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Abstract – In neural network’s literature, Hebbian learning traditionally refers to the procedure
by which the Hopfield model and its generalizations store archetypes (i.e., definite patterns that
are experienced just once to form the synaptic matrix). However, the term learning in machine
learning refers to the ability of the machine to extract features from the supplied dataset (e.g.,
made of blurred examples of these archetypes), in order to make its own representation of the
unavailable archetypes. Here, given a sample of examples, we define a supervised learning protocol
based on Hebb’s rule and by which the Hopfield network can infer the archetypes. By an analytical
inspection, we detect the correct control parameters (including size and quality of the dataset)
that tune the system performance and we depict its phase diagram. We also prove that, for struc-
tureless datasets, the Hopfield model equipped with this supervised learning rule is equivalent to
a restricted Boltzmann machine and this suggests an optimal and interpretable training routine.
Finally, this approach is generalized to structured datasets: we highlight an ultrametric-like orga-
nization (reminiscent of replica-symmetry-breaking) in the analyzed datasets and, consequently,
we introduce an additional broken-replica hidden layer for its (partial) disentanglement, which is
shown to improve MNIST classification from ∼ 75% to ∼ 95%, and to offer a new perspective on
deep architectures.

perspective Copyright c© 2023 EPLA

Forty years have elapsed since Hopfield’s seminal work,
yielding a model for biological information processing [1];
meanwhile, we have witnessed a striking development of
artificial machine learning (see, e.g., [2–4]) and we are
finally in a stage where ideas, techniques and results
stemming from biological and artificial sides can be fruit-
fully compared (see, e.g., [5–9]). Here we leverage their
analogies to unveil the internal mechanisms of a learning
machine, focusing on two paradigmatic models, that is,
respectively, the Hopfield neural network (HNN) and the
restricted Boltzmann machine (RBM). In order for this
comparison to be exhaustive, we first need to profoundly
revise the assumptions underlying the theory developed
by Amit, Gutfreund and Sompolinsky (AGS) [10], who,
in the eighties, gave a pioneering statistical-mechanical
treatment of the HNN based on spin glasses [11]. The
point is that, in the AGS theory, the HNN actually does
not learn, rather it stores definite patterns —hereafter

(a)E-mail: adriano.barra@gmail.com (corresponding author)

called archetypes— by the so-called Hebb rule (or count-
less variations on the theme); on the other hand, in stan-
dard machine learning the network has to infer these
archetypes by solely experiencing (a finite number of)
their noisy versions —hereafter called examples— while
the original archetypes remain unknown. Hence, in or-
der to match biological and artificial information process-
ing, we must supply the HNN with examples rather than
directly archetypes and therefore turn Hebb’s rule into
a genuine learning rule. Despite some notable contribu-
tions in the late eighties and nineties, during the first
wave of formalization of neural networks via statistical
mechanics, see, e.g., [12–15], this particular aspect has re-
mained overlooked. In the following we will reach such
a framework, whence we will show that standard ma-
chine learning rules based on contrastive divergence al-
gorithms collapse onto Hebb’s learning rule, and we will
highlight quantitative control parameters whose tuning
determines the learning machine failure or success. These
results are obtained analytically by statistical-mechanics
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tools for random, unstructured datasets, where we can
also establish a direct connection between the number of
archetypes and the number of hidden neurons in the RBM.
As for structured datasets, the robustness of these results
is checked numerically for the MNIST and the fashion-
MNIST datasets [16,17] and we also generalize the con-
nection between the size of the hidden layer(s) and the
intrinsic complexity of the dataset, exploiting an iterative
rule, reminiscent of the replica-symmetry-breaking (RSB)
paradigma [11].

