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Abstract

Let (M,J) be a compact complex manifold of complex dimension m and let gs be a one-parameter family
of Hermitian forms on M that are smooth and positive definite for each fixed s ∈ (0, 1] and that somehow
degenerates to a Hermitian pseudometric h for s tending to 0. In this paper under rather general assump-
tions on gs we prove various spectral convergence type theorems for the family of Hodge-Kodaira Laplacians
∆∂,m,0,s associated to gs and acting on the canonical bundle of M . In particular we show that, as s tends to
zero, the eigenvalues, the heat operators and the heat kernels corresponding to the family ∆∂,m,0,s converge
to the eigenvalues, the heat operator and the heat kernel of ∆∂,m,0,abs, a suitable self-adjoint operator with
entirely discrete spectrum defined on the limit space (A, h|A).
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Introduction

Whenever we have a sequence of Riemannian manifolds {(Mn, gn)}n∈N that somehow degenerate to a limit space
X it is a very interesting question to analyze the limit behavior of the spectral invariants, such as eigenvalues,
eigenvectors, traces and so on, associated to the sequence {(Mn, gn)}n∈N. This and related topics have been
investigated in so many papers that even to report a representative sample of the literature is beyond the scope
of this introduction. Just to mention few relevant works we can recall [1], [10], [11], [12], [13], [15], [24], [26],
[27], [28], [30] and [36]. An interesting branch of this circle of ideas is the one that deals with (real or complex)
algebraic varieties understood as the limit of a sequence of smooth algebraic varieties. In this kind of situation
the behavior of the eigenvalues of the Laplace-Beltrami operator have been investigated in various papers, see
for instance [19] which is devoted to real algebraic and semi-algebraic sets, [25] which deals with a smooth family
of compact surfaces that degenerate to a surface with conical singularities and [37] which is concerned with a
one-parameter degenerating family of projective algebraic manifolds in CPn over the unit disc. In this paper
we tackle a somewhat similar problem but rather than the Laplace-Beltrami operator we are interested in the
Hodge-Kodaira Laplacian acting on the sections of the canonical bundle. More precisely we are concerned with
the following setting: (M,J) is a compact complex manifold of complex dimension m endowed with a Hermitian
pseudometric h. We recall that a Hermitian pseudometric is nothing but a semipositive definite Hermitian
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product strictly positive on an open and dense subset A ⊂ M . As explained in the final part of this paper
this is a rather general framework that encompasses for instance complex projective varieties endowed with the
Fubini-Study metric and more generally compact and irreducible Hermitian complex spaces. Consider now the

Dolbeault operator ∂m,0 : Ωm,0
c (A) → Ωm,1

c (A) and let ∂
t

m,0 : Ωm,1
c (A) → Ωm,0

c (A) be the formal adjoint of ∂m,0 :

Ωm,0
c (A) → Ωm,1

c (A) with respect to h|A. Finally consider ∂
t

m,0 ◦∂m,0 : Ωm,0
c (A) → Ωm,0

c (A), that is the Hodge-
Kodaira Laplacian with respect to h|A acting on the canonical bundle of A. In [3] several results concerning

the L2-spectral theory of ∂
t

m,0 ◦ ∂m,0 : Ωm,0
c (A) → Ωm,0

c (A) were proved. In particular, by only requiring that
(A, g|A) is parabolic with respect to some (and therefore all) Riemannian metric g on M , we showed that given
any closed extension dm,0 : L2Ωm,0(A, h|A) → L2Ωm,1(A, h|A) of ∂m,0 : Ωm,0

c (A) → Ωm,1
c (A) the operator

d
∗
m,0 ◦ dm,0 : L2Ωm,0(A, h|A) → L2Ωm,0(A, h|A) is a self-adjoint extension of ∂

t

m,0 ◦ ∂m,0 : Ωm,0
c (A) → Ωm,0

c (A)
with entirely discrete spectrum, see [3] Th. 4.1. Now let us introduce the product manifold M × [0, 1] and let
p :M× [0, 1] →M be the natural projection. Let gs be any measurable section of p∗T ∗M⊗p∗T ∗M →M× [0, 1]
such that

1. gs is a Hermitian metric on M for each s ∈ (0, 1];

2. gs|A×[0,1] ∈ C∞(A× [0, 1], p∗T ∗A⊗ p∗T ∗A);

3. g0|A = h|A;

4. (A, g|A) is parabolic with respect to some Riemannian metric g on M ;

Roughly speaking gs is a one-parameter family of Hermitian metrics on M that on A degenerates smoothly to
a Hermitian pseudometric h for s → 0. For each s ∈ (0, 1] let ∆∂,m,0,s : L2Ωm,0(M, gs) → L2Ωm,0(M, gs) be
the unique closed (and therefore self-adjoint) extension of the Hodge-Kodaira Laplacian, with respect to the
metric gs, acting on the canonical bundle of M . It is well known by elliptic theory on compact manifolds that
∆∂,m,0,s : L

2Ωm,0(M, gs) → L2Ωm,0(M, gs) has entirely discrete spectrum, see e.g. [16]. We have finally all the
ingredients to formulate the first main question addressed by this paper:

Let s ∈ (0, 1] and let {λk(s)}k∈N be the eigenvalues of ∆∂,m,0,s : L2Ωm,0(M, gs) → L2Ωm,0(M, gs). Under

what assumptions on gs does λk(s) → λk(0) as s → 0, where {λk(0)}k∈N are the eigenvalues of d
∗
m,0 ◦ dm,0 :

L2Ωm,0(A, h|A) → L2Ωm,0(A, h|A) and dm,0 : L2Ωm,0(A, h|A) → L2Ωm,1(A, h|A) is a suitable closed extension
of ∂m,0 : Ωm,0

c (A) → Ωm,1
c (A)?

In the first main result of this paper we provide a positive answer to the above question by requiring in addition
that there exists a positive constant ν such that 1

νh ≤ gs ≤ νg1 for each s ∈ (0, 1]. More precisely we have:

Theorem 0.1. Let gs be any measurable section of p∗T ∗M ⊗ p∗T ∗M → M × [0, 1] that satisfies the fourth
properties listed above. Assume moreover that there exists a positive constant ν ∈ R such that 1

ν ≤ gs ≤ νg1 for
each s ∈ (0, 1]. Let

∆∂,m,0,abs : L
2Ωm,0(A, h|A) → L2Ωm,0(A, h|A) (1)

be the operator defined as ∆∂,m,0,abs := ∂
∗
m,0,max ◦ ∂m,0,max where

∂m,0,max : L2Ωm,0(A, h|A) → L2Ωm,1(A, h|A) (2)

is the maximal extension of ∂m,0 : Ωm,0
c (A) → Ωm,1

c (A) and ∂
∗
m,0,max : L2Ωm,1(A, h|A) → L2Ωm,0(A, h|A) is the

adjoint of (2). For each s ∈ (0, 1] let 0 ≤ λ1(s) ≤ λ2(s) ≤ ... ≤ λk(s) ≤ ... be the eigenvalues of

∆∂,m,0,s : L
2Ωm,0(M, gs) → L2Ωm,0(M, gs) (3)

and let 0 ≤ λ1(0) ≤ λ2(0) ≤ ... ≤ λk(0) ≤ ... be the eigenvalues of (1). Then

lim
s→0

λk(s) = λk(0)

for each positive integer k.
Moreover let {sn}n∈N ⊂ (0, 1] be any sequence such that sn → 0 as n→ ∞ and let {η1(sn), η2(sn), . .., ηk(sn), ...}
be any orthonormal basis of L2Ωm,0(M, gsn) made by eigenforms of (3) with corresponding eigenvalues {λ1(sn),
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..., λk(sn), ...}. Then there exists a subsequence {zn} ⊂ {sn} and an orthonormal basis {η1(0), η2(0), ..., ηk(0), ...}
of L2Ωm,0(A, h|A) made by eigenforms of (1) with corresponding eigenvalues {λ1(0), ..., λk(0), ...} such that

lim
n→∞

ηk(zn) = ηk(0)

in L2Ωm,0(A, h|A) for each positive integer k.

Since we have the convergence of the eigenvalues it is natural to investigate if there is convergence of more
sophisticated “spectral objects”. This task is tackled in the second main result of this paper where the limit
behavior of the corresponding heat operators is studied. More precisely let e−t∆∂,m,0,abs : L2Ωm,0(A, h|A) →
L2Ωm,0(A, h|A) and e−t∆∂,m,0,s : L2Ωm,0(M, gs) → L2Ωm,0(M, gs) be the heat operators associated to (1) and
(3), respectively. These are all trace-class operators. When s ∈ (0, 1] it is again a classical result of elliptic theory
on compact manifolds whereas for e−t∆∂,m,0,abs it is proved in [3, Cor 4.2]. By the fact that L2Ωm,0(A, h|A) =
L2Ωm,0(M, gs) for each s ∈ (0, 1], see (21), we can look at e−t∆∂,m,0,s : L2Ωm,0(M, gs) → L2Ωm,0(M, gs) as a
family of trace-class operators acting on a fixed Hilbert space. It is therefore natural to investigate the limit
behavior of e−t∆∂,m,0,s : L2Ωm,0(M, gs) → L2Ωm,0(M, gs) with respect to the trace-class norm wondering in
particular if e−t∆∂,m,0,s converges to e−t∆∂,m,0,abs . This is the goal of our second main result that indeed shows
that e−t∆∂,m,0,s converges to e−t∆∂,m,0,abs as s→ 0 with respect to the trace-class norm. More precisely

Theorem 0.2. Let t0 ∈ (0,∞) be arbitrarily fixed. Then

lim
s→0

sup
t∈[t0,∞)

Tr |e−t∆∂,m,0,s − e−t∆∂,m,0,abs | = 0.

Equivalently e−t∆∂,m,0,s converges to e−t∆∂,m,0,abs as s → 0 with respect to the trace-class norm and uniformly
on [t0,∞).

We stress on the fact that our results require neither assumptions on the dimension of M nor restrictions
on the curvature of gs. Moreover we do not need to impose any particular asymptotic to h near Z.
Now we continue this introduction by describing how the paper is sort out. The first section contains the
background material. In the second section we recall some results of functional analysis that play a key role
in the proof of Th. 0.1. In particular we recall the notion of Mosco convergence, introduced originally in [32]
and later generalized in [28], as we found this machinery very suitable to prove Th. 0.1. The third section is
devoted to the main results of this paper. Besides the proofs of Th. 0.1 and Th. 0.2 it contains further results
and applications. In particular a converge theorem for the heat kernels of the family e−t∆∂,m,0,s to the heat
kernel of e−t∆∂,m,0,abs is derived, see Th. 3.4, and moreover some applications to the corresponding family of
zeta functions are given, see Th. 3.3. The fourth and last section contains some examples and applications.
Finally we conclude this introduction with the following remark. The reader may wonder why we are concerned
only with the Hodge-Kodaira Laplacian acting on the canonical bundle. Besides the well known importance
played by the canonical bundle in complex geometry there is another, more technical, reason. To our best
knowledge, without requiring restrictive condition either on the dimension of X or on sing(X), there are only
two cases where the Hodge-Kodaira Laplacian acting on the regular part of a compact Hermitian complex
space is known to have a self-adjoint extension with entirely discrete spectrum: the scalar case, first proved in
[29] and later generalized in [4], and the case of the canonical bundle [3]. This paper is devoted to the latter case.

Acknowledgements. This paper was mainly written while the author was a postdoc at the Mathematics
Department of the University of Padova. He wishes to thank that institution for financial support. Moreover
the author wishes to thank the anonymous referee for helpful comments.

1 Background material

This section is devoted to the background material. In the first part we recall some basic notions on closed
extensions of differential operators whereas the second part is concerned with some properties of Hermitian
metrics. Let (M,J, g) be a complex Hermitian manifold of real dimension 2m. As usual with Λa,b(M) we
denote the bundle of (a, b)-forms, that is Λa(T 1,0,∗M) ⊗ Λb(T 0,1,∗M) and by Ωa,b(M), Ωa,b

c (M) we denote
respectively the space of sections, sections with compact support, of Λa,b(M). On the bundle Λa,b(M) we
consider the Hermitian metric induced by g and we label it by g∗a,b. With L2Ωa,b(M, g) we denote the space of

measurable (a, b)-forms η such that
∫
M
g∗a,b(η, η) dvolg <∞ where dvolg is the volume form induced by g. This
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is a Hilbert space whose inner product is given by

⟨η, ω⟩L2Ωa,b(M,g) =

∫
M

g∗a,b(η, ω) dvolg

for any η, ω ∈ L2Ωa,b(M, g). The Dolbeault operator acting on (a, b)-forms is labeled by ∂a,b : Ωa,b(M) →
Ωa,b+1(M) while ∂

t

a,b : Ω
a,b+1(M) → Ωa,b(M) denotes the formal adjoint of ∂a,b : Ω

a,b(M) → Ωa,b+1(M) with

respect to g. We look at ∂a,b : L
2Ωa,b(M, g) → L2Ωa,b+1(M, g) as an unbounded and densely defined operator

defined on Ωa,b
c (M) and we denote by ∂a,b,max /min : L2Ωa,b(M, g) → L2Ωa,b+1(M, g) its maximal and minimal

closed extension, respectively. We recall that the maximal closed extension is defined in the distributional sense:

ω ∈ D(∂a,b,max) and ∂a,b,maxω = η ∈ L2Ωa,b+1(M, g) if ⟨ω, ∂ta,bϕ⟩L2Ωa,b(M,g) = ⟨η, ϕ⟩L2Ωa,b+1(M,g) for every

ϕ ∈ Ωa,b+1
c (M). The minimal closed extension is defined as the graph closure of ∂a,b, that is ω ∈ D(∂a,b,min) and

∂a,b,minω = η ∈ L2Ωa,b+1(M, g) if there exists {ϕk}k∈N ⊂ Ωa,b
c (M) such that ϕ→ ω and ∂a,bϕ→ η as n→ ∞ in

L2Ωa,b(M, g) and L2Ωa,b+1(M, g), respectively. In analogous way we can define ∂
t

a,b,max /min : L2Ωa,b+1(M, g) →
L2Ωa,b(M, g), that is the maximal/minimal closed extension of ∂

t

a,b : Ω
a,b+1
c (M) → Ωa,b

c (M), respectively. It is

easy to check that ∂
t

a,b,max /min = ∂
∗
a,b,min /max, that is ∂

t

a,b,max : L2Ωa,b+1(M, g) → L2Ωa,b(M, g) is the adjoint

of ∂a,b,min : L2Ωa,b(M, g) → L2Ωa,b+1(M, g) whereas ∂
t

a,b+1,min : L2Ωa,b+1(M, g) → L2Ωa,b(M, g) is the adjoint

of ∂a,b,max : L2Ωa,b(M, g) → L2Ωa,b+1(M, g). Consider now the Hodge-Kodaira Laplacian

∆∂,a,b : Ω
a,b
c (M) → Ωa,b

c (M), ∆∂,a,b := ∂a,b−1 ◦ ∂
t

a,b−1 + ∂
t

a,b ◦ ∂a,b.

