 system exhibits a halved force transmissibility peak for both
the excitation amplitudes (1.8 and 4).

(a) (b)

(d) (e) (f)

(c)

Figure 4.1: Frequency-response curves (FRCs) in terms of nondimensional dis-
placement (left), acceleration (center), and force transmissibility for a ground ac-
celeration of 0.01 (a, b, c) and 0.015 (d, e, f). The response of S1 is denoted by
black lines, the response of S2 (when Y = Zm,ys = 0.2) by red lines while the re-
sponse of S3 by magenta (K̃n = 0.5α), violet (K̃n = α) and blue lines (K̃n = 1.2α),
respectively. The dashed lines indicate unstable periodic responses.

Besides the negative stiffness coefficient, also the nonlinear stiffness coefficient
K̃3 plays an important role on the nonlinear dynamic response. Figure 4.2 shows
families of displacement and acceleration FRCs of the systems S1 and S3 upon
variation of the nonlinear stiffness coefficient K̃3. Note that an increase of K̃3,
associated with a smaller working displacement x̃ f , entails a stronger hardening
nonlinearity that leads to a reduction of the peak displacement and an increase of
the peak acceleration.
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Figure 4.2: Frequency-response curves (FRCs) in terms of nondimensional dis-
placement (left), acceleration (center), and force transmissibility for a ground ac-
celeration set to 0.015. The response of S1 is represented by black lines and that
of S3 (when Y = Zm,ys = 0.2, K̃n = α and K̃3 =−(1,2,4,8,10)K̃n) is denoted by
solid violet lines with increasing thickness for increasing K̃3.

4.1.2 SMA mechanical characteristics
In Fig. 4.3, the FRCs of the system S1 (black lines) are compared with those of
S2 (red lines) and S3 (violet lines) for different levels of hysteresis ratio ys and
for two excitation amplitudes, Ãg = (0.01,0.015). The acceleration of the system
S2 shows, for low excitations and regardless of the hysteresis ratio, an increase
of the acceleration compared to the baseline system S1. On the contrary, S3 ex-
hibits a strong reduction in accelerations for both excitation amplitudes while it
also undergoes a strong reduction in displacements for medium and high hystere-
sis ratios of the superelastic element. For both the systems S2 and S3 an increase
of hysteresis ratio ys produces an improvement of the performance, mild at low
amplitudes and more consistent at high amplitudes. The peak of force transmis-
sibility for S2 configuration is reduced from 3.3 (ys = 0.2) to 2.8 (ys = 0.8) at
the lower amplitude and from 6.1 to 3 at the higher amplitude. Instead, the S3
configuration exhibits a reduction of force transmissibility peak from 1.8 to 1.5 at
the lower amplitude and from 4 to 1.4 at the higher amplitude. By increasing the
yielding force of the superelastic element (with Y = 1.6Zm), an additional reduc-
tion of displacement amplitude can be achieved but paying the cost of a stiffness
increase and, accordingly, of the accelerations transmissibility. This deterioration
of performances is stronger at low amplitudes, where the increase of stiffness is
greater. In fact, the peak of force transmissibility grows from 1.5 to 2.3 at the
lower amplitude, while for the higher amplitude goes from 1.4 to 1.8.
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(a) (b)

(d) (e)

(c)

(f)

Figure 4.3: Frequency-response curves (FRCs) in terms of nondimensional dis-
placement (left), acceleration (center), and force transmissibility for a ground ac-
celeration of 0.01 (a, b, c) and 0.015 (d, e, f). The response of the S1-isolated
system is described by black lines, those of S2 (when Y = Zm,ys = (0.2,0.5,0.8))
by red lines with increasing thickness for increasing ys, and those of S3 (when
K̃n = α,Y = Zm,ys = (0.2,0.5,0.8)) by violet lines with increasing thickness for
increasing ys and blue lines (when K̃n = α,Y = 1.6Zm,ys = 0.8), respectively.

4.2 Nonlinear dynamic scenarios
The parametric study unfolds a meaningful sensitivity of the frequency-response
with respect to the system parameters. Henceforth, the evolution of the response
for increasing base accelerations is discussed. The FRCs of the system S3, set in
two different Snap-Through configurations, are computed for different excitation
amplitudes and are showed in Fig. 4.4. The strong softening-hardening nonlin-
earity of the system is reflected by the trend of the backbone curves, that bend
firstly to the left and then to the right. The severe curvature of the backbone curves
cause different nonlinear phenomena, such as Jumping phenomena both to the left
(softening) and to the right (hardening) of the main resonance frequency. Other
interesting phenomena are observed such as the emergence of detached resonance
curves. For the case with large negative stiffness (K̃n = 1.2α) a disappearance
of the peak occurs in the response within the displacement range in which the
system turns out to be overdamped (0.2 < x̃ < 0.4). Moreover, for the strongest
base acceleration in the low frequency range, there exists a bandwidth in which no
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stationary solutions could be obtained, a circumstance that suggests the existence
of quasi-periodic/nonperiodic responses. All these features persist in the response
of Tri-Stable configurations and are enriched and complexified by the presence of
the two additional lateral equilibria.

Figure 4.4: FRCs in terms of nondimensional displacement (left) and acceleration
(right) for the S3 system with K̃n = α, K̃3 =−2K̃n,Y = Zm,ys = 0.2 (top) and with
K̃n = 1.2α, K̃3 =−2K̃n,Y = Zm,ys = 0.2 (bottom) when the base accelerations are
set to (0.8,1,1.08,1.2,1.28,1.3,1.32,1.36,1.4,1.48,1.6,1.8,2)10−2.

4.2.1 Primary, superharmonic and detached resonances
The severe softening nonlinearity associated with the softening hysteresis induces
an interaction between the primary and the superharmonic resonances causing the
emergence of detached resonance curves, a phenomenon that is well documented
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in the literature [135, 136, 137]. However, a new phenomenology is here docu-
mented. Figure 4.5 show the evolution of the isolas for the system with two levels
of negative stiffness associated with ST configurations.

Figure 4.5: Evolution of isolas topology for S3 with K̃n = α, K̃3 = −2K̃n,Y =
Zm,ys = 0.2 (top) for a nondimensional ground acceleration equal to 0.0128 (a),
0.01288 (b), 0.0130 (c), 0.0132 (d) and for S3 with K̃n = 1.2α, K̃3 = −2K̃n,Y =
Zm,ys = 0.2 (bottom) for a nondimensional ground acceleration equal to 0.01072
(e), 0.01088 (f), 0.01112 (g) and 0.0112 (h).

The qualitative pattern in both cases consists in the birth of an outer isola in the
neighborhood of the superharmonic resonance frequency which, for increasing
base acceleration levels, coalesces first with the superharmonic resonance branch
and, thereafter, upon further increase of the excitation amplitude, coalesces with
the main resonance branch, giving rise to an inner isola. It is possible to observe
that for the system S3 with K̃n = α , there exists only a small outer isola, while
for the case with K̃n = 1.2α , different outer isolas coexist. Indeed, for a ground
acceleration of 0.01, two outer detached resonance isolas are visible in the prox-
imity of the superharmonic resonances of order 1:3 and 1:5 (see Fig. 4.5e). For a
higher amplitude, the two distinct isolas merge and a new isola is formed near the
superharmonic resonance of order 1:7 (see Fig. 4.5f). Upon further increase of the
excitation amplitude, all previous isolas merge with each other and with the 1:3
superharmonic resonance branch (see Fig. 4.5g). At a higher excitation amplitude,
the primary resonance branch and the outer superisola merge and give rise to an
inner isola for slightly higher excitation amplitudes (see Fig. 4.5h). Despite the
very low frequency range where the isolas appear, the outer isolas are detrimental
for isolation purposes since they can give rise to an unwanted dynamic amplifica-
tion. On the contrary, the inner isola can be used to reduce the main resonance.
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Figure 4.6: Basins of attraction for the system S3 with K̃n = α, K̃3 = −2K̃n,Y =
Zm,ys = 0.2 (top) for a base acceleration Ãg = 0.0128 and frequency Ω̃2 = 0.022,
corresponding to the outer isola (left), and for a base acceleration Ãg = 0.0132 and
frequency Ω̃2 = 0.05, corresponding to the inner isola (right). (bottom) Basins of
attraction for the system S3 with K̃n = 1.2α, K̃3 = −2K̃n,Y = Zm,ys = 0.2 for a
base acceleration of Ãg = 0.01072 and Ω̃2 = 0.022, corresponding to the outer
isola (left), and for a base acceleration of Ãg = 0.0112 and Ω̃2 = 0.05, corre-
sponding to the inner isola (right). In red, the initial conditions that lead to the
low-amplitude solution, while in blue those that lead to the high-amplitude solu-
tion.

The factors that determine whether the mass will move along the detached solu-
tion curve or along the main branch are the initial conditions or the perturbations
causing jumps between the coexisting attractors. In order to obtain the basins
of attraction of the system for the isolas (see Fig. 4.6), the equations of motion
are numerically integrated for a fixed harmonic excitation over 1,000 periods for
a grid of initial conditions. The initial conditions, in terms of displacement and
velocity, that lead to different attractors are denoted by different colors. In particu-
lar, the initial conditions that lead to the low-amplitude solution are represented in
red, while in blue those associated with the high-amplitude solution. It is possible
to note that the system with K̃n = α shows much thinner basins of attraction for
both the outer and inner isola than the system with K̃n = 1.2α , denoted by larger
blue and red regions for the outer and inner isolas, respectively. For a more thor-
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ough characterization of the two coexisting attractors exhibited by the system with
K̃n = 1.2α,Y = Zm,ys = 0.2, the force-displacement cycles, the phase portraits,
the time histories and the FFTs of the response for a harmonic base excitation with
Ãg = 0.01072 and Ω̃2 = 0.022 are shown in Fig. 4.7.

Figure 4.7: Force-displacement cycles (a), phase portraits (b), time histories (c)
and FFTs (d) of the system S3 (with K̃n = 1.2α, K̃3 =−2K̃n,Y = Zm,ys = 0.2) for
Ãg = 0.01072 and Ω̃2 = 0.022. In red the response to a zero initial condition along
to the main solutions branch, while in blue the solution for the initial conditions
x̃ = 0.2, ṽ = 0, giving rising to the isola solution curve.

The response belonging to the main solution branch is richer due to the presence
of more superharmonic components. In fact, while in the first case, third, fifth and
seventh harmonics are relevant in terms of amplitude, in the case of the isola, only
the third harmonic is considerable. From the FFT it is also possible to see that, for
solutions belonging to the isola, the amplitude of the main harmonic is larger than
that of the overall response (sum of all harmonics) while for the solution along the
main curve, the fundamental harmonic exhibits the same amplitude of the overall
response. This suggests a different relative phase between the main harmonic and
higher harmonics for the two solutions. The harmonic decomposition of the two
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different responses shows that for the solution belonging to the main branch, the
peak of main harmonic component corresponds to the zero of all other harmonics
having thus a relative phase of π/2n with n representing the order of the harmonic
component (see Fig. 4.8).

Figure 4.8: Harmonic decomposition of the superharmonic response along the
main resonance branch (left) and detached resonance (right). The first, third, fifth
and seventh harmonics and the total response are represented by red, blue, violet,
magenta and black lines, respectively.

Figure 4.9: Nondimensional displacement (left) and phase angle (right) vs. nondi-
mensional frequency for S3 with K̃n = 1.2α, K̃3 = −2K̃n,Y = Zm,ys = 0.2 and
Ãg = 0.01072. Black lines show the amplitude and phase angle of the overall
response, red lines and blue lines represent the amplitude and phase angle of the
main harmonic and of the first superharmonic of order 1:3, respectively. The phase
angle between the main harmonic and the first superharmonic is reported in red
dashed lines.
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By focusing on the third harmonic, a relative phase of π/6 means that the
peak of the main harmonic coincides with the zero value along the descending
branch of the superharmonic and this is equivalent to the out-of-phase condition
or deamplification condition. On the other hand, the solution along the detached
curve shows that the peak of the main harmonic coincides with the minimum of
the third harmonic, thus giving rise to a π/2 relative phase. Thus, for the solutions
belonging to the detached curve, the higher harmonics are phased with the main
harmonic, producing a less distorted and larger motion. Figure 4.9 shows the
amplitudes and the phases of the overall response, of the main harmonic and of
the first superharmonic and the relative phase between the main harmonic and the
first superharmonic in the frequency domain. Note that the main harmonic of the
solution belonging to the detached resonance curve shows a phase equal to π/2 at
the peak. This condition is shared only with the solution of the primary resonance.

4.2.1.1 Tri-Stable configurations response

The detached resonance curves descrived above, exhibited by ST configurations,
are mainly due to the progressive emerging of the unstable equilibrium, which
expand the motion of the mass. As shown, isolas come out at low frequencies
range, where the oscillator, under certain initial values of displacement and veloc-
ity, establish an in-phase motion with the ground excitation. A different scenario
unfolds for TS configurations, where the existence of multiple stable equilibria al-
lows the mass to oscillate stably around one or another equilibrium position. This
type of intra-well motions is manifested for low excitation amplitudes, where the
incoming energy is not sufficient to escape the mass from the wells. For higher
excitation amplitudes, the mass is able to escape and the motion involves all the
equilibrium (inter-wells).
In Fig. 4.10 the FRCs of the TS configuration with K̃n = 1.4α, K̃3 = −2K̃n,Y =
Zm,ys = 0.2 are shown for two levels of excitation amplitudes (Ãg = 0.01,0.015).
For the lower amplitude two distinct and stable intra-well solutions exist, one
around the central equilibrium and the other around the laterals equilibria with
ascissa x̃ f 0u. As shown in Fig. 4.11, while the central solution is symmetric, the
lateral solution reveals an asymmetric motion, highlighted by the presence of even
super-harmonics (see Fig. 4.11d). For the higher excitation amplitude the intra-
well motions endure only for high frequencies range. In fact, at the frequency
Ω̃2 = 0.18 the central solution crosses the position of unstable equilibrium and
the motion, for lower frequencies, expands towards inter-well orbits. In this ex-
pansion process the simmetry of motion is broken by the near presence of lateral
equilibria, producing a loss of stationarity in response for the frequencies range
0.04 < Ω̃2 < 0.18 (dashed line of inter-well motion in Fig. 4.10d). For lower
frequencies the mass establishes high energy inter-wells orbits and regain station-
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a) b) c)

d) e) f)

Figure 4.10: Frequency-response curves (FRCs) in terms of nondimensional dis-
placement (left), acceleration (center), and force transmissibility for a ground
acceleration of 0.01 (a, b, c) and 0.015 (d, e, f) of S3 configuration with K̃n =
1.4α, K̃3 = −2K̃n,Y = Zm,ys = 0.2. The dashed lines indicate unstable periodic
responses.

arity. This type of orbits causes an amplification of accelerations transmissibil-
ity for low frequencies compared with the configuration with K̃n = 1.2α ( see
Fig. 4.10f) For both excitation amplitudes, the lateral intra-well solutions show a
higher force transmissibility with respect to the central intra-well solution because
of the more developed cubic stiffness. Also in this case, the factor that determines
the equilibrium around which the mass vibrates are the initial conditions, in terms
of initial displacement and velocity. In Fig. 4.12 the basins of attraction of the
shown TS configuration are reported for Ãg = 0.01 at Ω̃2 = 0.09,0.3. For the
lower frequency, corresponding to the main resonance in the central solution, a
greater attraction of the central equilibrium is observed compared with the attrac-
tion exhibited by the lateral equilibria. On the other hand, when Ω̃2 = 0.3, the
area covered by the lateral solution, hence their attraction, is greater than the one
of the central equilibrium.
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Figure 4.11: Force-displacement cycles (a), phase portraits (b), time histories (c)
and FFTs (d) of the system S3 with K̃n = 1.4α, K̃3 = −2K̃n,Y = Zm,ys = 0.2 for
Ãg = 0.01 and Ω̃2 = 0.3. In red the response along to the central solutions branch,
while in blue the solution along the lateral solutions curve.