Let us start with the theoretical approach and introduce
the information the network has to deal with: we define
K archetypes denoted with ξμ, μ ∈ {1, . . . ,K}, as binary
vectors of length N and whose entries are i.i.d. variables
drawn from

P(ξμi ) =
1

2
δ(ξμi − 1) +

1

2
δ(ξμi + 1), (1)

for any i ∈ {1, . . . , N} and μ ∈ {1, . . . ,K}, then, for each
of them we generate M examples ημa, a ∈ {1, . . . ,M},
that we obtain by corrupting the archetype flipping its
digits randomly as

ημai = ξμi χ
μa
i , (2)

P(χμa
i ) =

1 + r

2
δ(χμa

i − 1) +
1− r

2
δ(χμa

i + 1), (3)

for any i, μ, a, being r ∈ (0, 1] a parameter tuning the
quality of the sample. We now feed the HNN on the
dataset S = {ημa}a=1,...,M

μ=1,...,K and, for this operation to be
unambiguous, we also need to specify how these exam-
ples are presented to the network, mirroring supervised
and unsupervised learning. In fact, the HNN Hamilto-
nian reads as H(HNN)(σ|J) = −

∑N,N
i<j Jijσiσj , where σ =

{σi}i=1,...,N ∈ {−1,+1}N are N binary neurons and the
synaptic connections Jij ’s incorporate the accessible infor-
mation: in the original setting, where archetypes are avail-
able, the Hebbian (storing) rule reads as Jij ∝

∑
μ ξ

μ
i ξ

μ
j ,

while here Jij = Jij(S) and we envisage the following pro-
tocols.

Supervised Hebbian learning : A teacher discloses the
example labels and they can therefore be combined as

J sup
ij ∝

K∑
μ=1

(
M∑
a=1

ημai

)(
M∑
b=1

ημbj

)
. (4)

Unsupervised Hebbian learning : Without a teacher that
tells how to cluster examples, we mix them up obtaining

Junsup
ij ∝

K∑
μ=1

M∑
a=1

ημai ημaj . (5)

Clearly, when r = 1,M becomes a dummy variable be-
cause examples coincide with the related archetype and we
recover the classical Hebbian rule in both cases. Here we

focus on the former (4), while we refer to the Supplemen-
tary Material Supplementarymaterial.pdf (SM)1 for a
discussion on the latter (5).
A convenient control parameter to assess the informa-

tion content in S is ρ := 1−r2

Mr2 . To see this, let us fo-
cus on the μ-th pattern and the i-th digit, whose related
block is ημ

i = (ημ1i , ημ2i , . . . , ημMi ); the error probability
for any single entry is P(χμa

i = −1) = (1 − r)/2 and, by
applying the majority rule on the block, it is reduced to
P(sgn(

∑
a χ

μa
i ) = −1) ≈

M�1
[1 − erf(1/

√
2ρ)], thus, the

conditional entropy H(ξμi |η
μ
i ), that quantifies the amount

of information needed to describe the original message ξμi ,
given the related M -length block ημ

i , is monotonically in-
creasing with ρ, saturating to 1 bit. Hence, in order for the
dataset to retain information on the original archetypes,
ρ must be finite, that is, Mr2 must be non-vanishing.
This scaling, arising from an information theory per-

spective, is recovered and sharpened in the neural network
framework. We start with the signal-to-noise analysis on
the HNN to check for local stability of the archetype
retrieval configurations in the noiseless limit, that is,
we study the conditions under which the internal field
hi(σ) =

∑N
j=1
j �=i

Jij(S)σj , namely the post-synaptic poten-

tial experienced by the neuron i, is aligned with the neural
activity σi while σ = ξμ, for any arbitrary μ and i. This is
usually inspected by checking that the “signal” (i.e., the
expectation of hi(ξ

μ)ξμi over the realization of archetypes
and examples) is larger than the “noise” (i.e., the standard
deviation of hi(ξ

μ)ξμi ). As detailed in the SM, this con-
dition can be recast into the requirement that the system
configuration after one Monte Carlo step exhibits at least
a fraction (1 + 1/

√
2)/2 ≈ 0.85 of spins aligned with ξμ

and this, in turn, returns K
N (1 + 1−r2

Mr2 )
2 + 1−r2

Mr2 � 1. This
relation advises on the suitable rescaling of the dataset size
(M � r−2), as the dataset quality is impaired (r → 0), in
order to preserve network’s abilities; note that power-law
scalings were already evidenced in the machine-learning
context, see, e.g., [18]. To achieve a quantitative pic-
ture and control of the network behavior, we work out
a statistical-mechanics investigation and we start by in-
troducing the Boltzmann-Gibbs measure for the system,

Pβ(σ|S) =
1

Z(HNN)

β (S)
e−βH(HNN)(σ|J(S)), (6)

where Z(HNN)