We recall the definition of two important self-adjoint extensions of ∆∂,a,b:

∂a,b−1,max ◦ ∂
t

a,b−1,min + ∂
t

a,b,min ◦ ∂a,b,max : L2Ωa,b(M, g) → L2Ωa,b(M, g) (4)

and
∂a,b−1,min ◦ ∂ta,b−1,max + ∂

t

a,b,max ◦ ∂a,b,min : L2Ωa,b(M, g) → L2Ωa,b(M, g) (5)

called respectively the absolute and the relative extension. The operator (4), the absolute extension, is denoted
with ∆∂,a,b,abs and its domain is defined as

D(∆∂,a,b,abs) =
{
ω ∈ D(∂a,b,max) ∩ D(∂

t

a,b−1,min) : ∂a,b,maxω ∈ D(∂
t

a,b,min) and ∂
t

a,b−1,minω ∈ D(∂a,b−1,max)
}
.

The operator (5), the relative extension, is denoted with ∆∂,a,b,rel and its domain is defined as

D(∆∂,a,b,rel) =
{
ω ∈ D(∂a,b,min) ∩ D(∂

t

a,b−1,max) : ∂a,b,minω ∈ D(∂
t

a,b,max) and ∂
t

a,b−1,maxω ∈ D(∂a,b−1,min)
}
.

This concludes the first part of this introduction. For more details we refer to [5] and the reference therein.
Now we recall some background material concerning Hermitian metrics. These properties are certainly well
known to the experts. However it is not easy to find them in the literature. Therefore we preferred to write
them down believing that this could be helpful for the unfamiliar reader. The proof are omitted because they
lie on elementary arguments of linear algebra. Let (M,J) be a complex manifold of complex dimension m
and let g and h be Hermitian metrics on M . Then there exists F ∈ C∞(M,End(TM)) such that h(·, ·) =
g(F ·, ·). It is immediate to verify that F and J commute. For any p ∈ M consider Fp : TpM → TpM and
Jp : TpM → TpM . As Fp ◦ Jp = Jp ◦ Fp every eigenspace of Fp is preserved by Jp and therefore it has even
dimension. This tells us that the eigenvalues of Fp are given by {λ1(p), λ1(p), λ2(p), λ2(p), ..., λm(p), λm(p)}
with 0 < λ1(p) ≤ λ2(p) ≤ ... ≤ λm(p). Moreover if Ep is an eigenspace of Fp : TpM → TpM of dimension 2k
then we can find k linearly independent eigenvectors v1, ..., vk ∈ Ep, such that the set {v1, Jpv1, ..., vk, Jpvk}
is a basis for Ep. Let FC ∈ C∞(M,End(TM ⊗ C)) be the C-linear endomorphism induced by F on the
complexified tangent bundle. Then the eigenvalues of FC,p are still {λ1(p), λ1(p), λ2(p), λ2(p), ..., λm(p), λm(p)}
with corresponding eigenspaces obtained by complexification of the eigenspaces of Fp : TpM → TpM . Consider

an arbitrary eigenspace Ep of Fp. Then EC,p := Ep ⊗ C splits as EC,p = E1,0
C,p ⊕ E0,1

C,p with E1,0
C,p = T 1,0

p M ∩
EC,p and E0,1

C,p = T 0,1
p M ∩ EC,p. Moreover it is easy to check that both T 1,0M and T 0,1M are preserved

by FC. If we define F 1,0
C := FC|T 1,0M and F 0,1

C := FC|T 0,1M then, for any p ∈ M , the eigenvalues of F 1,0
C,p

are {λ1(p), λ2(p), ..., λm−1(p), λm(p)} with eigenspaces given by the (1, 0)-part of the complexification of the
corresponding eigenspaces of Fp. In particular if Ep is any eigenspace of Fp of real dimension 2k with a
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basis of eigenvectors given by {v1, Jpv1, ..., vk, Jpvk} then E1,0
C,p becomes a complex k-dimensional eigenspace

of F 1,0
C,p with a basis of eigenvectors given by {v1 − iJpv1, ..., vk − iJpvk}. Analogously the eigenvalues of F 0,1

C,p
are {λ1(p), λ2(p), ..., λm−1(p), λm(p)} with eigenspaces given by the (0, 1)-part of the complexification of the
corresponding eigenspaces of Fp. In particular if Ep is any eigenspace of Fp of real dimension 2k with a basis

of eigenvectors given by {v1, Jpv1, ..., vk, Jpvk} then E0,1
C,p becomes a complex k-dimensional eigenspace of F 0,1

C,p
with a basis of eigenvectors given by {v1 + iJpv1, ..., vk + iJpvk}. As a first consequence we can deduce that:

det(Fp) = det(FC,p) = det(F 1,0
C,p) det(F

0,1
C,p) = (det(F 1,0

C,p))
2 = (det(F 0,1

C,p))
2.

Let now g∗ and h∗ be the Hermitian metrics induced by g and h on T ∗M , respectively. It is easy to ver-
ify that h∗(·, ·) = g∗((F−1)t·, ·) where (F−1)t is the transpose of F−1, that is the endomorphism of T ∗M
induced by F−1. Let us define G ∈ C∞(M,End(T ∗M)) as G := (F−1)t. Then the eigenvalues of Gp are
{ 1
λ1(p)

, 1
λ1(p)

, ..., 1
λm(p) ,

1
λm(p)}. Likewise the case of the tangent bundle, with self-explanatory notation, we in-

troduce GC, G
1,0
C and G0,1

C acting on T ∗M ⊗ C, T 1,0,∗M and T 0,1,∗M , respectively. The eigenvalues of both

G1,0
C,p and G0,1

C,p are { 1
λ1(p)

, 1
λ2(p)

, ..., 1
λm−1(p)

, 1
λm(p)}. In particular we have

det(G1,0
C,p) = (det(F 1,0

C,p))
−1 and det(G0,1

C,p) = (det(F 0,1
C,p))

−1.

Let us now label with gC and hC the Hermitian metrics on TM ⊗C induced by g and h, respectively. We recall
that for any p ∈ M , u, v ∈ TpM and α, β ∈ C we have gC(u ⊗ α, v ⊗ β) = αβg(u, v) and hC(u ⊗ α, v ⊗ β) =
αβh(u, v). Let h∗C, h

∗
a,b, g

∗
C and g∗a,b be the Hermitian metrics on T ∗M ⊗ C and Λa,b(M) induced by hC

and gC, respectively. It is easy to verify that h∗a,b = h∗a,0 ⊗ h∗0,b, g
∗
a,b = g∗a,0 ⊗ g∗0,b and that h∗a,0(·, ·) =

g∗a,0(G
a,0
C ·, ·), h∗0,b(·, ·) = g∗0,b(G

0,b
C ·, ·), h∗a,b(·, ·) = g∗a,b(G

a,0
C ⊗ G0,b

C ·, ·) where G0,b
C ∈ C∞(M,End(Λ0,b(M))) and

Ga,0
C ∈ C∞(M,End(Λa,0(M))) are the endomorphisms induced in the natural way byG0,1

C and G1,0
C , respectively.

Let ω ∈ Ω0,b
c (M). Then for the L2-inner product we have

⟨ω, ω⟩L2Ω0,b(M,h) =

∫
M

h∗0,b(ω, ω) dvolh =

∫
M

g∗0,b(G
0,b
C ω, ω)

√
det(F ) dvolg ≤

∫
M

|G0,b
C |g∗

0,b
g∗0,b(ω, ω)

√
det(F ) dvolg

where |G0,b
C |g∗

0,b
: M → R is the function that assigns to each p ∈ M the pointwise operator norm of G0,b

C,p :

Λ0,b
p (M) → Λ0,b

p (M) with respect to g∗0,b, that is

|G0,b
C |2g∗

0,b
(p) = sup

0̸=v∈Λ0,b
p (M)

g∗0,b(G
0,b
C v,G0,b

C v)

g∗0,b(v, v)
. (6)

In particular, if |G0,b
C |g∗

0,b

√
det(F ) ∈ L∞(M) then we have

⟨ω, ω⟩L2Ω0,b(M,h) =

∫
M

h∗0,b(ω, ω) dvolh =

∫
M

g∗0,b(G
0,b
C ω, ω)

√
det(F ) dvolg ≤

∫
M

|G0,b
C |g∗

0,b
g∗0,b(ω, ω)

√
det(F ) dvolg ≤

∥|G0,b
C |g∗

0,b

√
det(F )∥L∞(M)

∫
M

g∗0,b(ω, ω) dvolg = ∥|G0,b
C |g∗

0,b

√
det(F )∥L∞(M)⟨ω, ω⟩L2Ω0,b(M,g).

Consider now the case (m, 0). Let ξ, χ ∈ Ωm,0
c (M). Then we have

⟨ξ, χ⟩L2Ωm,0(M,h) =

∫
M

h∗m,0(ξ, χ) dvolh =

∫
M

g∗m,0(det(G
1,0
C )ξ, χ)

√
det(F ) dvolg = (7)∫

M

g∗m,0(ξ, χ) dvolg = ⟨ξ, χ⟩L2Ωm,0(M,g).

Hence we can conclude that we have an equality of Hilbert spaces L2Ωm,0(M,h) = L2Ωm,0(M, g). Finally
consider a form ψ ∈ Ωm,b

c (M) with b > 0. Then for the L2-inner product we have

⟨ψ,ψ⟩L2Ωm,b(M,h) =

∫
M

h∗m,b(ψ,ψ) dvolh =

∫
M

g∗m,b(G
m,0
C ⊗G0,b

C ψ,ψ)
√
det(F ) dvolg = (8)∫

M

g∗m,b(det(G
1,0
C )⊗G0,b

C ψ,ψ)
√

det(F ) dvolg =

∫
M

g∗m,b(Id⊗G
0,b
C ψ,ψ) dvolg =∫

M

g∗m,0 ⊗ g∗0,b(Id⊗G
0,b
C ψ,ψ) dvolg ≤

∫
M

|G0,b
C |g∗

0,b
g∗m,0 ⊗ g∗0,b(ψ,ψ) dvolg =

∫
M

|G0,b
C |g∗

0,b
g∗m,b(ψ,ψ) dvolg .
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Thus we can conclude that whenever |G0,b
C |g∗

0,b
∈ L∞(M), then

⟨ψ,ψ⟩L2Ωm,b(M,h) ≤ ∥|G0,b
C |g∗

0,b
∥L∞(M)⟨ψ,ψ⟩L2Ωm,b(M,g) (9)

whereas if g∗0,b(G
0,b
C ·, ·) ≥ cg∗0,b(·, ·) for some positive c ∈ R, then g∗m,0 ⊗ g∗0,b(Id⊗G

0,b
C ψ,ψ) ≥ cg∗m,0 ⊗ g∗0,b(ψ,ψ)

and therefore
⟨ψ,ψ⟩L2Ωm,b(M,h) ≥ c⟨ψ,ψ⟩L2Ωm,b(M,g). (10)

2 Functional analytic prerequisites

In this section we recall briefly some functional analytic tools that will be used later on. All the material is
taken from [28]. We refer to it for an in-depth treatment.
Let {Hn}n∈N be a sequence of infinite dimensional separable complex Hilbert spaces. Let H be another infinite
dimensional separable complex Hilbert space. Let us label by ⟨·, ·⟩Hn

, ∥·∥Hn
, ⟨·, ·⟩H and ∥·∥H the corresponding

inner products and norms. Let C ⊆ H be a dense subset. Assume that for every n ∈ N there exists a linear
map Φn : C → Hn. We will say that Hn converges to H as n→ ∞ if and only if

lim
n→∞

∥Φnu∥Hn = ∥u∥H (11)

for any u ∈ C.

Assumption: In the next definitions and propositions we will always assume that the sequence {Hn}n∈N
converges to H.

Definition 2.1. Let u ∈ H and let {un}n∈N be a sequence such that un ∈ Hn for each n ∈ N. We say that un
strongly converges to u as n→ ∞ if there exists a net {vβ}β∈B ⊂ C tending to u in H such that

lim
β

lim sup
n→∞

∥Φnvβ − un∥Hn = 0 (12)

We note that for any arbitrarily fixed u ∈ C the sequence {Φnu}n∈N strongly converges to u. This is an
immediate consequence of (11) and Def. 2.1.

Definition 2.2. Let u ∈ H and let {un}n∈N be a sequence such that un ∈ Hn for each n ∈ N. We say that un
weakly converges to u as n→ ∞ if

lim
n→∞

⟨un, wn⟩Hn
= ⟨u,w⟩H (13)

for any w ∈ H and any sequence {wn}n∈N, wn ∈ Hn, strongly convergent to w.

Proposition 2.1. Let {un}n∈N be a sequence such that un ∈ Hn for each n ∈ N. Assume that there exists
a positive real number c such that ∥un∥Hn

≤ c for every n ∈ N. Then there exists a subsequence {um}m∈N ⊂
{un}n∈N, um ∈ Hm, weakly convergent to some element u ∈ H.

Proof. See [28] Lemma 2.2.

Proposition 2.2. Let {un}n∈N, un ∈ Hn, be a sequence weakly convergent to some element u ∈ H. Then there
exists a positive real number ℓ such that

sup
n∈N

∥un∥Hn
≤ ℓ and ∥u∥H ≤ lim inf

n→∞
∥un∥Hn

. (14)

Moreover {un}n∈N converges strongly to u if and only if

lim
n→∞

∥un∥Hn = ∥u∥H .

Proof. See [28] Lemma 2.3.

We have now the following remark. Consider the case of a constant sequence of infinite dimensional separable
complex Hilbert spaces {Hn}n∈N, that is for each n ∈ N Hn = H, C = H and Φn : C → Hn is nothing but the
identity Id : H → H. Then Def. 2.1 and Def. 2.2 coincide with ordinary notions of convergence in H and weak
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convergence in H. Indeed let {vn} ⊂ H be a sequence converging to some v ∈ H. Then by taking any constant
net {vβ}β∈B ⊂ H, vβ := v as a net in H converging to v we have

lim
β

lim sup
n→∞

∥Φnvβ − vn∥Hn
= lim sup

n→∞
∥v − vn∥H = 0.

Therefore vn → v strongly in the sense of Def. 2.1. Conversely let us assume that for some net {vβ}β∈B ⊂ H
tending to v in H we have

lim
β

lim sup
n→∞

∥Φnvβ − vn∥Hn
= 0.

Given any β ∈ B we have ∥v − vn∥H ≤ ∥v − vβ∥H + ∥vβ − vn∥H . Therefore for every β ∈ B

lim sup
n→∞

∥v − vn∥H ≤ ∥v − vβ∥H + lim sup
n→∞

∥vβ − vn∥H

and finally
lim sup
n→∞

∥v − vn∥H ≤ lim
β

∥v − vβ∥H + lim
β

lim sup
n→∞

∥vβ − vn∥H = 0.

Therefore vn → v in H and thus we showed that Def. 2.1 coincides with ordinary notion of convergence in H.
Clearly this in turn implies immediately that Def. 2.2 coincides with the standard definition of weak convergence
in H.

