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Abstract

Since the deep observations by Leonardo da Vinci, understanding fish locomotion in water has
always attracted the attention of scientists in many fields, from fluid mechanics to other disciplines
concerning environmental sciences. The complexity of this problem is mainly given by the non-linear
interaction between the fish body and the surrounding fluid otherwise at rest, leading to the desired
forward locomotion and to the unavoidable angular and lateral recoil reactions, which are essential
for a correct evaluation of the swimming performance. Despite many advances have been obtained
for the study of fish self-propulsion in recent years, from simple mathematical models up to complex
numerical solutions, the main mechanisms underlying fish locomotion are not fully clarified and still
require further investigations.

In this thesis free swimming conditions is deeply analyzed for both steady swimming and fast
maneuvers by a theoretical approach which considers the full body-fluid system to obtain the ex-
changed internal forces. The focus is on the added mass and the vortex shedding contributions to
the locomotion performance and on the role of recoil motions which, together with the prescribed
body deformation, define the free swimming behavior.

To this purpose, the impulse formulation allows for an easy isolation of the potential contri-
bution, related to the added mass, and of the vortical contribution related to bound and released
vorticity and a simple two-dimensional numerical model with concentrated vorticity is adopted for
the numerical simulations to generate meaningful results able to clarify these physical phenomena.
The aim is a unified procedure for both undulatory and oscillatory swimming to obtain valid an-
swers for cruising speed, expended energy and kinematics, hence for the swimming performance in
terms of the cost of transport and propulsive efficiency. The same model is also able to give new
insights on the impressive performance characterizing fish fast maneuvers. The extreme turning
capability and the large acceleration, so essential to fish survival along pray-predator encounters,
are studied by highlighting the potential and the vortical impulses and their interplay induced by
recoil motions, to show their relevance for the realization of the maneuver.

Keywords: fish swimming, self propulsion, aquatic locomotion, recoil motions, C-start, undula-
tory swimming, oscillatory swimming.
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Chapter 1

Outline of the research work

Every living being, whether walking on land or soaring the sky, has its roots within the seas and
oceans. The earliest forms of life exploited water to move and interact, and even today thousands
of living species spend their lives underwater interacting with the aquatic environment in ways that
constantly leave us in awe and wonder. From the smallest organisms to the largest cetaceans, the
amazing adaptation of aquatic life is surely a topic of enormous interest, as it opens the door to
a world that is still little known and explored. Specifically, understanding aquatic locomotion has
always attracted the attention of scientists, since the deep observations that Leonardo da Vinci
described in his notes (e.g. Atlanticus Codex folio 571 A recto) more than five centuries ago. At the
beginning of the last century, to unveil the secrets behind fish incredible skills, a large number of zo-
ologists, biologists and fluid dynamicists started to systematically investigate fish swimming with the
aim to discover and understand the physical mechanisms behind fish capabilities[13, 28, 42, 68, 77].
Given the genuine scientific interest in such an intriguing subject, the aim is to define novel con-
cepts of underwater bioinspired vehicles with high efficiency, long-term endurance and improved
maneuverability. This requires a strong multidisciplinary approach combining competencies coming
from biology, structural mechanics, fluid dynamics and cybernetics to empower the design of ener-
getically and fluidynamically efficient robots which may provide innovative and sustainable forms
of exploration and exploitation of aquatic environments. From a fluid mechanics perspective, fish
locomotion represents a particular case of the more general problem of the self-locomotion of a
deformable body which sets in motion the fluid about it through its own deformation to obtain the
desired advancement motion. The study of this problem is extremely complex and its treatment is
generally simplified by some hypothesis depending on the subject. For example, the body is often
assumed to be placed under a uniform stream and its unsteady motion, whether it is a rigid motion
or a deformation, is imposed to evaluate the loads on the body surface due to the generated flow
field. However, in reality, the fish motion is strongly dependent on the surrounding fluid, more
precisely, it relies on the fluid pushed by fish movements. This means that further unknowns in a
self-propelled problem, in addition to the flow field and to the hydrodynamic forces, are the locomo-
tion, i.e. the advancement motion obtained by the interaction with the surrounding fluid, and the
unavoidable lateral and angular recoil motions. The search for the unknown locomotion speed also
requires a different perspective than the fixed-swimming approach usually adopted in the literature.
For instance, parameters such as the Strouhal number or the reduced frequency can no longer be
used as inputs of the problem since their definition contains the unknown locomotion speed. The
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Chapter 1. Outline of the research work

selection of new parameters not depending on the problem unknowns is then necessary to allow for a
clear results analysis, which adds further complexity to the comparison with the existing literature.
Examples are the phase velocity and the tail oscillation amplitude which, identifying in a way the
body deformation, are given only in terms of the assigned data.
In recent years, computational fluid dynamics has made great strides and is now able to provide
very accurate estimates of the fluid and pressure fields generated by a self-propelled body immersed
in a fluid domain. Actually, nowadays it is possible to obtain, although with a huge computational
effort, solutions of the complete Navier-Stokes equations, so to be able to estimate the hydrody-
namic forces acting on the body and its consequent motion with a sufficient accuracy. However, such
accurate models may hide the essence of the self-propulsion problem due to its entangled nature.
For instance, a lot of attention is often given to the geometry of the vortical structures released
into the wake, already recognized as not reliable indicator of swimming performance[21], or to the
resulting pressure field which, due to its integral nature, hides within it the effects of different phys-
ical phenomena not easy to be identified.
“In order to go on, you have to know what to leave out: this is the essence of effective think-
ing.” These words, attributed to the logician, mathematician and philosopher Kurt Gödel, in a
way reflect the line of reasoning followed in the present PhD research, where the adopted math-
ematical and numerical model has been selected by laying aside everything which is not essential
for the specific aims. Actually, the suggested simple impulse model is build to provide everything
necessary for a thorough analysis of the physics behind the self-propulsion of a body by means
of the surrounding fluid. The model is constructed by combining the impulse formulation with a
simple two-dimensional model so to obtain neat results as firmly suggested by several authors (e.g.
Schultz and Webb [63], Akoz et al.[2, 3]) and successively encouraged by the matching between
the two-dimensional flow field and the midbody plane flow in three-dimensions (see Wolfgang et
al.[73]). A non-diffusive flow solution procedure is also used so to isolate the potential contribution
associated with added mass from the circulatory contribution associated with vortex shedding in
the wake, and so to finally give insight on the role of the lateral and angular recoil reactions which
are always accompanying the advancement motion of the fish and are of major importance for the
evaluation of the swimming performance. This model is accurate enough to give reliable measures
of swimming speed and energy consumption, and is mainly applied for both the study of undulatory
and oscillatory free swimming and the study of typical impulsive fish maneuvers observed during
prey-predator interactions.

The present thesis consists of the collection of five already published (paper 1, 2, 3 and 5) or
submitted (paper 4) papers resulted from the research activity. The articles are introduced by
an opening chapter presenting a general and comprehensive survey of the research by providing a
common background for the following papers. The first section presents a complete description of the
mathematical and numerical model, while the next three sections present an overview of the results
obtained for the three main subjects deepened in the reported papers, namely undulatory swimming,
oscillatory swimming and fast maneuvers. For instance, the role of recoil motion in defining the
swimming performance is highlighted in the case of undulatory and oscillatory swimming to show its
relevance on locomotion speed and on energy consumption once free-swimming gait is considered.
The phase velocity, known to drive the locomotion velocity in undulatory swimming, is also modified
by recoil motions and is identified in the case of oscillatory swimming by some specific geometrical
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1.1. A unified simple model

characteristics of the tail flapping motion. Moreover, the contemporary observation of the Froude
efficiency and the cost of transport allowed for the understanding of their validity for different
swimming demands to overcome the conflicting opinions appearing in the literature about the best
procedure to evaluate swimming performance.

1.1 A unified simple model

After some early studies[12, 58], fish swimming started to be experimentally investigated by bi-
ologists by analyzing fish motion in water tunnels or towed in water tanks to keep them in the
most suitable position for easy measurements[13, 28–30, 39]. By following the same idea, the as-
sociated theoretical models were developed to predict the thrust force obtained by the fish as a
consequence of a prescribed deformation under a prescribed uniform stream. The thrust, often
associated exclusively with the fish’s caudal fin, was supposed to counterbalance the unavoidable
body resistance and to provide the Froude efficiency as the natural way to evaluate the swimming
performance[42, 76, 77]. More recently, self-propulsion was recognized as a more appropriate way
to investigate the optimal conditions for swimming bodies[14, 19, 36, 70, 78]. In this case, at steady
state, the proper unknown of the problem is the locomotion speed achieved by the fish when the to-
tal force vanishes for thrust and drag balancing each other. As a consequence, the Froude efficiency
looses its meaning and the swimming performance are better measured by the cost of transport, i.e.
by the energy consumption per covered distance[7, 25]. However, fish propulsion is characterized by
many different styles related to different goals and requirements. As anticipated above, the present
PhD research tries to explore these different swimming gaits by means of a suitable impulse model
able to neatly highlight, due to its simplicity, the essence of the problem. The model is presented
below in a comprehensive and detailed way with the aim to treat all the steps needed to construct
the solution methodology while a model description focusing on the most relevant issues for the
specific application is presented in each reported paper.

1.1.1 The impulse formulation

The motion of a deformable body within an infinite volume of initially quiescent fluid with constant
density is studied by considering a fluid-body domain with no external forces or moments applied.
In other words the total linear and angular momenta are conserved for the whole domain, while the
forces and moments exchanged between fluid and body appear as internal actions. The equations
describing the dynamics of the body centre of mass are obtained directly from the momentum
balance expressed through the time derivative of the fluid impulse (linear p and angular π). This
impulse formulation has been extensively discussed by several authors[32, 45, 46, 51, 60, 75] and
allows for the separation of potential and vortical impulses so to highlight the contributions due to
both added mass and release of vorticity, respectively. Moreover, the impulse formulation does not
show the conditional convergence properties that the momentum has in an infinite domain[15, 38]
and even more it is linear with respect to the vorticity. By using classic vector identities, the linear
and angular impulses are expressed by means of two terms concerning the vorticity concentrated
on the contour of the body and shed within the field.
As anticipated above, we consider an impermeable and flexible body with bounding surface ∂B
in an infinite dimensional volume V with zero velocity at infinity and we assume a Newtonian,
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1.1. A unified simple model

incompressible fluid with density ρ. The outer surface is stationary in an absolute reference frame
and the fluid velocity is assumed to vanish on the far field boundary. In an isolated fluid-body
system (V + B ), the sum of the forces (and moments) acting on the body and on the fluid is zero,
as given by

d

dt

[∫

B
ρbub dV +

∫

V
ρu dV

]
= 0 (1.1)

where ρb and ub are respectively the density and the velocity of the body and u is the flow velocity
in fluid field.
The conservation of the total impulse[19, 35, 61] allows to avoid the calculation of the time derivative,
necessary when evaluating the forces, and the subsequent time integration for the body motion. In
this way, a more accurate and simpler numerical computation is obtained. So, we remove the time
derivative in eq.(1.1) and, by assuming null initial condition, the momentum balance gives

∫

B
ρbub dV + ρp = 0 (1.2)

By using a vectory identity for the unbounded fluid volume[52, 75], the fluid impulse p is expressed
as

p =
1

N − 1

[∫

V
x× ω dV +

∫

∂B
x× (n× u) dS

]
(1.3)

where N is the dimension (here N = 2 will be assumed), x is the position vector in the inertial
frame and ω is the field vorticity. In the second term in eq.(1.3), u stays for the limiting value of
the fluid velocity on ∂B and the integral over the external boundary receding to infinity has been
proven to exactly vanish[52, 74]. The normal n points out of the flow domain and all the vorticity
is enclosed within the fluid volume V which extends to infinity. The right-hand side of eq.(1.3) is
independent of the choice of the reference frame origin[32, 52, 75].
A similar approach for the angular momentum (positive anticlockwise) balance yields

∫

B
ρbx× ub dV + ρπ = 0 (1.4)

where the angular impulse π is

π =
1

2

[∫

V
|x|2 × ω dV +

∫

∂B
|x|2(n× u) dS

]
(1.5)

The velocity field u can be expressed, through the Helmholtz decomposition, as the sum of both
the acyclic component and that related to circulation and vortices:

u = ∇ϕ+∇×ψ = ∇ϕ+ uw (1.6)

where ϕ and ψ are referred to as scalar and vector potential, respectively, and are given by the
solution of the Laplace/Poisson equation, subject to the impermeability boundary condition on ∂B
and to the related velocity vanishing at infinity.
The velocity decomposition (1.6) can be used to recast the total impulse (1.3) as the sum of the
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1.1. A unified simple model

potential and of the vortical ones: p = pϕ + pv. The potential impulse is given by

pϕ = −
∫

∂B
ϕn dS (1.7)

where a vector identity for a scalar quantity has been used and the unit normal n to the body
surface is now pointing into the fluid. The vortical impulse pv is given by:

pv =

∫

V
x× ω dV +

∫

∂B
x× (n× uw) dS (1.8)

The expression for the angular momentum can be similarly obtained by separating the vortical and
the potential contributions using another vector identity[75] and the generalized Stokes’ theorem.
By considering eq.(1.5), we can define the angular potential impulse as

πϕ = −
∫

∂B
x× ϕn dS (1.9)

πv = −1

2

∫

V
|x|2ω dV − 1

2

∫

∂B
|x|2(n× uw) dS (1.10)

1.1.2 Locomotion procedure

Let’s now consider the two-dimensional motion of the deformable body B within a Cartesian inertial
frame (e1, e2, e3). The body motion occurs in the plane (e1, e2) and an angular velocity Ω about
the axis e3 may be present as well. The total motion of the body ub can be expressed as the sum
of the prescribed shape deformation with velocity ush plus the centre of mass (CM) linear velocity
ucm which, combined with the angular velocity Ω, gives the total locomotion velocity uloc. Thus
we can split the body motion as:

ub = ush + ucm +Ω× (x− xcm) = ush + uloc (1.11)

where xcm is the position of the body center of mass. As a mandatory requirement for eq.(1.11) to
be valid, since no rigid motions are allowed for an isolated body, the body deformation velocity has
to satisfy the following two conditions

∫

B
ρbush dV = 0

∫

B
ρbx

′ × ush dV = 0 (1.12)

so as the net linear and angular momenta of the imposed kinematics are equal to zero.
Finally, by combining eq.(1.11) with eq.(1.2) and eq.(1.4), we obtain:

mbucm + ρp = 0 (1.13)

JΩ− ρπ′ = 0 (1.14)

where mb and J are the body mass and the moment of inertia of the body respectively and the
angular impulse is recast in terms of the distance with respect to the center of mass as π′ =
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1.1. A unified simple model

(π − xcm × p) · e3.
Let us now express the locomotion equations eq.(1.13) and eq.(1.14) in a coordinate frame

attached to the body b1, b2, b3 with origin in CM and with b3 parallel to e3. The angular and
the linear velocity of the center of mass are rewritten in the new body frame as Ω = Ωb3 and
Vcm = V1b1 + V2b2 respectively, while the angular and linear fluid impulses are Π = Πb3 and
P = P1b1 + P2b2, leading to

mbVcm + ρP = 0 (1.15)

JΩ− ρΠ = 0 (1.16)

The velocity field is represented through the previously introduced Helmholtz decomposition and
the acyclic term is also split into the contribution given by shape deformation and locomotion

u = ∇ϕsh +∇ϕloc +∇×ψ = ush + uloc + uw (1.17)

The locomotion potential is expressed through the three Kirchhoff base potentials (ϕ1, ϕ2, ϕΩ) re-
lated to unit linear motions in b1 and b2 directions as well as to unit angular rotation about b3,
respectively. It follows that the total acyclic potential is

ϕ = ϕsh + ϕloc = ϕsh + V1ϕ1 + V2ϕ2 +ΩϕΩ (1.18)

Each scalar potential is harmonic with the prescribed decay at infinity while the boundary conditions
on ∂B accounts for the impermeability condition:

∂ϕ

∂n
= [ush + V1b1 + V2b2 +Ω(b3 ×X)] ·N on∂B (1.19)

where X and N stay for the position vector and the body surface normal direction in the body
fixed frame. The vector potential ψ satisfies ∇2ψ = −ω together with the boundary condition
(∇×ψ) · n = 0 on ∂B and ∇×ψ = 0 at infinity.
By combining eq.(1.15) and eq.(1.16) and using the velocity decomposition, we obtain

∫

∂B
ϕN dS − mb

ρ
Vb = Psh + Pv (1.20)

J

ρ
Ω−

∫

∂B
(X × ϕN) · b3 dS = Πsh +Πv (1.21)

Finally, let us now express the locomotion impulses in terms of the added mass coefficients reported
in the classical literature[9, 37, 50] by combining eq.(1.20) and eq.(1.21) with the decomposition of
ϕloc appearing in eq.(1.18). Upon inserting the relevant added mass coefficientsmij in the equations,
we obtain the final form of the system as





V1 (m11 −mb) + V2m12 +Ωm13 = Psh1 + Pv1

V1m21 + V2 (m22 −mb) + Ωm23 = Psh2 + Pv2

V1m31 + V2m32 +Ω(m33 − J) = Πsh +Πv

(1.22)

Self-propelled fish locomotion in an otherwise quiescent fluid 6



1.1. A unified simple model

We may appreciate that the added mass terms which multiply the unknowns now appear directly in
the l.h.s with a major advantage in terms of stability of the integration procedure. Let us notice that
the above system of equations provides the evaluation of the body velocities without considering
time derivatives as required when using the standard formulation in terms of forces and moments.

1.1.3 Flow solution procedure

The numerical solution of the above system is obtained by considering a potential flow with concen-
trated vorticity on the body surface and its subsequent shedding behind the body into the vortex
wake. The flow solution at each time step is obtained by using an unsteady potential panel code
which is based on the Hess and Smith[33] approach while the unsteadiness of the problem, i.e. the
wake release, is taken into account following the Basu and Hancock procedure[8]. Specifically, the
swimming fish at rest is represented by a shape corresponding to a NACA airfoil with a chord length
c equal to 1 and a surface perimeter l. The deformable body surface is approximated by a finite
number of straight-lines called panels, each with a local, uniform, distributed source strength σ and
all with a global (i.e. equal for each panel), uniform, distributed vortex strength γ. The n panels
are identified by n + 1 points called nodes and by their mid-points called collocation point so to
give a total of n+ 1 unknowns. It follows that n+ 1 equations are required to find the source and
vortex strengths on the body surface. Specifically, the impermeability condition is imposed on each
panel to give first n equations, while last one is given by an unsteady Kutta condition which ensures
that the pressure on the upper and lower surface at the trailing edge is equal. However, given the
unsteadiness of the problem under analysis, these n+1 unknowns are obviously time dependent so
that it is reasonable to introduce a subscript k which will indicate the time-step of reference.
For instance at each time-step tk(k = 1, 2...,∞) the singularities on the airfoil, i.e. the sources and
the uniform circulation density, will be indicated as:

• (σj)k (j = 1, 2..., n)

• γk

According to the well known Kelvin theorem, if the total circulation in the flow field is equal to zero
at the starting time, it will stay equal to zero, hence any changes in the circulation on the body must
be followed by equal and opposite changes in the circulation in the wake. Consequently, the vortex
shedding process and the wake formation are modelled by assuming that a vortex is shed into the
wake at each time-step, taking place as straight line wake element which is essentially an additional
panel attached to the body trailing edge with a uniform vortex distribution (γw)k on it. This panel
will be indicated as shed panel and is numerated as n + 1 and is defined by the introduction of
two additional unknowns, i.e. its length (∆w)k and its inclination (θw)k with respect to the axial
direction in the body fixed frame. The strength of the vortex distribution on the shed panel can be
obtained as a simple application of Kelvin Theorem:

Γk − Γk−1 = (∆w)k(γw)k (1.23)

where the left-hand side is the change in the total circulation on the airfoil between the actual
time-step tk and the previous time-step tk−1 and Γk is obtained as the product between γk and the
airfoil perimeter l.