Figure 4.12: Basins of attraction of the system S3 with K̃n = 1.4α, K̃3 =−2K̃n,Y =
Zm,ys = 0.2 for Ãg = 0.01 and Ω̃2 = 0.09 (left), 0.3 (right). In red the initial
conditions leading to to the central solutions, while in blue and green those leading
to the lateral solutions.
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4.2.2 Bifurcation scenarios and quasi-periodicity
As mentioned above, for low frequencies and high base accelerations, the periodic
response of the system S3 with K̃n = 1.2α and K̃3 =−2K̃n undergoes a loss of sta-
bility. By restricting our analysis to the frequency range reported in Fig. 4.13,
a rich sequence of bifurcations is found. Moving from low to high frequencies,
the first encountered bifurcation is a Neimark-Sacker or secondary Hopf bifurca-
tion (A), signalled by a pair of Floquet multipliers crossing the unit circle away
from the real axis (red circles). The solution emerging out of the Neimark-Sacker
bifurcation is a quasi-periodic solution. However, past the bifurcation, the con-
tinuation of the unstable periodic solution cannot be successfully achieved. On
the other hand, between C and D, a stable branch of periodic solutions is found,
which loses its stability at C due to a symmetry-breaking bifurcation. The two
branches of mirror nonsymmetric periodic attractors lose their stability at B due
to a period-doubling bifurcation, circumstance indicated by the fact that one of
the Floquet multipliers crosses the unit circle through -1.

Figure 4.13: FRCs of the system S3 with K̃n = 1.2α, K̃3 = −2K̃n,Y = Zm,ys =
0.5 for a nondimensional ground acceleration equal to Ãg = 0.0148 (left) and
imaginary parts vs. real parts of Floquet multipliers (right).

In D the solution experiences a fold bifurcation, whereby one of the Floquet mul-
tipliers crosses the unit circle along the positive real axis. Finally, in E a new
Neimark-Sacker bifurcation is manifested and afterwards path following of the
stationary solutions breaks down. To investigate more in depth the scenario be-
tween the Neimark-Sacker bifurcation at A and the period-doubling at B, bifur-
cation diagrams were constructed by direct numerical integration of the equations
of motion (see Fig. 4.14). The time step was fixed by dividing the excitation pe-
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riod into 4,096 equally spaced points. The integration was carried out over 2,000
cycles of the excitation by considering as initial conditions those obtained at the
previous excitation frequency and the last 64 points of the Poincaré map were
recorded.

Figure 4.14: Bifurcation diagram for the system with K̃n = 1.2α, K̃3 =−2K̃n,Y =
Zm,ys = 0.5 for a nondimensional ground acceleration equal to Ãg = 0.0148.

(1)

(2)

(b)(a) (c) (d)

Figure 4.15: FFTs of the response (a), force-displacement cycles (b), phase por-
traits (c) and Poincarè map (d) of the system S3 when K̃n = 1.2α, K̃3 =−2K̃n,Y =
Zm,ys = 0.5, the nondimensional ground acceleration is set to Ãg = 0.0148 for the
frequencies corresponding to sections 1, 2.
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Figure 4.16: FFTs of the response (a), force-displacement cycles (b), phase por-
traits (c) and Poincarè map (d) of the system S3 when K̃n = 1.2α, K̃3 =−2K̃n,Y =
Zm,ys = 0.5 for a nondimensional ground acceleration equal to Ãg = 0.0148 for
the frequencies referred to as 3, 4, 5, 6, 7, 8 in Fig. 4.14.



4.2. NONLINEAR DYNAMIC SCENARIOS 45

(9)

(10)

(b)(a) (c) (d)

Figure 4.17: FFTs of the response (a), force-displacement cycles (b), phase por-
traits (c) and Poincarè map (d) of the system S3 when K̃n = 1.2α, K̃3 =−2K̃n,Y =
Zm,ys = 0.5 for a nondimensional ground acceleration equal to Ãg = 0.0148 for
the frequencies referred to as 9 and 10 in Fig. 4.14.

It is possible to note that at A the solution becomes quasiperiodic, through
the mentioned secondary Hopf bifurcation, while from B to the left the solution
becomes quasi-periodic by means of a more complex sequence of bifurcations.
Figure 4.15 shows a symmetry-breaking bifurcation at the frequency denoted by
section 2 (see Fig. 4.14), singled out by the birth of an even superharmonic com-
ponent, after the limit cycle exhibited at section 1. This symmetry-breaking paves
the way to two distinct branches of nonsymmetric mirror solutions, whose or-
bits include the limit cycle and towards the latter they extend.In this frequency
range, the solution turns out to jump from one nonsymmetric branch to the other
for any small frequency variation. Each of these branches undergoes a cascade
of successive period-doubling bifurcations induced by the birth of a subharmonic
component of order 2:1 at section 3 and of subharmonics of order 4:1 and 2:1
at section 4. This cascade of period-doubling bifurcations, giving rise to a rich
nidification of subharmonics and superharmonics, may lead to a chaotic attractor.
When the orbits of the nonsymmetric solutions touch the orbit of the limit cycle,
there is a reverse symmetry-breaking and the solution regains symmetry. This is
signalled by the disappearance of the even superharmonic component (section 6).
In the frequency range between 2.04 and 2.09, the ratio between the modulation
frequency and the carrier frequency locks into a rational number, due to the so-
called frequency-locking phenomenon with three-period motions, supported by
the 3:1 subharmonic component (section 7). Past this window, a new symmetry-
breaking is experienced by the 3-T solution, yielding two distinct branches of
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3-T solutions in which, in addition to the 3:1 subharmonic, there appears an even
superharmonic of order 1:2 (section 8). The symmetry-breaking forces the so-
lution to transition towards a quasiperiodic, symmetric solution regime (section
9). Finally, the amplitude of the phase plane portion covered by the trajectory
progressively gets reduced until reaching the frequency indicated by 10, where a
reverse secondary Hopf bifurcation makes the solution stable.

4.2.2.1 Bifurcation scenarios for the tri-stable configuration

For K̃n = 1.2α and K̃3 = −2K̃n, the bifurcation scenario engages only ultra-low
frequencies and a small displacements range. On the other hand, when K̃n > 1.2α ,
the bifurcation scenario involves much larger ranges of frequencies and displace-
ments. As shown, for K̃n > 1.2α the system is tri-stable and the presence of the
two lateral attractors breaks the symmetry of the response. Because of the ex-
istence of symmetry-breaking and period-doubling bifurcations, the response is
quasi-periodic for most of the frequencies within the considered range. In or-
der to obtain the FRC and bifurcation diagram of the tri-stable configuration (i.e.,
K̃n = 1.4α), the equations of motion are numerically integrated for a harmonic
base excitation over 1,000 periods and the maximum amplitudes exhibited in the
last 50 cycles, together with the Poincaré sections, are recorded for each frequency
within the range (see Fig. 4.18). Depending on the initial conditions, the mass can
vibrate around the origin, the left or the right equilibrium positions. Regardless
of the equilibrium around which the mass vibrates, the adjacent attractor breaks
the symmetry of the response and leads to quasi-periodicity. Further, when the
mass vibrates around one of the lateral equilibria, due to the stronger effects of
the cubic stiffness, the acceleration transmissibility is higher compared with that
exhibited by the mass vibrating around the origin. For limited frequency intervals,
the phase-locking phenomenon is observable together with a reduction of trans-
missibility with respect to the adjacent quasi-periodic response. By analysing
more in depth the response in Fig. 4.18, we can note that for low frequencies
(0 < Ω̃2 < 0.022), the system has sufficient energy to complete symmetric peri-
odic cycles. For higher frequencies (0.022 < Ω̃2 < 0.042), because of a folding
bifurcation, two different responses are exhibited by the system depending on the
initial conditions. The high amplitude response, such as the response of the previ-
ous frequency range, exhibits stable cycles. On the other hand, the low amplitude
solution, with a lower associated energy, suffers the attraction of the lateral equi-
libria and shows a quasi-periodic behavior. By increasing the frequency up to
Ω̃2 = 0.042, a downward jump occurs together with the birth of two mirrored
nonsymmetric solutions, each of which experiences cascades of period-doubling
bifurcations. In the frequency range 0.118 < Ω̃2 < 0.18, the existing solutions re-
gain periodicity and two new mirrored nonsymmetric and quasi-periodic solutions
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Figure 4.18: FRCs in terms of nondimensional displacements (a) and acceler-
ations (b) and bifurcation diagram (c) for the system S3 with K̃n = 1.4α, K̃3 =
−2K̃n,Y = Zm,ys = 0.2 for a ground acceleration equal to Ãg = 0.0142. Blue
lines represent the responses obtained for the forward frequency sweep while red
lines denote those obtained in reverse sweep. Magenta and cyan lines indicate the
responses of the system with initial conditions x̃0 = 0.5 and of x̃0 =−0.5, respec-
tively. Finally, for comparative purposes, the responses of the mono-stable system
with K̃n = 1.2α are represented by gray lines.

appear along the lateral right and left equilibria. Finally, when Ω̃2 = 0.165, the
first two mirrored solutions coalesce into one symmetric periodic solution while
the two lateral nonsymmetric solutions regain stability. In the latter frequency
range, an amplification of both accelerations and displacements is observable. In
Fig. 4.19 the FFTs, the hysteresis loops, phase portraits and Poincarè maps asso-
ciated with the frequencies highlighted in Fig. 4.18 are reported. By focusing on
section 6, the coexistence of four different types of response is noted.
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Figure 4.19: FFTs of the response (a), force-displacement cycles (b), phase por-
traits (c) and Poincarè map (d) of the system S3 when K̃n = 1.4α, K̃3 =−2K̃n,Y =
Zm,ys = 0.2 and the nondimensional ground acceleration is set to Ãg = 0.0142 for
the frequencies referred to as 0, 1, 2, 3, 4, 5, 6 in Fig. 31.
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The basins of attraction obtained for this frequency are reported in Fig. 4.20.
The coexistence of four different attractors, namely, the left stable (LS) and un-
stable (LU) and the right stable (RS) and unstable (RU) equilibria, gives rise to in
a high sensitivity of the dynamic response to the initial conditions, as manifested
by the richness of the basins. From the progressive zooming of the basins of at-
traction (see Fig. 4.20c and Fig. 4.20d), it is remarkable that the strict adherence
to the attractors succession order (LS, LU, RU, RS) leads to a fractal-like pattern.

Figure 4.20: (a) Basins of attraction for the system with K̃n = 1.4α, K̃3 =
−2K̃n,Y = Zm,ys = 0.2 for a base acceleration Ãg = 0.0142 and frequency Ω̃2 =
0.125. Parts (b), (c) and (d) are zoomed-in regions bounded by the dashed rectan-
gles. Magenta and red dots denote the initial conditions that lead to the left stable
(LS) and unstable (LU) attractors, respectively, while cyan and blue dots represent
the initial conditions that lead to the right stable (RS) and unstable (RU) attractors,
respectively.



4.3. DISPLACEMENT AND ACCELERATION TRANSMISSIBILITY 50

4.3 Displacement and acceleration transmissibility
For the same excitation amplitudes range, the FRCs are computed for the sys-
tem S1 and S2 assuming various hysteresis ratios and yielding force levels, and
for S3 varying the amount of hysteresis and considering three different levels of
negative stiffness K̃n = α,1.2α,1.4α , corresponding to MS, ST and TS states,
respectively. The peak responses of S2 or S3 and those of the baseline system
S1 are reported in Fig. 4.21 as function of the base acceleration. As expected, the
insertion of the superelastic element alone (system S2) causes an increase of accel-
erations response for weak excitations. The increase is about 30% when Y = Zm
and 60% for Y = 1.6Zm, respectively, and it is mainly due to the initial stiffness
of the hysteretic damping and slightly to the damping ratio. On the other hand,
the damping ratio strongly affects the response for moderate and strong base ac-
celerations. It turns out that reductions of 20%, 60% and 75% are obtained when
Y = Zm,ys = (0.2,0.8) and Y = 1.6Zm,ys = 0.8, respectively.
By introducing the negative stiffness in parallel with the SMA damper (system
S3), the amplification of accelerations for weak excitations is totally cancelled
and a mild reduction can be observed. In addition, a further 20% reduction of
accelerations compared with the system S2 is obtained for moderate and strong
base excitations, achieving an overall acceleration reduction of 40% and 80% for
ys = (0.2,0.8), respectively. Also in the S3 configuration, an increase of the yield-
ing force Y determines an higher accelerations transmissibility for low base exci-
tations and a reduction of accelerations transmissibility for high base excitations.
By balancing the increase of SMA damper initial stiffness with an equivalent in-
crease of negative stiffness as is the case with K̃n = 1.4α and Y = 1.6Zm, (see
violet line in Fig. 4.21d), the increase of the peak accelerations for low excitation
amplitudes is cancelled again. According to the presence of the cubic stiffness in
the NS mechanism, the equivalent stiffness and consequently the maximum ac-
celeration reach again the values of the system S2 for large displacements. For
all the levels of negative stiffness reported, the acceleration transmissibility of S3
is lower than the one of S2 along the entire range of base excitations, except the
configurations with low damping ratio (Y = Zm,ys = 0.2), that exhibit for high
base excitations an higher acceleration transmissibility compared with S2.
Regarding the displacements, it is worth highlighting for weak base excitations
a substantial coincidence between the peak exhibited by the systems S2 and S3
in the MS and ST states. In fact, the curves overlap up to a value corresponding
to the displacement that yields the maximum damping. Past this point, the trend
of the peak displacements curve for S3 deviates from the trend of S2, showing
a smaller reduction. The maximum deviation between the two responses occurs
where the stiffness reduction is maximum. The maximum displacement reduction
is quite similar for both systems S2 and S3 (MS, ST states) except for low damping
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Figure 4.21: Peak responses of the controlled systems (S2 and S3) and that of the
baseline system (S1) in terms of nondimensional displacement (left) and absolute
acceleration transmissibility (right) as function of the nondimensional base accel-
eration. The responses of S2 for Y = Zm and ys = (0.2,0.8) are represented by red
dashed and red solid lines, respectively, while the response of S2 with Y = 1.6Zm
and ys = 0.8 is described by red dashed-dotted lines. The responses of S3 with
K̃3 =−2K̃n and K̃n = α (a, b), 1.2α (c, d), 1.4α (e, f) are described by magenta,
blue and violet lines, respectively.
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ratios (Y = Zm,ys = 0.2), where it is about 20% for S3 and 40% for S2. This is
because for ys = 0.2 the stiffness reduction is not balanced by a robust damping
augmentation. For the remaining damping ratios (Y = Zm,1.6Zm and ys = 0.8), the
maximum of displacements reduction for both systems is about 65%. The increase