We recall now that a quadratic form over a complex Hilbert spaceH is a sesquilinear formQ : D(Q)×D(Q) →
C, where D(Q) ⊂ H is a (not necessarily) dense linear subspace. Any quadratic form Q in this paper is assumed
to be nonnegative and Hermitian, i.e., u 7→ Q(u, v) is linear for any fixed v ∈ D(Q), Q(u, v) = Q(v, u), and
Q(u, u) ≥ 0 for any u, v ∈ D(Q). Clearly QH(u, v) := ⟨u, v⟩H +Q(u, v), u, v ∈ D(Q) becomes an inner product
on D(Q). The form Q is said to be closed if and only if (D(Q), QH) is a Hilbert space. Finally let us introduce
R := R ∪ {∞} and the functional Q : H → R defined by

Q(u) =

{
Q(u, u) u ∈ D(Q)
∞ u ∈ H \ D(Q)

The next definition, which is taken from [28], extends to the case of a sequence of Hilbert spaces the notion
of Mosco-convergence, originally formulated in [32] in the setting of a fixed Hilbert space.

Definition 2.3. Consider a sequence of closed quadratic forms {Qn}n∈N such that D(Qn) ⊂ Hn for any n ∈ N.
Let Q be a closed quadratic form on H. We say that {Qn}n∈N Mosco-converges to Q if:

1. for each sequence {un}n∈N, un ∈ Hn, weakly convergent to some u ∈ H we have

Q(u) ≤ lim inf
n→∞

Qn(u, u)

2. for each u ∈ H there exists a sequence {un}n∈N, un ∈ Hn, strongly convergent to u such that

Q(u) = lim
n→∞

Qn(u).

Definition 2.4. Consider a sequence of closed quadratic forms {Qn}n∈N such that D(Qn) ⊂ Hn for each n ∈ N.
The sequence is said to be asymptotically compact if for any sequence {un}n∈N with un ∈ Hn and

lim sup
n→∞

(
∥un∥Hn +Qn(u)

)
<∞

there exists a subsequence {um}m∈N, um ∈ Hm, that converges strongly to some u ∈ H.

Definition 2.5. Consider a sequence of closed quadratic forms {Qn}n∈N such that D(Qn) ⊂ Hn for each n ∈ N.
Let Q be a closed quadratic form on H. We say that {Qn}n∈N compactly converges to Q if:

1. {Qn}n∈N Mosco-converges to Q,

2. {Qn}n∈N is asymptotically compact.
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Consider now an unbounded, non-negative and densely defined self-adjoint operator A : H → H. Let QA

be the closed quadratic form associated to A. For the general construction we refer to [31] pag. 377. Here we
only recall that if A = B∗ ◦ B with D(A) = {u ∈ D(B) such that Bu ∈ D(B∗)}, where B : H → K is a closed
and densely defined operator acting between H and another separable Hilbert space K and B∗ : K → H is its
adjoint, then D(QA) = D(B) and QA(u, v) = ⟨Bu,Bv⟩K for any u, v ∈ D(QA). We have now the following
important result.

Theorem 2.1. Let {An}n∈N be a sequence of unbounded, non-negative and densely defined self-adjoint operators
An : Hn → Hn. Let A : H → H be an unbounded, non-negative and densely defined self-adjoint operator.
Assume that

� An : Hn → Hn has entirely discrete spectrum for each n ∈ N,

� the sequence of closed quadratic form {QAn
}n∈N compactly converges to QA.

Then we have the following properties:

1. A : H → H has entirely discrete spectrum.

2. Let 0 ≤ λ1(n) ≤ λ2(n) ≤ ... ≤ λk(n) ≤ ... be the eigenvalues of An : Hn → Hn. Let 0 ≤ λ1 ≤ λ2 ≤ ... ≤
λk ≤ ... be the eigenvalues of A : H → H. Then

lim
n→∞

λk(n) = λk.

3. For each n ∈ N let {u1(n), u2(n), ..., uk(n), ...} be any orthonormal basis of Hn made by eigenvectors of An

with corresponding eigenvalues {λ1(n), λ2(n), ..., λk(n), ...}. Then there exists a subsequence {Hm}m∈N of
{Hn}n∈N and an orthonormal basis of H, {u1, u2, ..., uk, ...}, made by eigenvectors of A with corresponding
eigenvalues {λ1, λ2, ..., λk, ...} such that {uk(m)}m∈N strongly converges to uk for any k = 1, 2, ... .

Proof. The first property is proved in [28] Cor. 2.4. The other properties are proved in [28] Cor. 2.5.

3 Spectral convergence for degenerating Hermitian metrics

This section contains the main results of this paper. We start by introducing the setting and the notation. Let
(M,J) be a compact complex manifold of complex dimension m. Let p : M × [0, 1] → M be the canonical
projection, let gs be a measurable section of p∗T ∗M ⊗ p∗T ∗M → M × [0, 1] and let h be a smooth, positive
semidefinite Hermitian product on M strictly positive on A, with A ⊂ M open and dense. We make the
following assumptions on gs, h and A:

1. gs|A×[0,1] ∈ C∞(A× [0, 1], p∗T ∗A⊗ p∗T ∗A);

2. g0|A = h|A;

3. For each fixed s ∈ (0, 1], gs is a smooth Hermitian metric on M ;

4. (A, g1|A) is parabolic;

5. There exists a positive constant ν such that on M we have

1

ν
h ≤ gs ≤ νg1

for each s ∈ (0, 1].

We recall that a Riemannian manifold (N, g) is said to be parabolic if there exists a sequence of Lipschitz
functions with compact support {ϕk}k∈N ⊂ Lipc(N) such that a) 0 ≤ ϕk ≤ 1, b) ϕk → 1 pointwise a.e. as
k → ∞ and c) ∥dminϕk∥L2Ω1(N,g) → 0 as k → ∞. We refer to [6] and the references therein for more on this
topic. Moreover we recall that two Riemannian metrics g1 and g2 on a manifold M are said quasi-isometric if
c−1g1 ≤ g2 ≤ cg1 for some positive constant c.
Roughly speaking gs is a one-parameter family of Hermitian metrics on M that on A degenerates smoothly to
a Hermitian pseudometric h for s → 0 (plus some global control required in the fifth point above). Note that
however gs, viewed as a section of p∗T ∗M⊗p∗T ∗M →M×[0, 1], is allowed to be discontinuous at (M \A)×{0}.
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In particular gs|(M\A) might not converge to h|(M\A) as s → 0. As recalled in the introduction, a Hermitian
pseudometric on M is a positive semidefinite Hermitian product on M strictly positive over an open and dense
subset. The degeneracy locus of h is the smallest closed subset Z ⊂ M such that h is positive definite over
M \ Z. Obviously Z ⊂ M \ A. Clearly (A, h|A) becomes an incomplete complex manifold of finite volume.
Moreover, as parabolicity is a stable property through quasi-isometries, we known that (A, g|A) is parabolic
with respect to any Riemannian metric g on M . In particular (A, gs|A) is parabolic for any s ∈ (0, 1]. For each
s ∈ (0, 1] let us label by

∆∂,m,0,s : L
2Ωm,0(M, gs) → L2Ωm,0(M, gs) (15)

the unique closed (and therefore self-adjoint) extension of ∆∂,m,0,s : Ωm,0(M) → Ωm,0(M), where the latter
operator is the Hodge-Kodaira Laplacian built with respect to the Hermitian metric gs and acting on the smooth
sections of the canonical bundle of M . For s = 0 let us consider

∆∂,m,0,abs : L
2Ωm,0(A, h|A) → L2Ωm,0(A, h|A) (16)

which is defined as ∆∂,m,0,abs := ∂
∗
m,0,max ◦ ∂m,0,max where

∂m,0,max : L2Ωm,0(A, h|A) → L2Ωm,1(A, h|A) (17)

is the maximal extension of ∂m,0 : Ωm,0
c (A) → Ωm,1

c (A),

∂
∗
m,0,max : L2Ωm,1(A, h|A) → L2Ωm,0(A, h|A) (18)

is the adjoint of (17) and the domain of ∆∂,m,0,abs is

D(∆∂,m,0,abs) = {ω ∈ D(∂m,0,max) such that ∂m,0,maxω ∈ D(∂
∗
m,0,max)}.

Thanks to [3] Th. 4.1 we know that (16) has entirely discrete spectrum. We have now all the ingredients to
state the main result of this section.

Theorem 3.1. In the setting describe above. Let 0 ≤ λ1(s) ≤ λ2(s) ≤ ... ≤ λk(s) ≤ ... be the eigenvalues of
(15) and let 0 ≤ λ1(0) ≤ λ2(0) ≤ ... ≤ λk(0) ≤ ... be the eigenvalues of (16). Then

lim
s→0

λk(s) = λk(0) (19)

for each positive integer k. Moreover let {sn} be any positive sequence such that sn → 0 as n → ∞ and
let {η1(sn), η2(sn), . .., ηk(sn), ...} be any orthonormal basis of L2Ωm,0(M, gsn) made by eigenforms of (15)
with corresponding eigenvalues {λ1(sn), ..., λk(sn), ...}. Then there exists a subsequence {zn} ⊂ {sn} and an
orthonormal basis {η1(0), η2(0), ..., ηk(0), ...} of L2Ωm,0(A, h|A) made by eigenforms of (16) with corresponding
eigenvalues {λ1(0), ..., λk(0), ...} such that

lim
n→∞

ηk(zn) = ηk(0) (20)

in L2Ωm,0(A, h|A) for each positive integer k.

Some remarks to the above statement are in order. More precisely we have to explain why ηk(zn) ∈
L2Ωm,0(A, h|A) so that the convergence in L2Ωm,0(A, h|A), as required in (20), makes sense. First of all we
point out that, as (A, g|A) is parabolic with respect to any Riemannian metric g on M , we can use Th. 3.4 and
Prop 3.1 in [35] to conclude that M \A has measure zero. Thus we have an equality of Hilbert spaces

L2Ωm,0(M, gs) = L2Ωm,0(A, gs|A)

for any s ∈ (0, 1]. Moreover, thanks to (7), we know that there is an equality of Hilbert spaces

L2Ωm,0(A, gs|A) = L2Ωm,0(A, h|A)

for any s ∈ [0, 1]. Therefore, joining together these equalities, we have

L2Ωm,0(M, gs) = L2Ωm,0(A, gs|A) = L2Ωm,0(A, h|A) (21)

for any s ∈ (0, 1]. Thus (20) is well posed. In order to prove Th. 3.1 we want to apply Th. 2.1. First we
need to establish some preliminary properties. Let Fs be a section of p∗End(TM) → M × [0, 1] such that
g1(Fs·, ·) = gs(·, ·) for each s ∈ (0, 1] and g1(F0·, ·) = h(·, ·). Clearly Fs|A×[0,1] ∈ C∞(A × [0, 1], p∗End(TA)),
F1 = Id and Fs is positive definite on M for each fixed s ∈ (0, 1]. We have the following uniform family of
continuous inclusions.
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Proposition 3.1. The identity Id : Ωm,1
c (M) → Ωm,1

c (M) induces a continuous inclusion i : L2Ωm,1(M, gs) ↪→
L2Ωm,1(M, g1) such that

∥ω∥2L2Ωm,1(M,g1)
≤ ν∥ω∥2L2Ωm,1(M,gs)

(22)

for any s ∈ (0, 1] and ω ∈ L2Ωm,1(M, gs).

Proof. By the assumptions we know that gs ≤ νg1 for any s ∈ (0, 1]. Therefore, arguing as in [7, Prop. 1.8],
we obtain immediately that νg∗s ≥ g∗1 for any s ∈ (0, 1] where g∗s and g∗1 are the metrics induced by gs and g1
on T ∗M , respectively. From the latter inequality we can deduce easily the analogous inequality for the induced
Hermitian metrics on T 0,1,∗M , that is νg∗s,0,1 ≥ g∗1,0,1 for any s ∈ (0, 1]. As gs = g1(Fs·, ·) the latter inequality

can be reformulated by saying that on T 0,1,∗M we have νg∗1,0,1(G
0,1
s,C·, ·) ≥ g∗1,0,1(·, ·) for any s ∈ (0, 1]. In this

way, given any ω ∈ Ωm,1
c (M) and s ∈ (0, 1], by (8) we have

∥ω∥2L2Ωm,1(M,gs)
=

∫
M

g∗s,m,1(ω, ω) dvolgs =

∫
M

g∗1,m,1(det(G
1,0
s,C)⊗G0,1

s,Cω, ω)
√

det(Fs) dvolg1 =∫
M

g∗1,m,1(Id⊗G
0,1
s,Cω, ω) dvolg1 =

∫
M

g∗1,m,0 ⊗ g∗1,0,1(Id⊗G
0,1
s,Cω, ω) dvolg1 ≥∫

M

1

ν
g∗1,m,1(ω, ω) dvolg1 =

1

ν
∥ω∥2L2Ωm,1(M,g1)

. (23)

In conclusion we have shown that given any s ∈ (0, 1] and ω ∈ Ωm,1
c (M) we have

∥ω∥2L2Ωm,1(M,g1)
≤ ν∥ω∥2L2Ωm,1(M,gs)

.

Now (22) follow immediately.

We have also the following family of uniform continuous inclusions.

Proposition 3.2. The identity Id : Ωm,1
c (A) → Ωm,1

c (A) induces a continuous inclusion i : L2Ωm,1(A, h|A) ↪→
L2Ωm,1(A, gs|A) such that for any ω ∈ L2Ωm,1(A, h|A) and any s ∈ (0, 1] the following inequality holds true

∥ω∥2L2Ωm,1(A,gs|A) ≤ ν∥ω∥2L2Ωm,1(A,h|A) (24)

Proof. By the assumptions we know that h ≤ νgs for any s ∈ (0, 1]. Therefore, arguing as in the proof of Prop.
3.1, we obtain immediately that over A we have νh∗ ≥ g∗s for any s ∈ (0, 1] with h∗ and g∗s the metrics induced by
h and gs on T

∗A, respectively. As before we get immediately the analogous inequality for the induced Hermitian
metrics on T 0,1,∗A, that is νh∗0,1 ≥ g∗s,0,1 for any s ∈ (0, 1]. As gs(·, ·) = g1(Fs·, ·) and h(·, ·) = g1(F0·, ·), the
latter inequality amounts to saying that on T 0,1,∗A we have νg∗1,0,1(G

0,1
0,C·, ·) ≥ g∗1,0,1(G

0,1
s,C·, ·) for any s ∈ (0, 1].

Let now ω ∈ Ωm,1
c (A) and s ∈ (0, 1]. Using (8) we have

∥ω∥2L2Ωm,1(A,gs|A) =

∫
A

g∗s,m,1(ω, ω) dvolgs =

∫
A

g∗1,m,1(det(G
1,0
s,C)⊗G0,1

s,Cω, ω)
√
det(Fs) dvolg1 =∫

A

g∗1,m,1(Id⊗G
0,1
s,Cω, ω) dvolg1 =

∫
A

g∗1,m,0 ⊗ g∗1,0,1(Id⊗G
0,1
s,Cω, ω) dvolg1 ≤ ν

∫
A

g∗1,m,0 ⊗ g∗1,0,1(Id⊗G
0,1
0,Cω, ω) dvolg1 =

ν

∫
A

g∗1,m,0 ⊗ g∗1,0,1(det(G
1,0
0,C)⊗G0,1

0,Cω, ω)
√
det(F0) dvolg1 = ν

∫
A

g∗1,m,1(det(G
1,0
0,C)⊗G0,1

0,Cω, ω)
√

det(F0) dvolg1 =

ν

∫
A

h∗m,1(ω, ω) dvolh = ν∥ω∥2L2Ωm,1(A,h|A). (25)

In conclusion we showed that for any s ∈ (0, 1] and ω ∈ Ωm,1
c (A) we have

∥ω∥2L2Ωm,1(A,gs|A) ≤ ν∥ω∥2L2Ωm,1(A,h|A)

as desired.