Self-propelled fish locomotion in an otherwise quiescent fluid 7



1.1. A unified simple model

The introduction of the above mentioned two unknowns associated to the wake panel requires two
additional conditions to be specified:

1. the shed panel is oriented as the velocity at the panel’s collocation point

2. the length of the shed panel is equal to the velocity at the panel’s collocation point multiplied
by the time-step size dt = tk − tk−1

Finally, at the end of each time step, the vortex distribution on the shed panel is lumped in a point
vortex, indicated as core vortex, and is advected downstream with the flow for every t > tk.
It’s worth to be noticed that the shed panel and the resultant wake core vortices are definitely going
to influence the upstream flow and the singularities on the body surface (σj)k and γk which, in
turn, are also going to influence the shed panel distribution (γw)k and the motion of the vortices in
the wake. It follows that this vortex shedding procedure is clearly non-linear and thus an iterative
solution scheme must be used which is here summurized:

1. the shed panel vortex distribution at the previous time-step k−1 is concentrated in a lumped-
vortex and moved according to the velocity calculated at the point-vortex itself (always at the
time-step k − 1)

2. all the other shed core vortices generated before are moved with the flow velocity at their
location

3. the body is moved according to the computed rigid motion velocity and deformed according
to the shape deformation velocity, both at the previous time-step k − 1

4. a new shed panel is generated at the actual time-step tk and first-attempt values are chosen
for (∆w)k and (θw)k based on the flow velocity on the shed panel in the previous time-step

5. all the singularity distributions on the body surface are evaluated by applying the imperme-
ability condition and the Kutta condition

6. the velocity at the shed panel collocation point is calculated and it is used to update the
values of (∆w)k and (θw)k

7. point 5 and 6 are repeated until the updated values of (∆w)k and (θw)k are essentially the
same as the previous iteration

In principle, the method just described is plenty sufficient to find the solution of the flow in the case of
a deformable body undergoing a fully prescribed rigid motion. In the present case of self-propulsion,
however, the body rigid motion is an additional unknown and is going to be determined at each time-
step as described in the previous paragraph. In fact, in this case, a double iterative cycle is required
to simultaneously determine both the flow solution with the relative singularities distributions and
the self-propulsion velocity, either linear and angular. To this purpose, the following steps are added
to the solution procedure:

8 the locomotion problem is solved to find the three components of the unknown rigid body
velocity (V1)k, (V2)k and (Ω)k

9 point 4, 5, 6, 7 and 8 are repeated until the values of the (V1)k, (V2)k and (Ω)k are essentially
the same as the previous iteration

Self-propelled fish locomotion in an otherwise quiescent fluid 8



1.2. Undulatory swimming

1.2 Undulatory swimming

To obtain the desired locomotion by keeping as low as possible the energy consumption, many fishes
undulate a large part of their body, if not the whole body, by generating a travelling wave along their
body or fins to push fluid backwards. Examples of undulatory swimmers include eels, lampreys,
mackerels and some rays. As brightly explained by Gray[31] and successively assumed by many
others, the main feature of undulatory propulsion is the phase velocity of the traveling wave which
has to be slightly larger than the forward fish locomotion velocity but sufficiently close to ensure good
swimming performance. The most famous analytical model introduced by Lighthill and Wu[42, 77],
based on the elongated body theory under a prescribed stream, finds direct expressions for thrust and
expended energy which influenced all the subsequent research on the subject. However, the wave-like
deformation travelling from head to tail is involving a significant part or the whole body consistently
with the fish’s shape and swimming style (e.g. anguilliform, carangiform, etc.) so to prevent a clear
identification of the propulsive forces[7, 28, 48]. To overcome this issue, a self-propulsion approach
started to take place in the following years[11, 14, 36, 78] to obtain the locomotion velocity by leaving
the fish completely free to swim according to the forces exchanged with the surrounding fluid. In
this condition, the motion of the deformable body in an unbounded fluid domain is characterized
by the absence of external forces hence the total momentum is conserved for the fluid-body system.
As a consequence, the forces exchanged by the deformable body with the surrounding fluid are
necessarily internal forces, which are strongly entangled due to the coupling between the forward
motion and the recoil motions, i.e. the lateral and angular ones as clearly shown by the system
(1.22). Once a certain given deformation is applied, after an initial transient, the steady state
self-propulsion condition is obtained when thrust and drag are exactly balanced. It follows that the
Froude efficiency, so important when studying an isolated propulsor, loses its meaning at steady
swimming when the mean total force experienced by the body is equal to zero and a proper measure
of the performance like the cost of transport, i.e. the inverse of the well-known miles per gallon
introduced by von Kármán and Gabrielli[25], becomes a mandatory choice[6, 64]. As explained in
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Figure 1.1: Time history of the forward velocity component divided by the equivalent phase velocity fλe
for different deformation amplitudes δβ.

the mathematical model and in the related solution procedure, the numerical results are obtained
for two-dimensional flow with non-diffusing vorticity. In these conditions, based on momentum
conservation, the steady-state swimming speed is fully dictated by the velocity of the fluid pushed
backward by the body, i.e. by the phase velocity given by the product between the undulation
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1.2. Undulatory swimming

frequency and its wavelength. The numerical results reported in fig.1.1 confirm this theoretical
prediction to show how the swimming speed is substantially driven by a proper phase velocity
accounting for the whole motion of the body in free-swimming condition. Actually, by dividing the
forward velocity component by the phase velocity associated to the complete body kinematics (fλe,
where f is the frequency and λe is the wavelength), the asymptotic locomotion velocity is essentially
constant for different deformation amplitudes δβ. The constant value of the asymptotic velocity is
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Figure 1.2: Potential contributions 1.2a and vorticity contributions 1.2b of the forward velocity component
divided by the equivalent phase velocity fλe for different deformation amplitudes δβ.

given by the sum of potential and vortical contributions of different amount which may be isolated
and analyzed through the present model. In particular, they are reported in fig.1.2a and fig.1.2b,
respectively. For growing amplitude, the potential contribution Uϕ/(fλe) increases and the vortical
contribution Uw/(fλe) decreases while their sum remains constant, as reported in fig.1.1, to show
how the pure potential contribution associated with the added mass and the vortical contribution
associated with vortex shedding are going to combine to obtain the phase velocity relative to body
kinematics. It is also worth to notice that the potential contribution reaches instantaneously a
steady state value while the vortical one grows in time with a certain delay suggesting that added
mass is going to play a crucial role in fast maneuvers such as the C-start that will be analyzed later.

Once a steady state swimming condition has been obtained, a change in the undulation frequency
is always going to consistently modify the phase velocity driving the asymptotic swimming speed and
the body may experience either a thrust or drag depending on the specific condition. For instance,
an abrupt increase in the undulation frequency is always followed by an acceleration phase since
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Figure 1.3: 1.3a Deceleration phase direct Kármán street wake pattern. 1.3b Acceleration phase reverse
Kármán street wake pattern.

the body will suddenly be at a swimming speed lower than the new phase velocity. On the other
hand a drag force, hence a deceleration, is always experienced by the body as the phase velocity
decreases, according to an eventual drop in the undulation frequency. These two conditions are
represented from a qualitative point of view in fig.1.3a and fig.1.3b by the wake patterns which are
usually identifying the drag or thrust force experienced by the swimmer, respectively. Specifically,
the renown Kármán vortex street in fig.1.3a, where the clockwise vortex eddies are positioned above
the counterclockwise ones giving a velocity defect in the wake, is usually associated to a drag[71],
while the reverse Kármán street in fig.1.3b characterized by the opposite vortices arrangement is
usually associated to a thrust.

More details are given in paper 1[53] together with the theoretical support for the selection of
the proper phase velocity accounting for the whole motion including the recoil components.

1.2.1 The role of recoil motions and the effects of constraints

A great deal of the studies about swimming fish do not take care of lateral and angular fish kinemat-
ics and the body is usually constrained or tethered along the horizontal direction. These procedures,
both very convenient for experimental and numerical investigations, are unable to account for the
actual motion of the fishlike body in free-swimming mode and for its presumed impact on the overall
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performance. Actually, in the early 1960s, Lighthill was the first one to emphasize the importance
of the lateral and angular recoil motions induced by the fluid–body interactions by identifying them
as a required correction to satisfy the equilibrium equations in the framework of his elongated
body theory. Subsequently, some authors followed the same fixed-swimming approach and tried
to determine, by several numerical investigations, the effects of the recoil motion on the overall
performance[40, 49, 54, 59, 65]. However, the free-swimming approach adopted here is the proper
way to give a clear insight on the role of recoil motions. To this purpose, it is convenient to consider
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Figure 1.4: Time history of 1.4a the forward velocity and 1.4b the kinetic energy for free swimming (blue)
and lateral and angular constrained swimming (yellow).

the comparison between a free-swimming fish and a fish whose lateral and angular recoil motions
are prevented. This constrained swimming gait implies that the center of mass of the fish is able
to move exclusively along the forward direction as it occurs in many experimental or numerical
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investigations. From the results reported in fig.1.4a it is possible to appreciate that the locomotion
velocity obtained by the constrained fish (yellow curve) is smaller than the one obtained by the
free-swimming fish (blue curve). In addition, the constrained gait is also unfavorable in terms of
expended energy which is essentially given by the released vorticity, as shown by its expression in
terms of the excess energy

E =
1

2

∫

V
ψ · ω dV (1.24)

which is reported in fig.1.4b where the curves slope, i.e. the energy rate of change, is representa-
tive of the injected power. To have an intuitive idea of the differences between these two different
swimming gaits, it is convenient to have a look to the animation given in paper 2[54] and accessi-
ble online at https://doi.org/10.1016/j.jfluidstructs.2021.103290. At a first glance, the animation
clearly show that the kinematics of the free-swimming fish (blue) is much more graceful than the one
of the constrained fish (yellow) which is not able to follow the surrounding fluid flow. The natural
consequence is a much more intense vortex shedding into the wake, indicative of the higher energy
consumption. For the sake of convenience, only one frame of the animation is reported here in
fig.1.5. The paper also focuses on the interesting analysis of partial constraints which involve either
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Figure 1.5: Comparison at steady-state of the fully constrained (yellow) and the free swimming case (blue).
The full animation is accessible online at https://doi.org/10.1016/j.jfluidstructs.2021.103290.

the lateral or the angular motion to show that the angular recoil motion is much more critical for
the swimming performance with respect to the lateral one, both in terms of expended energy and
locomotion speed. However, as observed in nature, an intentional reduction of recoil motions might
be desirable under certain conditions. For example, the sailfish, is well known to exploit its dorsal
fin (sail) raising to optimize the performance during hunting by a substantial reduction in lateral
oscillations and rotations[18]. Thus, in this case, the recoil motions reduction is obtained by the
fish for a specific task by the use of its dorsal fin, whose raising causes an increase in the lateral and
angular coefficients of added mass. Actually, as shown by further results in paper 2[54], a proper
modification of these coefficients causes exactly the expected behaviour leading to a reduction in
angular and lateral oscillations, followed by higher energy consumption and lower swimming speed.
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1.3. Oscillatory swimming

1.3 Oscillatory swimming

Unlike undulatory swimming where the whole fish body is involved in the generation of the propul-
sive force, several fish species propel mainly by oscillating their tail, while the remaining part of
the body essentially contributes to the overall drag. Examples are tunas, dolphins and cetaceans
which use their caudal fin to generate the thrust which is going to counterbalance the viscous drag
of the anterior body. In these cases since it is possible, as a first approximation, to separate drag
and thrust, most of the attention was focused in the past on the flapping tail represented by an
airfoil undergoing a combined heave and pitch motion. By considering the airfoil as immersed in
a free uniform stream, the aim was to evaluate the thrust and the Froude efficiency to measure
the performance of the propulsion system, as repeatedly provided in many contributions either
analytical[22, 26], numerical[34, 79] or experimental[4, 23]. However, since swimming speed is the
result of the balance between tail thrust and body resistance, it may be interesting to study oscilla-
tory swimming by recovering the self-propelled approach usually adopted for undulatory swimming.
The mathematical model presented in the previous section is here modified to allow for the investi-
gation of the axial self-propulsion of a flapping foil pushing a fishlike body which is approximated
by defining only its mass and its resistance coefficient, i.e. a virtual body as proposed by Akoz et
al.[3]. These assumptions, due to the known resistance and to the axial motion of the virtual body,
allow for the evaluation of both the cost of transport and the Froude efficiency providing an easy
comparison between the optimal conditions for the two performance measures.

1.3.1 The virtual body model

The application of the virtual body concept introduced by Akoz et al.[2] requires some adjustments
to the mathematical model and to the locomotion procedure presented in the previous paragraphs.
In this case we intend to study the axial motion of a swimming body B which is moving with a veloc-
ity ub within an unbounded fluid domain V∞ by maintaining the assumptions of an unbounded 2D

incompressible flow field with constant density ρ, whose velocity vanishes at the far field boundary.
From the combination of eq.(1.1) and eq.(1.3), without eliminating the time derivatives, we

obtain:
d

dt

∫

B
ρb ub dV +

dp

dt
= 0 (1.25)

The whole body is divided into an active part BT given by the tail and a completely passive one,
named virtual body BV , whose presence is attested only by its mass and its viscous drag in the
axial direction. Since we are only interested in the motion along the axial direction, in this case the
inertial frame axes and the body frame axes are always parallel and the unknown locomotion speed
is expressed as u0 = U e1. The total motion of the entire body may be split into

ub =

{
u0 if x ∈ BV

u0 + uT if x ∈ BT

(1.26)

where uT is given by the prescribed heave and pitch motion of the tail

uT = V e2 + (x− x0)× Ω e3 x ∈ BT (1.27)
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and x0 is the position of the pivot point and V and Ω are the lateral and angular heave and pitch
velocity, respectively. By combining (1.25) and (1.26) we obtain

d

dt
(mu0) +

dp

dt
= 0 (1.28)

where m is the total mass given by the sum between the mass of the virtual body mb and the mass
of the caudal fin mt. By taking the component of (1.28) along e1 to solve for the locomotion along

Figure 1.6: A cartoon for the virtual body (gray) and the tail propulsor (red) with a sketch of the exchanged
forces. Details of the tail flapping motion are reported in the inset. An animation of the swimming fishlike
model and of the related vortex wake is accessible online at https://doi.org/10.1038/s41598-021-01730-4.

the axial direction and by assuming that the surface integrals on the virtual body appearing within
the total impulse p may be represented by its overall resistance D, it follows

d

dt
(mU) +

dp

dt
+D = 0 (1.29)

where the axial component p of the impulse contains only the contribution from the tail. By
assuming zero initial conditions, (1.29) gives:

mU + p = −
∫ t

0
Ddt (1.30)

Finally, by considering the added mass coefficient in the axial direction m1j evaluated only on the
tail surface ∂BT , we have

U (m11 −m) = −V m12 − Ωm13 + pv +

∫ t

0
Ddt (1.31)

where pv is the vortical impulse due to the vortex shedding and to the circulation about the tail.
The drag term appearing in the r.h.s. of (1.31) is expressed as D = 1

2ρU
2LCD, where L is the body

length and CD is the prescribed drag coefficient.
A cartoon for the virtual body and its tail propulsor with a sketch representing the exchanged forces
and the flapping motion of the tail is reported in fig.1.6. An animation of the swimming fishlike
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model and of the related vortex wake can be found in the supplementary material of paper 3[56]
which is accessible online at https://doi.org/10.1038/s41598-021-01730-4.

1.3.2 Froude efficiency and cost of transport

The virtual body model described above allows for the evaluation of the self-propulsion velocity and
the related cost of transport COT , but not only. In fact, the assigned resistance is now known even
though it is perfectly balanced by the thrust given by the flapping tail, hence also the more standard
Froude efficiency η may be evaluated and compared with the cost of transport to give very interesting
insights almost impossible to achieve with more elaborated tools[2, 41]. To this purpose, to obtain
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Figure 1.7: 1.7a Cost of transport of the whole body and 1.7b efficiency of the propulsor against Ah/ATE

for different peak-to-peak trailing edge oscillation amplitudes (ATE = 1 and 1.5). Viscous and inviscid
numerical solutions for a prescribed virtual body resistance.

Self-propelled fish locomotion in an otherwise quiescent fluid 16

https://doi.org/10.1038/s41598-021-01730-4
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the numerical results, parameters built on the assigned data like the ratio between the peak-to-peak
trailing edge amplitude Ate and the pure heave non-dimensional peak-to-peak amplitude Ah = 2h0

have been selected instead of the more common Strouhal number St and reduced frequency kr,
since the latter are defined by means of the unknown swimming speed. For instance, fig.1.7a
shows the whole body performance in terms of cost of transport for the present inviscid model in
comparison with a standard viscous solver to show a very satisfactory agreement between viscous
and inviscid results. The considered values of the peak-to-peak trailing edge amplitude Ate = 1

and 1.5, normalized by the tail length l, correspond nearly to 0.15 − 0.2 in terms of the ratio
between the tail-beat amplitude and the total body length L, as frequently observed in nature[5].
The figure show a clear evidence of the classical U-shaped form for the COT curves[62, 81] with
the minimum value appearing in a quite small range about the ratio Ah/ATE = 0.7. Interestingly,
the range where the maximum efficiency of the propulsor η is found, reported in fig.1.7b, is clearly
different from the one where the minimum COT for the whole body occurs and corresponds to
larger values of Ah/ATE . The presence of the two optimal conditions, easily observable by the self-
propulsion approach here adopted, indicates that there are different optimal gaits for different tasks.
Specifically, the swimming gait associated to the minimum cost of transport, characterized by low
swimming speed and low energy consumption, should be the target swimming condition for cruising
tasks. On the other hand, a maximum in the propulsive efficiency is associated to a slightly larger
expended energy accompanied by a very larger swimming speed, as request for fast traveling and
escape gaits. In paper 3[56] the values of cost of transport and efficiency also illustrated in terms of
the output value of the Strouhal number together with other relevant parameters such as the the
proportional-feathering and the maximum effective angle of attack introduced by Lighthill[43] and
Anderson[4], respectively, to identify optimal swimming performance.

1.3.3 Oscillatory vs Undulatory swimming mode

The results reported in the previous section have been obtained by considering the self-propelled
axial motion of a virtual body having a certain resistance propelled by a flapping tail represented by
a foil. A further step ahead may be obtained by comparing the flapping motion under consideration
with an undulatory motion to look for possible similarities concerning both the existence of a phase
velocity and the role of recoil motions.
The caudal fin kinematics is fully prescribed and its flapping motion is given by the combination
of a heaving motion of the peduncle h(t) and a pitching motion about the peduncle itself given by
θ(t) defined as

h(t) = h0 sin(ωt)θ(t) = θ0 sin(ωt+ ϕ) (1.32)

where h0 is the maximum heave amplitude, θ0 is the maximum pitch angle and f is the oscillation
frequency. The pitch motion θ(t) has a phase angle ϕ = π/2 hence, by considering sufficiently small
values of the maximum pitch angle θ0, the flapping motion of the tail may be approximated as

y(x, t) ≈ h0 sin(2πft)− θ0x cos(2πft) 0 ≤ x ≤ l (1.33)

where the chord of the foil has been confused with the abscissa x and l is the length of the tail. This
approximated expression may be assimilated to the one for an undulatory motion of amplitude h0
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with a wavelength λ≫ l

y(x, t) = h0 sin(2πft−
2π

λ
x) ≈ h0 sin(2πft)−

2π

λ
h0x cos(2πft) 0 ≤ x ≤ lt (1.34)

and, by equating the coefficients of (1.33) and (1.34), we may evaluate the phase velocity of the
flapping motion as

c = fλ ≈ 2πf
h0
θ0

(1.35)

In other words, if λ ≫ l, the flapping tail itself may be seen as a small portion of the longer wave
whose undulating motion is perceived, instantaneously, as a local oscillation given by the heave
and pitch motions. As an evidence for the presence of a well-defined phase velocity for oscillatory
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Figure 1.8: Mean steady state swimming velocity U/L and phase velocity c/L (dashed line) against Ah/ATE

for different peak-to-peak trailing edge oscillation amplitudes (ATE = 1 and 1.5). Inviscid numerical results
for zero resistance of the virtual body in axial motion.

motion, fig.1.8 shows the mean forward velocity at steady state in the ideal case of a virtual body
with zero resistance for both Ate = 1 and 1.5. The results show that the asymptotic velocity nearly
coincide with the phase velocity c obtained by eq.(1.35) which is independent from the amplitude
ATE as obtained for undulatory swimming in the specific case of inviscid flows (see paper 1[53]).

Since the oscillatory motion of the tail can be perceived as a limiting case of undulatory motion,
it seems very likely that the several specific approximations commonly used to study this style of
swimming are not so essential[16]. For instance, oscillatory swimming, classically investigated in
axial motion by considering almost exclusively an isolated flapping caudal fin, should be analyzed
by accounting for the free motion of the whole body, as commonly done for undulatory swimming.
Actually, the recoil motions may play a crucial role also in the oscillatory case in spite of the common
belief that the flapping motion essentially limited to the rear end of the body is associated to rather
small recoil reactions with a low impact on the overall performance[44]. By recovering the complete
theoretical and numerical models not accounting for the virtual body concept and by considering a
limited deformation of the anterior body, though sufficient to allow for a prescribed flapping motion
of the tail (see paper 4[57] for more details about the body geometry and deformation), it is possible

Self-propelled fish locomotion in an otherwise quiescent fluid 18



1.3. Oscillatory swimming

to analyze separately the different components of the recoil motions and their influence on the fish
dynamics. Specifically, the potential and vortical contributions given by the interaction with the
surrounding fluid and the geometrical recoil correction which instead is an a priori request to satisfy
the equilibrium of the fishlike body for any given deformation.
To clarify the subtle concept of geometrical recoil it is useful to recall eq.(1.12) which expresses the
requirement for the prescribed deformation to have the net linear and angular momenta equal to
zero in the absence of the surrounding fluid. Any deformation which does not satisfy eq.(1.12) is not
possible if no external forces are considered and should be corrected by the mentioned geometrical
recoil correction.
Figure 1.9 reports an extremely simplified sketch of a flapping fishlike body to attack such a subtle

CM
CMCM

Figure 1.9: Sketch of a flapping fishlike body illustrating the geometrical recoil correction.

issue. The first frame on the left illustrates the sample of a body in its straight and undeformed
configuration, while the second one illustrates a deformed one where the body rear-end is flexed by
a clockwise angle β, to recall the tail of a fish. If anterior body is fixed, the rotation of the tail is
going to induce a downward motion of the body center of mass CM and a clockwise rotation of
the inertia principal axes, motions that should not be allowed since no external actions are applied.
Finally, the last frame on the right shows the feasible configuration where the tail is still rotated by
the angle β with respect to the anterior body, but where the center of mass and the principal axes
perfectly match the ones for the undeformed configuration. The motion required to go from the
second to the third sketch is the geometrical recoil correction. The identification of the geometrical
recoil correction typical of the present model, as indicated by eq.(1.12), lead to a neat isolation of
the fluid-induced component of the recoil and of its potential and vortical contributions to allow for
an analysis of their effect of the kinematics of the body. Specifically, as illustrated in fig.1.10a, the
acyclic potential field uϕ generated by the caudal fin downstroke leads to a counterclockwise angular
velocity Ωϕ in the opposite direction with respect to tail motion. It follows that the potential recoil
contribution associated to added mass tends to counterbalance and to attenuate the tail oscillation.
On the other hand, the vortical field reported in fig.1.10b shows an opposite behaviour since the fluid
vortical velocity uv induced by the vortex cluster just released into the wake is going to enhance
the tail motion via the angular recoil velocity Ωv.
Much more details on how the single recoil contributions are going to influence the tail flapping
parameters and the locomotion performance are illustrated in paper 4[57], where a quantitative
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Figure 1.10: Flow field sketches for (a) the potential fluid recoil and (b) the vortical fluid recoil.

analysis is presented to give helpful suggestions to figure out the free motion of a biomimetic body
in water.