Figure 4.22: FRCs in terms of nondimensional displacements for the base ac-
celerations set to (0.8,1,1.08,1.2,1.28,1.3,1.32,1.36,1.4,1.48,1.6,1.8,2)10−2

for the S3 system with K̃n = α,Y = Zm,ys = (0.5,0.8) (parts (a) and (b)) and
K̃n =α,Y = 1.6Zm,ys = 0.8 (part (c)), and with K̃n = 1.2α,Y = Zm,ys = (0.5,0.8)
(parts (d) and (e)) and K̃n = α,Y = 1.6Zm,ys = 0.8 (part (f)).

of yielding force (Y ) from Y = Zm to Y = 1.6Zm, hence, the increase of the initial
superelastic stiffness, causes a smaller reduction for weak excitations and a larger
reduction for moderate and strong base excitations. For the case with K̃n = 1.2α ,
the displacement reduction is smaller than that achieved with K̃n = α and, for a
certain range of base excitations, there exists an increase in the response. This
range of base excitations corresponds to the FRCs where the displacement peak is
due to the superharmonic resonance, as can be observed in Fig. 4.22. Finally, the
TS configurations with K̃n = 1.4α shows a strong amplification of displacement
transmissibility for low excitations because of the presence of the lateral attrac-
tors. In conclusion, with the introduction of negative stiffness in parallel to SMA
damper is possible to cancel the increase of acceleration transmissibility for low
base excitations and to halve it for medium and strong excitations, preserving a
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significant reduction of displacement compared with the baseline system S1. In
order to avoid residual displacement and amplification of peak displacement a ST
configuration is to be preferred over a TS configuration.
Next, we address the force transmissibility in terms of frequency bandwidth where
effective isolation is attained. As known, the response is considered effectively
controlled when the transmissibility is lower than 1. For the nondimensional base
acceleration of 0.02, the acceleration peak reduction for S3 is the minimum (i.e.,
40%) and it is equal to that of S2 (see Fig. 4.21b and Fig. 4.21d). By analysing the
force transmissibility under the same base accelerations, useful considerations can
be drawn about the isolation performance of the proposed system. While Fig. 4.21
shows only the reduction in peak accelerations, Fig. 4.23 portrays the bandwidth
of the isolated frequencies. The introduction of the SMA damper alone increases
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Figure 4.23: FRCs in terms of force transmissibility for a nondimensional base
acceleration equal to 0.02. The response of S1 is described by the black solid line,
while the responses of S2 when ys = 0.8,Y = (1,1.6)Zm are denoted by the red
solid and red dashed lines, respectively. The responses of S3 when K̃n = α,Y =
(1,1.6)Zm are described by the violet solid and dashed lines and those of S3 when
K̃n = 1.2α,Y = (1,1.6)Zm are denoted by the blue solid and blue dashed lines,
respectively. For all cases ys = 0.8 and K̃3 =−2K̃n.

the value of the first isolated frequency, thus reducing the bandwidth of the iso-
lated frequencies of 69% and 87% for Y = Zm and Y = 1.6Zm, respectively. On
the other hand, the negative stiffness mechanism in parallel with the SMA damper,
determines a reduction of the peak response together with an increase of the iso-
lated frequency bandwidth reducing the value of the first isolated frequency of
25% and 44% with K̃n = α and K̃n = 1.2α , respectively. It can be observed that
an increase of the SMA yielding force (Y) determines an increase of the initial
superelastic stiffness not accompanied by an increase of negative stiffness. This
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yields a further reduction in peak response but the isolated frequency bandwidth
is reduced (see Tab. 4.1).

 

̃ ̃ Δf

̃ = 0,       = 0,              = 0
̃ = 0,       = ,           = 0.8
̃ = 0,       = 1.6 ,    = 0.8
̃ = ,       = ,          = 0.8
̃ = ,       = 1.6 ,   = 0.8
̃ = 1.2 , = ,          = 0.8
̃ = 1.2 , = 1.6 ,    = 0.8

Tab.4.1: Force transmissibility performance for the three kinds of isolated sys-
tems, S1, S2 and S3.

4.4 Research of optimal configuration
The study of the dynamic response has revealed a richness of scenarios that de-
termines an high sensitivity of response to the selection of design parameters
K̃n, K̃3,Ỹ and ys. An increase of the parameter ys is found to be always enhancing
of performances, hence it will be set on the high value ys = 0.8. For the remaining
three design parameters, a research of the optimal configuration is done in the 3D
space (K̃n, K̃3, K̃s) minimizing the peak of absolute accelerations transmissibility
through the use of the Differential Evolution Algorithm. Differential Evolution
Algorithm (DE) is a meta heuristic method that optimizes a problem by iteratively
trying to improve a candidate solution minimizing a certain quantity. Differently
from other Optimization method, DE does not use the gradient of objective equa-
tion,which means DE does not require the optimization problem to be differen-
tiable and can also be used on optimization problems that are not continuous. The
algorithm optimize the problem starting from an initial population of candidate
solutions and creating new candidate solutions by combining existing ones and
then keeping the candidate solution that exhibits the lowest cost function. The
initial population is a nxm matrix, where m represents the number of values for
each of the n parameters selected within an uniform probability distribution on the
search ranges.
The results of previous section has revealed also that the configuration that ex-
hibit best performances mutes parameters with a variation in base excitations,
hence the research of optimal configuration is done for different levels of base
acceleration. In Fig. 4.24 the candidate optimal solutions for the base excitations
Ãg = 0.01,0.015,0.02 are tracked in the 3D space (K̃n, K̃3, K̃s) and the associated
values of cost function, the peak in absolute accelerations transimissibility, are
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reported.

a) b) c)

d) e) f)

Figure 4.24: Candidate optimal solutions for the base excitations Ãg = 0.01
(a),0.015(b),0.02(c) tracked in the 3D space (K̃n, K̃3,Ỹ ) and associated values of
cost function (d, e, f).

As shown, the DE alghorithm achieves a good solution already from the first iter-
ation and improves it in subsequent iterations until it asymptotes to the minimum
value. For all base excitations it can be observed that the peak in absolute acceler-
ations transmissibility is reduced to the low value of 1.2. Moreover, we can note
that the best solution always lies in the ST region, in particular close to the ST-TS
transition surface. This is in agreement with the above results, where it was shown
that an increase in the level of negative stiffness always leads to a reduction in the
peak transmissibility of absolute accelerations up to the limit value of transition
in the Tri-stable state, where response amplification due to the presence of lateral
equilibria can occur. The parameters planes (K̃n, K̃3) and (K̃n, K̃s) passing through
the optimum point were swept in order to investigate the trend of the cost function
when the parameters vary. The associated contour plots in terms of peak of dis-
placements and absolute accelerations transmissibility FRCs are reported for the
base excitations Ãg = 0.01,0.015,0.02 in Fig. 4.25, 4.26, 4.27, respectively. It
is worth noting that the configurations lying on vertical line with ascissa K̃n = 0
in the (K̃n, K̃3) plane are representative of the system with the SMA damper alone
(S2), while the point with coordinates K̃n = 0, K̃s = 0 in the (K̃n, K̃s) plane denotes
the response of the baseline system (S1). For all base excitation levels, it can be
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observed that in plane (K̃n, K̃3) the contours associated with accelerations peak fol-
low the shape of the transition curves MS→ ST and ST → T S, exhibiting a valley
in correspondence of the ST region. On the other hand, the peak in displacements
FRCs keep almost costant until the ST → T S transition curve, past which become
strongly affected by the lateral equilibrium.

Figure 4.25: Contour plots in terms of peak of displacements (a, c) and absolute
accelerations transmissibility (b, d) FRCs for the base excitation Ãg = 0.01 on the
planes (K̃n, K̃3) for K̃s = 0.11 (a, b) and (K̃n, K̃s) for K̃3 =−7.33K̃n (c, d).

The contour maps associated with the base acceleration Ãg = 0.01, representative
of low base excitation levels, exhibit the minimum in acceleration for relative low
value of K̃s. This depend by the fact that the mass oscillates with small amplitudes
and the negative effect of an increase of superelastic hysteresis, hence of the initial
stiffness, is more pronounced than the beneficial effect introduced by the added
damping. The optimal solution shows a peak in displacement and absolute accel-
erations transmissibility of 0.068 and 1.08, respectively. On the other hand, the
associated S2 configuration (with the same SMA damping but without negative
stiffness) exhibits, compared with the optimal S3 configuration, more or less the
same displacement (0.062) but more of two times the acceleration transmissibil-
ity (2.58). For the base acceleration Ãg = 0.015, representative of medium base
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excitation levels, the strong improvement of S3 compared to S2 strongly persist,
in fact the optimal configuration S3 shows a peak in displacement and absolute
accelerations transmissibility of 0.09 and 1.28, respectively, while the associated
S2 configuration exhibit the same displacement peak and absolute accelerations
transmissibility peak of 3. The optimal configuration this time requires an higher
K̃s in order to exploit sufficient hysteretic damping. Looking the contour maps
on the plane (K̃n, K̃s), it can be observed that in the region of low values of K̃s,
hence with low hysteretic damping, there is an amplification in both displacement
and acceleration peaks. The same considerations can be made for the optimiza-
tion done for the last reported base excitation Ãg = 0.02, representative of high
base excitation levels. Also for this ground acceleration, the peak of displacement
FRCs of the optimal system S3 and of the associated S2 system are equal (0.11),
while the peak of absolute accelerations transmissibility FRCs of S2 (3.1) is two
times the one of S3 (1.4).

Figure 4.26: Contour plots in terms of peak of displacements (a, c) and absolute
accelerations transmissibility (b, d) FRCs for the base excitation Ãg = 0.01 on the
planes (K̃n, K̃3) for K̃s = 0.327 (a, b) and (K̃n, K̃s) for K̃3 =−13.91K̃n (c, d).

In Fig. 4.28 are reported the displacements and absolute accelerations transmis-
sibility FRCs of the configurations optimized for the base accelerations Ãg =
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Figure 4.27: Contour plots in terms of peak of displacements (a, c) and absolute
accelerations transmissibility (b, d) FRCs for the base excitation Ãg = 0.01 on the
planes (K̃n, K̃3) for K̃s = 0.654 (a, b) and (K̃n, K̃s) for K̃3 =−20.5K̃n (c, d).

0.01,0.015,0.02. The strong improvement of displacements and accelerations
transmissibility is clearly notable.
Figure 4.29 shows the hysteric cycles of the optimal S3 configurations correspond-
ing to the resonant response, together with their damping curves. It can be ob-
served that the configurations provided by optimization for each base accelera-
tions are those exhibiting the peak of damping at the amplitude equal to the one
reached in resonance. For different levels of base excitation the oscillator will
reach different amplitudes of motion and the optimal configurations follow with
the amplitude corresponding to the peak of damping the raising amplitude of mo-
tion. This, as can be noted in Fig. 4.29, results in a shift to the right of peak in
damping curves of optimal configurations for increasing ground accelerations.
The trend of the optimal parameters in function of base acceleration is shown in
Fig. 4.30 and can therefore be explained by the purpose of the optimization algo-
rithm to achieve two objectives: maximizing the damping introduced and allocat-
ing it to a progressively increasing amplitude. This implies that in 3D parameter
space, the points corresponding to the optimized parameter terns varying the base
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a) b)
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Figure 4.28: FRCs in terms of nondimensional displacement (left) and force trans-
missibility (right) for a ground acceleration of 0.01 (a, b), 0.015 (c, d), 0.02 (e,
f) of optimized S3 configurations, of the associated S2 configurations and of the
baseline system in blu, red and black lines, respectively.

excitation describe a curve lying on the transition surface ST → T S.
In Fig. 4.31 are reported the displacements and absolute accelerations FRCs peaks
vs the base excitations for the three configurations optimized with Ãg = 0.01,0.015,0.02.
It can be observed that, in agreement with the above, the configuration optimized
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Figure 4.29: Hysteric cycles of resonant response(left) and damping curves (right)
of the S3 configurations optimized for Ãg = 0.01,0.015,0.02 in red, violet and blue
lines, respectively.

Figure 4.30: Optimized parameters K̃n, K̃3, K̃s vs base excitation.

with Ãg = 0.01 suffers a deterioration of performances for increase of base ac-
celeration, hence, of amplitude of motion. On the other hand, the configurations
optimized with Ãg = 0.015,0.02 show enhanced performances for the optimizing
amplitudes together with a slight loss of performance for lower base accelerations.
In the light of the above, the preferable and most robust configurations is the one
optimized for the highest base acceleration.

4.5 Conclusions
A novel vibration isolation system featuring a negative stiffness mechanism and
superelastic damping arranged in parallel with classical elastomeric isolation de-
vices is parametrically investigated for different levels of negative stiffness, su-
perelastic damping ratio, and yielding force.
The introduction of superelasticity alone, without negative stiffness, leads to a
detrimental increase of the initial stiffness and, hence, to an increase of accelera-
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Figure 4.31: Displacements (left) and absolute accelerations transmissibility
(right) FRCs peaks vs base excitation of the configurations optimized for Ãg =
0.01,0.015,0.02 in red, violet and blue lines, respectively and of the associated S2
configurations in dashed lines. The response of the baseline system S1 is denoted
by the black lines.

tions for low base excitations. On the other hand, by accurately tuning the negative
stiffness with the superelastic damping, a remarkable reduction of displacement
and acceleration amplitudes can be achieved, while preserving a self-recentering
capability and without incurring an increase of acceleration transmissibility for
low excitations. To ensure an effective acceleration transmissibility reduction
and, at the same time, the mono-stability and self-recentering capability of the
isolated system, the optimum negative stiffness coefficient K̃n must be bounded
in the range α < K̃n < 1.2α , where α is the ratio between the post-elastic and
the initial isolators stiffness. Regarding the superelastic rheological element, the
initial stiffness must be equal to the negative stiffness in order to keep the stiffness
of the isolation system unaltered at the origin while exhibiting sufficiently high
damping. By considering the lower bound for the negative stiffness, K̃n = α , the
optimum superelastic yielding force was found to be Ỹ =α x̃g, where x̃g is the ratio
between the gap displacement and the maximum allowable displacement. More-
over, a high hysteresis ratio ys was shown to entail a better isolation performance.
The study of the nonlinear dynamic response and its bifurcations revealed ex-
tremely rich bifurcation scenarios with detached resonances and unusual interac-
tions between the primary resonance and superharmonic resonances, or between
superharmonic resonances of various orders, featuring multiplicity of coexisiting
attractors, secondary Hopf bifurcations responsible for quasi-periodicity, synchro-
nization, symmetry-breaking and period-doubling cascades towards chaos. The
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detached resonance curves and bifurcations were numerically explored for high
levels of negative stiffness and their nonlinear impact on isolation performance
was discussed. In particular, when K̃n = α , the peak of the detached resonance
curve was found to be lower than the peak of the main resonance curve, thus not
affecting the isolation performance. On the contrary, for a higher negative stiff-
ness value (i.e., K̃n = 1.2α), the peak of the detached resonance curve was found
to be larger than the primary resonance peak, hence, largely affecting the isola-
tion performance. Moreover, the quasi-periodicity of the response of the tri-stable
configuration (i.e., K̃n = 1.4α) together with the subsequent dynamic amplifica-
tion were illustrated. The obtained results pave the way towards a streamlined
design process which aims to optimize the isolation performance of the proposed
negative stiffness superelastic device in terms of transmissibility and dynamic sta-
bility.