Proposition 3.3. Let {sn}n∈N ⊂ (0, 1] be any sequence such that sn → 0 as n→ ∞. Then:

1. Consider the sequence of Hilbert spaces {L2Ωm,0(A, gsn |A)}n∈N. Consider L2Ωm,0(A, h|A), let C :=
L2Ωm,0(A, h|A) and for any n ∈ N, let Φn : C → L2Ωm,0(A, gsn |A) be the identity map, that is Φn(η) = η,
which is well defined thanks to (7). Then {L2Ωm,0(A, gsn |A)}n∈N converges to L2Ωm,0(A, h|A) in the sense
of (11).
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2. Consider the sequence of Hilbert spaces {L2Ωm,1(A, gsn |A)}n∈N. Consider L2Ωm,1(A, h|A), let C :=
L2Ωm,1(A, h|A) and for any n ∈ N, let Φn : C → L2Ωm,1(A, gsn |A) be the identity map, that is Φn(ω) = ω,
which is well defined thanks to Prop. 3.2. Then {L2Ωm,1(A, gsn |A)}n∈N converges to L2Ωm,1(A, h|A) in
the sense of (11).

Proof. The first statement is obvious and follows by the fact that we have an equality of Hilbert spaces
L2Ωm,0(A, gsn |A) = L2Ωm,0(A, h|A), for any n ∈ N, see (7). Now we tackle the second statement. As remarked
in the previous proof on A we have νg∗1,0,1(G

0,1
0,C·, ·) ≥ g∗1,0,1(G

0,1
s,C·, ·) for any s ∈ (0, 1] which clearly in turn im-

plies that νg∗1,m,0 ⊗ g∗1,0,1(Id⊗G
0,1
0,C·, ·) ≥ g∗1,m,0 ⊗ g∗1,0,1(Id⊗G

0,1
s,C·, ·) for any s ∈ (0, 1]. Let ω ∈ L2Ωm,1(A, h|A).

Thanks to Prop. 3.2 we know that ω ∈ L2Ωm,1(A, gs|A) for any s ∈ (0, 1] and for the corresponding L2-norm
we have

∥ω∥2L2Ωm,1(A,gs|A) =

∫
A

g∗s,m,1(ω, ω) dvolgs =

∫
A

g∗1,m,1(det(G
1,0
s,C)⊗G0,1

s,Cω, ω)
√
det(Fs) dvolg1 = (26)∫

A

g∗1,m,1(Id⊗G
0,1
s,Cω, ω) dvolg1 =

∫
A

g∗1,m,0 ⊗ g∗1,0,1(Id⊗G
0,1
s,Cω, ω) dvolg1 .

Moreover we have seen above that νg∗1,m,0 ⊗ g∗1,0,1(Id⊗G
0,1
0,C·, ·) ≥ g∗1,m,0 ⊗ g∗1,0,1(Id⊗G

0,1
s,C·, ·) for any s ∈ (0, 1]

and ∫
A

g∗1,m,0 ⊗ g∗1,0,1(Id⊗G
0,1
0,Cω, ω) dvolg1 <∞

as ∫
A

g∗1,m,0 ⊗ g∗1,0,1(Id⊗G
0,1
0,Cω, ω) dvolg1 =

∫
A

h∗m,1(ω, ω) dvolh = ∥ω∥2L2Ωm,1(A,h|A)

see (25). Furthermore it is clear that g∗1,m,0 ⊗ g∗1,0,1(Id⊗G
0,1
s,Cω, ω) → g∗1,m,0 ⊗ g∗1,0,1(Id⊗G

0,1
0,Cω, ω) pointwise

almost everywhere in A as s → 0 since G0,1
s,C ∈ C∞(A × [0, 1], p∗End(T 0,1,∗A). So we are in position to apply

the Lebesgue dominate convergence theorem in (26) and we obtain

lim
s→0

∥ω∥2L2Ωm,1(A,gs|A) = lim
s→0

∫
A

g∗s,m,1(ω, ω) dvolgs = lim
s→0

∫
A

g∗1,m,1(det(G
1,0
s,C)⊗G0,1

s,Cω, ω)
√

det(Fs) dvolg1 =∫
A

lim
s→0

g∗1,m,0 ⊗ g∗1,0,1(Id⊗G
0,1
s,Cω, ω) dvolg1 =

∫
A

g∗1,m,0 ⊗ g∗1,0,1(Id⊗G
0,1
0,Cω, ω) dvolg1 = ∥ω∥2L2Ωm,1(A,h|A).

In conclusion we have shown that for any ω ∈ L2Ωm,1(A, h|A) the following equality holds true:

lim
s→0

⟨ω, ω⟩L2Ωm,1(A,gs|A) = ⟨ω, ω⟩L2Ωm,1(A,h|A).

This completes the proof as the second statement of this proposition is a straightforward consequence of the
above equality.

We have the following immediate consequence:

Corollary 3.1. Let ω ∈ L2Ωm,1(A, h|A) be arbitrarily fixed. Then the constant sequence {ωn}n∈N, ωn := ω,
viewed as a sequence where ωn ∈ L2Ωm,1(A, gsn |A) for any n ∈ N, converges strongly in the sense of Def. 2.1
to ω as n→ ∞.

Now, for each s ∈ (0, 1], consider the operators

∂m,0,max : L2Ωm,0(A, gs|A) → L2Ωm,1(A, gs|A)
∂m,0,min : L2Ωm,0(A, gs|A) → L2Ωm,1(A, gs|A)
∂m,0 : L2Ωm,0(M, gs) → L2Ωm,1(M, gs) (27)

where the first two are the maximal/minimal extensions of ∂m,0 : Ωm,0
c (A) → Ωm,1

c (A) and the third one is
the unique L2 closed extension of ∂m,0 : Ωm,0(M) → Ωm,1(M). As showed in [3] Prop. 3.2 the above three
operators coincide. In particular ∂m,0 : Ωm,0

c (A) → Ωm,1
c (A) has a unique closed extension, that we label with

∂m,0 : L2Ωm,0(A, gs|A) → L2Ωm,1(A, gs|A) (28)
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and that coincides with (27). Let us consider now ∂
t,s

m,0 : Ωm,1
c (A) → Ωm,0

c (A), that is the formal adjoint of

∂m,0 : Ωm,0
c (A) → Ωm,1

c (A) with respect to gs. Analogously to the previous case also the operators

∂
t,s

m,0,max : L2Ωm,1(A, gs|A) → L2Ωm,0(A, gs|A)

∂
t,s

m,0,min : L2Ωm,1(A, gs|A) → L2Ωm,0(A, gs|A)

∂
∗,s
m,0 : L2Ωm,1(M, gs) → L2Ωm,0(M, gs) (29)

where the first two are the maximal/minimal extensions of ∂
t,s

m,0 : Ωm,1
c (A) → Ωm,0

c (A) and the third one is the

unique L2 closed extension of ∂
t,s

m,0 : Ωm,1(M) → Ωm,0(M), coincide. Therefore ∂
t,s

m,0 : Ωm,1
c (A) → Ωm,0

c (A) has
a unique closed extension, denoted by

∂
t,s

m,0 : L2Ωm,1(A, gs|A) → L2Ωm,0(A, gs|A) (30)

that coincides with (29). This allows us to conclude that the operator (15) coincides with

∂
t,s

m,0 ◦ ∂m,0 : L2Ωm,0(A, gs|A) → L2Ωm,0(A, gs|A) (31)

where ∂m,0 : L2Ωm,0(A, gs|A) → L2Ωm,1(A, gs|A) is defined in (28), ∂
t,s

m,0 : L2Ωm,1(A, gs|A) → L2Ωm,0(A, gs|A)
is defined in (30) and the domain of (31) is

D(∂
t,s

m,0 ◦ ∂m,0) = {ω ∈ D(∂m,0) such that ∂m,0ω ∈ D(∂
t,s

m,0)}.

Using the above remarks, Prop. 3.2 and (7) it is not hard to show the next property. For a complete proof
we refer to [3] Th. 4.1.

Proposition 3.4. Let D(∂m,0,max) be the domain of (17). For each s ∈ (0, 1] let D(∂m,0) be the domain of
(28). Then we have a continuous inclusion D(∂m,0,max) ↪→ D(∂m,0) where each domain is endowed with the
corresponding graph norm. Moreover for any ω ∈ D(∂m,0,max) we have ∂m,0ω = ∂m,0,maxω.

Remark 3.1. The reader might wonder why we did not denote by ∂
s

m,0 the operator (28) in order to emphasize

explicitly the dependence on s. The reason is that the operator (28) does not depend on s. Indeed ∂m,0 :
Ωm,0

c (A) → Ωm,1
c (A) is an intrinsic operator that does not depend on the metric. If we now consider its closure

with respect to gs then, by the fact that for any 0 < s1 ≤ s2 ≤ 1 the metrics gs1 and gs2 are quasi-isometric,
we can deduce easily that a (m, 0)-form ω ∈ L2Ωm,0(A, gs1) = L2Ωm,0(A, gs2) lies in the domain of the unique
closure of ∂m,0 : Ωm,0

c (A) → Ωm,1
c (A) with respect to gs1 if and only if it lies in the domain of the unique closure

of ∂m,0 : Ωm,0
c (A) → Ωm,1

c (A) with respect to gs2 and the action of ∂m,0 on ω with respect to gs1 coincides with
the action of ∂m,0 on ω with respect to gs2 . Thus, as long as s ∈ (0, 1], the operator (28) is uniquely determined.

We have all the ingredients to introduce the family of quadratic forms we will work with. Let {sn}n∈N ⊂ (0, 1]
be a sequence with sn → 0 as n→ ∞. We define

D(Qsn) := D(∂m,0) and Qsn(ω, η) := ⟨∂m,0ω, ∂m,0η⟩L2Ωm,1(A,gsn |A) (32)

for any ω, η ∈ D(Qsn), where ∂m,0 : L2Ωm,0(A, gsn |A) → L2Ωm,1(A, gsn |A) is defined in (28). Clearly Qsn

is a closed quadratic form, that is (D(Qsn), Qsn,H) is a Hilbert space. It is clear that the latter space is
a Hilbert space as it is nothing but the domain of (28) endowed with its graph product. We remind that
Qsn,H(·, ·) := ⟨·, ·⟩L2Ωm,0(A,gsn |A) + Qsn(·, ·). Summarizing Qsn is the closed quadratic form associated to the
operator (15). Finally we introduce the quadratic form Q0 defined as

D(Q0) := D(∂m,0,max) and Q0(ω, η) := ⟨∂m,0,maxω, ∂m,0,maxη⟩L2Ωm,1(A,h|A) (33)

for any ω, η ∈ D(Q0), where ∂m,0,max : L2Ωm,0(A, h|A) → L2Ωm,1(A, h|A) is defined in (17). In other words Q0

is the quadratic form associated to the operator (16) and, likewise the previous case, it is a closed quadratic
form, that is (D(Q0), Q0,H) is a Hilbert space. In the next propositions we show various properties concerning
{(D(Qsn), Qsn,H)}n∈N and (D(Q0), Q0,H). With {sn}n∈N we denote any sequence with {sn} ⊂ (0, 1] such that
sn → 0 as n→ ∞.

Proposition 3.5. We have the following properties:
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1. Let ω ∈ D(Q0). Then for any n ∈ N ω ∈ D(Qsn) and the corresponding inclusion i0,n : (D(Q0), Q0,H) ↪→
(D(Qsn), Qsn,H) is continuous. More precisely, defining τ := max{1, ν}, we have

∥ω∥2L2Ωm,0(A,gsn |A) +Qsn(ω, ω) ≤ τ
(
∥ω∥2L2Ωm,0(A,h|A) +Q0(ω, ω)

)
for any sn and ω ∈ D(Q0).

2. Let C := D(Q0) and Φn := i0,n, that is the inclusion defined in the previous point. Then

{(D(Qsn), Qsn,H)}n∈N

converges to (D(Q0), Q0,H) as n→ ∞.

3. Let n ∈ N and let ω ∈ D(Qsn). Then ω ∈ D(Qs1) and the corresponding inclusion in,1 : (D(Qsn), Qsn,H) ↪→
(D(Q1), Q1,H) is continuous. More precisely, with τ defined as above, we have

∥ω∥2L2Ωm,0(A,g1|A) +Q1(ω, ω) ≤ τ
(
∥ω∥2L2Ωm,0(A,gsn |A) +Qsn(ω, ω)

)
for any sn and ω ∈ D(Qsn).

Proof. The first point follows immediately by (7), Prop. 3.2 and Prop. 3.4. The second point is a straightforward
application of the first point and Prop. 3.3. Concerning the third point we first note that ω ∈ D(Qs1) as gsn
and gs1 are quasi-isometric. Now the rest of the proof follows immediately by (7) and Prop. 3.1.

Proposition 3.6. Let ϕ ∈ Ωm,1
c (A) be an arbitrarily fixed (m, 1)-form with compact support. Then ∂

t,sn
m,0ϕ →

∂
t,0

m,0ϕ weakly in L2Ωm,0(A, h|A) as n → ∞, where ∂
t,0

m,0 : Ωm,1
c (A) → Ωm,0

c (A) is the formal adjoint of ∂m,0 :
Ωm,0

c (A) → Ωm,1
c (A) with respect to h|A.

Proof. Let χ : A × [0, 1] → R be the function defined as χ(p, s) := h∗m,0(∂
t,s

m,0ϕ, ∂
t,s

m,0ϕ), that is for any (p, s) ∈
A× [0, 1], χ(p, s) is given by the square of the pointwise norm in p of ∂

t,s

m,0ϕ with respect to h∗m,0. By the fact
that gs ∈ C∞(A × [0, 1], p∗T ∗A ⊗ p∗T ∗A) and ϕ ∈ Ωm,1

c (A) we know that χ is continuous on A × [0, 1] and
supp(χ) ⊂ supp(ϕ) × [0, 1]. In particular supp(χ) is a compact subset of A × [0, 1]. Therefore there exists a

positive constant b ∈ R such that χ(p, s) ≤ b for any p ∈ A and s ∈ [0, 1], that is h∗m,0(∂
t,s

m,0ϕ, ∂
t,s

m,0ϕ) ≤ b on

A × [0, 1]. This latter inequality tells us that ∥∂t,sm,0ϕ∥2L2Ωm,0(A,h|A) ≤ b volh(A) for any s ∈ [0, 1]. Now, as we

know that {∥∂t,snm,0ϕ∥L2Ωm,0(A,h|A)}n∈N is a bounded sequence, in order to conclude the proof it is enough to fix
a dense subset Z of L2Ωm,0(A, h|A) and to show that

lim
n→∞

⟨ω, ∂t,snm,0ϕ⟩L2Ωm,0(A,h|A) = ⟨ω, ∂t,0m,0ϕ⟩L2Ωm,0(A,h|A)

for any ω ∈ Z. Let us fix Z := D(Q0) and let ω ∈ D(Q0). Then, using (7) and Prop. 3.4, we have

⟨ω, ∂t,snm,0ϕ⟩L2Ωm,0(A,h|A) = ⟨ω, ∂t,snm,0ϕ⟩L2Ωm,0(A,gsn |A) = ⟨∂m,0ω, ϕ⟩L2Ωm,1(A,gsn |A).