1.4 Fast escape maneuvers

Fast maneuvers in fish swimming occur occasionally along with pray-predator encounters. These
motions are characterized by very large accelerations and extreme turning capabilities to let fish
succeed in escaping or in foraging needs during the everyday battle for survival. Such impressive
performance has attracted biologists, physicists and engineers but is far from being completely
understood and reproduced even by the more advanced technologies. Starting from the survey
paper from Domenici and Blake[17] which provides a large set of experimental data on some of the
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most common fast maneuvers kinematics, several subsequent studies[1, 10, 21, 27, 47, 70] pointed
out the prominent role of the position and strength of the shed vortices at the end of the maneuver
to evaluate the final velocity achieved by the fish. However, a quantitative analysis of the vorticity
released into the wake and of the related momentum does not allow for a satisfactory description
of the phenomena (see [20, 24, 64, 69]) since the vortex pattern is like the footprint of a terrestrial
animal and cannot tell the whole story about the body dynamics[80]. Within this framework, the
present impulse model is able to provide a significant improvement in the comprehension of the
physics underlying fish fast start, due to the peculiar capability to isolate the potential and the
vortical impulses.
One of the most common maneuver, the so called C-start, has been studied by accounting for all
recoil motions as a mandatory request for the treatment of such complicated kinematics. For the sake
of clarity, a typical example is represented in fig.1.11 where a few snapshots are reported to give a
first glance idea of the different phases of the maneuver (complete animations are given in paper 5[55]
and are available online at https://doi.org/10.1038/s41598-022-08923-5). The obtained numerical

t/T = 0 t/T = 0.25 t/T = 0.5 t/T = 0.75 t/T = 1

Figure 1.11: Snapshots of the C-start maneuver of a neutrally buoyant fish from the numerical simulation.
Complete animations are given in paper 5[55] and are available online at https://doi.org/10.1038/s41598-
022-08923-5.

results confirm that the vortical impulse is eventually dominant at the end of the maneuver, but it
is not able to explain all the intermediate steps. In fact, the added mass and the related potential
impulse have the larger impact on the extreme turning capabilities and accelerations of fish, which
are strictly related to aquatic environment. Specifically, the time variation of the added mass
coefficients m11 and m33 are recognized to be extremely important for the maneuver performance
as already suggested by some authors in different context[66, 67, 72], but also the prevailing action
of the mutual momentum transfer between the angular and forward directions is assessed as the
main source of forward momentum. To give a quick anticipation of the results given in paper 5[55],
the momentum conservation along the forward direction, i.e. the first equation of the complete
system (1.22), is reported below

V1(m11 −mb) + V2m12 +Ωm13 = Psh1 + Pv1 (1.36)

where, for the sake of clarity, V1 and V2 are the linear velocity in the forward and lateral direction
respectively, Ω is the angular velocity, Psh1 is the pure potential momentum associated to the
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Figure 1.12: Fluid impulses for C-start maneuver: total forward impulse P1 and its contributions.

prescribed deformation and Pv1 is the vortical momentum associated to the released vortices. By
moving to the right-hand side all the terms which are not directly dependent from the forward
velocity V1, it follows

V1(m11 −mb) = Psh1 + Pv1 − V2m12 − Ωm13 ≡ P1 (1.37)

where P1 collects all the terms on the right-hand side. Finally, fig.1.12 reports the time history of
each forward momentum contribution for the C-start to show how, even if the total and vortical
impulses P1 and Pv1 perfectly coincide at the end of the maneuver, their substantial difference
along the maneuver is obviously due to the potential terms with an overwhelming predominance
of the coupling term −m13Ω providing the momentum transfer from the angular to the forward
direction.
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Aquatic locomotion of a deformable body from rest up to its asymptotic speed is given by
the unsteady motion which is produced by a series of periodic reactions dictated by the
body configuration and by the style of swimming. The added mass plays a crucial role,
not only for the initial burst, but also along each manoeuvre, to accelerate the surrounding
fluid for generating the kinetic energy and to enable vortex shedding in the wake. The
estimate of these physical aspects has been largely considered in most theoretical models,
but not sufficiently deepened in many experimental and numerical investigations. As a
motivation, while the vortical structures are easily detectable from the flow field, the added
mass, on the contrary, is usually embedded in the overall forcing terms. By the present
impulse formulation, we are able to separate and to emphasize the role of the added mass
and vorticity release to evaluate in a neat way their specific contributions. The precise
identification of the added mass is also instrumental for a well-posed numerical problem
and for easily readable results. As a further point, the asymptotic speed is found to be
guided either by the phase velocity of the prescribed undulation and by the unavoidable
recoil motion induced by the self-propelled swimming. The numerical results reported in
the present paper concern simplified cases of non-diffusing vorticity and two-dimensional
flow.
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D. Paniccia, G. Graziani, C. Lugni and R. Piva

1. Introduction

Understanding animal locomotion in water, namely fish or cetacean swimming, has always
attracted the attention of scientists, since the deep observations that Leonardo da Vinci
described in his notes (e.g. Atlanticus Codex folio 571 A recto) more than five centuries
ago. Almost two hundred years later, Borrelli, another Italian scientist, in the second half
of the 17th century analysed in his book ‘De motu animalium’ the fish’s motion in a very
detailed manner by enhancing the essential role of the tail, as illustrated very clearly in
some of his drawings.

Starting from the end of the 19th century, more systematic research has been undertaken
by several zoologists, especially in England, to classify fishes in terms of tail, appendages
and body movements instrumental for their propulsion. A great advance was given, in the
first half of the last century, by the experimental work of Gray (1933), who explained for
the first time the kinematics of swimming by showing the essential role of a travelling
wave moving backwards along the fish’s body. Starting from the above findings, Taylor
(1952) formulated a very successful model, now named the resistive model, well suited for
swimming modes dominated by viscous forces.

On the contrary, at the start of the 1960s, Lighthill (1960) and Wu (1961) separately
proposed a theoretical approach to study swimming modes dominated by inertial effects,
i.e. for essentially inviscid flows, henceforth named the reactive model. For this purpose
they considered an elongated body with a prescribed wave deformation moving from head
to tail with velocity V , while immersed and swimming against a stream with a constant
velocity U slightly lower than V . In a very elegant way, they predicted the power injected
by the body into the surrounding fluid, the power transferred to the wake and, from the
overall balance, the propulsive power required to overcome the unavoidable resistance.
Essentially, the intention was to find the thrust of a deformable body by an ingenious and
properly simplified formulation to allow for the evaluation of the Froude efficiency of a
swimmer. Their model, described in several papers, stresses the role of the added mass as
a basic mechanism for the transfer of energy to the fluid, as required for the production of
the thrust and of the accompanying vortex wake.

Following their seminal work, a large number of papers appeared later on proposing
many experimental techniques and numerical methods which consider a deformable body,
fixed in its position in a uniform stream or tethered with the opposite velocity in a
quiescent fluid. Among the experimental contributions let us mention Lauder & Tytell
(2005), who provided a description of the major experimental set-ups, Tytell (2004),
who compared data obtained by particle image velocimetry with the estimates given by
Lighthill and Wolfgang et al. (1999), for the combined use of experimental and numerical
results. Among the numerical contributions we recall Dong & Lu (2007), who reproduced
for a viscous flow the conditions proposed by Lighthill and Wu, and Borazjani &
Sotiropoulos (2009), who suggested finding, for a given velocity, the equilibrium condition
for self-propelled swimming. In some contributions the recoil reactions, introduced by
Lighthill to satisfy the equilibrium equations for a body under a prescribed deformation,
were recognized as a point of crucial importance for a correct evaluation of the swimming
efficiency, see e.g. Reid et al. (2012) and Maertens, Gao & Triantafyllou (2017). Due to the
recoil effect, the shape deformation generated by the fish for the actual locomotion gives
rise to specific reactions, which modify significantly the exchanged forces and moments,
hence the overall performance and the swimming trajectory. However, the procedure to
obtain the full dynamics of the body under a prescribed inflow velocity is quite elaborate,
hence, different routes seem more appropriate for a self-propelled locomotion.
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Added mass and vorticity release for self-propelled locomotion

An alternative approach in terms of centre-of-mass velocity components as unknowns of
the problem was originally introduced by Saffman (1967) and subsequently adopted in a
seminal paper by Carling, Williams & Bowtell (1998). On the same line of reasoning,
Kern & Koumoutsakos (2006) extended the procedure to find optimal solutions for
three-dimensional (3-D) flows and Kanso (2009) obtained the locomotion variables of the
swimmer‘s centre of mass by enforcing directly the conservation of the total momentum.
Actually, to study a body in self-propulsion immersed in an otherwise quiescent fluid a
coupled body–fluid system has to be taken into consideration with a particular attention
paid to the exchange of internal forces (see Eldredge 2010). Since thrust and drag
counterbalance, instead of trying to calculate a propulsion power that is not easily
identified (Bale et al. 2014), the Froude efficiency has to be replaced by some other
measure. The cost of transport (COT), i.e. the inverse of the well-known miles per gallon
adopted for cars and other vehicles (von Kármán & Gabrielli 1950), is given by the ratio
between the expended energy and the travelled distance and becomes the proper measure
in this case.

Afterwards, a very large scientific production flourished in the last decade with a
focus essentially on the free-swimming COT of different species with different shape
deformations and styles of swimming (see e.g. Maertens, Triantafyllou & Yue 2015;
Borazjani & Sotiropoulos 2010). Particular attention was also paid to the efficiency
parameters and to the different energy contributions spent during self-propelled swimming
(Wang, Yu & Tong 2018). A large number of papers are based on the combined solution
of the deformable body dynamics and of the Navier–Stokes equations for incompressible
viscous flows by different computational methods (see e.g. Yang et al. 2008; Gazzola et al.
2011; Bhalla et al. 2013) together with under-relaxation or penalization techniques to gain
the overall stability of the integration procedure. A historical survey and a comprehensive
review of the most common approaches is given in several books, e.g. Webb (1975) and
Videler (1993) and many review articles (e.g. Lighthill 1969; Wu 2011; Lauder 2015; Smits
2019) also appeared in specific journals covering either fluid dynamics and biological
aspects.

An accurate observation of the previous scientific findings, with a focus on the role of
added mass and of the vorticity release, makes it easier to summarize now the main points
that we like to account for when analysing self-propelled bodies:

(i) the motion of a deformable body in an infinite fluid domain is characterized by the
absence of external forces and the average total momentum is conserved;

(ii) the internal forces exchanged by the swimming body with the surrounding fluid, i.e.
thrust and drag, are mutually entangled, hence they are not clearly identified;

(iii) the real trajectory must account for all the recoil reactions, introduced by the
prescribed deformation of the main body;

(iv) the solution of the fluid–body interaction should be solved by considering the full
system of equations with the kinematic variables as output of the problem;

(v) the identification of the added mass terms leads to a naturally well-posed problem
and, at the same time, provides a proper physical interpretation of the numerical
results;

(vi) the standard efficiency measures are not easy to define, since the thrust is not
available for steady free swimming and the COT has to be used; and

(vii) the enforced undulation is characterized by a phase velocity that is going to influence
the steady state asymptotic value of the locomotion velocity and the location of the
released vortices along the wake.
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D. Paniccia, G. Graziani, C. Lugni and R. Piva

The purpose of the present work is to adopt a classical impulse formulation, which may
be expressed in terms of potential flow and concentrated vorticity, to consider a 2-D fully
immersed deformable body in the case of vanishing viscosity. The intention is to use this
highly simplified impulse model with the ambitious objective to clarify the role of added
mass and of vorticity release in free swimming either for the acceleration during the initial
transient phase or for the asymptotic velocity to be reached at steady state.

2. Mathematical model

The self-propelled motion of an undulating body in an infinite N-dimensional volume of
fluid V∞ is analysed by considering a fluid–body domain with no external forces applied.
Hence, the exchanged forces and moments between fluid and body appear as internal
actions. The body motion is computed by solving the dynamics equations of the body
centre of mass in an otherwise quiescent unbounded fluid.

With this aim, among several possible expressions for the linear and the angular
momentum we adopt the classical formulation in terms of potential and vortical impulses
that has been widely discussed in the literature (see e.g. Noca 1997; Wu, Ma & Zhou
2015). In this framework we can easily highlight the acyclic potential contribution as well
as the effects of the bound and free vorticities.

2.1. Force and moment acting on the body
The fluid momentum is expressed, via a renown vector identity (A1), by two terms
representing the field vorticity and the vortex sheet over the body surface which, properly
combined, readily lead to the vortical and the potential impulse. An analogous vector
identity (A3) holds for the angular momentum. As has been repeatedly proven, the sum of
these two impulses has the most significant property of the momentum, i.e. the forces
exchanged between the body and the surrounding flow field are obtained by the time
derivative of the impulses and an analogous relationship holds for the moment of the
forces. At the same time, the total impulse does not suffer the poor convergence of the
momentum over an unbounded domain. Actually, the momentum does not show absolute
convergence, but only a conditional one. However, its finite value can be found without
any ambiguity through the evaluation of the kinetic energy (see, among others, Landau
& Lifschitz 1986; Childress 2009). As a further point, the impulse formulation enjoys
the important property of being linear with respect to the unknown kinematic variables,
so as to permit the isolation of the potential contribution, related to the added mass
characterizing fast manoeuvres, and of the vortical contribution, usually dominant when
the steady state conditions are reached. We will see that this property has a paramount
positive effect for the numerical solution of the equations, providing quite naturally a
well-posed problem. As a final advantage, the conservation of the total impulse, peculiar
to the self-propelled body, does not need the time derivation, as usually required to obtain
the forces, and the successive time integration to find the kinematics of the body, providing
a better accuracy together with a significant reduction of the computational effort.

We consider an impermeable, flexible body whose bounding surface Sb is moving with
velocity ub given by the prescribed deformation. We assume an incompressible fluid with
density ρ. The outer boundary is stationary in an absolute reference frame and the fluid
velocity is assumed to vanish at the far field boundary. As previously anticipated, the force
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Added mass and vorticity release for self-propelled locomotion

acting on the body, F b, is expressed through the time derivative of the total impulse p

F b = −dp
dt

, (2.1)

where p is defined, by using the well-known vector identity (A1) for the unbounded fluid
volume, as

p = 1
N − 1

[∫
V∞

ρ x × ω dV +
∫

Sb

ρ x × (n × u+) dS
]

, (2.2)

where N = 2, 3 is the flow dimension and the integral over the external boundary receding
to infinity has been proven to vanish (Noca 1997), ω is the vorticity and u+ indicates the
limiting value of the fluid velocity on Sb. The normal to Sb, n, points into the flow domain
and all of the vorticity is enclosed within the fluid volume V∞ which extends to infinity. As
shown elsewhere (Graziani & Bassanini 2002), the right-hand side of (2.2) is independent
of the choice of the reference frame origin.

For a better comprehension, to account for the boundary condition on the body, which
is anyhow satisfied, we may recast (2.1) by adding and subtracting a boundary integral
involving ub,

F b = − d
dt

{
1

N − 1

∫
V∞

ρ x × ω dV + 1
N − 1

∫
Sb

ρ x × [n × (u+ − ub)] dS

+ 1
N − 1

∫
Sb

ρ x × (n × ub) dS
}

, (2.3)

where the jump in tangential velocity appears as a vortex sheet concentrated on the body
surface to give the volume integral

∫
V∞ ρx × γ dV , where γ = [n × (u+ − ub)]δ(x − xb).

The formulation (2.3) highlights the vortex sheet term, leading to the identification of
the added mass, separately from the field vorticity contribution. If, on the contrary, the
total vorticity

ω̂ = ω + γ = ω + [n × (u+ − ub)]δ(x − xb), (2.4)

is considered, the added mass would be embedded and fully hidden within the field
vorticity, as discussed by Limacher, Morton & Wood (2018).

Similarly to what is described above for the force, an expression for the angular moment
(positive anticlockwise) on the body can be obtained. Here, we consider the moment with
respect to a given pole (to be specified later either as the origin of the ground reference
frame or as the body centre of mass), so x is the generic distance of the field point from
the pole.

By defining the angular impulse π as:

π = −1
2

[∫
V

ρ |x|2ω dV +
∫

Sb

ρ |x|2(n × u+) dS
]

, (2.5)

the expression for the angular moment is written as

Mb = −dπ

dt
. (2.6)
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D. Paniccia, G. Graziani, C. Lugni and R. Piva

2.2. Potential and vortical impulse
A Helmholtz decomposition is applied to express the velocity field as the sum of the
acyclic and vorticity related components

u+ = ∇φ + ∇ × Ψ = ∇φ + uw, (2.7)

where φ and Ψ are referred to as the scalar and the (solenoidal) vector potentials, and
are given by the solution of the Laplace/Poisson equation, subject to the impermeable
boundary condition on Sb, i.e. ∇φ · n = ub · n and (∇ × Ψ ) · n = 0 respectively, and to
the vanishing velocity at infinity. To enlighten the contribution of the above potentials to
the force, let us now express the impulse p appearing in (2.1) in terms of both potential
and vortical impulses, pφ and pv , as

p = pφ + pv. (2.8)

The vortical impulse on the right hand-side of (2.8) is

pv = 1
N − 1

[∫
V∞

ρ x × ω dV +
∫

Sb

ρ x × (n × uw) dS
]

= 1
N − 1

∫
V∞

ρ x × ωa dV,

(2.9)

where part of the bound vorticity on Sb has been added to the released vorticity to obtain
the additional vorticity as introduced by Lighthill

ωa = ω + (n × uw) δ(x − xb) (2.10)

that may be expressed, once combined with (2.4), to reproduce the original definition

ωa = ω̂ − [n × (∇φ − ub)] δ(x − xb). (2.11)

The potential impulse pφ on the right hand-side in (2.8) is given by

pφ = −ρ

∫
Sb

φ n dS, (2.12)

where the vector identity (A2) has been used. Let us notice that this term has been named
also the virtual momentum by Saffman (1992) or impulse of the fluid by Lamb (1975) and
its time derivative defines, in a general sense, the added mass force that, for rigid motions,
may be expressed in the classical form given by the Kirchhoff base potentials.

The expression for the angular momentum can be similarly obtained by separating
the vortical and the potential contributions by using the vector identity (A3) and the
generalized Stokes theorem (A4). We split the angular impulse (2.5) as π = πφ + πv ,
where the angular potential impulse is defined as

πφ = −1
2

∫
Sb

ρ |x|2(n × ∇φ) dS = −ρ

∫
Sb

x × φn dS, (2.13)

and the angular vortical impulse is

πv = −1
2

∫
V

ρ |x|2ω dV − 1
2

∫
Sb

ρ |x|2(n × uw) dS. (2.14)

As a comment to this section, a unified theoretical treatment of the impulse formulation has
been presented by taking into account the main different contributions on the subject (see
e.g. Saffman 1967; Kanso 2009; Eldredge 2010). Concerning the vorticity field, particular
attention is paid to the bound vorticity and to its relationship with the added mass force
(see e.g. Lighthill 1960; Limacher 2019).
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Added mass and vorticity release for self-propelled locomotion

3. Locomotion

We study now the planar motion of a deformable body B within an infinite fluid domain
V . We use a Cartesian inertial frame (e1, e2, e3). The body motion occurs in the plane
(e1, e2) and its translation with respect to a given reference point in B is xo = xo e1 + yo e2.
Moreover, the body may undergo a rotation β about the axis e3.

The locomotion of the deformable body is obtained by coupling the body dynamics and
the fluid dynamics actions. If we consider the body–fluid system (Vb + Vf ), no external
forces or moments are present and therefore the linear and angular momenta are conserved

d
dt

[∫
Vb

ρb ub dV +
∫
Vf

ρ u dV

]
= 0, (3.1)

d
dt

[∫
Vb

ρb x × ub dV +
∫
Vf

ρ x × u dV

]
= 0. (3.2)

The motion of the body can be expressed as the sum of the prescribed deformation
(shape variations with velocity ush) plus the motion of the frame with origin in the centre
of mass (translational, ucm, and rotational, Ω , velocity).

In the ground inertial frame the angular velocity is Ω = β̇ e3 ≡ Ω e3. The linear
velocity is ucm = ẋoe1 + ẏoe2. Thus we can express the body motion as

ub = ush + ucm +Ω × x′, (3.3)

where x′ is the position vector in the body frame, i.e. x = xcm + x′. Following (3.3), the
prescribed deformation of the body has to conserve linear and angular momenta∫

Vb

ρbush dV = 0, (3.4)

∫
Vb

ρbx′ × ush dV = 0. (3.5)

By considering that the second term in (3.1) is the force acting on the fluid, which is
opposite to the force on the body and by using the body mass mb, combining with (2.1) we
obtain

d
dt

(mb ucm) + dp
dt

= 0, (3.6)

where ucm is clearly identified as the locomotion velocity of the body and p is now
expressed in terms of x′, since the independence on the origin of the reference system. In
this way, the interaction with the fluid gives directly the full motion of the undulating body.
Otherwise, if ((3.4)–(3.5)) were not satisfied by the prescribed deformation, additional
rigid motions would appear and (3.3) should be consistently modified (see Bhalla et al.
2013). By assuming zero initial conditions (3.6) gives

mb ucm + p = 0. (3.7)

Similarly, the angular impulse in two dimensions is recast from (2.5) in terms of the
distance x′ as π′ = (π − xo × p) · e3 and the angular momentum balance can be expressed
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D. Paniccia, G. Graziani, C. Lugni and R. Piva

as

d
dt

(Izz Ω) + dπ′

dt
= 0, (3.8)

or, by using the body frame and removing the time derivative

Izz Ω + π′ = 0. (3.9)

In the case of a massless body (mb = 0 and Izz = 0) we recover the equations reported
by Kanso (2009). Let us notice that, according to what was originally proposed by Saffman
(1967), the system of (3.7) and (3.9) provides the evaluation of the body velocities without
considering time derivatives, as required when using the standard equations (3.6) and
(3.8).

The scalar potential introduced by the Helmholtz decomposition is further divided as
φ = φsh + φloc, as suggested by Saffman (1967), where φsh is given by the imposed
deformation velocity ush and φloc is given by the combination of the locomotion linear
and angular velocities, according to the related boundary conditions on Sb

∂φsh

∂n
= ush · n,

∂φloc

∂n
= (ucm +Ω × x′) · n. (3.10a,b)

Analogously, the linear and angular impulses are given by

pφ = psh + ploc, π′
φ = π′

sh + π′
loc. (3.11a,b)

Finally, the locomotion impulses, ploc and π′
loc, may be expressed in terms of the

added mass coefficients reported in the classical treatises (see e.g. Lamb 1975) that, for
completeness, are briefly recalled below. For a body motion with linear velocity ucm and
angular velocity Ω , we consider the Kirchhoff base potentials Φj defined through the
boundary conditions

∂Φ1

∂n
= n · e1,

∂Φ2

∂n
= n · e2,

∂Φ3

∂n
= x′ × n · e3 (3.12a–c)

to have φloc = ẋ0Φ1 + ẏ0Φ2 + ΩΦ3. It follows for the added mass coefficient mij that

mij = ρ

∫
Sb

Φi
∂Φj

∂n
dS. (3.13)

To compute the numerical solution we express the locomotion equations in a coordinate
frame attached to the body. For this purpose we consider the ground fixed frame {e1, e2, e3}
and the body frame {b1, b2, b3} as sketched in figure 1. The origin of the body frame
is in cm, i.e. xo ≡ xcm and b3 is parallel to e3. Accordingly, the linear velocity V cm =
V1 b1 + V2 b2 and the momenta P, Π are related to the corresponding variables in the
fixed frame by

ucm = R V cm, p = R P, π′ = Π, (3.14a–c)

where R is the rotation matrix relating the inertial to the body frame. Analogously, the
coordinates in the body frame are X = RT x′.