β is the partition function and β := 1/T ∈ R
+

tunes the distribution broadness; β along with the load
α := limN→∞ K/N and the dataset “entropy” ρ = (1 −
r2)/Mr2, make up the set of control parameters. Further,
we introduce the macroscopic observables (order parame-
ters) useful to describe the system behavior, namely

m :=
1

N

N∑
i=1

ξ1i σi, (7)

1Details concerning calculations and numerical simulations can
be found in the SM.
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n :=
1

r(1 + ρ)

1

NM

N,M∑
i,a=1

η1ai σi, (8)

q12 :=
1

N

N∑
i=1

σ
(1)
i σ

(2)
i , (9)

where we defined, respectively, the Mattis magnetization
of the archetype (eq. (7)), the typical magnetization of the
example (eq. (8)), and the two-replica overlap (eq. (9)); for
m and n we referred to μ = 1 without loss of generality.

Under the replica-symmetry (RS) ansatz, all the or-
der parameters do not fluctuate in the thermodynamic
limit, i.e., being P(x) the probability distribution for the
observable x = (m,n, q12) and 〈x〉 its expectation, then
limN→∞ P(x) = δ(x− 〈x〉). These expectation values can
be obtained by extremizing the quenched free energy of
the model with respect to the order parameters and, as
explained in the SM, for N → ∞ and M 
 1, we obtain
the following set of self-consistent equations:

〈m〉 = Ez tanh

{
β〈n〉

+zβ

√
〈n〉2ρ+ α〈q〉

[1− β (1− 〈q〉)]2

}
, (10)

〈n〉 =
〈m〉

(1 + ρ)− ρβ(1− 〈q〉) , (11)

〈q〉 = Ez tanh
2

{
β〈n〉

+zβ

√
〈n〉2ρ+ α〈q〉

[1− β (1− 〈q〉)]2

}
, (12)

where Ez denotes the average with respect to the standard
Gaussian variable z. The inspection of eqs. (10)–(12) pro-
vides a quantitative picture of the system behavior in the
space of the control parameters as reported in fig. 1(a),
(b). In particular, like in the classical HNN, we recognize
the emergence of an ergodic region corresponding to large
values of T and a retrieval region for relatively small values
of α and T , yet, the Hebbian learning rule (4) makes the
phenomenolgy much richer: here we have an additional
tuneable parameter ρ which controls the width of the re-
trieval region. Denoting with αc(T, ρ) the first-order tran-
sition line between the spin-glass phase and the retrieval
phase, we show that αc(T = 0, ρ) is a decreasing function
of ρ and, as expected, αc(T = 0, ρ = 0) ≈ 0.138, consis-
tently with the AGS theory. Signatures of this transition
are also found by means of finite-size Monte Carlo (MC)
simulations as shown in fig. 1(c), (d). Further, looking at
eqs. (10)–(12) and requiring a non-vanishing magnetiza-
tion 〈m〉, we derive that ρ must be finite and therefore we
recover the scaling M ∼ r−2; also, in the zero fast-noise
limit T → 0, these equations can be treated to get explicit
expressions as achieved in the SM.

Fig. 1: Behaviour of the supervised HNN as the control pa-
rameters are varied. (a) Phase diagram highlighting the er-
godic (E), the spin-glass (SG) and the retrieval (R) phase vs.T
and α; the transition line between the SG phase and the R
phase depends on ρ and three cases are shown: ρ = 0 (dashed
line, corresponding to AGS theory), ρ = 0.1 (dashed-dotted
line), and ρ = 0.2 (dotted line). (b) Critical load αc obtained
for T = 0 and as a function of ρ. (c) Estimate of the Mat-
tis magnetization vs. ρ by MC simulations for systems of size
N = 5000; different loads are considered and plotted in differ-
ent colors (brighter nuances correspond to larger values of α,
as reported on the right); the vertical lines represent the tran-
sition points predicted analytically. (d) From data presented in
panel (c) we derive the susceptibility with respect to ρ and no-
tice that the peaks approximately match the transition points
(by a finite-size scaling we checked that the match gets closer
as N is made larger).