In this way, keeping in mind (7), Cor. 3.1 and Prop. 3.4, we have

lim
n→∞

⟨ω, ∂t,snm,0ϕ⟩L2Ωm,0(A,h|A) = lim
n→∞

⟨ω, ∂t,snm,0ϕ⟩L2Ωm,0(A,gsn |A) = lim
n→∞

⟨∂m,0ω, ϕ⟩L2Ωm,1(A,gsn |A) =

lim
n→∞

⟨∂m,0,maxω, ϕ⟩L2Ωm,1(A,gsn |A) = ⟨∂m,0,maxω, ϕ⟩L2Ωm,1(A,h|A) = ⟨ω, ∂t,0m,0ϕ⟩L2Ωm,0(A,h|A)

as desired.

Proposition 3.7. The sequence of closed quadratic forms {Qsn}n∈N is asymptotically compact.

Proof. Let {ωn}n∈N be a sequence with ωn ∈ L2Ωm,0(A, gsn |A) such that

lim sup
n→∞

(
∥ωn∥L2Ωm,0(A,gsn |A) +Qsn(ωn, ωn)

)
<∞.

We can deduce the existence of a positive constant c and a subsequence {ωℓ}ℓ∈N ⊂ {ωn}n∈N such that ωℓ ∈
D(Qsℓ) and

∥ωℓ∥L2Ωm,0(A,gsℓ |A) +Qsℓ(ωℓ, ωℓ) ≤ c
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for any ℓ ∈ N. Hence, thanks to Prop. 3.5, we know that {ωℓ}ℓ∈N ⊂ D(Q1) and

∥ωℓ∥L2Ωm,0(A,g1|A) +Q1(ωℓ, ωℓ) ≤ τc

where τ is defined in Prop. 3.5. As the injection (D(Q1), Q1,H) ↪→ L2Ωm,0(A, g1|A) is a compact operator,
see [3] pag. 774, we can conclude that there exists a subsequence {ωv}v∈N ⊂ {ωℓ}ℓ∈N and an element ω ∈
L2Ωm,0(A, g1|A) such that ωv → ω in L2Ωm,0(A, g1|A) as v → ∞. Now looking at the sequence {ωv}v∈N
as a sequence where each element ωv ∈ L2Ωm,0(A, gsv |A) and keeping in mind (7), it is immediate to check
ωv → ω ∈ L2Ωm,0(A, h|A) strongly as v → ∞ in the sense of Def. 2.1. Indeed, by Prop. 3.3, we have
C = L2Ωm,0(A, h|A) and Φv : C → L2Ωm,0(A, gsv |A) is just the identity Id : L2Ωm,0(A, h|A) → L2Ωm,0(A, gsv |A).
Therefore, taking the constant sequence {ω} as a net in C converging to ω, (12) becomes

lim sup
v→∞

∥ω − ωv∥L2Ωm,0(A,h|A) (34)

and we have already shown above that (34) is zero. The proposition is thus established.

Proposition 3.8. Let ω ∈ L2Ωm,0(A, h|A). Assume that there exists a sequence {ωn}n∈N such that ωn ∈
D(Qsn), ωn → ω weakly as n → ∞ and Qsn(ωn, ωn) ≤ c for any n ∈ N and a positive constant c. Then
ω ∈ D(Q0).

Proof. By the hypothesis and the very definition of Qsn we have ⟨∂m,0ωn, ∂m,0ωn⟩L2Ωm,1(A,gsn ) ≤ c for any n ∈
N. Thanks to Prop. 2.1 we know that there exists η ∈ L2Ωm,1(A, h|A) and a subsequence {ωv}v∈N ⊂ {ωn}n∈N,
ωv ∈ D(Qsv ) such that ∂m,0ωv → η weakly in the sense of Def. 2.2 as v → ∞. Consider now the subsequence
{ωv}v∈N. Since ωv → ω weakly as v → ∞ we have ∥ωv∥L2Ωm,0(A,h|A) ≤ d for some positive constant d and any
v ∈ N, see for instance Prop. 2.2. Hence

Qsv,H(ωv, ωv) ≤ d+ c.

Thus by Prop. 3.7 we know that there is a subsequence {ωw}w∈N ⊂ {ωv}v∈N such that ωw → ω in L2Ωm,0(A, h|A)
as w → ∞. We are in position to check that ω ∈ D(Q0). Let ϕ ∈ Ωm,1

c (A). Thanks to Prop. 3.6 we have

⟨ω, ∂t,0m,0ϕ⟩L2Ωm,0(A,h|A) = lim
w→∞

⟨ω, ∂t,swm,0 ϕ⟩L2Ωm,0(A,gsw |A) =

lim
w→∞

⟨ωw, ∂
t,sw
m,0 ϕ⟩L2Ωm,0(A,gsw |A) = lim

w→∞
⟨∂m,0ωw, ϕ⟩L2Ωm,1(A,gsw |A) = ⟨η, ϕ⟩L2Ωm,1(A,h|A).

Thus we proved

⟨ω, ∂t,0m,0ϕ⟩L2Ωm,0(A,h|A) = ⟨η, ϕ⟩L2Ωm,1(A,h|A)

for any ϕ ∈ Ωm,1
c (A) and so ω ∈ D(Q0) and ∂m,0,maxω = η as desired.

Proposition 3.9. The sequence of closed quadratic forms {Qsn}n∈N Mosco-converges to Q0.

Proof. According to Def. 2.3 we divide the proof in two steps. First we want to show that

� for any sequence {ωn}n∈N ⊂ L2Ωm,0(A, h|A) weakly convergent to some ω ∈ L2Ωm,0(A, h|A) we have

Q0(ω) ≤ lim inf
n→∞

Qsn(ωn, ωn). (35)

Let’s consider first the case ω ∈ D(Q0). If lim infn→∞Qsn(ωn, ωn) = ∞ then the above inequality is clearly

fulfilled. Assume now that lim infn→∞Qsn(ωn, ωn) < ∞. Then we can extract a subsequence {ωu}u∈N ⊂
{ωn}n∈N such that ωu ∈ D(Qsu) and

lim
u→∞

Qsu(ωu, ωu) = lim inf
n→∞

Qsn(ωn, ωn) = c (36)

for some c ∈ R. Thus, thanks to Prop. 2.1, we can pass to a new subsequence {ωv}v∈N ⊂ {ωu}u∈N, ω ∈ D(Qsv ),
such that ∂m,0ωv → η weakly in the sense of Def. 2.2 to some η ∈ L2Ωm,1(A, h|A). As ωv → ω weakly in
L2Ωm,0(A, h|A) as v → ∞ we know that {ωv}v∈N is a bounded sequence. Therefore

lim sup
v→∞

Qsv,H(ωv, ωv) <∞

14



and so, thanks to Prop. 3.7, we know that there is a subsequence {ωw}w∈N ⊂ {ωv}v∈N, ωw ∈ D(Qsw), such
that ωw → ω in L2Ωm,0(A, h|A) as w → ∞. Now we claim that ω ∈ D(∂m,0,max) and

∂m,0,maxω = η.

This follows by arguing as in the proof of Prop. 3.8. Indeed let ϕ ∈ Ωm,1
c (A). By Prop. 3.6 we have

⟨ω, ∂t,0m,0ϕ⟩L2Ωm,0(A,h|A) = lim
w→∞

⟨ω, ∂t,swm,0 ϕ⟩L2Ωm,0(A,gsw |A) =

lim
w→∞

⟨ωw, ∂
t,sw
m,0 ϕ⟩L2Ωm,0(A,gsw |A) = lim

w→∞
⟨∂m,0ωw, ϕ⟩L2Ωm,1(A,gsw |A) = ⟨η, ϕ⟩L2Ωm,1(A,h|A).

Finally, thanks to (14) and (36), we have

Q0(ω, ω) = ⟨∂m,0,maxω, ∂m,0,maxω⟩L2Ωm,1(A,h|A) = ⟨η, η⟩L2Ωm,1(A,h|A) ≤
lim inf
w→∞

⟨∂m,0ωw, ∂m,0ωw⟩L2Ωm,1(A,gsw |A) = lim
w→∞

⟨∂m,0ωw, ∂m,0ωw⟩L2Ωm,1(A,gsw |A) =

lim
w→∞

Qsw(ωw, ωw) = lim inf
n→∞

Qsn(ωn, ωn).

The above inequality ⟨η, η⟩L2Ωm,1(A,h|A) ≤ lim infw→∞⟨∂m,0ωw, ∂m,0ωw⟩L2Ωm,1(A,gsw |A) follows by (14) combined

with the fact that {ωw} ⊂ {ωv} and ∂m,0ωv → η weakly in the sense of Def. 2.2 to η ∈ L2Ωm,1(A, h|A).
Moreover limw→∞⟨∂m,0ωw, ∂m,0ωw⟩L2Ωm,1(A,gsw |A) exists thanks to (36) and the fact that {ωw}w∈N ⊂ {ωu}u∈N.
In conclusion we proved that

Q0(ω, ω) ≤ lim inf
n→∞

Qsn(ωn, ωn)

as desired. Now consider the case ω /∈ D(Q0). Then, thanks to Prop. 3.8, we have

lim inf
n→∞

Qsn(ωn, ωn) = ∞

for any sequence {ωn}n∈N weakly convergent to ω in L2Ωm,0(A, h|A). In particular (35) is satisfied. This
establishes the first part of the proof. Now we come to the second part. We have to show that:

� for any ω ∈ L2Ωm,0(A, h|A) there exists a sequence {ωn}n∈N ⊂ L2Ωm,0(A, h|A) with ωn → ω in
L2Ωm,0(A, h|A) such that

Q0(ω, ω) = lim
n→∞

Qsn(ωn, ωn).

Let ω ∈ L2Ωm,0(A, h|A). Consider the constant sequence {ωn}n∈N, ωn := ω, which clearly converges to ω in
the sense of Def. 2.1. Let’s consider first the case ω ∈ D(Q0). Then, thanks to Prop. 3.5, ω ∈ D(Qsn) and
Qsn(ω, ω) → Q0(ω, ω) as n → ∞. Assume now that ω /∈ D(Q0). If there exists a positive integer n such that
ω /∈ D(Qsn) for n ≥ n then we have Q0(ω, ω) = ∞ = Qsn(ω, ω) for any n ≥ n and therefore Q0(ω, ω) =

limQsn(ω, ω) as n→ ∞. Finally let us tackle the remaining case: ω /∈ D(Q0) and ω ∈ D(Qsn) for each n ∈ N.
Then, by Prop. 3.8, we have lim infn→∞Qsn(ωn, ωn) = ∞. Therefore limn→∞Qsn(ωn, ωn) = ∞ = Q0(ω, ω)
and this concludes the proof.

Now we can conclude the proof of Th. 3.1.

Proof. Let {sn}n∈N ⊂ (0, 1] be any sequence with sn → ∞ as n → ∞. We have seen, thanks to Prop. 3.7 and
Prop. 3.9, that {Qsn}n∈N compactly converges to Q0 as n→ ∞. As Qsn is the closed quadratic form associated
to (15) and Q0 is the closed quadratic form associated to (16) we can use Th. 2.1 to conclude that

lim
n→∞

λk(sn) = λk(0)

Since {sn}n∈N ⊂ (0, 1] is any arbitrary sequence with sn → 0 as n→ ∞ we can conclude that

lim
s→0

λk(s) = λk(0).

Finally the remaining part of Th. 3.1 follows immediately by Th. 2.1.

Corollary 3.2. In the setting of Th. 3.1. For any positive integer k the sequence {ηk(zn)}n∈N, viewed as a
sequence where ηk(zn) ∈ (D(Qzn), Qzn,H), converges strongly to ηk(0) ∈ (D(Q0), Q0,H) in the sense of Def. 2.1.
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Proof. By Prop. 3.4 and 3.5, in order to verify Def. 2.1, it is enough to prove that

lim
n→∞

Qsn,H(ηk(0)− ηk(zn), ηk(0)− ηk(zn)) = 0. (37)

We have

Qsn,H(ηk(0)−ηk(zn), ηk(0)−ηk(zn)) = ∥ηk(0)−ηk(zn)∥2L2Ωm,0(A,gzn |A)+∥∂m,0ηk(0)−∂m,0ηk(zn)∥2L2Ωm,1(A,gzn |A).

By Th. 3.1 we know that ∥ηk(0)− ηk(zn)∥2L2Ωm,0(A,gzn |A) → 0 as n→ ∞. For the other term, using Prop. 3.4,

we have

∥∂m,0ηk(0)− ∂m,0ηk(zn)∥2L2Ωm,1(A,gzn |A) = ⟨∂m,0ηk(0), ∂m,0ηk(0)⟩L2Ωm,1(A,gzn |A)+

+ ⟨∂m,0ηk(zn), ∂m,0ηk(zn)⟩L2Ωm,1(A,gzn |A) − ⟨∂m,0ηk(0), ∂m,0ηk(zn)⟩L2Ωm,1(A,gzn |A)+

− ⟨∂m,0ηk(zn), ∂m,0ηk(0)⟩L2Ωm,1(A,gzn |A) = ⟨∂m,0ηk(0), ∂m,0ηk(0)⟩L2Ωm,1(A,gzn |A)+

+ λk(zn)− λk(zn)⟨ηk(0), ηk(zn)⟩L2Ωm,0(A,gzn |A) − λk(zn)⟨ηk(zn), ηk(0)⟩L2Ωm,0(A,gzn |A). (38)

By Prop. 3.3 we know that

⟨∂m,0ηk(0), ∂m,0ηk(0)⟩L2Ωm,1(A,gzn |A) → ⟨∂m,0,maxηk(0), ∂m,0,maxηk(0)⟩L2Ωm,1(A,h|A) = λk(0)

as n→ ∞. Moreover by Th. 3.1 we know that both λk(zn) → λk(0) and λk(zn)⟨ηk(zn), ηk(0)⟩L2Ωm,0(A,gzn |A) →
λk(0) as n→ ∞. In conclusion (38) tends to zero as n→ ∞. This shows that (37) holds true and so the proof
is concluded.

Now we deal with the convergence of eigenspaces. Consider the operator (16) and let

E1(0), E2(0), ..., Ek(0), ...

be its eigenspaces with m1(0),m2(0), ...,mk(0), ... as corresponding multiplicities. Above we have listed the
eigenspaces of (16) in increasing order with respect to the corresponding eigenvalues, that is given any ω ∈
Ei(0) with ∥ω∥2L2Ωm,0(A,h|A) = 1 and η ∈ Ej(0) with ∥η∥2L2Ωm,0(A,h|A) = 1 we have i < j if and only if

∥∂m,0,maxω∥2L2Ωm,1(A,h|A) < ∥∂m,0,maxη∥2L2Ωm,1(A,h|A). Let PEk(0) : L
2Ωm,0(A, h|A) → Ek(0) be the correspond-

ing orthogonal projection. Analogously, for each s ∈ (0, 1], consider the operator (15) and let {η1(s), ..., ηk(s), ...}
be any orthonormal basis of L2Ωm,0(A, h|A) made by eigensections of (15) with corresponding eigenvalues
0 ≤ λ1(s) ≤ λ2(s) ≤ ... ≤ λk(s) ≤ ... . Let Hk(s) be the subspace of L2Ωm,0(A, h|A) defined by

Hk(s) := span{ηj(s) : m1(0) + ...+mk−1(0) < j ≤ m1(0) + ...+mk(0)}. (39)

Let PHk(s) : L
2Ωm,0(A, h|A) → Hk(s) be the corresponding orthogonal projection.