Accounting for (3.14a–c), the impulses related to the body deformation, Psh and Πsh, are
expressed according to (2.12) and (2.13), respectively, while the vorticity related quantities,
Pv and Πv , are defined through (2.9) and (2.14). The locomotion velocities, which are

918 A45-8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
3.

70
.1

67
.1

03
, o

n 
23

 M
ay

 2
02

1 
at

 1
4:

18
:5

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

37
5



Added mass and vorticity release for self-propelled locomotion

e1

e2

b 1

b 2

x0, y0

Figure 1. Ground and body reference frames.

multiplied by the added mass coefficients (3.13) within Ploc and Πloc, can be shifted to the
left hand-side to yield the system of equations for the body motion

V1 (m11 − mb) + V2 m12 + Ω m13 = Psh1 + Pv1,

V1 m21 + V2 (m22 − mb) + Ω m23 = Psh2 + Pv2,

V1 m31 + V2 m32 + Ω (m33 − Izz) = Πsh + Πv.

⎫⎪⎬
⎪⎭ (3.15)

The added mass terms, appearing on the left hand-side of (3.15), together with the
body inertial properties, give the coefficient matrix for the unknown variables V1, V2
and Ω . The known terms appearing on the right hand-side are the impulse contributions
due to shape deformation and vorticity. This equation system recalls and generalizes the
model ingeniously proposed by Saffman (1967) and Lighthill (1970). The body mass
mb is assumed to be constant while Izz and mij change in time according to the shape
deformation. Let us stress again that the part of the added mass terms related to φloc now
appears on the left-hand side, leading to a well-posed problem, as briefly described in the
following section together with the main details of the numerical model. The separation of
φsh and φloc is also instrumental to identifying the exchange of added mass energy among
shape deformation and locomotion (see Spagnolie & Shelley 2009; Steele 2016). We would
like to underline that the part of the potential impulses related to φsh in (3.15), as suggested
by Kanso (2009), has to stay on the right hand-side together with the vortical impulses,
since they both involve known quantities. As a further comment, a detailed account of the
single contributions is the essential tool for arguing about the aim of the paper, i.e. a proper
evaluation of the role of added mass and vorticity release when discussing the numerical
results.

4. About the numerical model

The mathematical model described so far is valid in general although, from now on,
restricted to the locomotion of 2-D bodies to facilitate the analysis of the results while
maintaining the most important aspects of the problem. As a further step in the same
direction, we consider here an accurate but simplified numerical model which does not
involve vorticity diffusion, in the way suggested by Schultz & Webb (2002), to find
sufficiently accurate results for this complicated problem. The evaluation of both potential
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D. Paniccia, G. Graziani, C. Lugni and R. Piva

and vortical impulses can be obtained by the discretization of the body surface and by
a suitable model for the release of the concentrated vortex sheet via a Kutta condition
to mimic the presence of a vanishing viscosity. Some of the techniques adopted in the
numerical method for the evaluation of the two impulses are briefly described below, but
we would like to illustrate first the capability of the present model to provide a well-posed
linear system.

Actually, the time derivatives, usually needed with the classical pressure formulation,
may lead to a poor stability of the equation system, since the forces and moments are
directly dependent on the unknown velocity components. Some authors, e.g. Carling
et al. (1998), Kern & Koumoutsakos (2006) and Borazjani & Sotiropoulos (2010), tried
to overcome these difficulties by using under-relaxation expressions which had to be
accurately chosen to obtain stability and to minimize their influence on the numerical
accuracy of the procedure. A more physical approach was adopted in Maertens et al. (2017)
by introducing a prescribed added mass matrix Ma, whose coefficients are estimated and
properly tuned from the stretched straight configuration. By adding to both sides of the
equation the same term representing this approximated value, the idea is to counterbalance
the real added mass embedded within the forcing term. The impulse formulation adopted
here allows for the removal of the time derivatives present in (3.6) and (3.8), hence no
stability issues should be considered. At the same time, the linearity of the vorticity terms
allows us to isolate and separate the contribution of the added mass, which is correctly
evaluated at each time step and properly moved to the left hand-side, giving a well-posed
system of equations able to hold even when treating massless bodies (see Eldredge 2010).

To achieve neat and simple results, as anticipated above, we consider the case of
potential flow with a concentrated vorticity on the body surface and its subsequent
shedding at the trailing edge into the vortex wake. The flow solutions are obtained by using
an unsteady potential code based on the approach of Hess & Smith (1967) while the wake
release is taken into account by following the procedure described in Basu & Hancock
(1978). The body boundary is approximated by a finite number of panels, each with a local,
uniform source strength, and all with a constant circulation density. The impermeability
condition on each panel together with a suitable unsteady Kutta condition are needed to
evaluate the source strengths and the uniform circulation density γ . According to Kelvin’s
theorem, any change in circulation about the airfoil results in the release of vorticity by a
wake panel attached to the trailing edge which, at each time step, is lumped into a point
vortex and shed into the wake.

As described in the previous section, even if the equations are written in the ground
frame of reference, the solution is achieved in a coordinate system attached to the body
which moves according to V1 and V2 and rotates according to Ω . Actually, this is the
proper frame to define the deformation which should not be dependent on the interaction
with the fluid. At each time step, the body, deforming with V sh, is invested with a water
speed given by the combination of −V1, −V2 and −Ω , which is required for the unsteady
Kutta condition and it is essential for the evaluation of the length and inclination of the
wake panel behind the body through several iterations.

Finally, it is important to notice that the linear velocity components V1 and V2, named,
from now on, the forward and lateral velocities, respectively, change their directions at each
time step, since the equations of motion are written in the body frame coordinates. After
a transient acceleration phase, the body, even maintaining an oscillating pattern, reaches
an asymptotic steady state with a constant mean value of the forward velocity while the
mean lateral and angular velocities are equal to zero. As a consequence, in the following
section, the numerical results are shown in terms of the forward velocity, whose mean
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Added mass and vorticity release for self-propelled locomotion

value represents the actual locomotion velocity. An animation showing the body motion,
obtained by projecting the velocity components V1 and V2 along the x and y directions
of the ground frame of reference (animation-link), is helpful to better illustrate the actual
gait of the body. As a final comment, the above numerical model may be considered as
part of the splitting procedure introduced by Chorin (1973) which, accounting for diffusive
vorticity, leads directly to the classical vortex method for viscous flow (see e.g. Graziani,
Ranucci & Piva 1995; Koumoutsakos & Leonard 1995; Eldredge, Colonius & Leonard
2002).

5. Numerical results and discussion

We would like to analyse in the present section the free swimming of a deformable body
with a focus on the asymptotic steady state condition. The fish undulates with a prescribed
periodic deformation characterized by a specific phase velocity and, after a transient,
the fish reaches a steady state under the combination of potential and vortical velocity
contributions. Let us note that the resulting value depends only on the phase velocity
while the single contributions may vary with the deformation amplitude. As anticipated in
the previous sections, the standard efficiency measures are not suitable, while the present
results provide the data needed for the evaluation of the cost of transport. As a further
point, the results allow for interesting considerations of the transient phases, which are
also illustrated through the representation of the wake patterns.

5.1. Body shape and kinematics
The swimming fish at rest is represented by a shape corresponding to a NACA0012
airfoil with a chord length c equal to 1. Previous works employed a large number
of different approaches to describe fish undulation. Some of the proposed analytical
expressions for the lateral displacement of the mid-line were obtained by fitting data from
direct fish observations (see e.g. Hess & Videler 1984; Lauder & Tytell 2005). These
analytical expressions consist of a travelling wave usually multiplied by a polynomial
amplitude modulation, thus allowing for direct control of geometrical parameters, such
as the tail-beat amplitude. An additional mathematical condition is required to enforce the
inextensibility given by (

∂yc

∂s

)2

+
(

∂xc

∂s

)2

= 1, (5.1)

where xc and yc are the mid-line coordinates and s represents the curvilinear coordinate
along the mid-line itself. To satisfy implicitly this condition, some authors proposed a
deformation in terms of the mid-line curvature from which the lateral displacement follows
(Kern & Koumoutsakos 2006; Wang et al. 2018).

Here, a different parameterization based on the instantaneous local slope of the mid-line
is proposed as more affordable for bio-mimetic applications, hereafter referred to as
synthetic deformation. The slope of the mid-line is defined by the following expression for
a travelling wave of constant amplitude dβ and a wavenumber k related to a wavelength
along s

β(s, t) = dβ sin(ks − ωt), (5.2)

where ω is the angular frequency. An amplitude modulation may eventually be added to
reproduce the deformations given by other authors. The instantaneous coordinates of the
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Figure 2. (a) Corrected mid-line envelop in order to satisfy (3.4) and (3.5). (b) Mid-line envelop obtained by
the direct integration of (5.2). The dots represent the centre-of-mass positions.

airfoil mid-line are obtained by integrating (5.2)

xc(s, t) =
∫ s

0
cos (β(s, t)) ds, (5.3)

yc(s, t) =
∫ s

0
sin (β(s, t)) ds, (5.4)

and the inextensibility condition is automatically satisfied. The normal to each
cross-section of the body is the same as that of the mid-line and the total area is preserved
at convergence during the deformation.

In the absence of surrounding fluid, namely, with no external forces and moments,
(3.4) and (3.5) hold to maintain the centre of mass position of the body, as well as its
principal axes (figure 2a). If these equations are not satisfied, the centre of mass would
move under spurious forces (figure 2b), hence, the deformation has to be properly corrected
by removing the rigid displacements so to obtain the mid-line envelope in figure 2(a).

5.2. Swimming velocity and expended energy
The present section contains the results for a neutrally buoyant (ρ = ρb/ρf = 1) body
undulating with a fixed angular frequency ω = 2πf = 10 rad s−1, unless otherwise
indicated. For all the analysed cases, the wavenumber k is set to 2π m−1, i.e. the
wavelength λ is equal to the chord length c, hence corresponding to a phase speed which,
according to (5.2), is given by

ω

k
= fλ = 1.59 m s−1. (5.5)

The forward locomotion velocity component U is shown in figure 3 for different
deformation amplitudes δβ. By increasing δβ, we notice larger transient acceleration and
a steady state velocity that is slightly decreasing. However, due to the inextensibility
condition, the wavelength L, associated with the instantaneous deformation and measured
along the forward direction (see figure 4) may be quite different from the prescribed λ.
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Added mass and vorticity release for self-propelled locomotion
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Figure 3. Forward swimming velocity for different undulation amplitudes.

L

L

Figure 4. Equivalent wavelength λe.

From this observation, an equivalent wavelength λe is defined as

λe = 1
T

∫ t+T

t
L(t) dt, (5.6)

which leads to an equivalent phase velocity of the body deformation given by

ω

ke
= fλe. (5.7)

As a consequence, the asymptotic value of the slip velocity, defined as the ratio between
the swimming speed and the equivalent phase velocity, does not change with dβ, as shown
in figure 5, namely, the body moves with a forward velocity which only depends on the
backward travelling wave velocity, and not on its amplitude. Since the model does not
consider any dissipative effect, the above result seems reasonable, while, under the action
of viscous resistance, the slip velocity would definitely be lower and the deformation
amplitude would start to play a significant role (Smits 2019). For comparison, we report in
figure 6 the results for the velocity components for the present model and a carangiform
deformation together with those for the viscous model by Yang et al. (2008). The figure
confirms that the main effect of the viscous resistance is a consistent reduction of the
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Figure 5. Slip velocity for different undulation amplitudes.
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Figure 6. Velocity components (U, V, Ω) for carangiform deformation: present vs viscous results (Yang
et al. 2008).

steady state locomotion velocity which may otherwise be predicted by introducing a model
approximation for the viscous drag (see e.g. Akoz & Moored 2018). In this case, numerical
results not reported here reproduce an increasing trend of the asymptotic swimming
velocity with the deformation amplitude, as shown by analogous findings in the literature
(e.g. Zhang et al. 2018).

As discussed previously, the effects of added mass and vorticity release on the
swimming speed may be easily highlighted. Actually, due to the linearity of the system
of (3.15), the kinematic variables U, V and Ω are given by adding the potential and
the vortical impulses. The corresponding forward velocity contributions, Uφ and Uw,
are illustrated in figures 7(a) and 7(b) in the form of the slip velocity. For growing
amplitude, Uφ/( fλe) increases and Uw/( fλe) decreases and their sum remains constant,
as anticipated in figure 5. Let us observe that Uφ , due to the added mass, reaches
instantaneously a steady state value, and Uw, due to vortex shedding, grows in time with
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Added mass and vorticity release for self-propelled locomotion
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Figure 7. Forward component of the slip velocity for ρ = 1 and different undulation amplitudes: (a) potential
contributions; (b) vorticity contributions

a certain delay. At the same time, it is worth stressing that the rate of change of Uw in
the transient is deeply related to the pure potential impulses since a larger added mass
contribution induces a larger acceleration and a more intense vortex shedding, as shown
in figure 8 and firmly stated by Limacher et al. (2018). From the above considerations, we
can deduce that, for conditions usually adopted for efficient cruising at steady state, we
should reduce Uφ , hence the contribution due to psh and πsh, to have a lower intensity of
the released vortices. In these conditions, the total velocity is essentially given by Uw,
which may reach a large value although maintaining a weak vortex shedding. On the
contrary, a large Uφ contribution is required in escape manoeuvres such as a C-start to
give the initial instantaneous burst together with a larger acceleration accompanied by
a larger energy consumption, as discussed below, which, however, is not a priority in
this case. The following vortical contribution becomes eventually predominant at the end
of the C-start manoeuvre, in a way analogous to, but more pronounced than, the steady
swimming results.

At this point, looking at figure 5, we observe that the steady state velocity does not
match the phase velocity and the following question arises: Why does the slip velocity
differ from one? Actually, the wave phase velocity generated by the body and transferred
to the fluid appears to depend on the whole motion of the body, i.e. prescribed undulation
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Figure 8. Released circulation for different undulation amplitudes.

plus recoil. To verify the above observation, it is helpful to consider a well-established
analytical model which may allow for a better understanding of the obtained results. More
specifically, the elongated body theory (Lighthill 1960) provides an analytical expression
to evaluate the time averaged thrust exerted on an undulating body by a fluid with an
assigned uniform velocity U and a given lateral displacement h(x, t)

T̄ = 1
2
ρf A(L)

[(
∂h
∂t

)2

− U2
(

∂h
∂x

)2
]

x=L

, (5.8)

where A(L) is the added mass associated with the trailing edge of the body and the overline
indicates a mean value over time. Afterwards, Lighthill introduced the concept of recoil
associated with the displacement h, in terms of lateral and angular rigid motions that must
be added to h in order to respect the corresponding equilibrium equations. For the sake of
conciseness, only the equation for the lateral momentum balance is reported here

ρb

∫ L

0
S(x)

∂2h
∂t2

dx = −ρf

∫ L

0

(
∂

∂t
+ U

∂

∂x

) [
A(x)

(
∂h
∂t

+ U
∂h
∂x

)]
dx, (5.9)

where S(x) is the cross-sectional area of the elongated body and A(x) is the related added
mass.

By introducing a travelling wave h̃ with phase velocity ω/k and amplitude a, i.e.

h̃(x, t) = a sin (kx − ωt) , (5.10)

it is easy to show that zero thrust in (5.8) can be achieved if the velocity U is equal to the
phase velocity. In fact, assuming U = ω/k, the right-hand side of (5.9) is always equal to
zero for the wave kinematic condition

∂ h̃
∂t

+ ω

k
∂ h̃
∂x

= 0, (5.11)

while the left-hand side is different from zero, unless particular choice is made for S(x),

918 A45-16

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
3.

70
.1

67
.1

03
, o

n 
23

 M
ay

 2
02

1 
at

 1
4:

18
:5

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

37
5



Added mass and vorticity release for self-propelled locomotion
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Figure 9. Time behaviour of the fluid kinetic energy for different deformation amplitudes.

i.e. the shape of the body. Hence, in principle, h̃ should be modified by taking into account
the recoil motions B(x, t) (see e.g. Singh & Pedley 2008)

h(x, t) = h̃(x, t) + B(x, t). (5.12)

When the recoil is added to the original undulation, the total motion h no longer annihilates
the thrust (5.8) for U = ω/k, but either a rigid translation and/or a rotation motion modifies
the asymptotic velocity as

U = χ
ω

k
, (5.13)

where the factor χ , which can be evaluated by a very simple approximation, is larger than
one for the present case. As a further assessment, let us notice that (5.9) is directly satisfied
by h̃ when ρb, appearing on the left-hand side, is equal to zero, i.e. when a massless body is
considered (see Kanso 2009). It follows that, in these conditions, no recoil motion occurs
and the asymptotic velocity U is always equal to ω/k. In fact, a massless body is able to
achieve the same forward speed as that of the fluid pushed backwards by the travelling
wave since, in principle, the presence of the body is only attested by its virtual mass given
by the surrounding fluid. If we extend the above reasoning, valid for the undulating body
in a uniform stream, to the case of self-propelled locomotion, the same conclusion may be
reached for the mean force in the forward direction, whose value tends to vanish at steady
state conditions.

The just mentioned influence of the recoil on a prescribed deformation may be of great
interest also for different phenomena related to swimming control means. For instance,
by looking at (3.15) we may see how all the velocity components may substantially vary
with the added mass coefficient mij, as perceived by certain types of fish able to change
their configuration during a predator–prey interaction, as done by the sailfish by raising its
dorsal fin (see Paniccia et al. 2021).

From an energy point of view, an intense vortex shedding results in a high consumption
in terms of kinetic energy released into the flow field, as shown by figure 9. The fluid
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kinetic energy is obtained (see Graziani et al. 1995; Kanso 2009) as

E = 1
2

∫
S
φ

∂φ

∂n
dS + 1

2

∫
S
(uw × ψ) · n dS + 1

2

∫
V
ψ · ω dV. (5.14)

The first two integrals in (5.14) give a contribution which is negligible at steady state
conditions, as a consequence of the oscillatory nature of the surface integrals. Actually,
the time derivative of the injected energy can be estimated by the last integral, known as
the excess energy, and its mean rate of change is a good approximation to the mean power
transferred by the body to the fluid. Since the COT is defined as the ratio between the mean
power required and the mean swimming velocity, we may see, by combining the results of
figures 3 and 9, that high undulation amplitudes are more effective in terms of acceleration
but less favourable in terms of COT. If different kinematics are considered, the mean
forward velocity may be quite different and the comparison would be less immediate. For
a further deepening it would be important to consider a dimensionless form of the COT,
by the slip velocity and an appropriate reference power (Bale et al. 2014) to allow for a
comparison among species characterized by very different masses and styles of swimming.

5.3. Released vorticity and wake pattern
From the above discussion, it is clear that a large contribution to the swimming velocity
is associated with the release of vorticity, which plays an essential role in building up the
final asymptotic steady state. As the vorticity is released, the body experiences a force
along the direction of motion, whose nature may be understood by looking at the wake
pattern, as first pointed out by von Kármán & Burgers (1935). The renown Kármán vortex
street, which identifies a drag force on a blunt body, consists of vortex pairs of opposite
sign arranged so that the clockwise eddies are positioned above the counterclockwise
ones. In the case of an undulating fish-like body, a very similar phenomenon may occur
due to the lateral displacement of the tail tip, leading to an inverse shedding sequence
and to a wake pattern, known as the reverse Kármán street, in general associated with a
propulsive capability of the swimmer. From a qualitative point of view, the wake pattern
visualization may give a first glance evaluation of the force experienced by the body,
without detailed calculations of local values along the surface. For instance, both types of
Kármán street may be easily visualized with the present model by a numerical experiment
able to obtain both an acceleration phase, representative of thrust, and a deceleration
phase, representative of drag. The body initially undulates with an angular frequency
ω1 = 10 rad s−1 and accelerates towards the corresponding asymptotic speed, then, if
the frequency is abruptly halved, a deceleration occurs up to the new asymptotic speed
as shown in figure 10. Correspondingly, figure 11 shows in a neat way the two different
types of wake pattern, which reveal the different orientation of the so-called mushrooms,
interestingly named footprints by Zhang (2017), which are related to the exchange of forces
between fluid and body. However, this correspondence is not always well defined since, for
steady locomotion, no average forces are exchanged and the wake configuration does not
show a sharp distinction among the two patterns. In this case, it seems reasonable to say
that a one-to-one correspondence between the swimming performance and the structure
of the wake is not so easy to detect (Smits 2019).

6. Final remarks and comments

Self-propelled aquatic locomotion has to be studied by a proper procedure to allow for the
undulating body to be completely free to swim, obeying the equilibrium of the internal
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0 2 4 6 8 10 12 14 16 18
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

U

dβ = 0.5 | ω1 = 10 rad s–1 | ω2 = 5 rad s–1

ω1/keff

ω2/keff

Figure 10. Time history of the forward swimming velocity in the presence of an abrupt frequency change:
from ω1 = 10 rad s−1 to ω2 = 5 rad s−1.

–0.5

0

0.5

–0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

–0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

x

–0.5

0

0.5

y

y

(b)

(a)

Figure 11. Acceleration phase reverse Kármán street wake pattern (a). Deceleration phase direct Kármán
street wake pattern (b).

forces exchanged with the surrounding fluid. However, at steady state, many experimental
and computational investigations, with notable exceptions in recent times, have been
carried out by considering the body, with a prescribed deformation, in the presence of
an incoming uniform stream or tethered with the opposite velocity. In these cases, the aim
was to find the thrust and the injected power to evaluate the Froude efficiency. In fact, the
most renowned physical models, built on those assumptions, were frequently taken as a
guide and a theoretical framework to discuss the output of the investigations. At the same
time, the desire to account for the recoil forces, as frequently recommended for the study of
free swimming, led to quite involved procedures when a body under an incoming uniform
stream was assumed.
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A completely different approach, proposed in the last decades, considered instead the
locomotion velocity as the primary variable for free swimming of a deformable body,
which has to be taken as part of a full system together with the surrounding fluid otherwise
at rest. To better understand the intertwining effects of the added mass and the vorticity
release, a 2-D model with concentrated vorticity was adopted to provide a flexible tool to
cope with the complexity of the self-propelled motion accelerating from zero to a steady
state asymptotic velocity. For this purpose, several simulations were reported to clarify the
physical contributions due to added mass and to vorticity release in terms of motion and
expended power.