Chapter 5

Nonlinear dynamic response to pulse
load

The response of the proposed isolation system under impulsive ground motion
is studied in the next chapter. The ground motion is modeled according to three
different formulations, associated with different kinds of ground motion mecha-
nisms. The performances are evaluated computing Shock Response Curves (SCR)
and varying design parameters and the amplitude of the motion.

5.1 Pulse load type
Three kinds of base shock excitations are considered: rounded displacement step
(P1), rounded displacement pulse (P2), and oscillatory displacement step (P3) (see
Fig. 5.1). The mathematical expressions of the ground motions and accelerations
for each pulse type are:

x̃p1(t̃) = Ã[1− (1+ γpt̃)e−γpt̃ ] (5.1)

ãp1(t̃) = Ã(1− γpt̃)γ2
pe−γpt̃ (5.2)

for the rounded displacement step (P1);

x̃p2(t̃) = e2

4 Ã(γpt̃)2e−γpt̃ (5.3)

ãp2(t̃) = e2−t̃γp

4 Ãγ2
p [γpt̃ (γpt̃−4)+2] (5.4)

for the rounded displacement pulse (P2);

x̃p3(t̃) = 0.68684Ã
[
1− e−0.25γpt̃ (0.25sin(γpt̃)+ cos(γpt̃))

]
(5.5)

ãp3(t̃) = Ãγ2
pe−0.25γpt̃ [0.729768cos(γpt̃)−0.182442sin(γpt̃)] (5.6)

63
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for the oscillatory displacement step (P3), where Ã is the nondimensional ground
motion amplitude while γp represents the shock severity.

Figure 5.1: (top) Ground displacements and (bottom) associated accelerations for
the pulse loads denoted by P1,P2,and P3.

5.2 Response to P1
The response to the first type of pulse load is discussed first. In Fig. 5.2 the
time histories of the displacement,acceleration and input energy are shown when
γp = 1 and Ã = 0.4 and different levels of negative stiffness are accounted for
(K̃n = 0,−0.2,−0.32,−0.42).
As seen, the system with K̃n = −0.2 is still monostable and self-recentering but
shows a faster deacy rate with respect to the case without negative stiffness K̃n = 0.
For K̃n =−0.32, a greater reduction of absolute accelerations and input energy is
obtained. In addition, a residual displacement equal to the amplitude of pulse is
exhibited. For K̃n =−0.42, an increase of absolute accelerations and input energy
with respect to the case K̃n = −0.32 is experienced, while the residual displace-
ment is greater than the amplitude of pulse. This is due to the well− trapping
phenomenon. The configuration with K̃n = −0.32 is tri-stable and, in particular,
the nontrivial equilibrium is at a distance x̃ f 0u equal to the pulse amplitude Ã. This
causes the mass under ground motion to settle down almost instantly into the lat-
eral potential well.
By recording maximum values of displacement and absolute acceleration, input
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Figure 5.2: Time histories of displacements, accelerations and input energy for
the system with K̃n =−(0,0.22,0.32,0.45) and K̃3 =−2K̃n (red, violet, blue and
gray lines, respectively) under pulse load P1 with γp = 1 and Ã = 0.4.

Figure 5.3: Force-displacement cycles and phase portraits for the system with
K̃n = −(0,0.22,0.32,0.45) and K̃3 = −2K̃n (red, violet, blue and gray lines, re-
spectively) under pulse load P1 with γp = 1 and Ã = 0.4.

energy and residual displacement and by changing the parameter corresponding
to the speed and severity of pulse γp, the shock curves in terms of displacement
(DSCs), residual displacement (RDSCs), absolute acceleration (ASCs) and input
energy (ESCs) are numerically obtained changing the main design parameters K̃n
and K̃3 (see Figs. 5.4 and 5.5. Absolute acceleration and input energy are ef-
ficiently reduced so long as the negative stiffness does not exceed K̃n = −0.32,
while for greater value of K̃n the response tends to grow. The same is valid for K̃3;
an increase of this parameter leads initially to a reduction of ASCs and ESCs, sub-
sequently it causes a new increase of these quantities. The DSCs of the tri-stable
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Figure 5.4: (left) DSCs, (center) ASCs and (right) ESCs for the system with
K̃n = −(0,0.22,0.32,0.45) and K̃3 = −2K̃n (red, violet, blue and gray lines, re-
spectively).

Figure 5.5: (left) DSCs, (center) ASCs and (right) ESCs for the system with K̃3 =
−(0.5,1,2,10)K̃n and K̃n =−0.32 (red, violet, blue and gray lines, respectively).

configuration show a jump from the lateral unstable to the lateral stable equilib-
rium and, unlike the mono-stable configuration, a residual displacement exists
and is equal to the amplitude of the lateral stable equilibrium (x̃ f 0u). As noted in
Fig. 5.6, this jump happens when the pulse causes a displacement greater than the
unstable equilibrium and then the mass is attracted by the lateral stable equilbrium.
The configuration that achieves the best performance shows a residual displace-
ment shock curve RDSC which coincides with the maximum displacement curve
DSC, a direct effect of the well− trapping phenomenon. In order to find the opti-
mum values of K̃n and K̃3 that lead to the best reduction of accelerations and input
energy the maximum values of the shock curves DSCs, RDSCs, ASCs and ESCs
and their root mean square values are recorded changing the parameters K̃n and K̃3
(see Figs. 5.7 and 5.8). Note that the optimum values of negative stiffness K̃nopt
and cubic coefficient K̃3opt are those that cause a residual displacement equal to
the amplitude of pulse and for these values the residual displacement shock curve
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Figure 5.6: (left) DSCs for the system with K̃3 = −(1,2)K̃n and K̃n = −0.32
(violet and blue lines, respectively) and phase portraits for a pulse load with γp =
(0.28,0.4) in solid and dashed lines, respectively.

Figure 5.7: Peak (solid line) and RMSv (dashed line) of DSCs, RDSCs, ASCs and
ESCs vs. negative stiffness coefficient K̃n.

Figure 5.8: Peak (solid line) and RMSv (dashed line) of DSCs, RDSCs, ASCs and
ESCs vs. cubic stiffness coefficient K̃3.

touches the maximum displacement curve DSC. Assuming that the residual dis-
placement for the tri-stable configurations is equal to the amplitude of the lateral
equilibria (see Fig. 5.9), thanks to the well− trapping phenomenon, it is possible
to define in analytical fashion the optimum values of negative stiffness K̃n and
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Figure 5.9: (left) Peak of DSCs (black line) and RDSCs (gray line) vs. K̃n(left)
and vs. K̃3 and analytical curves x̃ f 0d , x̃ f 0u in red dashed-dotted and dashed lines,
respectively.

cubic stiffness K̃3 solving f̃e2(Ã) = 0 .

K̃nopt =
(αs−1)x̃gapmK̃s

Ã
−αsK̃s− K̃3x̃2−α (5.7)

K̃3opt =
(αs−1)x̃gapmK̃s−x̃(K̃n+αsK̃s+α)

Ã3 (5.8)

By accounting for these equations it is possible to predict analytically in the pa-
rameters (K̃n, K̃3) space the combination of values that give rise to f̃e2(Ã) = 0
for a definite pulse load amplitude. In Fig. 5.10 it is possible to note that this
equation shows two different branches separated by the contact point between the
curve f̃e2(Ã) = 0 and the transition curve ST → T S . The roots of f̃e2(Ã) = 0 are
x̃ = x̃ f 0u = x̃ f 0d . In the first branch (high values of cubic coefficient) f̃e2(Ã) = 0
is achieved for x̃ = x̃ f 0u. This is the real optimum condition; in fact the pulse
amplitude is equal to the amplitude of the stable equilibrium and thus the well can
trap the mass. In the second branch (low values of cubic coefficient) f̃b2(Ã) = 0
is achieved for x̃ = x̃ f 0d: For this combination an escape from the unstable to the
stable lateral equilibrium causes an amplification of the response. In Fig. 5.11
the optimum combinations (K̃n , K̃3) for pulse loads of different magnitude are
reported, together with the trend of K̃nopt vs. the ground motion amplitude for
different values of K̃3. Here we note that with the lowest level of cubic coefficient
K̃3/K̃n = 2e−2 it is not possible to exploit the well− trapping phenomenon and
then there are no optimum values of K̃n. For K̃3/K̃n = 1.3e−1 it is possible to ex-
ploit the well-trapping for pulse load amplitude greater then Ã > 0.42. For higher
values of cubic coefficient the range of amplitudes of pulse load that can be ef-
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Figure 5.10: (left) Loci in the K̃n, K̃3 plane f̃e2(0.4) = 0. (right) Force-
displacement equilibrium response of the system in three different configurations
along the curve f̃b2(0.4) = 0.

Figure 5.11: (left) Optimum (K̃n, K̃3) for a pulse load of amplitude Ã =
(0.1,0.2,0.4,0.8) in red, magenta, violet and blue lines, respectively. (right) Trend
of K̃nopt vs. pulse amplitude for the system with K̃3/K̃n = (2e−2,1.3e−1,1.7,21).

ficiently controlled by the well-trapping grows but also the variation of optimum
value of K̃nopt become stronger. Changing values of K̃n and K̃3 and recording
maximum values of the shock curves DSCs, RDSCs, ASCs and ESCs and their
root mean square (RMS) values, performance maps in the tridimensional param-
eters space are numerically obtained.
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c) d)

a) b)

Figure 5.12: Performance maps in terms of RMS of DSCs (left) and ASCs (right)
in the (K̃n , K̃3) space with K̃s = 0.2 (top) and in the (K̃n , K̃s) space with K̃3/K̃n =
3.9 (bottom) for a pulse amplitude of 0.3. The transition curves between stability
region are denoted by red, violet and blue lines and the analytical prediction of
optimum values by black dashed line.

In Figs. 5.12, 5.13 and 5.14 performance contour plots and analytical pre-
diction of optimum parameters combination are reported for pulse amplitudes
Ã = 0.3,0.5,1, respectively. Here we note that the minimum of level curves, cor-
responding to the optimum numerical K̃n, K̃3 combination, lies to the tri-stable
region for all pulse amplitudes and, in particular, on the curve f̃e2(Ã) = 0, thus
proving the effectiveness of well-trapping phenomenon. In order to evaluate the
robustness of the parameters optimization for a specific pulse amplitude under dif-
ferent amplitudes, the system with three different configurations coinciding with
the optimum numerical combinations K̃n, K̃3 for pulse amplitudes Ã= (0.3,0.5,1)
(C1, C2 and C3, respectively) is considered and, for each configuration, the shock
curves are obtained for a pulse amplitudes range Ã = [0.1 : 0.1 : 1]. In Fig. 5.15
note that the system optimized for Ã= 0.3 effectively reduce accelerations through
well-trapping only for low pulse amplitudes.
For the system optimized for Ã = 0.5 the range of pulse amplitudes effectively
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c) d)
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Figure 5.13: Performance maps in terms of RMS of DSCs (left) and ASCs (right)
in the (K̃n , K̃3) space with K̃s = 0.2 (top) and in the (K̃n , K̃s) space with K̃3/K̃n =
1.26 (bottom) for a pulse amplitude of 0.5. The transition curves between stability
region are denoted by red, violet and blue lines and the analytical prediction of
optimum values by black dashed line.

controlled grow, but for large pulse amplitudes a loss of performance is observ-
able. Finally, the configuration optimized for Ã = 1 shows the major robustness
effectively controlling all the range of pulse amplitudes. In Fig. 5.16 the curves
of DSCs and AASCs peaks vs. the pulse amplitudes are reported for the three
systems optimized respectively for Ã = (0.3,0.5,1). Note that the configuration
optimized for Ã = (0.3,0.5) show a slightly better performance for the optimizing
amplitudes (0.3, 0.5) then the configuration optimized for Ã = 1, but for larger
pulse amplitudes the latter configuration is strongly more effective. From this
we can assume that the best configuration for effectively controlling the accelera-
tions along a certain range of pulse amplitudes 0 < Ã < Ãmax is the one optimized
for the single amplitude Ãmax. In order to confirm this assumption, a numerical
optimization using a genetic algorithm (Differential Evolution algorithm) is per-
formed adopting as performance parameter the RMS of the curve of the peaks of
ASCs vs. pulse amplitudes within a range of 0 < Ã < 1.
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c) d)
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Figure 5.14: Performance maps in terms of RMS of DSCs (left) and ASCs (right)
in the (K̃n , K̃3) space with K̃s = 0.2 (top) and in the (K̃n , K̃s) space with K̃3/K̃n =
0.15 (bottom) for a pulse amplitude of 1. The transition curves between stability
region are denoted by red, violet and blue lines and the analytical prediction of
optimum values by black dashed line.

The search spaces relative to K̃n, K̃3 parameter values are respectively 0 < K̃n <
−0.5 and 10−2 < K̃3/K̃n < 102. The number of candidates for each generation
is 20 while the number of generations is 100. In Fig. 5.17 the evolution of best
candidate solutions and the final optimum solution provided by the DE algorithm
are reported. In particular, the candidate solutions are tracked in the parameters
(K̃n, K̃3) space and the associated curves of AASCs peaks vs. pulse amplitudes
is shown together with the RMS of the curve vs. iteration. Note that DE results
confirm the previous assumption, an optimum configuration that effectively con-
trol the response within the entire pulse amplitudes range 0 < Ã < Ãmax is quiet
coincident with the one optimized on the single amplitude Ã = Ãmax.
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Figure 5.15: DSCs (top) and ASCs (bottom) curves for the optimized configura-
tions C1, C2 and C3, (left, center and right, respectively) under P1 pulse load with
amplitudes Ã = [0.1 : 0.1 : 1].

Figure 5.16: Curves of DSCs and ASCs peaks vs. pulse amplitudes for the
uncontrolled configuration (black line) and for the systems optimized for Ã =
(0.3,0.5,1) (in red, violet and blu line, respectively).
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Figure 5.17: Candidate solutions tracked in the parameters (K̃n, K̃3) space (left),
associated curves of AASCs peaks vs. pulse amplitudes (center) and RMS of the
ASCs peaks vs. pulse amplitudes curves vs. iteration number (right).