We now bridge this theory with the machine learn-
ing counterpart. We consider a RBM made of two
layers, a visible one endowed with N binary neurons
σ = {σi}i=1,...,N ∈ {−1,+1}N , and a hidden one
built of K real-valued neurons z = {zμ}μ=1,...,K ∈ R

K

with a Gaussian prior, and whose Hamiltonian reads
as H(RBM)(σ, z|W ) = −

∑N,K
i,μ Wi,μσizμ. We choose

the length of the hidden layer to match the number of
archetypes in such a way that, as we will see, we can as-
sign to each hidden neuron the recognition of a unique
archetype. The Boltzmann-Gibbs distribution associated
to H(RBM) is

Pβ(σ, z|W ) =
1

Z(RBM)

β (W )
e−βH(RBM)(σ,z|W )−β z2

2 . (13)

Now, the goal is to find the weight setting such that this
measure mimics the target one, referred to as Q, which
generated the examples in S. Focusing on a classification
task, we adopt the so-called grandmother cell scheme: dur-
ing training, the generic input-output pair is (ηνa, z(ν)),
where z(ν) is the one-hot vector whose ν-th entry is the
single non-null entry [19,20]. Thus, the target distribution
reads as

Q(σ, z) =
∑
μ,a

δ(ημa − σ)δ(z(μ) − z), (14)

and, if training is successful, we expect that, initializing
the visible layer as a test example η̃ν of the ν-th archetype
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Fig. 2: Comparison between HNN and RBM performances.
In (a) we fix a certain value for the expected magnetization
〈m〉 and we derive from eq. (10), obtained theoretically for the
HNN, how r andM should be tuned in order to retain this value
constant (solid line); an analogous analysis is repeated numer-
ically for the RBM where now m is evaluated as the overlap
between the visible layer and a given archetype (symbols); dif-
ferent values of magnetization are considered and represented
with different symbols. (b) Expected value of the RBM magne-
tization versus the training time and for given values of r and
M , under on-line contrastive divergence (CD-1) [21]; the long-
time value corresponds to the theoretical estimate obtained
for the HNN for the same choice of r and M (horizontal lines).
In (c) we sampled 1.5×104 couples (α, ρ) ∈ (0, 0.2)×(0, 0.5) by
Sobol’s low-discrepancy sequence; for each extraction (repre-
sented by a cross in the inset) we build a RBM of size N = 5000
and K = αN , we generate a set S of examples and we set the
machine weights asW = η̄. Then, we initialize the visible layer
as a test example η̃ν , we run MC simulations and we evaluate
〈zν〉, whose histogram is depicted in the main plot, distinguish-
ing between cases inside (blue) and outside (grey) the retrieval
region. Since 〈zν〉 ∝ 〈mν〉 (see eq. (16)), the delta-like shape
of its histogram is a signature of retrieval.

and letting the neurons evolve freely up to thermalization,
the hidden layer will provide the estimated class as argmax
[〈z(η̃ν)〉].

The learning rule can be derived by a gradient descent
on the Kullback-Leibler (KL) cross entropy DKL(Q‖P)
between the distributions Q and P, that is, Wn+1

i,μ =

Wn
i,μ − εdDKL(Q‖P)

dWi,μ
, where n accounts for training itera-

tions and ε is the learning rate; recalling (14) this yields

Wn+1
i,μ = Wn

i,μ + ε (〈σizμ〉σ&z − 〈σizμ〉) , (15)

where the brackets denote the expectation under the
Boltzmann-Gibbs measure (13) and the bracket subscript
specifies the clamped variables.

In the case of orthogonal patterns, the configuration
where weight entries are set as the empirical average of ex-
ample entries, i.e., Wiμ = η̄iμ := 1

M

∑M
a=1 η

μa
i , is a fixed

point for the contrastive divergence and therefore com-
patible with a trained machine (see the SM and [19,22].
Further, with this choice we can prove that the RBM is
equivalent, in distribution, to the HNN with supervised

Hebbian rule; in fact, by a Gaussian integration,

Z(RBM)

β (W = η̄) =
2N∑
σ

∫
e

β√
N

∑
μ(

∑
i σiη̄iμ)zμ)−

βz2μ
2 (16)

=

2N∑
σ

e
β

2N

∑
μ

∑
ij σiη̄iμη̄jμσj = Z(HNN)

β (S).