Corollary 3.3. In the setting described above we have

lim
s→0

∥PEk(0) − PHk(s)∥B(L2Ωm,0(A,h|A)) = 0 (40)

that is PHk(s) converges to PEk(0) as s→ 0 in the uniform (or norm) operator topology.

Proof. Let {sn}n∈N ⊂ (0, 1] be any sequence with sn → 0 as n → ∞. Thanks to Th. 3.1 we known that
there exists a subsequence {zn}n∈N ⊂ {sn}n∈N such that ηj(zn) → ηj(0) in L2Ωm,0(A, h|A) as n → ∞ with
{η1(0), ..., ηk(0), ...} an orthonormal basis of L2Ωm,0(A, h|A) made by eigenforms of (16) with corresponding
eigenvalues 0 ≤ λ1(0) ≤ λ2(0) ≤ ... ≤ λk(0) ≤ ... . Note that the set of eigenforms {ηj(0) : m1(0) + ... +
mk−1(0) < j ≤ m1(0)+...+mk(0)} is an orthonormal basis of Ek(0). Consider now any form ω ∈ L2Ωm,0(A, h|A)
with ∥ω∥L2Ωm,0(A,h|A) = 1. Let us define ek−1 := m1(0) + ... +mk−1(0), ek := m1(0) + ... +mk(0), aj(0) :=
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⟨ω, ηj(0)⟩L2Ωm,0(A,h|A) and aj(zn) := ⟨ω, ηj(zn)⟩L2Ωm,0(A,h|A). Then we have

∥PEk(0)ω − PHk(s)ω∥L2Ωk(A,h|A) = ∥
ek∑

j=ek−1+1

aj(0)ηj(0)−
ek∑

j=ek−1+1

aj(zn)ηj(zn)∥L2Ωm,0(A,h|A) ≤

ek∑
j=ek−1+1

∥aj(0)ηj(0)− aj(zn)ηj(zn)∥L2Ωm,0(A,h|A) =

ek∑
j=ek−1+1

∥aj(0)ηj(0)− aj(0)ηj(zn) + aj(0)ηj(zn)− aj(zn)ηj(zn)∥L2Ωm,0(A,h|A) ≤

ek∑
j=ek−1+1

∥aj(0)ηj(0)− aj(0)ηj(zn)∥L2Ωm,0(A,h|A) +

ek∑
j=ek−1+1

∥aj(0)ηj(zn)− aj(zn)ηj(zn)∥L2Ωm,0(A,h|A) ≤

ek∑
j=ek−1+1

∥ηj(0)− ηj(zn)∥L2Ωm,0(A,h|A) +

ek∑
j=ek−1+1

|aj(0)− aj(zn)| ≤ 2

ek∑
j=ek−1+1

∥ηj(0)− ηj(zn)∥L2Ωm,0(A,h|A)

as |aj(0)| ≤ 1 and |aj(0)−aj(zn)|= |⟨ω, ηj(0)⟩L2Ωm,0(A,h|A)−⟨ω, ηj(zn)⟩L2Ωm,0(A,h|A)|= |⟨ω, ηj(0)−ηj(zn)⟩L2Ωm,0(A,h|A)|
≤ ∥ηj(0)− ηj(zn)∥L2Ωm,0(A,h|A). Therefore

∥PEk(0) − PHk(zn)∥B(L2Ωm,0(A,h|A)) ≤ 2

ek∑
j=ek−1+1

∥ηj(0)− ηj(zn)∥L2Ωm,0(A,h|A)

and so we have

0 ≤ lim
n→∞

∥PEk(0) − PHk(zn)∥B(L2Ωm,0(A,h|A)) ≤ lim
n→∞

2

ek∑
j=ek−1+1

∥ηj(0)− ηj(zn)∥L2Ωm,0(A,h|A) = 0.

Assume now that (40) does not hold true. Then there exists a constant ϵ > 0 and a sequence {sn}n∈N ⊂ (0, 1],
sn → 0 as n→ ∞, such that

lim
n→∞

∥PEk(0) − PHk(sn)∥B(L2Ωm,0(A,h|A)) > ϵ. (41)

On the other hand, according to what we have shown above, we can find a subsequence {zn}n∈N ⊂ {sn}n∈N
such that

lim
n→∞

∥PEk(0) − PHk(zn)∥B(L2Ωm,0(A,h|A)) = 0 (42)

which clearly contradicts (41). We can therefore conclude that (40) holds true as desired.

Now we continue by studying the convergence of the heat operators associated to the family gs. For each
t ∈ (0,∞) and s ∈ (0, 1] let

e−t∆∂,m,0,s : L2Ωm,0(M, gs) → L2Ωm,0(M, gs) (43)

be the heat operator associated to (15). It is a classical result of elliptic theory on compact manifolds that (43)
is a trace class operator. Let

e−t∆∂,m,0,abs : L2Ωm,0(A, h|A) → L2Ωm,0(A, h|A) (44)

be the heat operator associated to (16). Thanks to [3] Cor. 4.2 we know that (44) is trace class too. Let
us label with Tr(e−t∆∂,m,0,s) and Tr(e−t∆∂,m,0,abs) the trace of (43) and (44), respectively. We recall that
Tr(e−t∆∂,m,0,s) =

∑
k e

−tλk(s) and analogously Tr(e−t∆∂,m,0,abs) =
∑

k e
−tλk(0). Moreover both Tr(e−t∆∂,m,0,abs)

and Tr(e−t∆∂,m,0,s), the latter for any fixed s ∈ (0, 1], are C∞ functions on (0,∞). Furthermore we recall the
well known fact that, given any separable Hilbert space H, the space of trace-class operators, here denoted by
B1(H), is a Banach space with norm ∥A∥B1(H) := Tr |A|. We have now all the ingredients for the following
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Theorem 3.2. Let t0 ∈ (0,∞) be arbitrarily fixed. Then

lim
s→0

sup
t∈[t0,∞)

Tr |e−t∆∂,m,0,s − e−t∆∂,m,0,abs | = 0.

Equivalently e−t∆∂,m,0,s converges to e−t∆∂,m,0,abs as s → 0 with respect to the trace-class norm and uniformly
on [t0,∞).

In order to prove the above theorem we need the following property.

Proposition 3.10. For any s ∈ (0, 1] we have ker(∆∂,m,0,s) = ker(∆∂,m,0,abs).

Proof. It is clear that ker(∆∂,m,0,s) = KM (M), with KM (M) the space of global sections of the canonical
sheaf of M or equivalently the space of holomorphic (m, 0)-forms on M . Consider now ker(∆∂,m,0,abs). Then

ker(∆∂,m,0,abs) = ker(∂m,0,max) where the latter operator is defined in (17). By elliptic regularity we have

ker(∂m,0,max) ⊂ Ωm,0(A) and by (7) we know that L2Ωm,0(A, h|A) = L2Ωm,0(A, gs|A) for any s ∈ (0, 1].
Altogether this shows that ker(∂m,0,max) = {ω ∈ KM (A) ∩ L2Ωm,0(A, gs|A)}. It is therefore immediate to
check that KM (M) ⊆ ker(∂m,0,max). Conversely, by [3] Prop. 3.2, we have {ω ∈ KM (A) ∩ L2Ωm,0(A, gs|A)}
⊆ ker(∂m,0) where the latter space is the kernel of (27), that is the unique L2 closed extension of ∂m,0 :
Ωm,0(M) → Ωm,1(M) with respect to gs. In this way we have {ω ∈ KM (A) ∩ L2Ωm,0(A, gs|A)} ⊆ KM (M) as
ker(∂m,0) = KM (M). In conclusion KM (M) = ker(∂m,0,max) and so ker(∆∂,m,0,s) = ker(∆∂,m,0,abs) for any
s ∈ (0, 1] as required.

Now we can prove Th. 3.2.

Proof. We start with a preliminary remark. As recalled above we know that Tr(e−t∆∂,m,0,s) =
∑

k e
−tλk(s) <∞.

Let t0 ∈ (0,∞) be arbitrarily fixed and let ν ∈ R be as in Prop. 3.1. Then by (22) and Th. 4.2 in [3] we have

νλk(s) ≥ λk(1) (45)

for every s ∈ [0, 1] and every positive integer k. Therefore for each ϵ > 0 and t0 > 0 arbitrarily fixed there exists
k ∈ N such that

∞∑
k=k+1

e−tλk(s) < ϵ (46)

for each s ∈ [0, 1] and t ∈ [t0,∞). From now on let 0 < ϵ < 1 and t0 ∈ (0,∞) be arbitrarily fixed. In the rest
of the proof we will always assume that t ∈ [t0,∞]. Let {sn} ⊂ (0, 1] be any sequence such that sn → 0 as
n → ∞. Let {η1(sn), η2(sn), ..., ηk(sn), ...} be any orthonormal basis of L2Ωm,0(A, gsn |A) made by eigenforms
of (15) with corresponding eigenvalues {λ1(sn), λ2(sn), ..., λk(sn), ...}. Thanks to Th. 3.1 we know that there
exists a subsequence {zn} ⊂ {sn} and {η1(0), η2(0), ..., ηk(0), ...}, an orthonormal basis of L2Ωm,0(A, h|A) made
by eigenforms of (16) with corresponding eigenvalues {λ1(0), λ2(0), ..., λk(0), ...}, such that ηk(zn) → ηk(0)
as n → ∞ in L2Ωm,0(A, h|A) for each positive integer k. Let us fix a positive integer k such that (46) holds
true. Let Pk : L2Ωm,0(A, h|A) → L2Ωm,0(A, h|A) be the orthogonal projection on the subspace generated by
{η1(0), ..., ηk(0)} and let Qk := Id−Pk, with Id : L2Ωm,0(A, h|A) → L2Ωm,0(A, h|A) the identity. We have

Tr |e−t∆∂,m,0,zn − e−t∆∂,m,0,abs | = Tr |(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs) ◦ (Pk +Qk)| ≤
Tr |(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs) ◦ Pk|+Tr |(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs) ◦Qk|

Clearly

Tr |(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs) ◦ Pk| =
k∑

k=1

⟨|(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs) ◦ Pk|ηk(0), ηk(0)⟩L2Ωm,0(A,h|A) (47)

since |(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs)◦Pk|ηk(0) = 0 whenever k > k. Concerning Tr |(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs)◦
Qk| we have

Tr |(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs) ◦Qk| ≤ Tr(e−t∆∂,m,0,zn ◦Qk) + Tr(e−t∆∂,m,0,abs ◦Qk) =
∞∑

k=k+1

⟨e−t∆∂,m,0,absηk(0), ηk(0)⟩L2Ωm,0(A,h|A) +Tr(e−t∆∂,m,0,zn ◦Qk) =

∞∑
k=k+1

e−tλk(0) +Tr(e−t∆∂,m,0,zn ◦Qk) ≤ ϵ+Tr(e−t∆∂,m,0,zn ◦Qk) (thanks to (46)). (48)
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Concerning Tr(e−t∆∂,m,0,zn ◦Qk) we have

Tr(e−t∆∂,m,0,zn ◦Qk) =

∞∑
k=k+1

⟨e−t∆∂,m,0,zn ηk(0), ηk(0)⟩L2Ωm,0(A,h|A) =

∞∑
k=1

⟨e−t∆∂,m,0,zn ηk(0), ηk(0)⟩L2Ωm,0(A,h|A) −
k∑

k=1

⟨e−t∆∂,m,0,zn ηk(0), ηk(0)⟩L2Ωm,0(A,h|A) =

Tr(e−t∆∂,m,0,zn )−
k∑

k=1

⟨e−t∆∂,m,0,zn ηk(0), ηk(0)⟩L2Ωm,0(A,h|A) =

∞∑
k=1

⟨e−t∆∂,m,0,zn ηk(zn), ηk(zn)⟩L2Ωm,0(A,h|A) −
k∑

k=1

⟨e−t∆∂,m,0,zn ηk(0), ηk(0)⟩L2Ωm,0(A,h|A) =

k∑
k=1

⟨e−t∆∂,m,0,zn ηk(zn), ηk(zn)⟩L2Ωm,0(A,h|A) +

∞∑
k=k+1

⟨e−t∆∂,m,0,zn ηk(zn), ηk(zn)⟩L2Ωm,0(A,h|A)−

k∑
k=1

⟨e−t∆∂,m,0,zn ηk(0), ηk(0)⟩L2Ωm,0(A,h|A) =

k∑
k=1

⟨e−t∆∂,m,0,zn ηk(zn), ηk(zn)⟩L2Ωm,0(A,h|A)+

∞∑
k=k+1

e−tλk(zn) −
k∑

k=1

⟨e−t∆∂,m,0,zn ηk(0), ηk(0)⟩L2Ωm,0(A,h|A) ≤ (again by (46))

ϵ+

k∑
k=1

⟨e−t∆∂,m,0,zn ηk(zn), ηk(zn)⟩L2Ωm,0(A,h|A) −
k∑

k=1

⟨e−t∆∂,m,0,zn ηk(0), ηk(0)⟩L2Ωm,0(A,h|A). (49)

Above we have used the well known property that the trace of a positive self-adjoint trace-class operator is
independent on the orthonormal basis. Finally we have

k∑
k=1

⟨e−t∆∂,m,0,zn ηk(zn), ηk(zn)⟩L2Ωm,0(A,h|A) −
k∑

k=1

⟨e−t∆∂,m,0,zn ηk(0), ηk(0)⟩L2Ωm,0(A,h|A) =

k∑
k=1

⟨e−t∆∂,m,0,zn ηk(zn), ηk(0)− ηk(0) + ηk(zn)⟩L2Ωm,0(A,h|A) −
k∑

k=1

⟨e−t∆∂,m,0,zn ηk(0), ηk(0)⟩L2Ωm,0(A,h|A) =

k∑
k=1

⟨e−t∆∂,m,0,zn ηk(zn), ηk(zn)− ηk(0)⟩L2Ωm,0(A,h|A) +

k∑
k=1

⟨e−t∆∂,m,0,zn (ηk(zn)− ηk(0)), ηk(0)⟩L2Ωm,0(A,h|A) ≤

k∑
k=1

∥e−t∆∂,m,0,zn ηk(zn)∥L2Ωm,0(A,h|A)∥ηk(zn)− ηk(0)∥L2Ωm,0(A,h|A) +

k∑
k=1

∥e−t∆∂,m,0,zn (ηk(zn)− ηk(0))∥L2Ωm,0(A,h|A) ≤

2

k∑
k=1

∥e−t∆∂,m,0,zn∥B(L2Ωm,0(A,h|A))∥ηk(zn)− ηk(0)∥L2Ωm,0(A,h|A). (50)