5.3 Response to P2
The same parametrical investigation in the parameters (K̃n, K̃3) space is done also
for the second and third pulse types. Here the main numerical results relative
to the response of the system forced by the second pulse type are reported. In
Fig. 5.18 performance contour plots and analytical prediction of optimum param-
eters combination are reported for pulse amplitudes Ã = (0.3,0.5,1). Similarly to
the response associated with the first pulse type, the optimum combinations of the
parameters K̃n, K̃3 lies in the tri-stable region, but, this time, closer to the transi-
tion curve STr-TSr.
In Fig. 5.19 time histories of the uncontrolled system, of the optimized configura-
tion for Ã = 0.5 and of a controlled but not optimized configuration are reported
for a pulse load P2 with γp = 0.5 and Ã = 0.5. Note that for the optimized config-
uration the lateral stable equilibrium strongly slows down the mass and then trap
it in x̃ f 0u = Ã . On the other hand, in the not optimized configuration response,
the potential well trap the mass, but, because its location is larger than the pulse
amplitude, there is an amplification of displacements and accelerations.
The system with three different configurations associated with the optimum nu-
merical combinations K̃n, K̃3 for pulse amplitudes Ã = (0.3,0.5,1) (C1′, C2′ and
C3′, respectively) is considered and, for each configuration, the shock curves are
obtained for a pulse amplitudes range Ã = [0.1 : 0.1 : 1] (see Fig. 5.20).
Also for this type of pulse, the configuration optimized on Ã = 1 shows the best
performance in terms of accelerations reduction in the entire pulse amplitudes
range. Note that, unlike the first pulse type, no jumping in AASCs and DSCs
exists. In Fig. 5.21 curves of ASCs and DSCs peaks vs. the pulse amplitudes are
reported for the three systems C1′, C2′ and C3′. Note that all configurations, un-
like first pulse type, show a displacements reduction together to an accelerations
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Figure 5.18: Performance maps in terms of RMS of DSCs (top) and ASCs (bot-
tom) in the (K̃n , K̃3) space with K̃s = 0.2 for pulse amplitudes Ã = (0.3,0.5,1)
(left, center and right respectively). The transition curves between stability region
are denoted by red, violet and blue lines and the analytical prediction of optimum
values by black dashed line.

Figure 5.19: Time histories of displacements (left) and accelerations (right) and
phase portraits (right) for the uncontrolled, the controlled optimized and the con-
trolled not optimized systems (in black, violet and red line, respectively) under
pulse load P2 with γp = 0.5 and Ã = 0.5.

reduction. Also for this type of pulse the most robust configuration in terms of ac-
celerations reduction along the entire pulse amplitudes range is the one optimized
for a pulse amplitude Ã = 1 that shows an acceleration reduction up to 10 times.
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Figure 5.20: DSCs (top) and ASCs (bottom) curves for the optimized configura-
tions C1′, C2′ and C3′, (left, center and right, respectively) under P2 pulse load
with amplitudes Ã = [0.1 : 0.1 : 1].

Figure 5.21: Curves of DSCs and ASCs peaks vs. pulse amplitudes for the
uncontrolled configuration (black line) and for the systems optimized for Ã =
(0.3,0.5,1) (in red, violet and blu line, respectively).
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5.4 Response to P3
Finally the third pulse type, oscillatory displacement step, is investigated in the pa-
rameters (K̃n, K̃3) space. Like the other pulse types, performances of the isolated
system under the third pulse type are studied in terms of control of peak and the
RMS values of AASCs. As well as under first pulse type, the optimum parameters
combinations for the system under the third pulse type are the ones that show x̃ f 0u,
location of the lateral stable equilibrium, equal to the asymptotic ground displace-
ment. Unlike round displacement step, in the oscillatory displacement step the
asymptotic ground displacement is not equal to the maximum amplitude of mo-
tion Ã, but is equal to 0.858Ã, then optimum parameters combinations are the ones
that show x̃ f 0u = 0.858Ã. In Fig. 5.22 performance contour plots and analytical
prediction of optimum parameters combinations are reported for pulse amplitudes
Ã = (0.3,0.5,1).

Figure 5.22: Performance maps in terms of RMS of DSCs (top) and ASCs (bot-
tom) in the (K̃n , K̃3) space with K̃s = 0.2 for pulse amplitudes Ã = (0.3,0.5,1)
(left, center and right respectively). The transition curves between stability region
are denoted by red, violet and blue lines and the analytical prediction of optimum
values by black dashed line.

In Fig. 5.23 time histories of the uncontrolled system, of the optimized configura-
tion for Ã = 0.5 and of a controlled but not optimized configuration are reported
for a pulse load P2 with γp = 0.5 and Ã = 0.5.
The system with three different configurations associated with the optimum nu-
merical combinations K̃n, K̃3 for pulse amplitudes Ã = (0.3,0.5,1) (C1′′, C2′′ and
C3′′, respectively) is considered and, for each configuration, the shock curves are
obtained for a pulse amplitudes range Ã = [0.1 : 0.1 : 1] (see Fig. 5.24). About
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Figure 5.23: Time histories of displacements (left) and accelerations (right) and
phase portraits (right) for the uncontrolled, the controlled optimized and the con-
trolled not optimized systems (in black, violet and red line, respectively) under
pulse load P3 with γp = 0.5 and Ã = 0.5.

ASCs, the same considerations of the previous pulse types in terms of reduction
and robustness are done. Regarding the DSCs, note the existence of a local peak
that grow with the increase of optimizing pulse amplitude. Analyzing time his-

Figure 5.24: DSCs (top) and ASCs (bottom) curves for the optimized configura-
tions C1′′, C2′′ and C3′′, (left, center and right, respectively) under P3 pulse load
with amplitudes Ã = [0.1 : 0.1 : 1].

tories associated with the first peak, to the minimum and to the second peak of
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DSCs for pulse amplitude Ã = 1 with the system in the C3′′ configuration (see
Fig. 5.25), is seen that these peaks are due to mass trapping by the lateral positive
stable, positive unstable and negative stable equilibrium, respectively. Despite this
alternating attraction strongly modulates DSCs, it does not affect the ASCs.

Figure 5.25: DSCs curve of the C3′′ configuration under P3 pulse load with Ã = 1
(left), time histories of displacements (center) and phase portraits (left) associated
with γp = 0.19,0.23,0.5 in blu, violet and red line, respectively.

Figure 5.26: Curves of DSCs and ASCs peaks vs. pulse amplitudes for the
uncontrolled configuration (black line) and for the systems optimized for Ã =
(0.3,0.5,1) (in red, violet and blu line, respectively).

In Fig. 5.26 the curves of ASCs and DSCs peaks vs. the pulse amplitudes are
reported for the three systems C1′′, C2′′ and C3′′. Note that all configurations, like
second pulse type, show a displacements reduction together to an accelerations
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reduction. Most robust configuration in terms of accelerations reduction along the
entire pulse amplitudes range is, also for this type of pulse, the one optimized for
the pulse amplitude Ã = 1.

5.5 Conclusions
The response of the proposed isolation system under three pulse types of ground
motion (P1, P2, P3) is parametrically investigated for different values of design
parameters. The well-trapping phenomenon is showed and its beneficial effect
on the control of accelerations under shock excitation are demonstrated and ex-
ploited. Analytical formula of optimum parameters combination under a specific
pulse amplitude are provided imposing the location of the lateral stable equilib-
rium equal to the pulse amplitude. The analytical predictions on optimum param-
eters combination are validated by comparison with the minimum of numerical
performance maps and with the results of Differential Evolution algorithm. Ex-
ploiting Tri-stability and the well-trapping phenomenon, for all pulse types an
accelerations reduction up to 10 times is achieved and, except the first pulse type,
also displacements result slightly reduced. In addition, it is important to highlight
the existence of a zone with high performances in the snap-through region, which
allows strong reductions in acceleration (70%) at the same time of self-recentering
capacity.



Chapter 6

Investigation on MDOF isolated
structure NS-SMA damped under
seismic excitation

In order to validate the improvement of isolation performances produced by the
proposed system, in this chapter the response of a MDOF structure controlled by
a Negative stiffness - Superelastic isolation under seismic excitation is studied.

6.1 Description of MDOF structure and site seismic
hazard

The benchmark structure is a common multi-storey building with reinforced con-
crete frames. The structure is laid out in a grid of 3x3 bays, with a length of 5 me-
ters each, while the height of floors is of 3.3 m. The weight of the standard floor
under seismic combination has been assumed equal to 10kN/m2, and the columns
with a square section with sides of length 0.45 m. Hence, the mass and the stiffness
of each storey are respectively equal to 256Ton and 365kN/mm, and the period of
the first vibration mode results equal to 0.58s. By designing the seismic isolation
system according to NTC-18 code, it is required an increase in the period of the
first mode such that Tis < 3Tf b. Therefore, the isolation system was designed to
ensure that the period of the structure is higher than 1.8 seconds and results in 16
elastomeric isolators with an elastic stiffness of 1.05kN/mm. The building is lo-
cated in the town of Avezzano (seismic zone I), has a nominal life of 50 years and
use class III. The soil class is C, while the topographic category is T1. In Fig. 6.1
planimetric and elevation views of the building are reported. Figure 6.2 shows the
elastic response spectra in terms of pseudo accelerations and displacements for
the selected site for to the four limit states defined by the NTC-18 code: operativ-
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ity limit state, damage limit state, life limit state and collapse limit state, in Italian
SLO, SLD, SLV, SLC respectively. These limit states are associated with the fol-
lowing exceedance probabilities: Pvr = 81%,Pvr = 63%,Pvr = 10%,Pvr = 5%.

5 m

3.3 m

3.3 m

3.3 m

3.3 m

3.3 m

5 m 5 m

5 m

5 m

Plant view Elevation view

5 m

5 m

5 m 5 m

Figure 6.1: Horizontal (right) and frontal (right) schematic view of the benchmark
building structure.

Figure 6.2: Response spectra for limit states SLO, SLD, SLV, SLC in terms of
pseudo accelerations (left) and displacements (right).

In the subsequent sections the response of the isolated building subject to groups
of spectrum-compatible artificial accelerograms is investigated. The isolated build-
ing is modeled as a 6-DOF system composed by the superposition in series of
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6 oscillator with floor shear stiffness (k f = 365kN/mm) and translational mass
(m f = 256Ton) and with a damping coefficient c f = 0.5kNs/mm (see Fig. 6.3).
The first mass is connected to the ground with the rheological model described in
precedent chapters, representative of the elastomeric isolation system (EIS) and
of the NS-SMA contribution. The EIS has been modelled via a Bouc-Wen model
plus a viscous damping with Ki = 84,αKi = 16.4,γ = 0.01,β = 0.09,n = 1 and
c = 0.1.

xg(t)

mf

EIS

SMA

NS

x2 x6

mf mf

kf

cf

kf

cf

x1

Figure 6.3: 6-DOF dynamic model of the isolated building.

Figure 6.4: Acceleration Response Spectra of the 7 accelerograms (gray lines),
mean RS (black lines) and design RS (red lines) for the limit states SLO, SLD,
SLV and SLC.
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For each limit state, a group of 7 spectrum-compatible accelerograms is gen-
erated with SIMQKE software with a tolerance between the mean acceleration re-
sponse spectra and the design acceleration response spectra of±10% (see Fig. 6.4).
The corresponding 7 ground accelerations time histories are applied to the 6-DOF
system.

6.2 Optimization of response at SLC
The optimum NS-SMA configuration in terms of force transmissibility for differ-
ent maximum displacements threshold is researched by mean of the Differential
Evolution Algorithm. The design parameters are the Negative stiffness coefficient
Kn, the cubic stiffness coefficient K3, and the elastic stiffness of the super-elastic
term Ks. The gap displacement xgap is set equal to 25mm and the hysteresis ratio
ys equal to 0.8. The adopted research spaces for the three design parameters are
the following: −50kN/mm<Kn < 0kN/mm, 10−7/mm2 <−K3/Kn < 10−4/mm2

and 0kN/mm < KS < 70kN/mm. The size of the population is of 12 members and
the number of iterations is 150. The mean value of the base shear peaks (V j

max)
exhibited by the isolated building subject to the group of 7 accelerograms associ-
ated with the collapse limit state (SLC) (see Fig. 6.5) is assumed as the objective
function of the optimization procedure. The constraint on maximum displacement
is added by introducing a term in the objective function equal to 0 if the mean of
the maximum displacements (D j

max) is smaller than the limit displacement (Dlim)
and equal to 106 if it is greater than the limit displacement.

OBJ =
∑

nacc
j=1V j

max

nacc
+

1+ sign
(

∑
nacc
j=1 D j

max

nacc
−Dlim

)
2

106; (6.1)

The displacement threshold can be considered as a design parameter, function of
the intention of the designer to minimize more forces or displacements. For the
subsequent optimizations, five different displacement thresholds are considered as
ratio of the mean of the maximum displacements exhibited by the building isolated
with the baseline system (elastomeric isolation). In particular the following values

for Dlim are adopted: 0.7,0.8,0.9,1,1.1(
∑

nacc
j=1 D j

max

nacc
)BS. The described thresholds

correspond to a reduction in the mean of peak displacements of 30,20,10,0%,
respectively, while the last threshold corresponds to an amplification of 10% and
it represent the possible scenario where a larger displacement can be admitted.
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Figure 6.5: Ground acceleration time histories of the 7 accelerograms of SLC
group .
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6.2.1 Optimal configurations
The optimal configuration for each displacement thresholds are find and reported
in Tab.6.1 together with the associated variations with respect to the baseline sys-
tem in terms of the mean values of Vmax and Dmax.

Baseline system (S1) 0 0 0 2829 200 ~ ~
NS-SMA damped system (S3) 

-17.52 1.80E-05 43.32 2012 139 -29% -31%
-12.68 1.80E-07 26.09 1589 158 -44% -21%
-24.46 9.77E-06 25.61 1257 181 -56% -10%
-19.21 5.48E-06 15.89 974 194 -66% -3%
 -18.6 2.60E-06 12.67 900 210 -68% 5%

SMA damped system (S2)
0 0 43.32 3096 137 9% -32%
0 0 26.09 2892 159 2% -21%
0 0 25.61 2892 160 2% -20%
0 0 15.89 2750 160 -3% -20%
0 0 12.67 2750 164 -3% -18%

 
 

1 Δ ,  [%] Δ ,  [%], [ ] , [ ]

= 140  
= 160  
= 180  
= 200  
= 220  

= 140  
= 160  
= 180  
= 200  
= 220  

Table 6.1: Mean Vmax and Dmax and variations for the baseline system, for the
optimized NS-SMA configurations and for the associated SMA damped system.

Figure 6.6: Mean of storeys shear (left) and displacement (right) peaks for the
baseline system (in black lines), for the NS-SMA damped system optimized for
Dlim = 0.7,0.8,0.9,1.0,1.1Dmax,m in red, magenta, violet, ciano and blue lines
respectively and for the associated SMA damped system in dashed lines.

As can be observed in Tab.6.1 and in Fig. 6.6, the introduction of SMA damp-
ing produces an increase of the mean of base shear peaks of 9% and a decrease
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of maximum displacements of 31%. On the other hand, with the NS-SMA damp-
ing a stronger improvement of performances can be achieved. In fact, in the case
Dlim = 1.0,1.1Dmax,m, the attainable decrease of base shear peaks is respectively
of 66% and 68%. In addition, it is interesting to note that these two configura-
tions are able to retain the maximum drift under the threshold Dr = 0.2%, usually
considered the start damage drift. For displacement reductions of 10,20,30% the
base shear reductions achievable are of 56,44,29% respectively.

Figure 6.7: Displacement (top), base shear (center) and base drift (bottom) for the
baseline system (in black lines), for the NS-SMA damped system optimized for
Dlim = 0.7,0.8,0.9,1.0,1.1Dmax,m (in red, magenta, violet, ciano and blue lines
respectively) subject to the 5th acclerogram of SLC group.
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Figure 6.8: Energy (left) and hysteretic cycles (right) for the baseline sys-
tem (in black lines), for the NS-SMA damped system optimized for Dlim =
0.7,0.8,0.9,1.0,1.1Dmax,m (in red, magenta, violet, ciano and blue lines respec-
tively) subject to the 5th acclerogram of SLC group.