On the one hand, the effect of the added mass, easily expressed in terms of the
non-circulatory potential impulses, provides the instantaneous burst, which is essential
to activate the release of vorticity shed into the wake. On the other hand, the effect of the
released vortices, easily measured by the vortical impulse, leads to a gradual increase of
the velocity up to steady state. The combined action of the above physical phenomena is
clearly shown by the time history of the velocity whose asymptotic value is guided by the
phase velocity of the travelling wave together with a proper account of the recoil motion.
The starting acceleration, which is increasing for larger amplitudes of the deformation,
provides a fast escape even though with a larger request of energy.

The kinematic variables, as the natural unknowns of the free-swimming problem, give
the trajectory of the deformable body i.e. the motion generated by the internal forces
exchanged with the surrounding fluid, including a complete account of the recoil reactions.
Several results reported in Paniccia et al. (2021) show that, any attempt to constrain the
trajectory by reducing the degrees of freedom in the numerical solution, would lead to
different body motions less efficient than free swimming. The request to compare different
gaits leads, in a straightforward way, to measurement of the efficiency by using the output
of the present model, i.e. the velocity and the expended power, as clearly expressed by the
COT, since the traditional Froude efficiency is not a proper measure in this case.

To have a preliminary account of the role of vorticity diffusion, missing in the present
model, a simple approximation has been devised to evaluate how the influence of the
deformation amplitude may be sensitive to the presence of an extra resistance. The results
are encouraging and the decrease of the asymptotic velocity for lower amplitudes of
the deformation confirmed previous results. A step forward, able to maintain the valid
properties of the present model, should take into account the diffusion of vorticity, to
recover a handy viscous vortex model (see e.g. Rossi, Colagrossi & Graziani 2015; Durante
et al. 2017), for a more realistic representation of a larger number of physical cases. As an
ultimate comment, we would like to mention that the above analysis, beyond its theoretical
interest, may be of great help in defining, as briefly observed for certain types of fish,
some suitable parameters for bio-mimetic design of engineering applications with a focus
on simplified control means.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.375.
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Added mass and vorticity release for self-propelled locomotion

Appendix A

For the sake of convenience we report below a few vector identities used to obtain some
of the expressions reported within the previous sections.

Given a vector field u defined over a volume V bounded inside by Sb and outside by S,
the following vector identity holds (N =2,3 is the dimension of the space and the normal
n points in V on Sb and outwards on S)∫

V
u dV = 1

N − 1

∫
V

x × ω dV + 1
N − 1

∫
Sb

x × (n × u) dS

− 1
N − 1

∫
S

x × (n × u) dS. (A 1)

Given a single-valued scalar field φ and a closed surface S, from the generalized Stokes’
theorem it holds (referred to by Noca as the pressure identity)

1
N − 1

∫
S

x × (n × ∇φ) dS = −
∫

S
φn dS. (A2)

For the same vector field in (A1) (Wu et al. 2015)∫
V

x × u dV = −1
2

∫
V

|x|2ω dV − 1
2

∫
Sb

|x|2n × u dS + 1
2

∫
S
|x|2n × u dS. (A3)

Given a scalar field φ and a closed surface S, it holds that

1
2

∫
S
|x|2(n × ∇φ) dS =

∫
S

x × φn dS. (A4)
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a b s t r a c t

The study of the free swimming of undulating bodies in an otherwise quiescent fluid
has always encountered serious difficulties for several reasons. When considering the
full system, given by the body and the unbounded surrounding fluid, the absence of
external forces leads to a subtle interaction problem dominated, at least at steady state
conditions, by the equilibrium of strictly related internal forces, e.g. thrust and drag,
under the forcing of a prescribed deformation. A major complication has been dictated by
the recoil motion induced by the non linear interactions, which may find a quite natural
solution when considering as unknowns the velocity components of the body center of
mass. A simplified two-dimensional model in terms of impulse equations has been used
and a fruitful separation of the main contributions due to added mass and to vorticity
release is easily obtained. As main results we obtain either the mean locomotion speed
and the oscillating recoil velocity components which have a large effect on the overall
performance of free swimming. Several constrained gaits are considered to highlight
the relevance of recoil for realizing graceful and efficient trajectories and to analyze its
potential means for active control.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The swimming of a deformable body in water, either fish or cetacean, has been studied since the beginning (see
e.g. Bainbridge, 1958; Lighthill, 1960; Wu, 1961), by considering the body held in a fixed position under an incoming
uniform stream, or tethered with an opposite velocity, to evaluate the performance at steady state conditions. This
choice was considered the most favorable for the implementation of simplified mathematical models and instrumental
for experimental techniques or for computational solutions. As a consequence, the prevailing attention at the time was
given to the resulting thrust which leads, together with the expended power, to the evaluation of the well known Froude
efficiency (see e.g. Lighthill, 1960), usually adopted for marine vehicles where the propulsive force is easily separated from
the resistive one. Hence, apart from the assigned stream in the forward direction, the other body motions either lateral
or angular, perceived as recoil motions, did receive in general a secondary interest or no interest at all. To the best of our
knowledge, Lighthill was the first one, at the beginning of the 60s, to emphasize the importance of the recoil, induced
by the fluid–body interactions. He did actually pursue, as primary objective of his elongated body theory, the evaluation
of thrust and efficiency produced by the prescribed deformation, but he analyzed also the recoil motion as a required

∗ Corresponding author.
E-mail address: damiano.paniccia@uniroma1.it (D. Paniccia).

https://doi.org/10.1016/j.jfluidstructs.2021.103290
0889-9746/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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correction to satisfy the equilibrium equations. Subsequently, several numerical investigations (see e.g. Maertens et al.,
2017) tried to determine by the same procedure the effects of the recoil motion on the overall performance.

Since the animal muscular contractions give rise only to a change of shape relative to the center of mass, the whole body
motion including the recoil should be given primarily by the center of mass motion generated by the interaction with the
surrounding fluid. To this aim, an approach more suitable for self-propelled swimming was suggested by Saffman (1967)
and subsequently adopted in numerical simulations by Carling et al. (1998), Kern and Koumoutsakos (2006), Borazjani and
Sotiropoulos (2010), Yang et al. (2008), among others. The free-swimming mode provides as unknowns of the problem
the velocity components of the body center of mass under the action of the internal forces exchanged with the otherwise
quiescent fluid. Along this line, the motion of a deformable body in an unbounded fluid domain and in the absence of
external forces, is analyzed here by imposing the conservation of momentum and of its moment for the entire fluid–body
system. The undulatory deformation is usually prescribed, so to conserve linear and angular momenta in the absence
of fluid, while the kinematic variables for the body center of mass are obtained by solving the equilibrium equations.
Namely, the mean forward velocity in the body frame gives the animal locomotion while the oscillatory angular and lateral
velocities are identified as the recoil motions with a significant impact on the swimming performance. The oscillatory part
of the forward velocity is also obtained, but, as recognized by many authors (Bale et al., 2014; Smits, 2019), it plays a
minor role in most cases.

Recently, several contributions in experimental biology fostered the measurements of the center of mass position, in
a frame moving with the mean forward velocity, as a tool for evaluating and comparing different species and different
styles of swimming (see e.g. Lauder, 2015; Xiong and Lauder, 2014). Actually, the forward, lateral and angular oscillating
velocity components (surge, sway and yaw) are easily obtained with the present model while heave, i.e. the motion in the
third direction, is not so important in fish swimming. The numerical values of the oscillating velocities, properly treated by
statistical tools, may reveal the main properties of the self propelled locomotion as a signature of the style of swimming.

Purpose of the paper is to define the role of the recoil for a self-propelled body under a prescribed deformation and a
non linear interaction with the surrounding fluid. The motion of the body center of mass, in terms of locomotion speed
and of oscillating recoil velocities, is the most natural quantity to evaluate. To reduce this subtle problem to its essential
features, as suggested by Schultz and Webb (2002) and recently by Akoz et al. (2019), we consider a two-dimensional
potential flow model with generation of non-diffusing vorticity and its release from the trailing edge. In this way the
related numerical scheme is able to separate the contribution of potential and of vortical impulse, by highlighting their
different roles in the time evolution of the unsteady solution. The identification of the added mass term may provide a
useful key for a physical interpretation of unsteady phenomena (see e.g. Limacher et al., 2018) while the analysis of the
wake evolution, essential to define the asymptotic value of the locomotion speed, allows for the calculation of the energy
injected into the fluid (see e.g. Bale et al., 2014). For the well known difficulties to disentangle the internal forces, given
by thrust and drag, the standard measures of the efficiency are not easily detectable and we adopt a suitable form of the
cost of transport (see e.g. von Kármán and Gabrielli, 1950; Bale et al., 2014) to evaluate the efficiency of the different
styles of swimming . Moreover, we discuss with particular care the oscillating velocity components of the center of mass
which have a notable importance for understanding different swimming modes and related means for active control.

Among the numerical results, for a better evaluation of free swimming features we analyze in comparison, as originally
proposed by Reid et al. (2012), the simulations of constrained motions which are representative of cases where some recoil
reactions are prevented. To obtain constrained gaits by the present model it is convenient to annihilate either one or more
velocity components in the body frame, among lateral motion and rotation. As a primary result, the efficiency, in terms
of the cost of transport, is measured for each one of the above simulations to assess the free swimming performance for
aquatic locomotion. A simple tool for the active control of swimming may be obtained by modifying the recoil reaction
throughout a sudden variation of the shape. For instance, as suggested by Domenici et al. (2014), the sailfish is able to
raise a vertical fin to reduce lateral and angular oscillations with the aim to stabilize the trajectory during a predator–
prey interaction. We will see by a crude approximation that an increase of the related components of the fish added mass
matrix, consistent with the sail raising, may be instrumental to implement the required pattern control.

2. Material and methods

2.1. Mathematical model

We study the motion of a two-dimensional deformable body within an infinite volume of initially quiescent fluid with
constant density. Since no external forces or moments are applied to the fluid–body domain, the self-propelled motion is
due to the body undulations. In other words the total linear and angular momenta are conserved for the whole domain,
while the forces and moments exchanged between fluid and body appear as internal actions. To express the equations for
the fluid–body dynamics we adopt the classical formulation in terms of potential and vortical impulses that overcomes
the difficulties to treat an unbounded domain, as largely discussed in the literature (see e.g. Landau and Lifschitz, 1986;
Wu et al., 2006), and avoids the evaluation of the pressure on the body contour. Through the impulse formulation we can
emphasize the contribution of the acyclic (non circulatory) potential as well as the effects of both the free vorticity and
the cyclic part of the bound vorticity. A detailed formulation, though focused on pure potential flow, is given by Kanso
(2009) while the extension to generated and released vorticity (see also Eldredge, 2007) is briefly presented here.
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The locomotion of the deformable body is obtained by coupling the dynamics of the body and of the surrounding fluid.
If we consider the body–fluid system (Vb + Vf ), in the absence of external forces and moments the linear and angular
momenta are conserved as given by

d
dt

[∫
Vb

ρb ub dV +

∫
Vf

ρ u dV

]
= 0 (1)

d
dt

[∫
Vb

ρb x × ub dV +

∫
Vf

ρ x × u dV

]
= 0 (2)

where (ρb,ub) and (ρ,u) are the density and the velocity of body and fluid, respectively.
Since forces and moments are not required in the present procedure, we may neglect in the above Eqs. (1)–(2) the

time differentiation which would otherwise lead to a subsequent integration to find the kinematics of the body. Hence,
by assuming an initial condition of quiescent fluid, we obtain a very efficient solution.

The second term within the square brackets in (1) is the fluid impulse p which can be expressed, via a well known
vector identity, by two contributions due to the field vorticity ω and to the vortex sheet over the body surface (see
e.g. Noca et al., 1999; Wu et al., 2006; Graziani and Bassanini, 2002):

p = ρ

[∫
Vf

x × ω dV +

∫
Sb

x × (n × u) dS

]
(3)

where Sb is the body contour, n is the normal vector to Sb pointing into the flow domain and u is here the limiting value
of the fluid velocity on Sb.

Another vector identity, is used for the second integral in (2) yielding an expression for the angular momentum
(positive anticlockwise) on the body. Here we consider the moment with respect to a given pole (to be specified later
either as the origin of the ground reference frame or as the body center of mass), so x is the generic distance of the field
point from the pole. The angular impulse π is defined as:

π = −
1
2
ρ

[∫
Vf

|x|2ω dV +

∫
Sb

|x|2(n × u) dS

]
(4)

The velocity field u is expressed through the Helmholtz decomposition as the sum of the acyclic component and of
the vorticity related one (i.e. wake plus the cyclic part of the bound vortex sheet):

u = ∇φ + ∇ × Ψ = ∇φ + uw (5)

where φ and Ψ are referred to as the scalar and the (solenoidal) vector potential, respectively. These are given by the
solution of the Laplace/Poisson equation, subject to the impermeable boundary condition on Sb and to a vanishing velocity
at infinity.

The fluid impulse p given by (3) can be expressed in terms of its potential and vortical components, pφ and pv

respectively, where pv is defined by adding the contributions of the released vorticity ω and of the cyclic part of the
bound vorticity n × uw on Sb:

pv = ρ

[∫
Vf

x × ω dV +

∫
Sb

x × (n × uw) dS

]
to follow Lighthill’s concept of additional vorticity which is given by summing up the field vorticity to the bound vorticity
minus its potential part (which is related to the added mass).

The acyclic potential contribution pφ , via a renown vector identity, is given by:

pφ =

∫
Sb

x × (n × ∇φ) dS = −ρ

∫
Sb

φ n dS (6)

The expression for the angular momentum can be similarly obtained by separating the potential πφ and the vortical πv

impulses as:

πφ = −ρ

∫
Sb

φ x × n dS (7)

πv = −
1
2
ρ

[∫
Vf

|x|2ω dV +

∫
Sb

|x|2(n × uw) dS

]
(8)
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To enforce the conservation of the total impulses, the linear and angular momenta of the body have to be evaluated.
To this aim, the location of the body center of mass xcm and its velocity are defined by:

xcm =
1
mb

∫
Vb

ρbxb dV ucm =
d
dt

xcm =
1
mb

∫
Vb

ρbub dV (9)

where mb is the body mass. Consequently, Eq. (1) yields:

mb ucm + p = 0 (10)

Similarly, the angular impulse is recast from Eq. (4) in terms of the distance x′ measured from xcm as π ′
= (π − xo × p)·

e3 where xo is a given reference point. Hence, the angular momentum balance reduces to:

Izz Ω + π ′
= 0 (11)

where Izz is the moment of inertia with respect to the center of mass and Ω is the angular velocity.
The self-propelled motion of the body is described by the above reported Eqs. (10) and (11) in terms of ucm and Ω

which provide the locomotion speed and the recoil oscillating motions.
By using a Cartesian inertial frame (e1, e2, e3), the body motion occurs in the plane (e1, e2) and its translation is given

by: xo = xo e1 + yo e2. Moreover, the body may undergo a rotation θ about the axis e3.
The motion of the body can be expressed as the sum of the prescribed deformation (shape variations with velocity

ush) plus the motion (with translational, ucm, and angular, Ω, velocities) of the center of mass (cm) reference frame. In the
ground fixed inertial frame the angular velocity is Ω = θ̇ e3 ≡ Ω e3. The linear velocity is ucm = ẋoe1 + ẏoe2. Thus we can
express the body motion as:

ub = ush + ucm + Ω × x′ (12)

where x′ is the position vector in the body reference frame, i.e.: x = xcm +x′. If Eq. (12) holds, the prescribed deformation
has to satisfy:∫

Vb

ρbush dV = 0
∫
Vb

ρbx′
× ush dV = 0 (13)

Many authors (see e.g. Lighthill, 1970; Borazjani and Sotiropoulos, 2008; Reid et al., 2012; Maertens et al., 2017) adopt a
generic deformation ush which does not generally satisfy Eqs. (13), leading to∫

Vb

ρbush dV = mbuo

∫
Vb

ρb(x′
× ush) · e3 dV = IzzΩo (14)

In this case to maintain our approach, the rigid motions given by uo and Ωo have to be removed since they should not
be imposed on the self-propelled body as deeply analyzed by Bhalla et al. (2013) (see also Singh and Pedley, 2008).

The scalar potential φ introduced by the Helmholtz decomposition is further divided as φ = φsh + φloc , where φsh is
given by the imposed deformation velocity ush and φloc is given by the combination of the locomotion linear and angular
velocity ucm and Ω , according to the related boundary conditions on Sb

∂φsh

∂n
= ush · n

∂φloc

∂n
= (ucm + Ω × x′) · n

A similar decomposition holds for both the linear and the angular impulses, i.e. pφ = psh + ploc and π ′

φ = π ′

sh + π ′

loc .
Finally, the locomotion impulses, ploc and π ′

loc , can be expressed in terms of the added mass coefficients reported in the
classical treatises (see e.g. Lamb, 1975). For a body motion given by ucm and Ω , we consider the Kirchhoff base potentials
Φj to express φloc = ucm1Φ1 + ucm2Φ2 + ΩΦ3. When this decomposition is combined with the linear and angular fluid
potential impulses, the relevant added mass coefficients mij appear in the equations of motion.

2.2. Solution procedure

To compute the numerical solution it is convenient to write the locomotion equations in a coordinate frame attached
to the body. For the 2D problem under investigation, we consider the ground fixed frame {e1, e2, e3} and the body frame
{b1, b2, b3} whose origin is xo ≡ xcm and b3 is parallel to e3. In this frame, the linear velocity Vcm = V1 b1 + V2 b2 and the
momenta P and Π are given by:

ucm = RVcm p = RP π ′
= Π (15)

where R is the rotation matrix relating the inertial to the body frame. By starting from Eqs. (10) and (11) and by combining
with the decompositions shown in the previous subsection for both potential and vortical impulses, we obtain the system
of equations that yields the body motion:⎧⎨⎩

V1 (m11 − mb) + V2 m12 + Ω m13 = Psh1 + Pv1

V1 m21 + V2 (m22 − mb) + Ω m23 = Psh2 + Pv2

V1 m31 + V2 m32 + bΩ (m33 − Izz) = Πsh + Πv

(16)
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Let us underline that the locomotion unknowns Ω , V1 and V2, appearing within the linear and angular impulses, remain
on the l.h.s while all the known quantities are shifted to the r.h.s., leading to a well-posed system of equations very suitable
for the numerical solutions. A more detailed description of the mathematical aspects supporting the overall procedure is
given in Paniccia et al. (2021). The impulses Πsh and Psh are due to the body deformation, while Πv and Pv are the vorticity
related quantities. The terms appearing on the l.h.s. in Eq. (16) express the generalized added mass matrix which, together
with the body inertial properties, give the coefficient matrix for the locomotion variables. The body mass mb is assumed
to be constant while Izz and mij change in time according to the shape deformation. In the following, to be consistent with
most of the literature on the subject, the velocity components are renamed as U = −V1 and V = V2.

To solve the system of Eqs. (16), we consider an accurate but simplified numerical procedure which does not involve
vorticity diffusion (see also Akoz and Moored, 2018). The evaluation of both potential and vortical impulses can be
obtained by the discretization of the body surface and by a suitable model for the release of the concentrated vortex
sheet via a Kutta condition to mimic the presence of a vanishing viscosity. Let us mention briefly some of the techniques
adopted for the numerical results. The linearity of the impulse equations enables to isolate and separate the contribution
of the added mass which is correctly evaluated at each time-step and partly located on the l.h.s. driving to a well-posed
system of equations.

The flow solution is obtained by using an unsteady potential code which is based on the approach of Hess and Smith
(1967) approximating the body by a finite number of panels, each one with a specific source strength, but with a common
circulation density. The impermeability condition on each panel together with a suitable unsteady Kutta condition are
needed in order to evaluate the source strengths and the uniform circulation density γ . Moreover, according to Kelvin’s
theorem, any change in circulation about the airfoil results in the release of vorticity by a wake panel attached to the
trailing edge (see Basu and Hancock, 1978). At each time step the released wake panel is lumped into a point vortex which
is shed into the wake and advected downstream by the flow field. Finally, let us stress that the extension to vorticity
diffusion would lead to a classical vortex method (see Chorin, 1973; Koumoutsakos et al., 1994) without substantially
changing the adopted numerical procedure. By this extension it would be possible to consider also a release from smooth
portions of the body as in the case of the leading edge vortex which plays a very important role in several unsteady
maneuvers out of the scope of the present work.

2.3. Swimming kinematics

The swimming fish is represented by an undulating body with a chord length c equal to 1 m and whose shape at rest
corresponds to a NACA0012 airfoil. The body undulates according to an artificially designed deformation more suitable
for bio-mimetic applications, hereafter referred to as synthetic deformation. This deformation is obtained by assigning
the slope β of the body mid-line by the following expression for a traveling wave of constant amplitude dβ (assumed as
π
10 rad) and a wave number k related to a wavelength (assumed equal to c) along the curvilinear coordinate s

β(s, t) = dβ sin(ks − 2π f t) (17)

where f is the frequency (assumed equal to 10
2π s−1). The instantaneous coordinates of the airfoil mid-line in the body-fixed

frame are obtained by integrating Eq. (17)

xc(s, t) =

∫ s

0
cos (β(s, t)) ds (18a)

yc(s, t) =

∫ s

0
sin (β(s, t)) ds (18b)

and the resulting configurations are shown in Fig. 1a.
This coordinates are properly corrected consistently with Eq. (13) by removing any rigid linear and angular displace-

ments associated to the center of mass to obtain the mid-line configuration shown in Fig. 1b. Basically, the shape of the
body is prescribed with respect to its center of mass and its principal axes of inertia. A further advantage of the synthetic
deformation consists in the automatic compliance of the inextensibility condition expressed as(

∂yc
∂s

)2

+

(
∂xc
∂s

)2

= 1 (19)

which ensures that the length of the body does not change during the motion. Different deformations, closely related to
natural styles of swimming, e.g. carangiform and anguilliform, will be considered later for a comparative analysis.

3. Numerical results

3.1. The effects of motion constraints

As anticipated in the previous sections, we are interested in evaluating the effect of both lateral translation and rotation,
i.e. the two most relevant recoil motions, accompanying the fish locomotion generated by its shape deformation. To this
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Fig. 1. (1a) Representative mid-line configurations obtained by the direct integration of Eqs. (17) giving an insight of their envelope– (1b) The same
for the modified ones to satisfy Eq. (13). The dots represent the center of mass positions.