Above we have denoted by ∥e−t∆∂,m,0,zn ∥B(L2Ωm,0(A,h|A)) the norm of the operator e−t∆∂,m,0,zn : L2Ωm,0(A, h|A) →
L2Ωm,0(A, h|A). It is clear that ∥e−t∆∂,m,0,s∥B(L2Ωm,0(A,h|A)) ≤ 1 for any s ∈ [0, 1]. This can be deduced imme-

diately by the fact that, since e−t∆∂,m,0,s : L2Ωm,0(A, h|A)) → L2Ωm,0(A, h|A) is positive and self-adjoint, we
have

∥e−t∆∂,m,0,s∥B(L2Ωm,0(A,h|A)) = sup
ω ̸=0

⟨e−t∆∂,m,0,sω, ω⟩L2Ωm,0(A,h|A)

∥ω∥2L2Ωm,0(A,h|A)

.
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Summarizing, by (47)-(48)-(49)-(50), we showed for the moment that

Tr |e−t∆∂,m,0,zn − e−t∆∂,m,0,abs | ≤
k∑

k=1

⟨|(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs) ◦ Pk|ηk(0), ηk(0)⟩L2Ωm,0(A,h|A)+

2ϵ+ 2

k∑
k=1

∥ηk(zn)− ηk(0)∥L2Ωm,0(A,h|A). (51)

Concerning
∑k

k=1⟨|(e
−t∆∂,m,0,zn − e−t∆∂,m,0,abs) ◦ Pk|ηk(0), ηk(0)⟩L2Ωm,0(A,h|A) we have

k∑
k=1

⟨|(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs) ◦ Pk|ηk(0), ηk(0)⟩L2Ωm,0(A,h|A) ≤

k∑
k=1

∥|(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs) ◦ Pk|ηk(0)∥L2Ωm,0(A,h|A) =

k∑
k=1

∥(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs)(Pkηk(0))∥L2Ωm,0(A,h|A) =

k∑
k=1

∥(e−t∆∂,m,0,zn − e−t∆∂,m,0,abs)(ηk(0))∥L2Ωm,0(A,h|A) =

k∑
k=1

∥e−t∆∂,m,0,zn ηk(0)− e−tλk(0)ηk(0)∥L2Ωm,0(A,h|A) =

k∑
k=1

∥e−t∆∂,m,0,zn (ηk(zn) + ηk(0)− ηk(zn))− e−tλk(0)ηk(0)∥L2Ωm,0(A,h|A) ≤

k∑
k=1

∥e−tλk(zn)ηk(zn)− e−tλk(0)ηk(0)∥L2Ωm,0(A,h|A) +

k∑
k=1

∥e−t∆∂,m,0,zn (ηk(0)− ηk(zn))∥L2Ωm,0(A,h|A) ≤

k∑
k=1

∥e−tλk(zn)ηk(zn)− e−tλk(zn)ηk(0) + e−tλk(zn)ηk(0)− e−tλk(0)ηk(0)∥L2Ωm,0(A,h|A)+

k∑
k=1

∥ηk(0)− ηk(zn)∥L2Ωm,0(A,h|A) ≤

k∑
k=1

e−tλk(zn)∥ηk(zn)− ηk(0)∥L2Ωm,0(A,h|A) +

k∑
k=1

|e−tλk(zn) − e−tλk(0)|+
k∑

k=1

∥ηk(0)− ηk(zn)∥L2Ωm,0(A,h|A) ≤

2

k∑
k=1

∥ηk(zn)− ηk(0)∥L2Ωm,0(A,h|A) +

k∑
k=ℓ+1

|e−tλk(zn) − e−tλk(0)|. (52)

In (52) we have denoted ℓ := dim(ker(∆∂,m,0,abs)) and we have used Prop. 3.10 for the equality
∑k

k=ℓ+1 |e−tλk(zn)−
e−tλk(0)| =

∑k
k=1 |e−tλk(zn) − e−tλk(0)|. Note that ℓ < k as 0 < ϵ < 1. Joining (51) and (52) we have finally

achieved the upper estimate we were looking for:

Tr |e−t∆∂,m,0,zn − e−t∆∂,m,0,abs | ≤
k∑

k=ℓ+1

|e−tλk(zn) − e−tλk(0)|+ 2ϵ+ 4

k∑
k=1

∥ηk(zn)− ηk(0)∥L2Ωm,0(A,h|A). (53)

By Th. 3.1, (45) and the fact that the function e−x is 1-Lipschitz on [0,∞) we can find t1, with t0 ≤ t1 <∞
and n0 > 0 such that:

1. ∥ηk(zn)− ηk(0)∥L2Ωm,0(A,h|A) ≤ ϵ/k for any n > n0 and k = 1, ..., k,

2. |e−tλk(zn) − e−tλk(0)| ≤ e−tλk(zn) + e−tλk(0) ≤ ϵ/k for any t1 ≤ t <∞, n ∈ N and k = ℓ+ 1, ..., k,

3. |e−tλk(zn) − e−tλk(0)| ≤ t|λk(zn) − λk(0)| ≤ t1|λk(zn) − λk(0)| ≤ ϵ/k for any k = ℓ + 1, ..., k, n > n0 and
t0 ≤ t ≤ t1.
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Note that the second point above follows quickly by (45) since e−tλk(zn) + e−tλk(0) ≤ 2e−
t
ν λk(1). Moreover we

point out that the second and the third point above yield

|e−tλk(zn) − e−tλk(0)| ≤ ϵ/k

for each k = ℓ + 1, ..., k, t ∈ [t0,∞) and n > n0. Thus, thanks to (53) and the above three remarks, we have
shown that

Tr |e−t∆∂,m,0,zn − e−t∆∂,m,0,abs | ≤ 7ϵ

for each n > n0 and t ∈ [t0,∞). Summarizing we have proved that given any sequence {sn} ⊂ (0, 1] with
sn → 0 as n → ∞ there is a subsequence {zn} ⊂ {sn} such that for any arbitrarily fixed 0 < ϵ < 1 and t0 > 0
there exists a positive integer n0 such that

sup
t∈[t0,∞)

Tr |e−t∆∂,m,0,zn − e−t∆∂,m,0,abs | ≤ 7ϵ

for any n > n0. Clearly this amounts to saying that given any sequence {sn} ⊂ (0, 1] with sn → 0 as n → ∞
there is a subsequence {zn} ⊂ {sn} such that, for any arbitrarily fixed t0 > 0, we have

lim
n→∞

sup
t∈[t0,∞)

Tr |e−t∆∂,m,0,zn − e−t∆∂,m,0,abs | = 0. (54)

Finally it is immediate to check that (54) is in turn equivalent to saying that for any arbitrarily fixed t0 > 0 we
have

lim
s→0

sup
t∈[t0,∞)

Tr |e−t∆∂,m,0,s − e−t∆∂,m,0,abs | = 0.

The theorem is thus proved.

Corollary 3.4. Let t0 ∈ (0,∞) be arbitrarily fixed. Then

lim
s→0

Tr(e−t∆∂,m,0,s) = Tr(e−t∆∂,m,0,abs)

uniformly on [t0,∞).

Proof. This is an immediate consequence of Th. 3.2.

Now we study the behavior as s → 0 of the corresponding zeta functions. As in the previous proof let
ℓ := dim(ker(∆∂,m,0,abs)). First of all we want to show that Tr(e−t∆∂,m,0,abs)− ℓ decays exponentially as t→ ∞.
The argument is essentially the same that is used in the smooth compact case. We recall it for the sake of
completeness. Let t ∈ [1,∞). We have

Tr(e−t∆∂,m,0,abs)− ℓ =

∞∑
k=ℓ+1

e−tλk(0) =

∞∑
k=ℓ+1

e−
t
2λk(0)e−

t
2λk(0) ≤

∞∑
k=ℓ+1

e−
t
2λk(0)e−

t
2λℓ+1(0) ≤

e−
t
2λℓ+1(0)

∞∑
k=ℓ+1

e−
1
2λk(0).

In conclusion for any t ∈ [1,∞) we have

Tr(e−t∆∂,m,0,abs)− ℓ ≤ Ae−
t
2λℓ+1(0) (55)

with A =
∑∞

k=ℓ+1 e
− 1

2λk(0). As λℓ+1(0) > 0 the above inequality shows that Tr(e−t∆∂,m,0,abs) − ℓ decays

exponentially as t → ∞. Moreover thanks to [3] Cor. 4.2 we know that Tr(e−t∆∂,m,0,abs) ≤ Gt−m for each
t ∈ (0, 1] and a positive constant G. Therefore for any x ∈ C with Re(x) > m the following integral

1

Γ(x)

∫ ∞

0

tx−1(Tr(e−t∆∂,m,0,abs)− ℓ)dt

converges and defines a holomorphic function ζ(∆∂,m,0,abs)(x) on {x ∈ C : Re(x) > m}. Furthermore by [3] Th.

4.2 and the fact that Γ(x)λ−x
k (0) =

∫∞
0
tx−1e−tλk(0)dt for any k > ℓ we have that

∑∞
k=ℓ+1 λ

−x
k (0) converges on

{x ∈ C : Re(x) > m} and

ζ(∆∂,m,0,abs)(x) =
1

Γ(x)

∫ ∞

0

tx−1(Tr(e−t∆∂,m,0,abs)− ℓ)dt =

∞∑
k=ℓ+1

λ−x
k (0)

on {x ∈ C : Re(x) > m}. Finally for any s ∈ (0, 1] let us label by ζ(∆∂,m,0,s)(x) the zeta function of

∆∂,m,0,s : L
2Ωm,0(M, gs) → L2Ωm,0(M, gs). We have the following property:
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Theorem 3.3. Let ζ(∆∂,m,0,abs)(x) and ζ(∆∂,m,0,s)(x) be the zeta functions of ∆∂,m,0,abs and ∆∂,m,0,s, respec-
tively. Then

lim
s→0

ζ(∆∂,m,0,s)(x) = ζ(∆∂,m,0,abs)(x)

for any x ∈ C with Re(x) > m. Moreover the convergence is uniform on any compact subset K of {x ∈ C :
Re(x) > m}.

Proof. First of all we need to develop some uniform estimates that will be used along the proof. Thanks to (45)
we know that νλk(s) ≥ λk(1) for any s ∈ [0, 1]. Therefore

∞∑
k=1

e−tνλk(s) ≤
∞∑
k=1

e−tλk(1)

for any s ∈ [0, 1] and t ∈ (0,∞). Thus, using the well known fact that Tr(e−t∆∂,m,0,1) ≤ Ct−m for t ∈ (0, 1] and
some constant C > 0, see for instance [8] Th. 2.41, we obtain that

∞∑
k=1

e−tλk(s) ≤ νmCt−m (56)

for any s ∈ [0, 1] and t ∈ (0, ν]. Moreover for t ∈ [1,∞), s ∈ [0, 1] and a fixed positive constant B we have
Tr(e−tν∆∂,m,0,s)− ℓ ≤ Tr(e−t∆∂,m,0,1)− ℓ ≤ Be−

t
2λℓ+1(1) from which we deduce

Tr(e−t∆∂,m,0,s)− ℓ ≤ Be−
t
2ν λℓ+1(1) (57)

for t ∈ [ν,∞) and s ∈ [0, 1]. Now let K be a compact subset of {x ∈ C : Re(x) > m}. Let ϵ > 0 be arbitrarily
fixed. Given any 0 < µ ≤ 1 and x ∈ K we have

|ζ(∆∂,m,0,abs)(x)− ζ(∆∂,m,0,s)(x)| ≤
1

|Γ(x)|

∫ ∞

0

|tx−1||Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt =

1

|Γ(x)|

∫ µ

0

|tx−1||Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt+ 1

|Γ(x)|

∫ ν

µ

|tx−1||Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt

+
1

|Γ(x)|

∫ ∞

ν

|tx−1||Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt.

Let us examine in details the above three integrals. By (56) we know that |Tr(e−t∆∂,m,0,abs)−Tr(e−t∆∂,m,0,s)| ≤
2βt−m for every t ∈ (0, ν], s ∈ [0, 1] and with β := Cνm. Let us define α := max{|Γ−1(x)| : x ∈ K} and
a = min{Re(x) : x ∈ K}. For any x ∈ K with x = x1 + ix2 and 0 < t ≤ 1 we have |tx| = |tx1+ix2 | ≤ 2ta.

Therefore, taking µ = min

{
1,
(

(a−m)ϵ
4αβ

) 1
a−m

}
and keeping in mind that a > m, we have

1

|Γ(x)|

∫ µ

0

|tx−1||Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt ≤ 2α

∫ µ

0

|tx1+ix2−1|βt−mdt ≤ 4α

∫ µ

0

ta−1βt−mdt =

4αβ

∫ µ

0

ta−m−1dt = 4αβ
µa−m

a−m
≤ ϵ.

Let us now define b := max{|tx−1| : (t, x) ∈ [µ, ν]×K}. In this way we can deduce the following estimate

1

|Γ(x)|

∫ ν

µ

|tx−1||Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt ≤ α

∫ ν

µ

b|Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt

and by Cor. 3.4 we can find a sufficiently small positive δ1 such that

α

∫ ν

µ

b|Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt ≤ ϵ

for any s ∈ [0, δ1]. Finally let ξ := max{Re(x) : x ∈ K}. Then |tx−1| ≤ 2tξ−1 for any x ∈ K and so, thanks to
(57), there exist positive constants θ and σ such that

|tx−1||Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)| ≤ 2tξ−1|Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)| ≤ 4θtξ−1e−σt
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for any t ∈ [ν,∞), x ∈ K and s ∈ [0, 1]. In particular we get∫ ∞

ν

|tx−1||Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt ≤
∫ ∞

ν

2tξ−1|Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt ≤∫ ∞

ν

4θtξ−1e−σtdt <∞

for any x ∈ K and s ∈ [0, 1]. Hence, using the Lebesgue dominate convergence theorem and Cor. 3.4, we obtain

0 ≤ lim
s→0

1

|Γ(x)|

∫ ∞

ν

|tx−1||Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt ≤

lim
s→0

2α

∫ ∞

ν

tξ−1|Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt =

2α

∫ ∞

ν

lim
s→0

tξ−1|Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt = 0.

By the above limit we deduce that there is a positive number δ2 > 0 such that for any x ∈ K and s ∈ [0, δ2]
the following inequality holds true

1

|Γ(x)|

∫ ∞

ν

|tx−1||Tr(e−t∆∂,m,0,abs)− Tr(e−t∆∂,m,0,s)|dt ≤ ϵ.

Summing up we proved that for any arbitrarily fixed ϵ > 0 there exists a sufficiently small positive δ > 0 such
that for any s ∈ [0, δ] and x ∈ K we have

|ζ(∆∂,m,0,abs)(x)− ζ(∆∂,m,0,s)(x)| ≤ 3ϵ.

The statement of this theorem is now an immediate consequence of the above inequality.