These results prove that with NS-SMA damping strong reductions in displacement
and shear can be achieved at the same time and reveal the strong tunability of the
proposed damping system. In fact, by calibrating the main design parameters the
designer can select a configuration that reduces only base shear (−68%) or a con-
figuration that decreases both base shear and maximum displacement (−29% and
−31%, respectively). This is a peculiar characteristic of the NS-SMA damping
not achievable with other source of damping. Indeed, as can be observed for the
SMA damped configuration (S2), by introducing damping devices a decrease in
displacement is attained but at the same time of an increase of base shear and
acceleration due to the stiffening effect of the inserted damping. Fig. 6.7 and
Fig. 6.8 shows displacement, base shear, base drift and energy time histories of
the baseline system, of the SMA damped system and of the NS-SMA damped
systems (Dlim = 0.7,0.8,0.9,1,1.1Dmax,m) subject to the 5th SLC accelerogram.
The strong base shear and drift reduction achievable can be noted, both in terms
of max and of RMS values, as well as the self-recentering nature of the proposed
isolation system, denoted by null residual displacements. By dimensionalizing the
transition stability surfaces described in previous chapters, the stability regions in
the design parameters space are determined and represented in Fig. 6.9 together
with the 5 configurations optimized for Dlim = 0.7,0.8,0.9,1,1.1Dmax,m. As can
be observed and according to the findings of previous chapters, all the optimal so-
lutions lie to the Snap-Through region. In particular, the ones optimized for larger
amplitudes (Dlim = 0.9,1,1.1Dmax,m) strictly follow the Snap Trough - Tri Sta-
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ble transition surface (ST → T S), positioning in the described above intersection
between the over damped and the Snap - Trough regions. For smaller displace-
ment limits Dlim = 0.7,0.8Dmax,m the system requires more stiffness and damping
and this result in a lower negative stiffness Kn and in an higher superelastic stiff-
ness Ks, hence the optimal configurations deviate towards the Mono Stable - Snap
Trough transition surface (MS→ ST ).

a)

b)

c)

d)

MS  ST

ST   TS

TS   BS

Figure 6.9: Transition surfaces and optimal configurations in 3D design parame-
ters space (a) and trend of optimal parameters vs Dlim (b, c and d).

Considering that the elastic stiffness of the elastomeric isolation system is αKi =
16.8kN/mm, the optimum parameters match the optimum ranges determined in
the previous chapters. In fact, the optimal negative stiffness is enclosed in the
range between αKi <Kn < 1.3αKi, the optimal cubic stiffness between 2E−06<
K3/Kn < 2E − 05 and the optimal superelastic stiffness in the range between
0.6αKi < Ks < 2.5αKi. In Fig. 6.10 the equivalent linear stiffness Keq and the
equivalent damping ratio ξeq are reported in function of the oscillation amplitudes
U , together with the performance point of each configuration. The configura-
tion optimized for Dlim = 0.7Dmax,m is the one with the smallest displacement
required and thus the one with the highest superelastic stiffness and the lowest
negative stiffness. This results in a small decrease of equivalent stiffness and
in a small amplification of damping. On the other hand, by releasing the maxi-
mum displacement Dlim, more consistent reduction of stiffness and amplification
of damping can be achieved for Dlim = 0.8,0.9,1.0,1.1Dmax,m. The equivalent
stiffness and damping can be useful to preliminary assess the performances of the
NS-SMA damping system. In fact, by using the two equivalent curves of a given
configuration and the design seismic demands Sa(T,ξ ) and Sd(T,ξ ), the perfor-
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mance point in terms of maximum base shear and displacement can be obtained
via only the static analysis of the system.

Figure 6.10: Equivalent linear stiffness Keq and the equivalent damping ratio ξeq
in function of the oscillation amplitudes U , together with the performance point of
each configuration for the baseline isolation system (black lines) and for the NS-
SMA configurations Dlim = 0.7,0.8,0.9,1.0,1.1Dmax,m in red, magenta, violet,
ciano and blue lines, respectively.

Figure 6.11: Accelerations (left) and displacements (right) seismic demand sur-
face (Sa(T,ξ ) and Sd(T,ξ )) and Ca,Cd curves for the baseline isolation system
(black lines) and for the NS-SMA configurations.
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Considering that Teq(U) = 2π

√
∑

6
1 m f /Keq(U), two three dimensional curves can

be defined, representative of the evolution of maximum pseudo accelerations and
displacement in function of the natural period and of the damping of the equiv-
alent oscillator. The first curve Ca is defined by the points with coordinates
(Teq(U),ξ (U),ω2U), while the second curve Cd is identified by the points with
coordinates (Teq(U),ξ (U),U). The intersections between the two 3D curves Ca,
Cd and the demand surfaces Sa(T,ξ ), Sd(T,ξ ) indicate the performance points of
the given configuration (Kn,K3/Kn,Ks) in terms of maximum pseudo acceleration
and displacement (see Fig. 6.11 and Tab.6.2).

Baseline system (S1) 1.9 5.3 0.29 0.21
NS-SMA damped system (S3) 

2.17 18.9 0.16 0.15
2.33 21.2 0.14 0.17
2.94 24.2 0.11 0.19
3.49 27.7 0.07 0.21
3.71 36.8 0.06 0.22

ξ % [ ]

= 140
= 160
= 180
= 200
= 220

Tab. 6.2: Approximated static performance points for the baseline syste and for
the optimized NS-SMA configurations.

6.3 Performances for the SLO, SLD, SLV, SLC limit
states

In the subsequent section, the performances of the systems optimized for the
collapse limit state (SLC) are investigated under the seismic demand associated
with the limit states SLO, SLD and SLV. In Fig. 6.12 the mean of shear, dis-
placement and drift peaks associated with each of the four state limits are re-
ported. It is possible to note as the configurations with small amplitudes required
(Dlim = 0.7,0.8Dmax,m) exhibit an improvement of isolation performances, both
in terms of base shear and displacement peaks, for the SLV and SLC, while an
increase of base shear is observable for the SLO and SLD. On the other hand, the
configurations optimized for Dlim = 0.9,1.0,1.1Dmax,m exhibit a stronger reduc-
tion of base shear for the limit states SLV and SLC without amplification of force
for state limits SLO and SLD.
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Figure 6.12: Mean of shear forces, displacement and drift peaks associated with
each of the four state limits for the baseline isolation system (black lines) and for
the NS-SMA configurations Dlim = 0.7,0.8,0.9,1.0,1.1Dmax,m in red, magenta,
violet, ciano and blue lines, respectively. The horizontal dashed line indicates the
start damage drift Dr = 0.2%.
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SLO

SLD

SLV

Figure 6.13: Mean of storey shear forces peaks (left) and of storey displace-
ment peaks (right) associated with SLO, SLD and SLV limit states for the base-
line isolation system (black lines) and for the NS-SMA configurations Dlim =
0.7,0.8,0.9,1.0,1.1Dmax,m in red, magenta, violet, ciano and blue linse, respec-
tively.
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6.4 Comparison with other damping techniques
In order to prove the advantages of employing NS-SMA damping (S3) over other
types of damping classically used in parallel with the baseline isolation system
(S1), the following section reports the results of the optimizations of different
auxiliary damping sources. In addition to the SMA damped system (S2), the
following damping techniques are investigated:

• Non-linear viscous damping (VD): it has been modelled by adding the fol-
lowing term to the restoring force of the baseline isolation system:

fV = cv|ẋ|αsign(ẋ). (6.2)

• Hysteretic damping (HD): it has been modelled by adding a pure hysteretic
term ( fH) to the restoring force of the baseline isolation system. The evolu-
tion of the force is governed by the sequent rule:

ḟH = kh[1− (γh +βhsign( fH ẋ)]| fH

f yh
|ẋ, (6.3)

where kh indicates the initial stiffness of hysteretic devices and f yh their
yielding force. The parameters γh and βh are set equals to 0.1 and 0.9,
respectively.

• Friction damping (FD): it has been modelled by adding a Coulomb friction
term to the restoring force of the baseline isolation system:

fF = f yFsign(ẋ). (6.4)

• hybrid damping (HBD): finally, a configuration including the three types
of damping already described (SMA, VD, HD, FD) was considered and
modelled by adding the following term to the restoring force of the baseline
isolation system:

fHB = fs + fV + fH + fF . (6.5)

For the configurations with Friction damping and with Hybrid damping, the four
central bearings are assumed to be planar sliding device and, in order to take into
account the presence of 12 elastomeric isolators instead 16, the stiffness of elas-
tomeric isolation is reduced from Ki = 84 to Ki = 63kN/mm. The design param-
eters of the illustrated damping devices are optimized using D.E. algorithm and
by minimizing the mean value of the base shear peaks exhibited by the isolated
building forced by the SLC accelerograms.
In Tab.6.3 the value of optimized parameters and the associated performances are
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Optimized parameters

~~0029282)1S( metsys enilesaB
%5%86-012009 )3S(

SMA 2740 165 -3% -18%
VD 1975 106 -30% -47%
HD 2316 121 -18% -40%
FD 1885 132 -33% -34%
HBD 1829 110 -35% -45%

= 12 /  

= 10.8 ⁄ ,      α = 0.73 

= 45 /  ,     = 468   

=  402  

= 0 , = 6.2,  α = 1   = 13,    = 166 ,   = 424   

Δ ,  [%] Δ ,  [%], [ ] , [ ]

= 220  

Table 6.3: Value of optimized parameters and associated performances for damp-
ing techniques SMAD, VD, HD, FD, HBD.

reported for each described configurations and in Fig. 6.14 the mean of shear, dis-
placement and drift peaks associated with each of the four state limits are reported
for the different damping methods investigated. It can be seen that all classical
damping techniques produce a substantial reduction in displacements but are not
able to effectively reduce shear forces. This is because in all classical sources of
damping the dissipating mechanism always introduces a stiffening contribution.
Even the hybrid configuration, in which large amounts of hysteretic, viscous and
frictional damping are present, with obvious economic implications, cannot re-
duce shear as much as NS-SMA damping.Moreover, unlike the latter, for both
SLV and SLC limit states the optimal hybrid configuration exhibits a maximum
drift larger than 0.2%, hence structural and non-structural elements experience
damages. Therefore, given a maximum displacement limit, NS-SMA results to be
the damping technique most able to reduce the forces and accelerations affecting
the structure, and at the same time ensure a self-recentring capacity.
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Figure 6.14: Mean of shear forces, displacement and drift peaks associated with
each of the four state limits for the baseline isolation system (black lines), for
the NS-SMA configurations Dlim = 1.1Dmax,m in blue lines and for the optimized
SMAD, VD, HD, FD, HBD configurations in red, ciano, violet, magenta and gray
lines, respectively. The horizontal dashed line indicates the start damage drift
Dr = 0.2%.
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SLO

SLD

SLV

SLC

Figure 6.15: Mean of storey shear forces peaks (left) and of storey displacement
peaks (right) associated with SLO, SLD, SLV and SLC limit states for the baseline
isolation system (black lines), for the NS-SMA configurations Dlim = 1.1Dmax,m
in blue lines and for the optimized SMAD, VD, HD, FD, HBD configurations in
red, ciano, violet, magenta and gray lines, respectively.
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6.5 Conclusions
The study of the dynamic response of a MDOF system, representative of a seis-
mic isolated building, under seismic forcing showed the improvements in isola-
tion performances achievable with the introduction of NS-SMA damping and its
strong flexibility. In fact, by tuning the design parameters, it is possible to achieve
a strong reduction in shear forces (70%) with the same maximum displacements
of the baseline system, or a significant reduction in shear forces (30%) together
with a reduction in displacements (30%).The optimization of response validate the
optimum regions identified in previous chapters and provides useful design hints.
The optimized NS-SMA configurations are able to prevents the start of structural
damaging retaining the maximum drift values under the limit threshold Dr = 0.2%
for all the limit states investigated (SLO, SLD, SLV, and SLC). This feature re-
sults to be not achievable from classic damping techniques studied (SMAD, HD,
VD, FRD, HBD) despite the introduction of large amounts of damping devices
and the consequent increase in costs. The illustrated performances, together with
the self-recentering capacity of the proposed isolation system, effectively elimi-
nate any potential economic losses induced by seismic risk, thereby confirming
the possibility of obtaining a new generation of ideal high-performance seismic
isolation systems.



Chapter 7

Design of a novel NS-SMA damper

Regarding negative stiffness mechanisms exploiting initial precompression, the
initial deformation of the prestressed organ is of key importance for the function-
ing of the mechanism in terms of developable negative force and of displacement
range with negative stiffness. These types of mechanisms are usually realized
with prestressed springs which, in order to develop negative force levels that can
effectively control the structure, assume relevant dimensions. Moreover, the sys-
tems proposed in the literature exhibit monodirectional behaviour. In the light of
the above, a novel type of negative stiffness device showing:

• Higher control force in smaller size;

• Multidirectional response;

• Superelastic hysteresis;

• Versatility of functioning;

is designed and studied. The force-displacement law of the proposed device was
first determined analytically and then numerically validated.

7.1 Description of mechanism
Figure 7.1 shows a three-dimensional view of the prototype and a schematic sec-
tion to support the description. The device consists of two steel caps, one upper
and one lower, (1,2) which are predisposed respectively for the connection of the
device to the structure and to the ground. The connection to the structure con-
sists of a male (device)-female (structure) connection by means of vertical bars
(3) which can slide inside Teflon bushings in order to allow a mutual exchange of
forces only in the horizontal plane. The two caps are connected together by means

99



7.1. DESCRIPTION OF MECHANISM 100

10

Figure 7.1: Tridimensional and section view of the designed device.

of a vertical rod (4) with low-friction spherical hinges (5,6) arranged in series with
a polyurethane spring (8). The assembly described is pre-compressed by means of
a group of pre-stressed ropes arranged externally (9) in fibre-reinforced polymers
(with glass or carbon fibres). Finally, the upper head of the vertical rod is joined to
the connecting plate (7) with the polyurethane spring by a group of inclined steel
or memory alloy wires (10). The initial pre-compression of the device by pre-
tensioning of the external ropes (9) causes instability of the vertical rod (4) in its
initial equilibrium position and thus the presence of a negative stiffness response
branch. In fact, the device, if loaded in any direction in the horizontal plane, will
exert, for a given tunable displacement range, a force in the same direction of the
displacement (i.e. negative stiffness). In the presence of a relative displacement
between the two ends of the device in the horizontal plane, the connecting vertical
rod rigidly rotates around the lower hinge, sweeping, due to its shorter length, a
greater angle with respect to the pretensioned ropes. This difference in the angle
described by the ropes and the connecting rod causes that the horizontal compo-
nent of the contrast force exerted by the rod on the upper cap is higher than the
horizontal component of the traction force exerted by the ropes, thus producing
a resultant in the direction of displacement. When the relative displacement be-
tween the ends of the device increases, the tension of the ropes and therefore the
level of pre-compression of the rod decreases until a limit displacement is reached,
after which the device is decompressed. This progressive decompression produces
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a cubic stiffness term in the rheological response of the device. The polyurethane
spring (8) at the base of the rod is also pre-compressed and, during the rigid mo-
tion of the rod, it expands, thus causing an upward translation of the lower hinge
of the rod. This translation results in a greater angle swept by the rod hence pro-
duces an amplification of the negative stiffness and a delay in the decompression
of the device, i.e., greater ultimate displacements. The introduction of the group
of oblique wires (10) allows to restore stability in the initial equilibrium position
delaying the negative stiffness and, at the same time, allows to introduce high
levels of hysteretic damping without loss of performance due to the increase of
initial stiffness, since this increase is cancelled by the negative stiffness properly
calibrated. In fact, assuming an elastic stiffness of the wires equal to the negative
stiffness, for levels of displacement lower than the displacement corresponding
to the yielding (steel wires) or to the phase transformation (shape memory alloy
wires) of the wires (9), a null force will be exerted by the device and then the total
restoring force of the system will coincide with that of the structure. On the other
hand, for larger displacements, the negative stiffness is not balanced anymore by
the horizontal stiffness of the wires, and a reduction of the total force and of the
global stiffness (accelerations) is obtained. For large displacements, approaching
the maximum allowed displacement, the cubic stiffness term produced by the ge-
ometric non-linearities cancels the negative one, and the total response coincides
again with the one of the controlled structure.