Fig. 2. Time history of (a) the forward velocity and (b) the kinetic energy for free swimming (blue) and constrained gaits: lateral and angular
constraints (yellow), lateral constraint (red) and angular constraint (green). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

purpose, we consider the comparison between a fish whose recoil motions are allowed and a fish whose lateral and
angular recoil motions in the body frame are prevented. This constrained gait implies that the center of mass of the fish
is able to move exclusively along the forward direction as it occurs in many experimental investigations.Fig. 2a shows that,
in these conditions (yellow curve), the body cannot reach the same asymptotic speed as in the free swimming case (blue
curve). Correspondingly, the much larger energy consumption E shown in Fig. 2b, implies a larger cost of transport (COT ),
defined as the ratio between the mean rate of change of the energy Ė and the mean forward velocity Uloc (see e.g. Bale
et al., 2014; von Kármán and Gabrielli, 1950; Maertens et al., 2015). Consistently, for a certain steady state velocity, if
such an unfavorable constraint is imposed, it follows an overestimation of the energy consumption. Let us mention that
for the present model it is convenient to evaluate Ė as the mean rate of change of the excess energy 1

2

∫
Ψ · ω dV .

At this point, it is also interesting to analyze partial constraints which involve either the lateral or the angular motion
while the forward oscillations are expected to have a minor impact on the swimming performance as claimed by many
authors (see e.g. Maertens et al., 2017; Smits, 2019). When only the lateral motion is inhibited, the steady-state speed
(red curve in Fig. 2a) is slightly lower than for free swimming (blue curve), while the energy consumption is still larger
though almost comparable (same colors in Fig. 2b).

Instead, when only the angular motion is prevented, the velocity time history (green curve in Fig. 2a) shows a larger
steady-state value together with a shorter transient. However, the energy consumption is even larger, as shown in Fig. 2b,
when compared to the fully constrained case.

The bars shown in Fig. 3a represent the peak-to-peak oscillation of the forward, lateral and angular velocity components
for the different constrained cases (see Xiong and Lauder, 2014).

It is interesting to note that the angular constrained case, characterized by the largest mean forward velocity, shows
larger lateral oscillations to which, in general, is associated a larger thrust force in the forward direction. At the same
time, the reduction of the locomotion speed associated with the lateral constraint may be a direct consequence of the
suppression of lateral motion. The center of mass displacement is shown in Fig. 3b within a reference frame which moves
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Fig. 3. (a) Amplitude of the peak-to-peak forward, lateral and angular velocity oscillations in the body frame. (b) Center of mass displacement in the
locomotion frame for free (blue) and constrained motions: lateral and angular constraints (yellow), lateral constraint (red) and angular constraint
(green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Comparison at steady-state of the fully constrained (yellow) and the free swimming case (blue) - (animation-link). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

with the locomotion velocity, hereafter referred to as locomotion frame. We may notice that in this frame the lateral
constrained case is characterized by an orthogonal motion with respect to the swimming direction which leads to a style
of swimming quite close to the unconstrained one, as suggested also by the similar energy consumption in Fig. 2b (blue
and red curves). Let us stress that large angular oscillations are present both in free swimming and in lateral constrained
motions, together with a better energetic performance. Hence, we may consider the angular recoil as a primary form of
control to optimize the center of mass trajectory. From the point of view of the expended energy, the lateral recoil motion
does not seem as influential as the angular one.

To summarize, when only the lateral motion is constrained, the angular velocity is slightly lower than in free swimming
while the associated energy consumption (see red curve in Fig. 2b) is almost the same. On the other hand, when the
angular recoil motion is prevented, a huge increase in the energy consumption is observed (see green curve in Fig. 2b).
Some of the phenomena related to constrained gaits are poorly intuitive hence, for a quick evaluation of the corresponding
motions, we provide an animation (animation-link) with the direct comparison at steady-state of two quite different styles
like the fully constrained (yellow case) and the free swimming one (blue case). For the sake of convenience a frame of the
video is reported in Fig. 4. We may appreciate the larger speed of the free swimmer together with the stronger vortical
wake for the constrained one corresponding to a much larger intensity of the released vortices whose circulation Γ is
reported in Fig. 5. The impact of recoil on the swimming performance was also highlighted by other authors, starting
from the preliminary work of Reid et al. (2012), limited to the lateral recoil motion, up to the work of Maertens et al.
(2017) who clearly showed the importance of recoil for a correct estimation of the overall efficiency. On the same line of
reasoning, Yang et al. (2008) reported much larger forces, hence larger power consumption, for the constrained case.

As a further deepening on these constrained motions, let us analyze how the potential and vortical impulses, as
introduced in Section 2, cooperate to give the above presented results. To this purpose, we analyze both free swimming
and fully constrained motion. We may observe in Fig. 6a how the potential contribution to the forward velocity reaches
instantaneously a steady oscillatory state which is going to anticipate and guide the vortical contribution continuously
growing in time together with release of new vortices. From the peak-to-peak oscillations shown in Fig. 6b, we may
appreciate a larger value of the potential contribution for the constrained case while the value of the vortical one is
quite comparable. Finally, a phase shift among the two contributions seems to be responsible for the significantly lower
amplitude of the total velocity oscillations for free swimming. This result is confirmed by looking again at Fig. 2a and it
seems clearly related to the lower circulation amplitude shown in Fig. 5.
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Fig. 5. Time history of the released circulation Γ for the fully constrained (yellow) and free swimming case (blue). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. (a) Time history of the forward velocity potential (Uφ ) and circulatory (Uw) contributions for free swimming (blue) and fully constrained
motion (yellow); (b) peak-to-peak oscillation for Uφ , Uw and the total velocity U . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

3.2. The impact of shape deformation

The above results has been obtained for the synthetic deformation to have a preliminary account of the constraints.
However, in the literature, a large number of different approaches is used to describe different fish species. Most of them
are based on analytical expressions for the lateral displacement of the mid-line obtained by fitting data from direct
observations. These expressions usually consist of a traveling wave multiplied by a polynomial amplitude modulation
A(x) = ax2 + bx + c , whose coefficients are changed according to the fish swimming style. For an anguilliform swimmer,
the amplitude modulation of the swimming motion is given by (Tytell and Lauder, 2004)

A(x) = 0.1 + 0.0323 (x − 1) + 0.0310
(
x2 − 1

)
(20)

For a carangiform swimmer, the amplitude modulation is given by (Videler and Hess, 1984)

A(x) = 0.1 − 0.0825 (x − 1) + 0.1625
(
x2 − 1

)
(21)

These prescribed swimming displacements are supposed to represent the real motions of the observed fishes.
Nevertheless, in general, they do not satisfy the linear and angular momentum conservation and a recoil correction is
required. It follows a substantial change of the final displacement as shown by Fig. 7, where it is possible to appreciate the
differences between the prescribed mid-line envelopes and the modified ones accounting for the recoil, hence representing
the whole motion. The synthetic deformation introduced here is also shown in the same figure to facilitate the comparison.

Despite the different prescribed deformations, once the recoil motions are considered, the three amplitude envelopes
are quite similar, in particular with regard to the bottleneck near the center of mass. As a further strength for this analogy,
the effects of constraints on the performance with the experimentally observed deformations are comparable to those
discussed for the synthetic one. For instance, Fig. 8 summarizes the results obtained by constraining the anguilliform
swimmer. No significant variation with respect to the synthetic deformation (see Fig. 2) appears if we exclude the mean
asymptotic forward velocity reached in the case of the angular constraint, which in the present case almost coincides with
the free swimming one. An even more significant comparison among the analyzed cases, (all with the same oscillation
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Fig. 7. Envelope of mid-line configurations for several prescribed deformations (top) and their corresponding recoil corrected displacement (bottom).

Fig. 8. Anguilliform (a) swimming velocity components and (b) fluid kinetic energy for free swimming (blue) and constrained gaits: lateral and
angular constraints (yellow), lateral constraint (red) and angular constraint (green). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Effects of constraints on the cost of transport for the analyzed different deformations for free swimming (blue) and constrained gaits: lateral
and angular constraints (yellow), lateral constraint (red) and angular constraint (green). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

frequency and tail-beat amplitude) is given by the cost of transport whose increase (Fig. 9) is mostly affected by the
angular constraint.

3.3. A tool for active control

The above reported constrained cases give, as a primary result, interesting information about the effect of the recoil
motions on the swimming performance. At the same time, these constraints may represent also the limit case of an
active control adopted by the fish through its appendages. For example, the sailfish, is well known to exploit the dorsal
fin raising to optimize its performance during the predator–prey interactions. The dorsal fin, i.e. the sail, is kept retracted
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Fig. 10. Sailfish with (orange) and without (blue) the sail model: (a) forward, lateral and (b) angular velocity components. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Amplitude of the peak-to-peak oscillations for the sailfish: (a) forward, lateral and angular velocity and (b) forces and moment with (blue)
and without (orange) the sail model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

when cruising or fast swimming to avoid larger energy consumption, while it is extended to increase control during
hunting maneuvers. On this subject, Domenici et al. (2014) deeply analyzed the behavior of the sailfish to show how the
sail raising may be effective to reduce rotations and lateral translations. By approaching the schooling prey, the sailfish
suddenly insert their long bill trying, in the mean time, to minimize any disturbance before slashing. Actually, when the
sail is extended, the angular oscillations of the bill are reduced so as to make the bill a stealthy object, not easily detectable,
while the approach velocity is reduced to match the prey swimming speed.

To reproduce the effect of the erected dorsal fin, we assumed, as a very crude approximation of a 3D extension, an
extra value of the added mass consistent with a rigid flat plate (Faltinsen, 1993). The associated coefficients modify the
body mass matrix to take into account the effects of the sail on the linear and angular velocity components.

As shown in Fig. 10, we obtain (as given by the experimental measurements by Domenici et al., 2014; Marras et al.,
2015) either a lower swimming speed and the reduction of the angular and lateral oscillations. These are shown in a
neat way in Fig. 11a, accompanied by an increase of both the moment and the lateral force experienced by the body (see
Fig. 11b), since the larger inertance of the body due to the sail extension leads to a larger power consumption.

4. Final remarks

The locomotion of an undulating, neutrally buoyant, body has been studied either for the steady state and for the
transient regime. Due to the involved complex phenomena, a simplified two-dimensional model has been adopted to
obtain neat results as proposed by several authors (e.g. Schultz and Webb, 2002; Akoz and Moored, 2018; Akoz et al.,
2019) and in a way encouraged by the midbody plane results obtained by Wolfgang et al. (1999) with a three-dimensional
numerical model. Apart from the mean forward velocity representing the required locomotion, a particular attention has
been given to the oscillating velocity components of the body center of mass which give the recoil motion originally
introduced by Lighthill to satisfy the equilibrium equations of the free swimmer. The main points and related results
discussed so far are here briefly summarized to highlight the most interesting findings about the relevance of recoil for
free swimming performance:
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– several constrained gaits have been considered to evaluate the importance of the various velocity components by
inhibiting, either singly or jointly, their effect on the overall body motion;

– the locomotion velocity and the related expended energy clearly show the optimal performance of the free swimming
with respect to all the considered constrained motions;

– the oscillating velocity components of the body center of mass, corresponding to the recoil motions, may be a simple
and efficient tool, as recently proposed by experimental biologists, to understand and classify different styles of
swimming;

– the attenuation of the recoil motions, on the other hand, may be seen as a suitable way to control several kinematic
and dynamic aspects of the swimmer trajectory, as revealed by well known cases in nature;

– the most typical deformations proper of anguilliform and carangiform swimming styles are analyzed in comparison
with the proposed synthetic deformation, with regard to the behavior in presence of recoil.

Some of the above statements, although based on simplified numerical results, give a valuable insight about the
importance of recoil for the study of free swimming. Most of the results have been obtained for a synthetic shape
deformation of particular interest for bio-mimetic applications and their assessment, through a systematic application
to natural swimming styles, is requested. As a final comment, an extension of the methodology to account for vorticity
diffusion (see e.g. Graziani et al., 1995; Eldredge, 2007) and for three-dimensional effects (see Wolfgang et al., 1999)
should be implemented to deepen the analysis and to better understand further aspects of fish locomotion.
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The performance of a flapping foil 
for a self‑propelled fishlike body
Damiano Paniccia1,2*, Luca Padovani1,2, Giorgio Graziani1,2 & Renzo Piva1,2

Several fish species propel by oscillating the tail, while the remaining part of the body essentially 
contributes to the overall drag. Since in this case thrust and drag are in a way separable, most 
attention was focused on the study of propulsive efficiency for flapping foils under a prescribed 
stream. We claim here that the swimming performance should be evaluated, as for undulating fish 
whose drag and thrust are severely entangled, by turning to self‑propelled locomotion to find the 
proper speed and the cost of transport for a given fishlike body. As a major finding, the minimum 
value of this quantity corresponds to a locomotion speed in a range markedly different from the one 
associated with the optimal efficiency of the propulsor. A large value of the feathering parameter 
characterizes the minimum cost of transport while the optimal efficiency is related to a large effective 
angle of attack. We adopt here a simple two‑dimensional model for both inviscid and viscous flows to 
proof the above statements in the case of self‑propelled axial swimming. We believe that such an easy 
approach gives a way for a direct extension to fully free swimming and to real‑life configurations.

The self-propulsion of certain fishes may be reduced to the study of the oscillatory motion of the caudal fin. For 
instance, a tunniform swimmer uses the tail to generate most of the propulsive force, while the anterior part 
of the body provides essentially a viscous resistance. In these cases since it is possible, as a first approximation, 
to separate drag and thrust, in the past it was considered more convenient to study the tail as an isolated flap-
ping foil, i.e. with a combined heave and pitch motion. Actually, most of the attention was paid to the study of a 
flapping foil under a uniform incoming stream to evaluate the fluid-induced thrust which is able to counteract 
the unavoidable body resistance. Hence, the Froude efficiency � = TU∕P (T thrust, P input power and U inflow 
velocity) was used as a measure for the performance of the propulsion system, repeatedly analyzed in many 
contributions either  analytical1,2,  numerical3,4 or  experimental5,6. However, the primary interest remains the 
evaluation of self-propelled swimming properties like the locomotion speed and the energy consumption hence 
we propose here to recover the approach properly adopted when the whole body is cooperating for the genera-
tion of the required thrust. This is the case of undulatory swimming, where a wave travelling from head to tail is 
involving a significant part of the body consistently with the fish’s shape and swimming style (e.g. anguilliform, 
carangiform, etc.). For these reasons, a clear identification of the propulsive efficiency is  prevented7–9 and, after 
a few initial studies with a prescribed  stream10,11, the self-propelled locomotion velocity was obtained by leav-
ing the fish completely free to swim according to the forces exchanged with the surrounding  fluid12–15. When at 
steady state thrust and drag balance exactly, the Froude efficiency loses its meaning and a proper concept like 
the cost of transport COT = P∕U  , or its inverse as introduced by von Kármán and  Gabrielli16, should be con-
sidered  instead17,18. By proceeding in an analogous way for oscillatory swimming, we intend to investigate the 
axial self-propulsion of a flapping foil pushing a fishlike body which, in a way passive with respect to the thrust, 
may be approximated by defining only its mass and its resistance, i.e. a virtual body as proposed by  Akoz19. 
These assumptions, due to the known resistance and to the axial motion of the virtual body, allow for the evalu-
ation of the cost of transport as a measure for the self-propelled swimming performance, but also for a clear-cut 
evaluation of the Froude efficiency providing an easy comparison between the optimal conditions for the two 
performance measures. By following other suggestions from the seminal work of Schultz and  Webb20 and later 
by Gazzola et al.21, we prefer to concentrate our attention on two dimensional simulations to achieve a sharp 
understanding of the complex phenomena just described. A cartoon for the virtual body and its tail propulsor 
with a sketch representing the exchanged forces and the oscillatory trajectory for the tail pivot point is reported 
in Fig. 1. The animation reported in the Supplementary Video online gives a first glance insight of the swimming 
fishlike model and of the related vortex wake.
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Results and discussion
A test for zero resistance. As a preliminary step, we like to consider the self-propelled axial motion of 
a virtual body having zero  resistance22–25, a sort of ideal case, to highlight in the most simple and neat way the 
possible analogies with the undulatory swimming mode. For instance, we like to understand if an asymptotic 
locomotion velocity occurs also for a flapping foil and how to find a good approximation of its value. This is feasi-
ble if the pitch motion about the leading edge, with an angular frequency ω and a small amplitude �0 , anticipates 
the heave motion, with amplitude h0 , by a phase angle � = �∕2 . With these assumptions, we may express the 
flapping motion of a foil with chord l as

which may be assimilated to an undulatory motion of amplitude A and wavenumber k.
When the wavelength 𝜆 = 2𝜋∕k ≫ l , this motion may be expressed as

and, by identifying the single terms of (1) and (2), we obtain for the phase velocity

Intuitively, if 𝜆 ≫ l , the foil itself acts as a small portion of the wave whose undulating motion is perceived, 
instantaneously, as a local oscillation given by the heave and pitch motions.

Consistently with the assumption of small �0 , the above analogy becomes more and more accurate as the 
wavelength � is greater than the tail length. This phase velocity gives us the opportunity to recall the proportional-
feathering parameter Θ = �0U∕�h0 , as ingeniously suggested by  Lighthill26, to qualify the propulsive perfor-
mance of flapping foils. Actually, the expression for � results to be the ratio between the locomotion velocity 
U and the phase velocity c given by (3), to match the concept of slip velocity usually adopted in undulatory 
 swimming27.

For the analysis of the numerical results in the self-propelled case, since both the Strouhal number 
St = �lATE∕(2�U) and the reduced frequency kr = �l∕U  contain the forward velocity U which is part of the 
solution, we should select new parameters strictly based on the assigned data. To this purpose, we introduce the 
non-dimensional trailing edge peak-to-peak oscillation amplitude ATE in terms of the foil chord l and the pure 
heave non-dimensional peak-to-peak amplitude defined as Ah = 2h0∕l . For a given value ATE , which for small 
values of �0 may be approximated by 

√
(2�0)

2 + A2

h
 , the ratio Ah∕ATE is the parameter that we are going to use 

to analyze the results. It represents the fraction of the trailing edge amplitude due to heave, so as Ah∕ATE = 0 for 
pure pitch and 1 for pure heave.

The time history of the forward locomotion velocity obtained by a standard inviscid numerical procedure 
for the zero resistance virtual body is reported in fig.2a for ATE = 1 and three different values of Ah∕ATE . From 
the figure we may appreciate how the acceleration during the transient is increasing with the heave amplitude 
to reach anyhow, even in the absence of a viscous resistance, an asymptotic velocity which is going to infinity 
for pure heave. We like to notice that the forward velocity oscillations appearing in the figure are very small 
and their global effect on swimming performance is quite negligible as assumed in a previous work on recoil 
 motions28 and confirmed by a present simulation reported in the Supplementary Material (see  also17  and29). The 

(1)y(x, t) = h0 sin(�t) − x sin(�(t)) ≈ h0 sin(�t) − �0x cos(�t) 0 ≤ x ≤ l

(2)y(x, t) = A sin(�t − kx) ≈ A sin(�t) − Akx cos(�t) 0 ≤ x ≤ l

(3)c =
�

k
≈ �

h0
�0

Figure 1.  A cartoon for the virtual body (gray) and the tail propulsor (red) with a sketch of the exchanged 
forces and the oscillatory trajectory of the tail pivot point. The details of the flapping motion are reported in the 
inset. See also the animation of the swimming fishlike model and the related vortex wake in the Supplementary 
Video online.
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mean forward velocity at the steady state, for ATE equal to 1 and 1.5, is plotted against Ah∕ATE in Fig. 2b together 
with the phase velocity c which is only a function of the ratio Ah∕ATE . Let us remark that the selected values of 
ATE correspond nearly to 0.15 − 0.2 in terms of the ratio between the tail-beat amplitude and the body length L, 
as frequently observed in  nature30. As anticipated above, for small pitch angles, i.e. for Ah∕ATE going to one, the 
prediction of the asymptotic velocity equal to c is confirmed by the numerical results which also show how the 
locomotion speed is practically independent of the trailing edge amplitude ATE , as for undulatory swimming in 
the specific case of inviscid  flows31. For zero resistance, the Froude efficiency continuously decreases up to a null 
value at steady state where the net thrust is going to vanish. At the same time, the cost of transport is decreasing 
towards steady state but it reaches an asymptotic finite value resulting extremely low due to a reduced expended 
energy and a very large locomotion speed in absence of viscous resistance. This expected behaviour is properly 
modified when introducing a non zero virtual body resistance leading to intermediate values of both COT and η 
with respect to the above extreme conditions. At steady state the efficiency is not zero anymore since the thrust 
reaches a finite value able to counterbalance the imposed drag and the cost of transport gains a value consistent 
with a reduced locomotion speed together with an increase of the expended power. As shown by the numerical 
results in the following section, it is easy to understand the primary role of the body resistance to qualify the 
overall performance of the swimming fish.

The role of the body resistance. As anticipated before, the concept of virtual body introduced to esti-
mate the performance of the fishlike body, requires an assumption for the drag coefficient CD as close as possible 
to expected real values which may be selected from experimental  evidence32.

The mean forward velocity is shown in Fig. 3a for viscous and inviscid flows together with the phase veloc-
ity c. We may notice a general reduction of the velocity values with respect to Fig. 2b clearly due to the extra 
virtual body resistance and their dependence on the peak-to-peak trailing edge amplitude ATE , as expected in 
the presence of viscous  resistance33. A contained difference is appreciable when comparing viscous and inviscid 
results, in particular for larger values of Ah∕ATE , essentially related to the viscous resistance of the propulsor 
which increases with the locomotion speed to give a sensible difference between the two  approaches34. The whole 
body performance given by the cost of transport is shown in Fig. 3b with a very satisfactory agreement between 
viscous and inviscid results. A clear evidence of the classical U-shaped form for the COT  curves35,36 is obtained 
and a minimum value appears in a quite small range about Ah∕ATE = 0.7 . The presence of a virtual body allows 
also for the calculation of the propulsor efficiency since the thrust, balancing the known drag at cruising speed, 
is now  available37,38. Interestingly, the range where we find the maximum efficiency of the propulsor, reported 
in Fig. 3c, is clearly different from the one where the minimum COT for the whole body occurs. Specifically, the 
range corresponding to the maximum value of the efficiency η is found for larger values of Ah∕ATE . Let us men-
tion that other authors, by making different choices, may obtain different results which however are perfectly 
compatible with the present ones. For instance, Akoz et al.19, by forcing a constant self-propelled locomotion 
speed for a defined body via a change of frequency, interestingly find the cost of transport as the inverse of the 
propulsor efficiency. Instead, if a constant speed is prescribed without caring for the self-propelled conditions 
consistent with a given body  resistance3,4,6, the attention is only focused on the generic properties of the propul-
sor as clearly underlined by Anderson et al.5.