Finally we come to the last result of this paper. First we recall very briefly some well known result about
the heat kernel. This latter topic is thoroughly studied in many books and papers. We refer for instance to [8],
[16], [20], [21] and the reference therein. In particular the statements below follow by arguing as in [16]. Let us
label by KA = KM |A the canonical bundle of A. Consider the left and the right projections pl : A×A→ A and
pr : A×A→ A and let KA ⊠K∗

A → A×A be the vector bundle on A×A defined by p∗lKA ⊗ p∗rK
∗
A. For any

(x, y) ∈ A×A the fiber of KA ⊠K∗
A in (x, y) is given by KAx ⊗K∗

Ay

∼= Hom(KAy ,KAx). We endow the vector

bundle KA ⊠ K∗
A → A × A with the natural Hermitian metric induced by h and we label it by ĥ. Moreover

on A × A we consider the product metric induced by h. Let {η1,0, η2,0, ..., ηk,0, ...} be an orthonormal basis
of L2Ωm,0(A, h|A) made by eigenforms of (16) with corresponding eigenvalues {λ1,0, λ2,0, ..., λk,0, ...}. For any
integer k let η∗k,0 ∈ C∞(A,K∗

A) be the section of K∗
A induced by ηk,0 through h∗m,0, that is η

∗
k,0 := h∗m,0(ηk,0, •).

Then it is easy to check that for each t > 0 the following series

∞∑
k=1

e−tλk,0ηk,0(x)⊗ η∗k,0(y) (58)

converges in L2(A×A,KA ⊠K∗
A) and thus it defines an element K0(t, x, y) ∈ L2(A×A,KA ⊠K∗

A). Moreover
by local elliptic estimates and the Sobolev inequality we obtain that for any relatively compact open subset B
of A and positive integers ℓ and j the series:

∞∑
k=1

λℓk,0e
−tλk,0ηk,0(x)⊗ η∗k,0(y)

converges over B with respect to the Cj-norm and uniformly on [t0,∞) with t0 > 0 arbitrarily fixed. This
implies that K0(t, x, y) is C

∞ with respect to t, x and y and moreover that

e−t∆∂,m,0,absω =

∫
M

K0(t, x, y)ω(y) dvolh(y).

We are in position to state the next result.
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Theorem 3.4. For each s ∈ (0, 1] let Ks(t, x, y) ∈ C∞(M ×M,KM ⊠ K∗
M ) be the heat kernel of ∆∂,m,0,s :

L2Ωm,0(M, gs) → L2Ωm,0(M, gs). Then for any arbitrarily fixed t0 > 0 we have

lim
s→0

Ks(t, x, y) = K0(t, x, y)

in L2(A×A,KA ⊠K∗
A) and uniformly on [t0,∞).

Proof. Let t0 ∈ (0,∞) and 0 < ϵ < 1 be arbitrarily fixed and let {sn} ⊂ (0, 1] be any sequence such that sn → 0
as n → ∞. Let {η1,sn , η2,sn , ..., ηk,sn , ...} be an orthonormal basis of L2Ωm,0(A, gsn |A) made by eigenforms
of (15) with corresponding eigenvalues {λ1,sn , λ2,sn , ..., λk,sn , ...}. Thanks to Th. 3.1 we know that there
exists a subsequence {zn} ⊂ {sn} and {η1,0, η2,0, ..., ηk,0, ...}, an orthonormal basis of L2Ωm,0(A, h|A) made by
eigenforms of (16) with corresponding eigenvalues {λ1,0, λ2,0, ..., λk,0, ...}, such that ηk,zn → ηk,0 as n → ∞ in
L2Ωm,0(A, h|A) for each positive integer k. As in (46) let k be a fixed positive integer such that

∞∑
k=k+1

e−tλk,s ≤ ϵ/2 (59)

for each s ∈ [0, 1]. We have

∥Kzn(t, x, y)−K0(t, x, y)∥L2(A×A,KA⊠K∗
A) ≤

∥
k∑

k=1

e−tλk,0ηk,0(x)⊗ η∗k,0(y)−
k∑

k=1

e−tλk,zn ηk,zn(x)⊗ η∗k,zn(y)∥L2(A×A,KA⊠K∗
A)+

∥
∞∑

k=k+1

e−tλk,0ηk,0(x)⊗ η∗k,0(y) +
∞∑

k=k+1

e−tλk,zn ηk,zn(x)⊗ η∗k,zn(y)∥L2(A×A,KA⊠K∗
A) ≤

∥
k∑

k=1

e−tλk,0ηk,0(x)⊗ η∗k,0(y)−
k∑

k=1

e−tλk,zn ηk,zn(x)⊗ η∗k,zn(y)∥L2(A×A,KA⊠K∗
A)+

∞∑
k=k+1

∥e−tλk,0ηk,0(x)⊗ η∗k,0(y)∥L2(A×A,KA⊠K∗
A) +

∞∑
k=k+1

∥e−tλk,zn ηk,zn(x)⊗ η∗k,zn(y)∥L2(A×A,KA⊠K∗
A) ≤

∥
k∑

k=1

e−tλk,0ηk,0(x)⊗ η∗k,0(y)−
k∑

k=1

e−tλk,zn ηk,zn(x)⊗ η∗k,zn(y)∥L2(A×A,KA⊠K∗
A) + ϵ ≤

k∑
k=1

∥e−tλk,0ηk,0(x)⊗ η∗k,0(y)− e−tλk,zn ηk,zn(x)⊗ η∗k,zn(y)∥L2(A×A,KA⊠K∗
A) + ϵ.

We can estimates ∥e−tλk,0ηk,0(x)⊗ η∗k,0(y)− e−tλk,zn ηk,zn(x)⊗ η∗k,zn(y)∥L2(A×A,KA⊠K∗
A) as follows:

∥e−tλk,0ηk,0(x)⊗ η∗k,0(y)− e−tλk,zn ηk,zn(x)⊗ η∗k,zn(y)∥L2(A×A,KA⊠K∗
A) ≤

∥e−tλk,0ηk,0(x)⊗ η∗k,0(y)− e−tλk,0ηk,zn(x)⊗ η∗k,zn(y)∥L2(A×A,KA⊠K∗
A)+

∥e−tλk,0ηk,zn(x)⊗ η∗k,zn(y)− e−tλk,zn ηk,zn(x)⊗ η∗k,zn(y)∥L2(A×A,KA⊠K∗
A) =

e−tλk,0∥ηk,0(x)⊗ η∗k,0(y)− ηk,zn(x)⊗ η∗k,zn(y)∥L2(A×A,KA⊠K∗
A) + |e−tλk,0 − e−tλk,zn | =

e−tλk,0

√
2− 2⟨ηk,0, ηk,zn⟩2L2Ωm,0(A,h|A) + |e−tλk,0 − e−tλk,zn |.

Altogether we have shown that

∥Kzn(t, x, y)−K0(t, x, y)∥L2(A×A,KA⊠K∗
A) ≤

k∑
k=1

e−tλk,0

√
2− 2⟨ηk,0, ηk,zn⟩2L2Ωm,0(A,h|A)+

k∑
k=ℓ+1

|e−tλk,0−e−tλk,zn |+ϵ

where, likewise the previous cases, ℓ := dim(ker(∆∂,m,0,abs)). Arguing as in the proof of Th. 3.2 we can find a

sufficiently big integer n > 0 such that for any n > n, k = 0, ..., k and t ∈ [t0,∞) we have

k∑
k=1

e−tλk,0

√
2− 2⟨ηk,0, ηk,zn⟩2L2Ωm,0(A,h|A) +

k∑
k=ℓ+1

|e−tλk,0 − e−tλk,zn | ≤ ϵ.
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So we have just proved that for any sequence {sn}n∈N ⊂ (0, 1] with sn → 0 as n→ ∞ there exists a subsequence
{zn}n∈N ⊂ {sn}n∈N such that for any arbitrarily fixed 0 < ϵ < 1 and t0 > 0 there exists a positive integer n
such that

∥Kzn(t, x, y)−K0(t, x, y)∥L2(A×A,KA⊠K∗
A) ≤ 2ϵ

for any n > n and t ∈ [t0,∞). In other words for any sequence {sn}n∈N ⊂ (0, 1] with sn → 0 as n → ∞ there
exists a subsequence {zn}n∈N ⊂ {sn}n∈N such that for any arbitrarily fixed t0 > 0 we have

lim
n→∞

∥Kzn(t, x, y)−K0(t, x, y)∥L2(A×A,KA⊠K∗
A) = 0

uniformly on [t0,∞). We can thus conclude that for any arbitrarily fixed t0 > 0

lim
s→0

∥Ks(t, x, y)−K0(t, x, y)∥L2(A×A,KA⊠K∗
A) = 0

uniformly on [t0,∞) as desired.

4 Examples and applications

This last section is devoted to some examples and applications. First of all we want to show that Hermitian
pseudometrics appear naturally when we deal with singular complex projective varieties endowed with the
Fubini-Study metric and more generally when we consider compact and irreducible Hermitian complex spaces.
Complex spaces are a classical topic in complex geometry and we refer to [14] and [18] for an in-depth treatment.
Here we recall that an irreducible complex space X is a reduced complex space such that reg(X), the regular
part of X, is connected. Furthermore we recall that a paracompact and reduced complex space X is said
Hermitian if the regular part of X carries a Hermitian metric h such that for every point p ∈ X there exists an
open neighborhood U ∋ p in X, a proper holomorphic embedding of U into a polydisc ϕ : U → DN ⊂ CN and
a Hermitian metric g on DN such that (ϕ|reg(U))

∗g = h, see for instance [33] or [34]. In this case we will write
(X,h) and with a little abuse of language we will say that h is a Hermitian metric on X. Clearly any analytic
subvariety of a complex Hermitian manifold endowed with the metric induced by the restriction of the metric
of the ambient space is a Hermitian complex space. In particular, within this class of examples, we have any
complex projective variety V ⊂ CPn endowed with the Kähler metric induced by the Fubini-Study metric of
CPn. As showed by a very deep result due to Hironaka, the singularities of a complex space can be resolved.
We refer to the celebrated work of Hironaka [23], to [2], [9] and [22] for a thorough discussion on this subject.
Furthermore we refer to [17] and [31] for a quick introduction. Below we simply provide a very brief account
with the material that is strictly necessary for our purposes. Let X be a compact and irreducible complex
space. Then there exists a compact complex manifold M , a divisor with only normal crossings D ⊂ M and a
surjective holomorphic map π :M → X such that π−1(sing(X)) = D and

π|M\D :M \D −→ X \ sing(X) (60)

is a biholomorphism. Assume now that (X,h) is a compact and irreducible Hermitian complex space. Then,
by the very definition of Hermitian complex space, it is immediate to deduce that π∗h extends smoothly on the
whole M as a positive semidefinite Hermitian product strictly positive on M \D. In other words π∗h becomes
a Hermitian pseudometric on M whose degeneracy locus Z is contained in D.
Now we continue with the next proposition that provides a quite general situation to which the theorems of the
previous sections apply.

Proposition 4.1. Let (M,J) be a compact complex manifold of complex dimension m. Let p :M×[0, 1] →M be
the canonical projection and let gs ∈ C∞(M×[0, 1], p∗T ∗M⊗p∗T ∗M) be a smooth section of p∗T ∗M⊗p∗T ∗M →
M × [0, 1] such that:

1. gs(JX, JY ) = gs(X,Y ) for any X,Y ∈ X(M) and s ∈ [0, 1];

2. gs is a Hermitian metric on M for any s ∈ (0, 1];

3. g0 is symmetric, positive semidefinite and positive definite over A, where A ⊂M is open and dense;

4. (A, g1|A) is parabolic;

5. There exists a positive constant a such that g0 ≤ ags for each s ∈ [0, 1].
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Then there exists also a positive constant b such that gs ≤ bg1 for each s ∈ [0, 1] and thus Th. 3.1,3.2,3.3 and
3.4 apply to (M, gs) and (A, h|A) with h := g0.

The proof of the above proposition will be an immediate consequence of the next lemma. Let Fs ∈ C∞(M×
[0, 1], p∗End(TM)) be such that g1(Fs·, ·) = gs(·, ·) for each s ∈ [0, 1].

Lemma 4.1. For any s ∈ [0, 1] and p ∈ M let |F |g1 : M × [0, 1] → R be defined by (p, s) 7→ |Fs|g1(p), where
|Fs|g1 : M → R is the pointwise operator norm of Fs with respect to g1, see (6) for the definition. Then we
have the following properties:

1. The function |F |g1 :M × [0, 1] → R is continuous.

2. The function ∥|Fs|g1∥L∞(M) : [0, 1] → R, defined by s 7→ ∥|Fs|g1∥L∞(M), is continuous.

3. For each s ∈ [0, 1] we have
gs ≤ bg1

with
b = max

s∈[0,1]
∥|Fs|g1∥L∞(M)

Proof. Let p ∈M and s ∈ [0, 1] be arbitrarily fixed. Let

{λ1,s(p), λ1,s(p), λ2,s(p), λ2,s(p), ..., λm,s(p), λm,s(p)} (61)

with 0 ≤ λ1,s(p) ≤ λ2,s(p) ≤ ... ≤ λm−1,s(p) ≤ λm,s(p), be the eigenvalues of Fs,p : TpM → TpM . Then it is
well known that

|Fs|g1(p) = sup
0̸=v∈TpM

g1(Fs,pv, v)

g1(v, v)
= λm,s(p). (62)

Now we observe that, for any k = 1, 2, ..,m, the function λk : M × [0, 1] → R defined as λk(p, s) := λk,s(p) is
continuous. This follows easily by the fact that Fs is given in local coordinates by a real, symmetric, square
matrix of rank 2m× 2m whose entries are continuous (actually smooth) functions of (2m+1)-variables. It is in
fact a classical result of linear algebra that the eigenvalues of a real symmetric, square matrixM = (ai,j), whose
entries ai,j : W → R are continuous functions defined over an open subset W ⊂ Rℓ, are themselves continuous
functions over W . We can thus conclude that λm : M × [0, 1] → R is continuous and eventually this tells us
that also

[0, 1] ∋ s 7→ max
p∈M

λm,s(p) ∈ R

is continuous. As ∥|Fs|g1∥L∞(M) = maxp∈M λm,s(p) for any s ∈ [0, 1] the first two points are thus established.
The third point is now an immediate consequence. Namely given any p ∈ M and v ∈ TpM we have gs(v, v) =
g1(Fsv, v) ≤ ∥|Fs|g1∥L∞(M)g1(v, v) ≤ bg1(v, v).

Finally we conclude with the following family of examples.

Proposition 4.2. Let (M,J) be a compact complex manifold, D ⊂M a normal crossing divisor, h a Hermitian
pseudometric on M positive definite on M \D and g a Hermitian metric on M . If f(s) is a smooth function
on [0, 1] such that f(0) = 0, f(1) = 1 and 0 < f(s) ≤ 1 for s ∈ (0, 1) then gs := (1 − f(s))h + f(s)g satisfies
the requirements of Prop. 4.1.

Proof. Obviously gs is compatible with J , it is a Hermitian metric whenever s > 0 and it is a positive semidefinite
Hermitian metric when s = 0. Moreover since D is a finite union of compact complex submanifolds it is known
that M \D is parabolic with respect to any Riemannian metric on M , see [6, Prop. 4.5]. Now let b ∈ R such
that h ≤ bg and let a = b+1. We claim that h ≤ ags. In fact h ≤ ags if and only if 0 ≤ ah−af(s)h+af(s)g−h
that is 0 ≤ bh+ h− bf(s)h− f(s)h+ af(s)g− h which in turn is equivalent to 0 ≤ b(1− f(s))h+ f(s)(ag− h).
Finally it is immediate to check that this last inequality holds true.
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