7.1.1 Novelty of the proposed damper
Le principali caratteristiche innovative sono tre:

• A COMPACTNESS OF THE DEVICE: the negative stiffness dampers present
in the literature are bistable mechanisms where the prestressing is provided
by prestressed deformable elements inserted in the contrasting frame. These
elements, which are subject to compression and therefore to possible local
instability phenomena, are usually realised with steel helical springs and
their dimensions are relevant compared with the control force exerted. With
the proposed device, on the other hand, it is possible to obtain high control
forces with small damper sizes by exploiting two aspects:

– The pre-compression is achieved through the pre-tensioning of the ex-
ternal ropes and the compressed elements, i.e. the rigid rod and the
polyurethane spring, are not susceptible to buckling phenomena due
to the shape of the elements and the nature of the applied restraints.

– The use of high performance materials such as Fiber Reinforced Poly-
mer (FRP) for the prestressed ropes and polyurethane for the expan-
sion spring allows to achieve high levels of initial pretension.
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The compactness of the damper is of crucial importance in terms of design
and installation simplicity in existing and new structures.

• B MULTIDIRECTIONALITY OF THE RESPONSE: Most of the negative
stiffness dampers found in the literature are plane mechanisms able to exert
the control force only in a specific direction. In most vibration control ap-
plications the load direction can be any direction in the horizontal plane, so
a "cylindrical" type of damper response is required.

• C VERSATILITY OF THE RESPONSE: By designing the pretension and
the number of the external ropes, the relative dimensions between the con-
necting rod and the ropes, and the layout and the material of the damper
ropes, it is possible to obtain different rheological behaviours according to
the application field of the damper.

7.2 Analytic force displacement law
By imposing the force equilibrium in the device deformed configuration (see
Fig. 7.2), the analytical equations governing the force-displacement response as a
function of the geometrical and mechanical parameters of the different parts con-
stituting the damper are obtained.
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Figure 7.2: Scheme of mechanism and forces in the undeformed (left) and in the
deformed configurations (center) and free body diagram of the superior head (1)
and of the plate (7)(right).

In particular, the equilibrium equations for the translation along the x and y di-
rections, a generic direction belonging to the horizontal plane and the vertical
direction respectively, of the superior head (1) and of the plate (7) between the rod
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and the poliurethanic spring are wrote:

∑
j

FxB1 : CSin(α)−µCCos(α)−TsSin(β )−T xdw = Fx; (7.1)

∑
j

FyB1 : CCos(α)+µCSin(α)−Tydw−TsCos(β ) = 0; (7.2)

∑
j

FxB2 : T xdw−CSin(α)+µCCos(α) = Fr; (7.3)

∑
j

FyB2 : Nm +Tydw−CCos(α)−µCSin(α) = 0; (7.4)

where C is the compression force of the rigid rod, Ts is the traction force of the
external strands, T xdw and Tydw denotes respectively the horizontal and vertical
component of the damper wires forces, Nm is the compression force of the spring
and µ represents the friction coefficient of the sliding surfaces of the rod spherical
hinges. The angles α and β are the angles between the vertical direction and the
rod or the external strands respectively. Substituting the eq. 7.4 in the equations
relative to B1, the subsequent equations are obtained:

∑
j

FxB1 : Nm

(
Sin(α)−µCos(α)

Cos(α)+µSin(α)

)
−TsSin(β )−Fxdw = Fx; (7.5)

∑
j

FyB1 : Nm−TsCos(β ) = 0. (7.6)

The forces of the poliurethanic spring and of the external strands are described by:

Nm = km(hm−hm0); (7.7)
Ts = ks(ls− ls0); (7.8)

where km and ks denote respectively the spring and the strands stiffness, hm and
ls the deformed lengths of the spring and the strands respectively and, finally, hm0
and ls0 are the undeformed length of the spring and of the strands. The deformed
length of the strands ls, the sine and cosine of the angle β read:

ls =
√
(ds +hm + lbCos(α))2 +(lbSin(α))2; (7.9)

Sin(β ) =
lbSin(α)

ls
; (7.10)

Cos(β ) =
ds +hm + lbCos(α)

ls
; (7.11)

where ds is the vertical distance between the center of the lower spherical hinge
and the upper face of the spring and lb is the rod lenght. In the undeformed
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configuration of the device (α = u = 0) the equilibrium equation 7.6, the length
of the strands and of the spring read:

∑
j

FyB1 : Nm = Ts = N0; (7.12)

ls(α = u = 0) = ls1 = ds +hm1 + lb; (7.13)

hm(α = u = 0) = hm1 =
ks(ds + lb− ls0)+ kmhm0

km− ks
; (7.14)

where N0 is the pretension force of the device. Can be useful in order to under-
stand the role of pretension level to express the lengths ls1 and hm1 in function of
the initial pretension force N0 as:

km (hm1−hm0) = ks (ls1− ls0) = N0; (7.15)

ls1 =
N0 + ksls0

ks
; (7.16)

hm1 =
N0 + kmhm0

km
. (7.17)

The overall force exerted in the horizontal plane by the group of damper wires
Fxdw is:

Fxdw = T xdw−Tydw

(
Sin(α)−µCos(α)

Cos(α)+µSin(α)

)
(7.18)

where T xdw and Tydw are the sum of horizontal and vertical components of each
damper wires forces, and are given by:

T xdw =
ndw

∑
1

TdwiSin(γi)Cos(δi) ; (7.19)

Tydw =
ndw

∑
1

TdwiCos(γi) . (7.20)

The force of each damper wires Tdwi is given by ad hoc hysteretic model in func-
tion of the wires elongation and its ratio:

Tdwi = σi (εi, ε̇i)Adw; (7.21)

εi =
ldwi− ldw0

ldw0
; (7.22)

ldwi =
√

(rSin(δ0i))2 +(rCos(δ0i)+ lbCos(α))2 +(ddw + lbCos(α))2; (7.23)
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where r is the length of the horizontal projection of the damper wires and ddw is the
vertical distance between the lower node of the damper wires and the upper face
of the spring. The initial angle δ0i and the angle δi in the deformed configuration
between each wire and the motion direction in the horizontal plane read:

δ0i =
π(i−1)

2(ndw)−1
; (7.24)

Cos(δi) =
rCos(δ0i)+ lbCos(α)√

(rSin(δ0i))
2 +(rCos(δ0i)+ lbCos(α))2

; (7.25)

while the seno and coseno of the angle γi of each wire respect the vertical direction
in the vertical plane belonging to the direction of the motion are given by:

Sin(γi) =

√
(rSin(δ0i))2 +(rCos(δ0i)+ lbCos(α))2

ldwi
; (7.26)

Cos(γi) =

√
ddw + lbCos(α)

ldwi
. (7.27)

Substituting all the described contributes in the equilibrium equation of the body
1 gives:

∑
j

FxB1 : Fx = km (hm−hm0)

(
Sin(α)−µCos(α)

Cos(α)+µSin(α)

)
+ (7.28)

− ks

lbSin(α)
(√

(ds +hm + lbCos(α)) 2 +(lbSin(α)) 2− ls0

)
√

(ds +hm + lbCos(α)) 2 +(lbSin(α)) 2
−Fxdw;

Fxdw =
ndw

∑
1

σi (εi, ε̇i)Adw (7.29)

rCos(δ0i)+ lbCos(α)−
√

ddw + lbCos(α)
(

Sin(α)−µCos(α)
Cos(α)+µSin(α)

)
√

(rSin(δ0i)) 2 +(rCos(δ0i)+ lbCos(α)) 2 +(ddw + lbCos(α)) 2
;

∑
j

FyB1 : km (hm−hm0)+ (7.30)

− ks

(√
(ds +hm + lbCos(α)) 2 +(lbSin(α)) 2− ls0

)
(ds +hm + lbCos(α))√

(ds +hm + lbCos(α)) 2 +(lbSin(α)) 2
= 0.

The first equation is the constitutive law of the device force in function of all the
geometric and mechanical device parameters, of the independent variable α and of
the length of spring hm. This can be obtained as the positive solution of the fourth
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order polynomial given by the equilibrium equation in the vertical direction. The
coefficients of the polynomial are:

ap =−(km + ks)
2; (7.31)

bp =−2(km + ks)(lbCos(α)(km +2ks)+ds (km +2ks)−hm0km) ; (7.32)

cp =−2lbCos(α)
(
ds
(
6kmks + k2

m +6k2
s
)
−hm0km (2km +3ks)

)
+ (7.33)

− k2
m
(
l2
b +h2

m0
)
− 1

2
l2
bCos(2α)ks (4km +5ks)4l2

bkmks−
7
2

l2
bk2

s+

+2dshm0km (2km +3ks)−d2
s
(
6kmks + k2

m +6k2
s
)
+ k2

s l2
s0;

dp =
1
2
(
l2
bks (−lbCos(3α)ks−2Cos(2α)(2dskm +5dsks−2hm0km)) (7.34)

−lbCos(α)
(
4l2

bkmks + k2
s
(
7l2

b −4l2
s0
)
−8dshm0km (km +3ks)+12d2

s ks (km +2ks)+

4h2
m0k2

m
)
−2ds

(
4l2

bkmks + k2
s
(
7l2

b −2l2
s0
)
+2h2

m0k2
m
)
+4l2

bhm0km (km +2ks)+

+4d2
s hm0km (km +3ks)−4d3

s ks (km +2ks)
)

;

ep =
1
2
(
l2
bks
(
Cos(2α)

(
−l2

bks +4dshm0km−5d2
s ks + ksl2

s0
)
+ (7.35)

−lbCos(3α)dsks)+ lbCos(α)
(
dsk2

s
(
4l2

s0−7l2
b
)
+4l2

bhm0kmks +12d2
s hm0kmks+

−4dsh2
m0k2

m−8d3
s k2

s
)
+d2

s
(
k2

s
(
2l2

s0−7l2
b
)
−2h2

m0k2
m
)
+8l2

bdshm0kmks+

+l2
b
(
k2

s
(
l2
s0− l2

b
)
−2h2

m0k2
m
)
+4d3

s hm0kmks−2d4
s k2

s
)
.

The force of damper wires and the length of spring hm are independent from each
other.

7.2.1 Elastic force displacement law
Focusing on the force expressed by the device without damper wires and assuming
the friction coefficient null, the solution of the polynomial remains the same and
the force identified is the elastic backbone (Fxel) of the device hysteretic response.
This can be expressed as:

Fxel = km (hm−hm0)Tan(α)+ (7.36)

− ks

lbSin(α)
(√

(ds +hm + lbCos(α)) 2 +(lbSin(α)) 2− ls0

)
√

(ds +hm + lbCos(α)) 2 +(lbSin(α)) 2
;

whereas the horizontal displacement can be expressed in function of the angle
α as u = Sin(α)/lb. In Fig. 7.3 the horizontal elastic force of the device vs the
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horizontal displacement is represented together with the evolution of the traction
of the external strand and of the compression of the spring for a given set of geo-
metric and mechanical parameters.

K
n

E
0

u
lim

Figure 7.3: (left) Evolution of force in external strands and spring, in black and
red lines respectively, and (right) total force in horizontal plane (Fx).

As can be observed, the efficiency and global performances of the device response
can be expressed by three macro quantity: the initial negative stiffness (Kn), the
displacement corresponding to the decompression of the device hence to a null
force (ulim) and the area enclosed by the negative branch of the response, coin-
ciding with the mechanical energy released by the device and subtracted from the
motion (E0). This three quantities descriptive of the response and useful from a
design point of view are obtained in a compact way. The first, the initial nega-
tive stiffness (Kn), can be obtained simplifying the law of the elastic response (eq.
7.36) with the assumption of small angle (α , β and γ). With this assumption the
subsequent are obtained ls = ls1, hm = hm1 and the elastic force-displacement law
becomes:

F ′xel = km (hm1−hm0)Tan(α)− ks
(ls1− ls0)

ls1
lbSin(α); (7.37)

F ′xel = N0
(ls1− lb)

lbls1
u; (7.38)

Kn = N0
(ls1− lb)

lbls1
. (7.39)



7.2. ANALYTIC FORCE DISPLACEMENT LAW 108

Figure 7.4: Initial negative stiffness by device (Kn) vs the pretension force (N0)
(top), vs the strands stiffness (ks) (center) and vs the spring stiffness (km).
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As revealed, the initial negative stiffness depends mainly from the pretension force
(N0) and from the difference in length between the strands and the rigid rod. Major
is the lengths difference and major is the difference between the angles covered
by the strands and the rod, the real source of the negative stiffness. Is interesting
to note that the initial stiffness is independent from the mechanical and geometric
properties of the polyurethane spring. Fig. 7.4 shows how the initial negative stiff-
ness of the device (Kn) varies according to the pretension force (N0), to the strands
length (ls1) and to the rod length (lb). It can be observed a linear dependence be-
tween the negative stiffness Kn and the pretension force N0, while for the strands
and rod length it can be noted that to longer strands or shorter lever corresponds
higher negative stiffness.
The displacement corresponding to the decompression of the device (ulim) can be
obtained writing the length of strands and considering that ls = ls0 and hm = hm0:

ls0 =
√

(ds +hm0 + lbCos(α))2 +(lbSin(α))2; (7.40)

ulim =

√
l2
b−
(

l2
s0− l2

b− (ds +hm0)2

2(ds +hm0)

)2

. (7.41)

The last parameter is the area enclosed by the negative branch of the response.
This quantity coincide with the maximum mechanical energy released by the de-
vice (E0) and can be obtained integrating the force-displacement law from u = 0
to u = ulim. Another simpler way to obtain E0 is to consider that the maximum
mechanical energy deliverable by the device is is the energy stored through the
initial pre-deformation of deformable parts. These are the strands and the spring,
hence;

E0 =
1
2

ks(ls1− ls0)
2 +

1
2

km(hm1−hm0)
2; (7.42)

E0 =
1
2

N2
0

(
1
ks

+
1

km

)
. (7.43)

From the two last obtained laws (ulim and E0) it can be observed that for the same
pretension force N0 the limit displacement and the total mechanical energy of de-
vice are higher when the parts are more deformable, hence the initial elongations
ls1− ls0 and hm1− hm0 are higher. Fig. 7.5 shows how the mechanical energy
released by the device (E0) varies according to the pretension force (N0), to the
strands stiffness (ks) and to the spring stiffness (km). It can be observed that to
an higher pretension force corresponds an higher stored energy, hence an higher
released energy. On the other hand, at equal pretension force, an higher strands
or spring stiffness implies a lower pretension deformation, hence a lower stored
energy. In Fig. 7.6 are reported the variations in the force-displacement response
induced by a variation in N0, ks or km.
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Figure 7.5: Total energy released by device (E0) vs the pretension force (N0) (top),
vs the strands stiffness (ks) (center) and vs the spring stiffness (km) (bottom).
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Figure 7.6: Elastic force displacement response of device for different pretension
forces (N0) (left), strands stiffnesses (ks) (center) spring stiffnesses (km) (right).