This equivalence implies that the phase diagram out-
lined for the HNN (see fig. 1(a), (b)) also applies to the
RBM, as confirmed in fig. 2. In particular, the retrieval re-
gion corresponds to a parameter setting where the trained
RBM relaxes to configurations such that the overlap be-
tween the visible layer and the archetype are close to one.
Remarkably, this is consistent with the usual performance
and score values [14] or error-based measures as in the
Vapnik-Chervonenkis learning theory [23] where one aims
to minimize the distance between the output and the in-
stances of a test set. In fact, −(σ−ξ1)2 ∝ σ ·ξ1 = m and
−(σ − η1)2 ∝ n: whenever the network is in the retrieval
region, for some archetype μ it is minimizing one of these
Loss functions Lμ

± = (1/2N)||ξμ ± σ||2 = 1 ± mμ as the
Hopfied Hamiltonian can be written as

H(HNN)(σ|J) = −N

K∑
μ

(1− Lμ
+L

μ
−),

where the term Lμ
+L

μ
− guarantess that it learns both the

pattern ξμ and its gauge symmetric copy −ξμ.
In order to appreciate further the equivalence be-

tween HNN and RBM, we show that it can be reached
from a different perspective, namely using the maximum-
entropy principle, according to Jaynes’ inferential inter-
pretation [24,25]. Let us look for the least structured
probability distribution P(σ, z) that is compatible with

the set of data {(ημa, z(μ))}a=1,...,M
μ=1,...,K to inspect which kind

of correlations the machine detects in the dataset. While
extensive calculations are provided in the SM, here we re-
port the main findings: the minimal constraints needed
to recover the HNN and RBM’s Boltzmann-Gibbs distri-
bution concern the variance of hidden units and the cor-
relations between visible and hidden units —set equal to
their empirical estimates Cz2

μ
and Ci,μ

σ,z for i = 1, . . . , N
and μ = 1, . . . ,K, respectively— beyond those for P to
be well defined. The constrained optimization problem
therefore reads: max{λ0,λ1,Λi,μ}i,μ

S[P], with

S[P]=−〈P lnP〉P+λ0 (〈P〉P−1)

+ λ1

(〈 K∑
μ=1

z2μ

〉
P
−Cz2

μ

)
+

N,K∑
i,μ

Λi,μ

[
〈σizμ〉P−Ci,μ

σ,z

]
,

(17)

where 〈·〉P denotes the expectation over P. The solution
yields the following Lagrange multipliers:

eλ0−1 =
∑
σ, z

P(σ, z), λ1 = 1,

Λi,μ =

√
β

Nr2(1 + ρ)

1

M

M∑
a=1

ημai .
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Therefore, this machine captures correlations between the
two classes of neurons and, under the supervised learning
protocol chosen here, these are recast into empirical av-
erages over examples. In particular, the hidden-layer size
can be interpreted as a measure of the model flexibility:
a larger K allows for a larger number of degrees of free-
dom and for a finer inference, yet too large a flexibility
can imply overfitting phenomena which in our framework
are naturally recast as the emergence of a pure spin-glass
phase. According to the phase diagram in fig. 1(a), the
maximum flexibility allowed is Kc = αc(ρ)N ; this esti-
mate is successfully checked in fig. 2(c).
Up to now, we proved that, when dealing with a ran-

dom, structureless dataset, the HNN with supervised Heb-
bian rule and the RBM trained under a grandmother cell
scheme are equivalent, and that parameters that emerge
naturally in a statistical mechanics framework can be re-
lated to standard quantifiers in a machine learning con-
text. More challenging datasets can also be treated as
long as the intrinsic structure is properly encoded in the
system as we are going to explain. Let us denote with

S = {ζμa}μ=1,...,K
a=1,...,M the sample of examples, where the

change of notation underlines that now, in general, there
is no archetype available hence ζμai cannot be obtained by
flipping some pixels in the related archetype as in eq. (2).
Moreover, in the structureless case, scrolling through the
various examples belonging to the same class, pixels are
all homogeneously subject to a flipping probability, while
in the structured case some pixels turn out to be more
persistent than others. This recalls the difference between
ergodic and glassy configurations in spin models. In par-
ticular, glassy configurations are characterized by peculiar
statistical properties (e.g., lack of self-averaging) which
are in turn related to an ultrametric organization. The
existence of an analogous organization for dataset items
may suggest effective strategies for their processing of a
learning machine. In fig. 3 we show some evidence in
this sense: the distribution of item overlaps —mirroring
replica overlaps in spin systems— resembles the Parisi dis-
tribution [11], further (as analyzed in depth in the SM)
Ghirlanda-Guerra identities [26] are numerically shown to
hold.
In the light of this result we expect that, when em-