For the sake of completeness, we illustrate in Fig. 4a the values of cost of transport and efficiency also in terms 
of the more commonly used Strouhal number that was previously set apart for its dependence on the unknown 
locomotion velocity. The figure confirms the results previously discussed about the substantial difference of the 

Figure 2.  (a) Time history of the locomotion speed for ATE = 1 and three different values of Ah∕ATE . (2b) 
Mean steady state swimming velocity U/L and phase velocity c/L (dashed line) against Ah∕ATE for different 
peak-to-peak trailing edge oscillation amplitudes ( ATE = 1 and 1.5). Inviscid numerical results for zero 
resistance of the virtual body.
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Figure 3.  (a) Mean steady state swimming velocity U/L and phase velocity c/L (dashed line), (b) cost of 
transport of the whole body and (c) efficiency of the propulsor against Ah∕ATE for different peak-to-peak 
trailing edge oscillation amplitudes ( ATE = 1 and 1.5). Viscous and inviscid numerical solutions for a prescribed 
virtual body resistance.

Figure 4.  (a) Cost of transport of the whole body (blue) and efficiency of the propulsor (red) as function of the 
Strouhal number St. (b) Feathering parameter � (blue) and maximum angle of attack �m (red) for the inviscid 
case as function of the Strouhal number. Comparison between ATE = 1 and 1.5 for the inviscid case.
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optimal ranges for the two performance measures. Within this context it is worth stressing how the optimal 
values of COT and η are related to a couple of very significant parameters i.e. the proportional-feathering � and 
the maximum effective angle of attack �m . Following Anderson et al.5, we recall the definition of �m as

where the approximation holds for small values of the pure heave incidence angle �h0∕U  . If this is the case, the 
following simple relation between �m and � holds

whose physical meaning is very clear: as the feathering parameter is tending to one, i.e. the locomotion velocity 
is approaching the phase velocity c, the value of �m tends to zero. From Fig. 4b we may easily deduce that the 
maximum propulsor efficiency occurs for very large values of �m while the minimum of the cost of transport 
for the whole body occurs for large values of � . The corresponding values of the parameters �m and � are well 
reproducing results proposed in the literature for the search of optimal performance conditions. Namely, several 
findings confirm that fish select cruising speed usually very close to the phase velocity (i.e. � within 0.7 − 0.8 ) 
when they have to cover large  distances26,27. On the opposite, large values of the angle of attack, within 15◦ − 25◦ , 
are associated with higher propulsor  efficiency5 and are more favorable when a large locomotion speed is required 
for escape-like gaits.

Final remarks
When studying flapping airfoils under an incoming uniform flow, the focus is usually on the ability of the pro-
pulsor to generate a large thrust to balance the resistance, together with a high propulsive efficiency. Obviously, 
if the thrust of the propulsor prevails over the body drag an acceleration follows leading to different operating 
conditions. Once a certain body has been selected, a constant drag coefficient is prescribed hence it is more 
comfortable to adopt a self-propulsion approach which, by assuring the force balance, leads to a straightforward 
evaluation of the energy consumption together with the proper locomotion speed. In this way, we recover the 
procedure usually adopted in undulatory swimming governed by the phase velocity of a traveling wave. This 
choice is encouraged by the analogy illustrated before which introduces an asymptotic velocity also in the case 
of oscillatory swimming. The presence of a virtual body with its prescribed resistance allows, in the frame of 
a self-propulsion procedure, to evaluate also a well-defined propulsor efficiency to be contrasted with the cost 
of transport of the whole body. The results clearly indicate two different optimal swimming conditions: the 
first, characterized by a large locomotion velocity and a large angle of attack, is associated with the maximum 
propulsive efficiency; the second, associated with the minimum cost of transport, is characterized by a lower 
locomotion velocity and a quite large value of the feathering parameter. The contemporary observation of these 
different measures and the understanding of their validity for different swimming demands overcomes the 
conflicting opinions appearing in the literature about the best procedure to evaluate swimming  performance39. 
In line with the overall discussion, we support here the use of a self-propulsion approach for the study of oscil-
latory swimming to obtain a direct evaluation of the performance, either for cruising long-range motions or 
for fast escape-like gaits. As a further point, the self-propelled axial motion is propaedeutic for the extension 
to lateral and angular degrees of freedom which drive the  performance28 and better represents the swimming 
gaits observed in nature. To this purpose, the study of a swimming body under a prescribed uniform flow is not 
suitable, since no recoil motion may be accounted for, and the fully free locomotion is confirmed as the natural 
approach to obtain meaningful results.

Materials and methods
The self-propelled axial motion of a swimming body with velocity �b is analyzed by considering a two-dimen-
sional body B within an unbounded fluid domain V∞ . No external forces are applied, hence only internal actions 
are exchanged between the deformable body and the surrounding fluid, otherwise quiescent. To the purpose, 
we adopt the classical impulse  formulation40,41 for the linear fluid momentum which is expressed by two terms 
representing the field vorticity � and the vortex sheet over the body surface as

where n , the normal to the body surface �B , points into the fluid domain V∞ and ρ is the fluid density. A Helm-
holtz decomposition may be now applied to express the velocity field as the sum of the acyclic and vorticity 
related components:

where φ and � are referred to as the scalar and the (solenoidal) vector potential, and are given by the solution of 
the Laplace/Poisson equation, subject to the impermeable boundary condition on �B , i.e. �� ⋅ n = ub ⋅ n and 
(� ×�) ⋅ n = 0 respectively, and to the vanishing velocity at infinity. It follows that the total impulse p , which 
does not suffer the poor convergence of the momentum over an unbounded  domain42,43 and whose time deriva-
tive gives the forces exchanged between the body and the surrounding fluid, may be expressed as the sum of the 
potential and vortical impulses, p� and pv , as

(4)�m = arctan
�h0
U

− �0 ≈
�h0
U

− �0

(5)
�m

�0
=

1 − Θ

Θ

(6)� = ∫V∞

� � × �dV + ∫
�B

� � × (� × �+)dS

(7)�+ = �� + ∇ ×� = �� + �w
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where the bound vorticity due to �w , properly added to the released vorticity � , gives the additional vorticity 
introduced by Lighthill. The mathematical model, described in detail for undulatory free swimming in Paniccia 
et al.31, has been partially reported in the Supplementary Material and properly reshaped for the axial oscillatory 
swimming given by a flapping foil in the presence of a virtual body. The flow solutions are obtained by a simple 
inviscid procedure easily extendable to a classical vortex method by introducing the diffusion of the vorticity as 
detailed in a previous  paper44. In the present work, a standard viscous solver, validated against the one used by Lin 
et al.25, has been used to provide a comparison of the results and an overall assessment of the inviscid procedure.

The sinusoidal heave and pitch motions with amplitudes h0 and �0 , respectively, are characterized by an 
angular oscillation frequency � = 10� rad∕s and are separated in phase by an angle � = �∕2 (pitch leading). 
The ratio Ah∕ATE between the non-dimensional peak-to-peak trailing edge amplitude for pure heave motion 
and for combined heave and pitch motions is varied in the range 0.4 ∼ 0.98 and the pitch oscillation amplitude 
�0 follows to maintain the prescribed ATE . Finally, for the virtual body, the drag coefficient CD is set equal to 0.25 
and the mass m of the total body, i.e. virtual body plus propulsor, is set equal to 4.5 kg. For the details about the 
numerical procedures and choice of the parameters, see the Supplementary Material.
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1 The model for axial motion
As illustrated in the main text, we intend to study the axial motion of a swimming body B which is moving with a velocity ub
within an unbounded fluid domain V∞. To this purpose we assume an unbounded 2D incompressible flow field, with constant
density ρ , whose velocity vanishes at the far field boundary. We report below the main steps of the procedure to obtain the final
equation to be solved for the numerical results.
The locomotion is obtained by coupling the body dynamics and the actions exchanged with the fluid. If we consider the
body-fluid system (B+V∞), no external forces are present and therefore the linear momentum is conserved:

d
dt

∫

B
ρb ub dV +

dp
dt

= 0 (S1)

where the time derivative of the total impulse ppp gives the force acting on the body and ρb is the body density. Let us now divide
the whole body into an active part BT given by the tail and a completely passive one, named virtual body BV , whose presence
is attested only by its mass and its viscous drag in the axial direction. By using a Cartesian frame of reference (e1,e2,e3) and
by isolating the unknown locomotion speed u0 =U e1, the total motion of the entire body may be split into

ub =

{
u0 +u if x ∈BV
u0 +uT if x ∈BT

(S2)

where uT is given by the prescribed heave and pitch motion of the tail

uT =V e2 +(x−x0)×Ωe3 x ∈BT (S3)

where x0 is the position of the pivot point and V and Ω are the lateral and angular heave and pitch velocity, respectively.
Since "... the fish’s muscular contractions can only determine changes in its shape relative to the centre of gravity." (Lighthill
′701), the velocity of the virtual body u is taken to satisfy the conservation of linear and angular momenta for the entire body
system, including the prescribed movement of the tail.
By combining (S1) and (S2) we obtain

d
dt
(mb u0)+

dp
dt

= 0 (S4)

The surface integrals appearing within the total impulse p may be decoupled into the contribution from the tail and that from
the virtual body. By taking the component of (S4) along e1 to solve for the locomotion along the axial direction, we assume the
virtual body contribution to be represented by its overall resistance D, leading to

d
dt
(mb U)+

d p
dt

+D = 0 (S5)

where the axial component p of the impulse contains the contribution from the tail. By assuming zero initial conditions, (S5)
gives:

mb U + p =−
∫ t

0
Ddt (S6)



The scalar potential introduced by the Helmholtz decomposition is evaluated according to the related boundary conditions on
the tail boundary

∂φ
∂n

= uuub ·nnn
∣∣∣
T

Finally, the potential impulse may be expressed in terms of the added mass coefficients introduced in the classical treatises (see
e.g.2) that, for completeness, are reported below. For a foil motion with unknown axial velocity U and prescribed lateral and
angular velocity V and Ω respectively, we consider the Kirchhoff base potentials Φ1, Φ2 and Φ3 defined through the boundary
conditions

∂Φ1

∂n
= n · e1

∂Φ2

∂n
= n · e2

∂Φ3

∂n
= (x−x0)×n · e3 (S7)

to have φ =UΦ1 +V Φ2 +ΩΦ3. It follows for the added mass coefficients in the axial direction m1 j the expression

m1 j = ρ
∫

∂BT

∂Φ1

∂n
Φ j dS (S8)

The prescribed lateral and angular tail velocities within pφ , which are multiplied by m12 and m13 respectively, can be shifted to
the r.h.s. to yield the equation for the axial body motion:

U (m11−mb) =−V m12−Ωm13 + pv +
∫ t

0
Ddt (S9)

The drag term appearing on the r.h.s. of (S9) is expressed as D = 1
2 ρU2LCD, where L is the body length and CD is the prescribed

drag coefficient. The numerical solution of the equation, quite trivial at steady state, requires a simple numerical treatment to
manage the transient phase of the locomotion velocity.
As a final remark, the input power P is evaluated as

P = f
∫

t+1/ f
(LV +MΩ)dt (S10)

where the lift is L = d ppp
dt · eee2 and the moment is M = dπππ

dt · eee3 with the angular impulse about the tail leading edge defined as

πππ =−1
2

[∫

V∞
ρ |x|2ωωω dV +

∫

∂BT

ρ |x|2(nnn×uuu+)dS
]

(S11)
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2 Techniques and data for the simulations
A flapping foil acting as the propulsor of a fishlike body has been studied by a well-known inviscid numerical procedure with
the aim to suggest a neat and simple way to investigate the performance of oscillatory swimming fish. The flow solutions about
the flapping airfoil are obtained by a potential code based on Hess and Smith3 approach together with a suitable unsteady Kutta
condition and a proper evolution of the wake behind the airfoil as indicated by Basu and Hancock4. Finally, the locomotion of
the whole-body (airfoil + virtual body) is obtained by satisfying the conservation of total momentum in the forward direction.
Further details on the adopted methodology can be found in Paniccia et al.5, where also lateral and angular directions are
considered.
With regard to the viscous results reported in the manuscript, the flow solutions have been obtained by using a CFD solver for

0 500 1000 1500
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0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Lin et al. results

current viscous model results

Figure S1. Comparison between the current viscous model results and the ones by Lin et al.8 for a self-propelled heaving and
pitching foil.

the Navier-Stokes equations based on an immersed boundary method. The numerical code has been developed by Popinet6 and
it was already successfully adopted in the field of self-propelled fish locomotion by7 among others. The forward locomotion of
the whole-body follows from the evaluation of the axial force exerted by the surrounding fluid and from the solution of the
Newton’s second law in the axial direction only. The current viscous solver results are validated against the ones obtained by
Lin et al.8 for the same heaving and pitching conditions as shown in fig.S1.
Let us now describe in more details the parameters we selected for the flapping foil and for the virtual body in front of it.
We assume the body length L = 1 m and the tail length l, here taken as the reference length, equal to 1/7 L, ratio frequently
observed in nature for real tuna. The presence of the virtual body is only attested by its mass mb and its resistance in terms of
a prescribed drag coefficient CD. The values of mb is based on a NACA0018 airfoil geometry with chord length equal to 6l
and unit density, i.e. mb ≈ 4.4 kg, and the value of CD ≈ 0.25 has been selected as the mean value of the experimental data
by White et al.9 for their robotic tuna. Finally, the flapping foil representing the tail is modeled as a NACA0012 airfoil of
chord length l with mass mt equal to 0.08 kg, leading to a total mass of the whole-body m = mb +mt ≈ 4.5 kg. For further
geometrical details, fig.S2 reports the sketch of the tail from the inset of fig.1 in the main text where the whole-body is shown.

Figure S2. Sketch of the tail from the inset of fig.(1) in the main text.
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The heave motion of the tail is defined as

h(t) = h0 sin(ωt) (S12)

where h0 is the heave amplitude and ω is the oscillation angular frequency which is equal to 10π rad/s in the present case. The
pitch motion is defined as

θ(t) = θ0 sin(ωt +φ) (S13)

where θ0 is the pitch amplitude and the phase angle φ is equal to π/2. For pitch motions about the leading edge and for
sufficiently small θ0 it is possible to approximate the value of the non-dimensional peak-to-peak trailing edge amplitude with
the following analytical expression (see also10)

AT E =
√

(2θ0)2 +A2
h (S14)

where Ah = 2h0/l is the non-dimensional amplitude for a pure heave motion. Two different trailing edge amplitudes have been
considered, namely AT E = 1.0 and AT E = 1.5, for the ratio Ah/AT E ranging within 0.4∼ 0.98 while the pitch amplitude θ0
follows directly from (S14). For the sake of completeness, we summarize in Tab.S1 below all the input data used in our study.

AT E=1.0 AT E=1.5

h0
l

Ah
AT E

θ0
h0
l

Ah
AT E

θ0

0.2000 0.4000 0.4583 0.3000 0.4000 0.6874
0.2500 0.5000 0.4330 0.3750 0.5000 0.6495
0.3000 0.6000 0.4000 0.4500 0.6000 0.6000
0.3500 0.7000 0.3571 0.5250 0.7000 0.5356
0.4000 0.8000 0.3000 0.6000 0.8000 0.4500
0.4300 0.8600 0.2551 0.6450 0.8600 0.3827
0.4500 0.9000 0.2179 0.6750 0.9000 0.3269
0.4700 0.9400 0.1706 0.7050 0.9400 0.2559
0.4900 0.9800 0.0995 0.7350 0.9800 0.1492

Table S1. Values of h0
l , Ah

AT E
and θ0 for AT E=1.0 (left) and AT E=1.5 (right).

3 The effect of forward oscillations
To proof that the oscillations in the forward velocity give a negligible contribution on large scale parameters like the cost
of transport and the locomotion velocity we should realize a self-propelled motion with an axial velocity constrained to be
perfectly constant, i.e. without the implicit oscillations. However, since the axial velocity is the unknown of the problem,
we cannot make any constraint on this variable as we may do with the lateral and angular motions where it is quite easy to
annihilate the values of the corresponding velocities (see11). To overcome this conundrum we report here for comparison the
results obtained by a self propelled approach and the ones obtained by the prescribed uniform stream. Figure (S3a) shows
the forward velocity obtained by the self-propelled fishlike body for h0 = 0.6 and AT E = 1.5. To compare this self-propelled
case against an axial location fixed swimming case, we selected the mean forward velocity reached at steady state of the
first case as the prescribed constant speed for the second one. It follows the same drag coefficient in both cases within the
approximation obtained for the other variables. In fig.(S3b) we report the input power time evolution in one oscillation period
for both the self-propelled and the fixed swimming cases. From the comparison we may appreciate a very small difference, less
than 2%, between the two mean values that, in a first approximation, is quite negligible. This fact, explains why for the axial
swimming, and exclusively in this case, each single result in one point of the parameter space may be indifferently obtained by
the two mentioned approaches. Obviously, this is not true anymore for fully free swimming in presence of all the recoil motion
components.
As an ultimate comment, when using the one or the other approach to explore the parameter space, the routes to find the optimal
swimming performance are completely different. In fact, by taking the flapping foil data as a running parameter for the analysis,
we may fix either the velocity, as in the prescribed stream approach, or the body drag coefficient, as in the self propulsion
approach and this last procedure, in our opinion, is certainly preferable since the aim is to find these results for a certain fishlike
body.
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Figure S3. (S3a) Forward velocity for the self-propelled swimming case. The steady state mean value has been selected as the prescribed
value for the fixed swimming case. (S3b) Comparison between the input power for the self-propelled swimming case and for the fixed
swimming case. The two different mean values are reported in blue and red respectively.

Supplementary Video Legend
Animation of the swimming fishlike model and the related vortex wake. The appearing deformation of the virtual body (gray)
is not effective, but instrumental to make a smooth and nice connection with the oscillating tail (red).
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Abstract
Oscillatory swimming of a fishlike body, whose motion is essentially promoted by the flapping tail,
has been studied almost exclusively in axial mode under an incoming uniform stream or, more
recently, self-propelled under a virtual body resistance. Obviously, both approaches do not
consider the unavoidable recoil motions of the real body which have to be necessarily accounted for
in a design procedure for technological means. Actually, once combined with the prescribed
kinematics of the tail, the recoil motions lead to a remarkable improvement on the resulting
swimming performance. An inviscid impulse model, linear in both potential and vortical
contributions, is a proper tool to obtain a deeper comprehension of the physical events with
respect to more elaborated flow interaction models. In fact, at a first look, the numerical results
seem to be quite entangled, since their trends in terms of the main flapping parameters are not easy
to be identified and a fair interpretation is obtained by means of the model capability to separate
the effects of added mass and vortex shedding. Specifically, a prevailing dependence of the
potential contribution on the heave amplitude and of the vortical contribution on the pitch
amplitude is instrumental to unravel their combined action. A further aid for a proper
interpretation of the data is provided by accounting separately for a geometrical component of the
recoil which is expected to follow from the annihilation of any spurious rigid motion in case no
fluid interactions occur. The above detailed decomposition of the recoil motions shows, through
the numerical results, how the single components are going to influence the main flapping
parameters and the locomotion performance as a guide for the design of biomimetic swimmers.

1. Introduction

Several fish species, like tunafish, are assumed to pro-
duce their locomotion almost exclusively by oscillat-
ing their caudal fin while the rest of the body should
essentially contribute to both inertial and viscous res-
istance. The performance of these oscillatory swim-
mers has been usually evaluated by the Froude effi-
ciency of the flapping foil propulsor, with assigned
heave and pitch motions, under a prescribed uni-
form stream [1–6] or by the cost of transport for the
whole body, consisting of a flapping foil plus a res-
istant virtual body, self-propelled in axial mode [7,
8]. A comparative analysis of the above two para-
meters for evaluating the swimming performance
has been deeply analyzed to prove their suitabil-
ity for different swimming gaits [9, 10]. The above

procedures are both very convenient for experimental
and numerical investigations, but unable to account
for the actual motion of the fishlike body in free
swimming mode and for its presumed impact on
the overall performance [11–14]. In fact, as firmly
stated by Lighthill [15], the locomotion is necessar-
ily accompanied by some recoil motions whose effect
has to be accounted for to satisfy the equilibrium
equations. The recoil velocity components have been
shown to modify, for undulatory swimming, the res-
ulting kinematics to reach a favorable effect on the
overall efficiency while for constrained or tethered
cases, where their influence is neglected, different
results are obtained for both locomotion speed and
expended energy so to experience a poorer swimming
performance [16–20]. The focus of the present work
is on the analysis of the recoil motions for oscillatory

© 2022 The Author(s). Published by IOP Publishing Ltd
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swimming with the purpose to find whether they play
a similar role also in this case. In fact, the deforma-
tion is now essentially limited to the rear end of the
body and one could expect rather small recoil reac-
tions with a presumably low impact on the overall
performance [21]. In spite of this common belief,
we claim here that the recoil induced modifications
of the flapping tail parameters cannot be neglected
and even more they produce an overall improvement
of the swimming performance. For a better compre-
hension of these large scale effects, we intend, as a
proper way, to analyze separately the different com-
ponents of the recoil motions and their influence on
the fish dynamics. Specifically, the potential and vor-
tical contributions given by the interaction with the
surrounding fluid and the geometrical component of
the recoil which instead is an a priori requirement to
satisfy the equilibrium of the fishlike body for any
given deformation.

The reported numerical results are obtained by
a simple impulse model which is able to isolate the
added mass and the vortex-shedding contributions
without using more elaborated simulations which
might obscure the essence of the problem. A detailed
analysis of the inviscid results for different values of
the prescribed kinematic parameters is instrumental
to devise the influence of the recoil motion for a suit-
able design procedure of free swimming biomimetic
means.

2. Materials andmethods

2.1. Mathematical model
The self-propelled motion of an impermeable, flex-
ible body B with bounding surface ∂B is modeled by
assuming a two-dimensional incompressible flow in
an unbounded fluid domain V with density ρ. Only
internal actions are exchanged between the swim-
ming body and the surrounding fluid, whose velocity
vanishes at the far field boundary.