This proves the importance of adopting resistant and deformable materials (such
as fiber reinforced polymer) for the strands and the spring and of introducing more
of one deformable part in order to obtain, for the same pretension force, a higher
stored mechanical energy. An interesting limit case is the one where the spring
is rigid, hence the only deformable parts are the strands. The force-displacement
law reads:

Fxel = ks(ds +hm0)(

√
(ds +hm0 + lbCos(α))2 +(lbSin(α))2− ls0√

(ds +hm0 + lbCos(α))2 +(lbSin(α))2
)Tan(α). (7.44)

Figure 7.7: Force vs displacement response (left) and mechanical energy released
vs displacement (right) for the device with and without the deformable spring in
black and red lines respectively.
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As can be seen in Fig. 7.7 the initial stiffness is the same of the device with the
spring deformable, but the energy released and the limit displacement are strongly
lower, due to the lower stored energy.

7.2.2 Hysteretic response
By considering the effect of friction on the sliding surfaces of spherical hinges at
the rod joints, the force displacement law becomes:

Fx = km (hm−hm0)

(
Sin(α)−µCos(α)

Cos(α)+µSin(α)

)
+ (7.45)

− ks

lbSin(α)
(√

(ds +hm + lbCos(α)) 2 +(lbSin(α)) 2− ls0

)
√

(ds +hm + lbCos(α)) 2 +(lbSin(α)) 2
.

In Fig. 7.8 are shown the elastic backbone of response, the friction force on the
horizontal plane and the hysteretic response of the device for differents friction
ratios (µ). The choose of the sliding surfaces material is, as shown, of high impor-
tance for the overall response of device. If the objective is to obtain a recentering
system, the friction must be kept to low values trough the insertion of lubricated
surfaces or PTFE film. On the other hand, if the main goal is to dissipate incoming
energy, the friction can be exploited.

Figure 7.8: (left) Elastic backbone of response, (center) friction force on the hori-
zontal plane and (right) hysteretic response of the device for µ = 0.5%,2%and4%
in red, violet and blue lines respectively.

Another source of hysteretic damping, as explained above, are the damper wires.
These can be in steel or in NiTiNol alloy.The type of material of damper wires
can be emulated choosing ad hoc constitutive law that describes the relation σ =
f (ε, ε̇) of wires. For the steel wires the Bouc-Wen model is used in order to de-
scribe the plastic response of the wires, while for the NiTiNol wires the above
described Charalampakis model is used to represent the superelastic hysteresis of
the wires. By using Eq.7.29 the force exerted by damper wires in the horizontal
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plane can be computed and added to the force of device (Eq. 7.28). In Fig. 7.9
the overall response of device with damper wires of steel is reported for different
values of the parameters r, that denotes the distance between the inferior joints of
wires and the center of their radial distribution, of the number of damper wires
ndw and for different diameter of damper wires φdw.

Figure 7.9: Force vs displacement for different r (left), for different number of
damper wires ndw (center) and for different diameter of damper wires φdw (right)
in the case with steel damper wires.

The introduction of steel damper provides consistent hysteretic damping and an
increase in initial stiffness until the yielding of wires. On the other hand, the
adoption of damper wires in NiTiNol allows to exploit the superelastic hysteresis
provided by the phase transition of the alloy hence to introduce an initial tunable
gap region governed by the elastic stiffness of NiTiNol wires.

Figure 7.10: Force vs displacement for different r (left), for different number of
damper wires ndw (center) and for different diameter of damper wires φdw (right)
in the case with steel NiTiNol wires.

In fact, as can be observed in Fig. 7.10, the elastic stiffness of NiTiNol wires bal-
ances the negative stiffness until the phase transformation, producing an initial
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region where the stiffness of the controlled structure can be maintained unaltered.
This can be useful in order to obtain an high stiffness for low displacement and a
low stiffness for displacement higher than a threshold value. This initial stiffness,
as well as the energy damped by the wires, can be tuned by varying the radial
distance of damper wires (r), the number of wires (ndw) and their diameter (φdw).

7.3 Configurations and applications
Depending on the presence or absence of the group of oblique wires (9) and the
material constituting these wires, 3 distinct configurations of the device can be
identified:

• C1 Wireless configuration;

• C2 Configuration with steel wires;

• C3 Configuration with shape memory alloy wires, i.e. Nickel and Titanium
based (NiTiNol), with super-elastic behaviour.

The use of the different configurations makes it possible to achieve different per-
formance requirements depending on the application area of the device. In the
C1 configuration the negative stiffness produced by the rod is not balanced by the
elastic stiffness of the wires, therefore the global response results with zero stiff-
ness in zero and subsequent increase of the stiffness. This configuration therefore
makes it possible to cut the forces entering the system for small and large lev-
els of excitation (Low Static, Low Dynamic stiffness) and also to slow down the
structure near the final displacement by calibrating the cubic term of the stiff-
ness (High End Run stiffness). With the C2 and C3 configuration it is possible to
obtain a further modulation of the global stiffness thanks to the initial elastic stiff-
ness of the wires. In fact, the global stiffness can be modulated in order to obtain
small displacements for small displacement levels and small forces for larger dis-
placements (High Static, Low Dynamic stiffness). In addition, the damper wires
assembly provides an additional source of hysteretic damping. The C3 configu-
ration differs from C2 in the use of NiTiNol wires rather than steel and allows
an overall Self-Recentering capacity due to the superelastic hysteresis produced
by the austenitic-martensitic phase transformation in the wires. The table sum-
marises the performance requirements achievable with the three configurations
together with potential applications in mechanical vibration mitigation.
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Configuration  Requirements Applications 

C1: wireless LSs, LDs, HERs 

C2: steel wires  HSs, LDs, HERs 

 

C3:  NiTiNol wires HSs, LDs, HERs, SRc 

 

 

No Constraint for small displacement:

Vibration isolation of telescopes, machinery and 

hospital equipment; vibration damping of flexible 

structures.

Constraint for small displacement:

energy damping; 

seismic isolation of buildings.

Constraint for small displacement:

energy damping;

seismic isolation of buildings with re-centering 

capacity.

Tab.7.1: Requirements achievable and potential applications for the configurations
C1, C2 and C3.

7.3.1 Numerical validation on Abaqus
The reliability of the analytical formulation was validated by comparison with the
numerical response provided by the three-dimensional nonlinear numerical model
of the device developed in the finite element code ABAQUS.

Figure 7.11: Views of the numerical model implemented on ABAQUS.

Figure 7.11 shows a three-dimensional view of the numerical model in the un-
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deformed and in the deformed configuration. Since the device is an articulated
mechanism and the rheological response is governed by geometric nonlinearities
(large displacements) and the behavior of the deformable parts (external ropes,
polyurethane spring and damper wires), the two steel caps (1,2) , the rigid rod (4)
and the connection plate between rod and spring (7) are modeled as rigid bodies
trough the Rigid body constraint. The external ropes (9) and the damper wires
(10) are modeled by mean of the T3D2H finite element, that is a 2 node linear
3-D truss with hybrid formulation. The material used for strands is elastic mate-
rial with steel elastic modulus, while, for the damper wires, the Auricchio model
for superelasticity is used for NiTiNol wires and a plastic model is used for steel
wires. The spring (8) is modeled as an axial elastic link between the inferior cap
(2) and the rod-spring connection plate (7) with stiffness equal to the axial stiffness
of the polyurethane spring. The strands are connected to the two rigid caps and
the damper wires to the superior cap and the rod-spring connection plate through
a translational constraint. The rigid rod interacts with the superior head and with
the rod-spring connection plate via a surface to surface contact interaction, where
tangential behavior is governed by friction with a Penalty formulation and the nor-
mal behavior by a ”hard” contact type of pressure-overclosure rule with allowed
separation. The rod-spring connection plate (7) is constrained to move vertically
by the presence of linear guides, hence the horizontal translational and the rota-
tional degree of freedom are constrained. Finally, the inferior cap, or the base of
device, is fixed to the ground.

Figure 7.12: Comparison between analytical (black lines) and numerical (red
lines) stress-strain response of NiTiNol damper wire (left) and tension force (right)
of external strands vs displacement amplitude for the damper subject to static
cyclic displacement.
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Figure 7.13: Comparison between analytical (black lines) and numerical (red
lines) horizontal force-displacement response of the damper subject to static cyclic
displacement with friction ratio of the hinges surfaces (µ) set equal to 0.02 (left)
and to 0.04 (right).

The pretension of external strands is simulated introducing an initial field in the
axial tension of each wires equal to N0/(nsAs), where ns is the number of external
strands and As is the cross section area of each strand. In order to obtain the force-
displacements cycles of the device a quasi-static sinusoidal displacement history
is applied to the superior cap of device, simulating the motion of the controlled
structure. Figure 7.12 shows a comparison between the analytical and the numer-
ical response in terms of axial tension in damper wires and axial force in external
strands, while in Fig. 7.13 analytical and numerical force-displacement cycles are
reported for different friction ratio of the hinges surfaces. From the comparison
a fulfilling match between the response predicted with the analytical formulation
and the numerical model on Abaqus can be observed and this validates the accu-
racy of the analytical formulation.

7.4 Conclusions
Starting from the main weaknesses of the existing negative stiffness dampers, i.e.
the large size given by the prestressed element, the monodirectional response or
the dependence of the response on the weight of the mass to be isolated, a new
compact multidirectional damper with super-elastic hysteresis has been designed.
The functioning of the mechanism, based not on precompression but on preten-
sioning of the prestressed element, and the selection of deformable and resistant
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materials such as fibre reinforced polymer and polyurethane, allowed the reduc-
tion of the size of the device and its multidirectional behaviour. Depending from
the material and the presence of the damper wires it is possible to achieve differ-
ent responses and requirements useful for different applications. The analytical
equations of the force-displacement law are derived in function of the geomet-
rical and of the mechanical characteristics of the designed device. Simple laws
of the principal features of damper response (Kn, Ulim and E0), useful for design,
are obtained and discussed. Finally, analytical derived formulas are validated by
comparison with the response provided by a three-dimensional numerical model
developed on the software Abaqus.



Chapter 8

Conclusions

A novel high performances vibration isolation system featuring a negative stiff-
ness mechanism and superelastic damping arranged in parallel with classical elas-
tomeric isolation devices is proposed and investigated.
The static characterization of the response of the dimensionless system in terms of
stability, stiffness and equivalent damping, has revealed the presence of different
types of stability in the (K̃n, K̃3, K̃s) design parameters space and the possibility of
obtaining almost zero stiffness together with amplifications of the damping up to
over-damped responses.
In order to understand the effects produced by the introduction of NS-SMA damp-
ing and its limits an extensive parametric investigation was conducted on the dy-
namic response of a SDOF isolated mass with NS-SMA damping under harmonic
and impulsive excitations. For both excitations, by accurately tuning the negative
stiffness with the superelastic damping, a remarkable reduction of displacement
and acceleration amplitudes can be achieved, while preserving a self-recentering
capability and without incurring an increase of acceleration transmissibility for
low excitations.
The study of the nonlinear dynamic response under harmonic excitation and its bi-
furcations revealed extremely rich bifurcation scenarios with detached resonances
and unusual interactions between the primary resonance and superharmonic reso-
nances, or between superharmonic resonances of various orders, featuring multi-
plicity of coexisiting attractors. The well-trapping phenomenon under impulsive
ground motion is showed and its beneficial effect on the control of accelerations
under shock excitation are demonstrated and exploited. Analytical formula of
optimum parameters combination under a specific pulse amplitude are provided
imposing the location of the lateral stable equilibrium equal to the pulse ampli-
tude.
For both types of dynamic excitation, the optimum regions in design parame-
ters space are found using D.E. optimization alghoritm and useful design criteria
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for NS-SMA damping are obtaied and illustrated. The optimization of response
validate the optimum regions identified in previous chapters and provides useful
design hints.
These design criteria have been validated through the study of an example ap-
plication case, where the dynamic response of a MDOF system, representative
of a seismic isolated building, is investigated under seismic excitation. Optimal
parameters are found for the NS-SMA damping and for other classic damping
techniques (SMAD, HD, VD, FRD, HBD). With the optimized NS-SMA config-
urations it is possible to achieve a strong reduction in shear forces (70%) with the
same maximum displacements of the baseline system, or a significant reduction in
shear forces (30%) together with a reduction in displacements (30%). In addition
is shown that NS-SMA damping is able to prevents the start of structural damag-
ing retaining the maximum drift values under the limit threshold Dr = 0.2% for all
the limit states investigated (SLO, SLD, SLV, and SLC). This feature results to be
not achievable from classic damping techniques studied despite the introduction
of large amounts of damping devices and the consequent increase in costs. The il-
lustrated performances, together with the self-recentering capacity of the proposed
isolation system, effectively eliminate any potential economic losses induced by
seismic risk, thereby confirming the possibility of obtaining a new generation of
ideal high-performance seismic isolation systems.
Finally, in order to enable the achievement of the proposed and described rheo-
logical response, and starting from the main weaknesses of the existing negative
stiffness dampers, i.e. the large size given by the prestressed element, the monodi-
rectional response or the dependence of the response on the weight of the mass
to be isolated, a new compact multidirectional damper with negative stiffnes and
super-elastic hysteresis has been designed. The functioning of the mechanism and
the selection of deformable and resistant materials allowed the reduction of the
size of the device and its multidirectional behaviour. Depending from the material
and the presence of the damper wires it is possible to achieve different responses
and requirements useful for different applications. The analytical equations of
the force-displacement law are derived in function of the geometrical and of the
mechanical characteristics of the designed device. Simple laws of the principal
features of damper response (Kn, Ulim and E0), useful for design, are obtained and
discussed. Lastly, the reliability of analytical formulas is validated by comparison
with the response provided by a three-dimensional numerical model developed on
the software Abaqus.
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Zm,ys = 0.2) for Ãg = 0.01072 and Ω̃2 = 0.022. In red the re-
sponse to a zero initial condition along to the main solutions branch,
while in blue the solution for the initial conditions x̃ = 0.2, ṽ = 0,
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Ã = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.24 DSCs (top) and ASCs (bottom) curves for the optimized config-
urations C1′′, C2′′ and C3′′, (left, center and right, respectively)
under P3 pulse load with amplitudes Ã = [0.1 : 0.1 : 1]. . . . . . . 78
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