ploying the basic, two-layered network for structured data,
non-trivial correlations among hidden neurons arise, im-
pairing the overall performance. To disentangle such
correlations we conceive a routine that extends the pre-
vious grandmother cell scheme: We pre-treat each sub-
sample Sμ = {ζμa}a=1,...,M to assess its intrinsic structure
(e.g., by principal component analysis), whence we deter-
mine Kμ disjoint and exhaustive sub-groups {S�

μ}�=1,...,Kμ

and we allocate as many hidden neurons for each class,
the overall size of the hidden layer therefore reads as

K̂ =
∑K

μ=1 Kμ. The weight matrix W ∈ R
K̂×N is

determined by averaging over instances assigned to each
sub-group S�

μ for � = 1, . . . ,K. Classification is finally
performed over this hidden layer by an additional softmax

Fig. 3: Evidence of RSB in structured datasets. Upper plots:
we compare the empirical overlap distribution P(q) obtained
for the random (panel (a)), the MNIST (panel (b)), and the
fashion-MNIST (panel (c)) datasets; three different item sizes
are also considered, see the legend. From left to right, we
move from a RS scenario where P(q) exhibits two peaks that
get sharper as the item size increases, to a RSB scenario
where P(q) is bimodal but with increasing broadness as the
item size increases. Lower plots: we report the violation of
the Ghirlanda-Guerra identities (GG1, GG2) and the viola-
tion of self-averaging SA as obtained for the random (panel
(d)), the MNIST (panel (e)) and the fashion-MNIST (panel (f))
datasets. Again from left to right we move from a RS scenario
where the self-averaging relations hold and the Ghirlanda-
Guerra relations (corresponding to trivial identities) are fast
vanishing, to a picture resembling RSB, where self-averaging
does not hold any longer but the Ghirlanda-Guerra relations
are still preserved (this time in a non-trivial manner). See the
SM for further explanation.

Fig. 4: Schematic representation of a three-layer RBM for the
MNIST dataset based on RSB hierarchy. From left to right:
visible layer σ ∈ {−1,+1}N receiving digits to be classified
(raw data); hidden layer z ∈ R

K where each node corresponds
to a pseudo archetype as sketched (1-RSB effective representa-
tion); softmax layer π ∈ [0,+1]K for classification (RS effective
representation).

layer π = softmax[Γ · (W · σ)2] ∈ [0, 1]K , where Γ can
again be determined by simple, algebraic operations over
the training set, see fig. 4 and the SM. Notice that the
determination of the weights W and Γ is again “one-shot”
and does not require any lengthy extremization procedure.
The rationale underlying this scheme is that we want

to achieve a “simplified” representation of data that can
be supplied to the classifier: each sub-sample in the
structureless case displays a RS representation that allows
for an identification between the class and the archetype
and therefore for a direct classification; conversely, in
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the MNIST and in the fashion-MNIST datasets each
sub-sample exhibits an intrinsic organization, much as like
there were several (pseudo) archetypes for each class in
such a way that we need (at least) one extra layer to lift
them before classifying them. This procedure can be iter-
ated so to establish a connection between more and more
abstract representations in deep learning layers and more
and more general representations in RSB steps, hence
moving from the leafs (items) toward the common ances-
tor (archetype). Remarkably, this interpretation offers a
new perspective to understand the success of deep learn-
ing architectures [2,27] in analyzing complex datasets by
relating the natural phylogenetic organization of (some)
of them, see, e.g., [28,29], to hierarchical clustering in the
RSB-scheme. This can be particularly intriguing as, once
fed the Hopfield model with real datasets, we have also
established a one-to-one connection between its cost func-
tion (expected to give rise to a RSB-picture of the free
energy landscape) and the typical loss functions used in
machine learning.
The machine obtained in this way has been tested over

the two benchmark datasets obtaining an accuracy of
about 95% for MNIST and 84% for fashion-MNIST, to
be compared with, respectively, 75% and 63% obtained
for the simple (RS) machine, see figs. S6, S7 in the SM.
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