By adopting the impulse formulation (see e.g.
[22–24]) for both linear and angular fluid momenta
and assuming n as the normal to ∂B pointing into the
fluid domain V , the force Fb and the momentMb act-
ing on the body are obtained as the time derivatives
of the linear impulse, p, and angular impulse, π:

Fb = −dp

dt

= − d

dt

[
ˆ

V
ρx×ωdV +

ˆ

∂B
ρx× (n× u)dS

]

Mb = −dπ

dt

=
d

dt

1

2

[
ˆ

V
ρ |x|2 ωdV +

ˆ

∂B
ρ |x|2(n× u)dS

]

(1)

where ω is the vorticity and u stays for the limiting
value of the fluid velocity on ∂B.

The fluid velocity field is expressed through a
Helmholtz decomposition as

u= ∇φ + ∇ ×Ψ = ∇φ + uw (2)

where the scalar potential φ and the (solenoidal) vec-
tor potential Ψ are easily obtained by imposing the
impermeable boundary condition on ∂B and van-
ishing velocity at infinity. According to this decom-
position, we express the linear impulse p in terms of
its potential and vortical contributions as p= pφ +
pv, where the potential impulse pφ and the vortical
impulse pv are given by (see [25] for further details)

pφ = −ρ

ˆ

∂B
φndS

pv =

ˆ

V
ρ x×ωdV +

ˆ

∂B
ρ x× (n× uw) dS.

(3)

The same decompositionmay be used for the angular
impulse which, by using appropriate vector identit-
ies, can be split into its potential and vortical parts as
π = πφ +πv, where

πφ = −ρ

ˆ

∂B
x× φndS

πv = −1

2

ˆ

V
ρ |x|2 ωdV

− 1

2

ˆ

∂B
ρ |x|2(n× uw)dS. (4)

By combining the Newton laws with equation (1) and
by eliminating the time derivatives, we obtain, for null
initial conditions, the conservation of the linear and
angular momenta as

ˆ

B
ρbub dV + p= 0

ˆ

B
ρb x× ub dV +π = 0. (5)

The body velocity ub is given by the sum of the pre-
scribed deformation velocity ush plus the unknown
rigid motion of the body-fixed frame with origin in
the centre-of-mass (translational, ucm, and rotational,
Ω, velocity):

ub = ush + ucm +Ω× x ′ (6)

where x ′ is the position vector in the body frame, i.e.
x= xcm + x ′.

As a mandatory requirement for equation (6) to
be valid, since no rigid motions are allowed for an
isolated body, the body deformation velocity have to
satisfy the following two conditions
ˆ

B
ρbush dV = 0

ˆ

B
ρbx

′ × ush dV = 0 (7)

so as the net linear and angular momenta of the
imposed kinematics are equal to zero. Finally, by
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combining equations (5) and (6) with the above con-
ditions (7), we obtain:

mbucm + p= 0

IzzΩ+ π ′ = 0 (8)

where the angular impulse is recast in terms of
the distance x ′ as π ′ = (π− xcm × p) · e3 and
xcm = xcme1 + ycme2 is the position of the body center
of mass.

In the most general case, especially when
designing a prescribed deformation kinematics ush,
equation (7) are very unlikely to be satisfied and they
read as
ˆ

B
ρbush dV = mbu0

ˆ

B
ρbx

′ × ush dV = IzzΩ0

(9)

where mb and Izz are the mass and the moment of
inertia of the body respectively and u0 and Ω0 rep-
resent spurious rigid motion embedded in the pre-
scribed kinematics. In the present approach, to obtain
directly the velocity of the body center of mass [26,
27], ush should be properly modified by accounting
for a corrective motion able to counterbalance and to
annihilate u0 and Ω0. We refer to this motion as geo-
metrical recoil correction, essential to ensure that any
deformation assigned to the body is actually viable in
the absence of the interactions with the surrounding
fluid.

The expended energy is obtained in terms of the
fluid kinetic energy released into the flow field [28] as

E =
1

2

ˆ

S
φ

∂φ

∂n
dS+

1

2

ˆ

S
(uw ×ψ) · ndS

+
1

2

ˆ

V
ψ ·ωdV (10)

where the last term is commonly known as the excess
energy while the first two integrals are usually quite
negligible at steady state conditions.

2.2. Solution procedure
Going back to the Helmholtz decomposition intro-
duced by equation (2), the scalar potentialmay be fur-
ther divided as φ = φsh + φloc [29], so as

∂φsh

∂n
= ush · n ∂φloc

∂n
= (ucm +Ω× x ′) · n (11)

where φsh and φloc are associated to the prescribed
deformation velocity ush and to the locomotion (lin-
ear and angular) velocity respectively, according to
the related boundary conditions on Sb. It follows that
the linear and angular impulses may be also split as

pφ = psh + ploc π ′
φ = π ′

sh + π ′
loc (12)

accordingly with the above decomposition.

In line with classical treatises (see e.g. [30]), we
may express ploc and π ′

loc by defining the added mass
coefficientsmij as

mij = −ρ

ˆ

∂B
Φi

∂Φj

∂n
dS (13)

where the Kirchhoff base potentials Φj are defined
through the boundary conditions

∂Φ1

∂n
= n · e1

∂Φ2

∂n
= n · e2

∂Φ3

∂n
= x ′ × n · e3

(14)
to finally have

φloc = ẋcmΦ1 + ẏcmΦ2 + ΩΦ3. (15)

By using equations (12) and (15), the final system
of equations is obtained by recasting equation (8) in
a reference frame fixed to the body center of mass.
With the use of capital letters for the unknowns lin-
ear (V1,V2) and angular (Ω) velocities in this frame,
we may bring to the right hand side only the known
terms due to shape deformation and released vorti-
city, so to obtain the system




V1 (m11 +mb) +V2m12 + Ωm13 = −Psh1 − Pv1

V1m21 +V2 (m22 +mb) + Ωm23 = −Psh2 − Pv2

V1m31 +V2m32 + Ω(m33 + Izz) = −Πsh − Πv

(16)

to be solved at each time step for the unknown
velocity components. In the previous sections, to
lighten the reading, the velocity components have
been renamed as U = −V1 and V = V2, while the
mean steady-state value of the forward velocityU will
be referred to as the locomotion velocity Uloc which
identifies the locomotion frame of reference, i.e. a
reference frame moving with the locomotion velo-
city itself. The remaining lateral and angular velo-
city components V and Ω together with the forward
velocity fluctuations U ′, define the body-fixed frame
motion within the locomotion frame and will be
referred to as fluid recoil motions. Many authors (see
e.g. [17, 18, 31]), by following Lighthill’s first defin-
ition of recoil [32] as the motion to be added to a
prescribed deformation to satisfy the linear and angu-
lar momentum conservation laws, do not distinguish
between the geometrical recoil correction and the one
resulting only from the fluid-body interaction, i.e. the
fluid recoil. Although this approach substantially dif-
fers from the one proposed here, it is equally suit-
able to obtain the correct solution [26]. However, we
favour our methodology since it is able to reveal the
role of both contributions and may provide a useful
insight for the design of optimal deformation gaits.

Finally, due to the linearity of the present model,
the system of equation (16) is solved by splitting the
unknown velocity components (U,V,Ω) into their
potential contributions (Uφ,Vφ,Ωφ) and their vor-
tical contributions (Uv,Vv,Ωv). The potential ones
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are obtained by solving the system only for the poten-
tial impulses associated to the shape deformation Psh
andΠsh, while the vortical contributions are obtained
by solving for the vortical impulses Pv and Πv.

The flow solutions are obtained by a simple 2D
inviscid model with concentrated vorticity, which
allow for neat and physically intuitive results. Spe-
cifically, we used an unsteady potential code based
on the Hess and Smith approach [33], while the vor-
tex shedding is treated by following the procedure
described in [34]. This well-known numerical pro-
cedure has been extensively used in the literature to
study rigid bodies like airfoils moving with a fully
prescribed motion [2, 4, 35–37]. Since in the present
application the linear and angular rigid body velo-
cities are unknown for free swimming of a deform-
able body (see also [11, 12]), the coupling between its
dynamics and the flow solution implies a much larger
complexity.

2.3. Caudal fin shape and kinematics
The anterior part of the two-dimensional body is
represented by a NACA0012 hydrofoil with length lb
while the caudal fin is represented by a NACA0004
with length lt. The tail length lt, illustrated in figure 1,
is equal to 1/7 of the total body length L = lb + lt, as
frequently observed in nature for oscillatory swim-
mers like tuna.

The caudal fin kinematics is fully prescribed and
its flapping motion is given by the combination of a
heaving motion of the peduncle yp(t) and a pitching
motion about the peduncle itself given by θ(t). The
pitch motion θ(t) has a phase angle φ = −π/2 with
respect to the heave motion, so to have

yp(t) = h0 sin(2πft)

θ(t) = θ0 sin(2πft+ φ) (17)

where h0 is the maximum heave amplitude, θ0 is the
maximum pitch angle and f is the oscillation fre-
quency. The phase shift φ between these motions has
been chosen to be consistent with many observations
either in nature or in experimental investigations.
According to these assumptions, the lateral motion of
the caudal fin is finally given as

yf(sf, t) = yp(t) − sf sin(θ(t)) (18)

where sf goes from 0 to lt, i.e. from the peduncle to
the trailing edge of the tail, and θ(t) is taken positive
in the clockwise direction.

With regard to the prescribed body deformation,
we followed a path similar to the one suggested by
Li et al [38] for a pure oscillation of the rear-end of
the anterior body, but we consider a proper undu-
latory motion to better represent the shape deform-
ations observed in real fish. The procedure to obtain
the body kinematics, which is both fitting the flapping
motion of the caudal fin and satisfying the inextens-
ibility condition, is described in the appendix.

Figure 1. Sketch of the flapping caudal fin.

It is interesting to compare the flapping motion
under consideration with an undulatory motion to
look for possible similarities concerning the existence
of a phase velocity also in the present case. By consid-
ering sufficiently small values of the maximum pitch
angle θ0, the flapping motion of the tail given by
equation (18) may be approximated as

y(x, t) ≈ h0 sin(2πft) − θ0xcos(2πft) 0 ! x ! lt
(19)

where sf has been confused with the abscissa x. This
approximated expression may be assimilated to the
one for an undulatory motion of amplitude h0 with
a wavelength λ $ lt

y(x, t) = h0 sin

(
2πft− 2π

λ
x

)

≈ h0 sin(2πft) − 2π

λ
h0xcos(2πft) 0 ! x ! lt

(20)

and, by equating the coefficients of (19) and (20),
we may evaluate the phase velocity of the flapping
motion as

c = fλ ≈ 2πf
h0
θ0

. (21)

In other words, if λ $ lt, the flapping tail itself may
be seen as a small portion of the longer wave whose
undulating motion is perceived, instantaneously, as a
local oscillation given by the heave and pitchmotions.

The above derived equation (21) for the phase
velocity associated to the tail reminds in some
way the proportional-feathering parameter Θ =
θ0 Uloc/2πfh0, ingeniously suggested by Lighthill
[32] to qualify the propulsive performance of flap-
ping foils. It is straightforward to obtain the expres-
sion of Θ in this case simply as the ratio between
the locomotion velocity Uloc and the phase velocity
given by equation (21), usually identified as the slip
velocity [39].
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One of the main parameters characterizing the
flapping motion of the caudal fin is the peak-to-peak
oscillation amplitude of the trailing edge Ate which,
for small values of the θ0, may be approximated by
using the following expression:

Ate ≈ 2
√

h20 + 2 h0 ltθ0 cos(φ) + l2t θ20 (22)

valid for any value of the phase-lag. In the present
case, since the phase angle φ is equal to −π/2,
equation (22) reads as

Ate ≈
√

A2
h + 4 l2t θ20 (23)

where the peak-to-peak heave amplitude Ah has been
defined as Ah = 2 h0. By combining equations (21)
and (23), it follows

c ≈ 2πflt
Ah/Ate√

1− (Ah/Ate)2
(24)

where it can be appreciated how the phase velocity
depends only on the ratio between Ate and the max-
imum excursion of the peduncleAh. In other words, if
Ah/Ate is fixed, the phase velocity would be constant
no matter the value of Ate. From equation (24), it is
interesting to note how the phase velocity is rapidly
increasing for Ah/Ate going to one.

To restrict in a reasonable way the parameter
space to be analyzed, we fixed the value of the design
trailing edge oscillation amplitude Ate that is usu-
ally taken to be approximately 0.2 from well-known
experimental evidence [40].

3. Results

We consider a fishlike body self-propelled by an oscil-
lating caudal fin in free swimming mode with no vis-
cous resistance. This ideal case is shown to be very
useful to understand how the recoil is combined with
the prescribed caudal fin motion to obtain the result-
ing flapping kinematics.

As a first step, the time history of the forward velo-
city and of the fluid kinetic energy (see equation (10))
for different values of the design parameters in free
swimming condition are reported in figures 2(a) and
(b), respectively. After an initial transient, the forward
velocity reaches a steady-state condition characterized
by fluctuations around a mean value classically iden-
tified as the locomotion velocity Uloc. By looking at
both figures 2(a) and (b), we may observe how the
kinetic energy transferred to the fluid (see section 2)
increases for larger oscillation amplitude of the for-
ward velocity, i.e. for increasing values of the design
pitch amplitude θ0. At the same time, due to the fixed
value of the design parameter Ate, a decrease of θ0 is
accompanied by an increase of the heave amplitude
h0, which may be associated to larger value of the
locomotion velocity.

At this point it is instructive to discuss how the
phase velocity and the asymptotic locomotion speed
are related to the main parameters h0 and θ0.

A simple gait representation is given by figure 3(a)
which has been constructed by reporting a few suc-
cessive configurations of the entire body in free swim-
ming mode to highlight, with their envelope, the
wave-like character of the caudal fin motion. We may
observe how the tail trajectory follows a sinusoidal
path characterized by a wavelength λ obtained with
a good approximation as

λ =
c

f
≈ 2π

h0
θ0

(25)

where the phase velocity c has been evaluated by using
equation (21) with the flapping parameters h0 and
θ0 obtained in free swimming condition. From the
same figure and even better from the related anim-
ation (see the movie in the supplementry mater-
ial online), it appears that the caudal fin motion
drives the swimming gait along a travelingwave, while
the anterior body seems to have a neutral role with
respect to the illustrated motion. More specifically,
figure 3(b) reports a comparison between the forward
locomotion speed and the estimated phase velocity c
both for the case of a swimmer not accounting for
any recoil motion, from now on referred to as no-
recoil swimmer, and for the case of a fully free swim-
mer characterized by the same initial design paramet-
ers. In both cases the estimated value of the phase
velocity, through equation (24) with the proper val-
ues of the parameters, is quite close to the actual
value of the locomotion speed, though a large differ-
ence is observed between the two swimming condi-
tions. The mean power consumption Pm is reported
in figure 3(c) to show the different trends with respect
to design value of Ah/Ate. While Pm is decreasing as
Ah/Ate goes to one for the free swimmer, the oppos-
ite is occurring for the no-recoil swimmer. It follows
a markedly better performance in terms of cost of
transport when the fish is able to exploit the recoil
motions to line up its body to the fluid flowing about,
with a resulting more streamlined swimming style.
The focus of the paper is on the analysis of the above
differences in locomotion speed and expended power
which are clearly due to the recoil motions accounted
for only in the free mode. A careful investigation on
its effects is still not available in the literature for oscil-
latory free swimming and a further deepening on the
subject is certainly due. To this purpose, the adopted
impulse model allows for the separation of the recoil
in its geometrical, potential and vortical components
whose different impact on the tail flapping paramet-
ers in free swimming mode are going to be presented
below and carefully discussed in the next section.

Figure 4(a) shows the excursion ∆Ah of the
peak-to-peak heave amplitude induced by the differ-
ent recoil motions for all the cases under investiga-
tion. Both the geometrical and the potential recoil
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Figure 2. Time history of (a) the free swimming forward velocity component and (b) the fluid kinetic energy for different values
of the design parameters h0[L] and θ0[rad].

Figure 3. (a) Traveling wave trajectory of the caudal fin in free swimming mode (see the movie in thesupplementry material
online). (b) Forward locomotion speed, phase velocity and (c) mean power consumption for a free swimmer and a no-recoil
swimmer at cruising condition.

contributions are always negative and are increas-
ing in their absolute value for larger design value of
h0, consequently leading to a reduction of the free
swimming peak-to-peak peduncle amplitude Ah. On
the other hand, the vortical contribution to ∆Ah

given by the vortex shedding in the wake, shows
exactly the opposite behaviour by decreasing with
the prescribed h0, i.e. increasing with θ0 according
to equation (23), and by showing a clear tendency
to enhance the heave amplitude Ah, whose large val-
ues are commonly associated to a great propulsive
capability. The final value of Ah may be obtained by

starting from its design value and summing up all
the different contributions as reported in figure 4(b)
where the colored arrows are representative of the
bars in figure 4(a). By looking at the data obtained
in free swimming condition in comparison with the
prescribed ones, in some cases we notice an increase
while in others a decrease of the heave amplitude,
resulting in a quite unclear trend for the variation
induced by the total recoil motions. However, by isol-
ating the geometrical, potential and vortical contribu-
tions, a monotonic behaviour is clearly obtained for
each component. Specifically, the geometrical recoil
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Figure 4. (a) Excursion ∆Ah of the peak-to-peak heave amplitude induced by the geometrical, potential and vortical recoil
contribution for all the design parameters h0[L] and θ0[rad]. (b) Comparison between the design value of Ah and the value
obtained when considering the geometrical recoil correction, the potential fluid recoil and the total recoil accounting also for the
vortical contribution. The colored arrows represent the bars in figure 4(a).

correction is always giving a decrease in the peak-to-
peak heave amplitude, followed by a further decrease
due to the pure potential flow. The final value of Ah is
reached when we consider also the vortical contribu-
tion, which always leads to its increase with respect to
the potential case.

By adopting the same representation used for Ah

(figure 4(b)), we observe how for the pitch angle
θ0, reported in figure 5(a), the influence of recoil
motions seems to be quite negligible. Actually, the
final θ0 values, obtained once the total fluid recoil
motions are considered, do not show a significant
variation with respect to the design values. Neverthe-
less, it should be noticed that in this case the geo-
metrical correction is going to increase the value of
θ0, while both fluid contributions have an opposite
effect. The estimated phase velocity c and the ratio

Ah/Ate reported in figures 5(b) and 6 show the same
behaviour observed in figure 4(b) for Ah. Namely, the
vortical fluid recoil is always contrasting the deteri-
oration generated by the geometrical recoil correc-
tion and by the potential fluid recoil to enhance the
values of the peak-to-peak values Ah/Ate and of the
phase velocity c driving the asymptotic locomotion
speed.

By comparing figures 5(b) and 6, it appears that
even if the free swimming value of the ratio Ah/Ate

is always increasing with respect to its design value,
the same is not true for the phase velocity, whose
trend follows closely the one observed in figure 4(b)
for Ah. For the sake of consistency, this is not conflict-
ing with the increase in the phase velocity withAh/Ate

suggested by equation (24) which is strictly valid for
prescribed swimming with a phase lag between the
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Figure 5. Comparison between the design value of (a) θ0 and (b) the phase velocity c against the respective values obtained when
considering the geometrical recoil correction, the potential fluid recoil and the total recoil accounting also for the vortical
contribution. The colored arrows have the same meaning as in figure 4(b).

Figure 6. Comparison between the design value of Ah/Ate and the value obtained when considering the geometrical recoil
correction, the potential fluid recoil and the total recoil accounting also for the vortical contribution. The colored arrows have the
same meaning as in figure 4(b).

peduncle heavemotion and the pitch of the caudal fin
equal to−π/2, conditionwhich is not usually verified
in the free swimmingmode under investigation in the
present paper.

4. Discussion

As theoretically discussed in section 2, the deforma-
tion resulting from the geometrical parameters pre-
scribed in a design procedure, in general, does not sat-
isfy the equilibrium equations in the absence of fluid

interactions as required to guarantee its feasibility in
this condition. Figure 7(a) reports an extremely sim-
plified sketch of a flapping fishlike body to attack such
a subtle issue, frequently underestimated in the liter-
ature. The first frame on the left illustrates the body
in its straight and undeformed configuration, while
the second one illustrates a deformed one where the
body rear-end representative of the tail is flexed by
a clockwise angle β. For a fixed anterior body, the
rotation of the tail is going to induce a downward
motion of the body center of mass CM and a clock-
wise rotation of the inertia principal axes. However,
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Figure 7. (a) Sketch of a flapping fishlike body illustrating the geometrical recoil correction. (b) The effect of the geometrical
recoil correction (in black) on the actual body geometry.

for an isolated body, neither the translation of its
center of mass nor the rotation of its principal axes
are allowed since no external actions are applied. In
this condition, the geometrical recoil correction is the
motion required to make this configuration feasible,
i.e. the motion required to go from the central frame
in figure 7(a) to the last frame on the right, where
the center of mass and the principal axes perfectly
match the ones for the undeformed configuration.
In this way, any spurious rigid motion introduced in
the design procedure is annihilated by the geometrical
recoil, whose impact on the actual body geometry
is illustrated by figure 7(b) that gives a qualitative
insight on its overall effects on the prescribed deform-
ation. The results reported in the previous section
show how the geometrical correction presents a gen-
eral tendency to reduce all the relevant data but the
pitch angle θ0, whose variation is very small. As a con-
sequence, the large reduction of the peduncle heave
amplitude Ah leads to a smaller value of the asymp-
totic phase velocity c, hence to a lower performance in
terms of the related locomotion speed. It follows that
the geometrical recoil correction is definitely negat-
ive for the fish propulsive capability and it should
be minimized, at least, for fully constrained motions
[19, 20] to avoid such an evident deterioration of
the performance. This last consideration is probably
the reason for the bad reputation erroneously gained

in the past by the recoil with regard to swimming
performance. Actually, the concept of recoil correc-
tion was initially introduced by Lighthill as a unique
rigid motion, not distinguishing between the correc-
tion due to the interaction with the surrounding fluid
and the geometrical one, which led subsequently to
contradictory opinions on the subject. To this regard,
a typical consideration is that some fish species have
evolved deep and heavy head to counterbalance the
rapid motions of the light caudal fin so to reduce lat-
eral and angular oscillations about the center of mass
to avoid performance deterioration, which is consist-
ent, in the framework of our model, with the results
reported in the previous section for the geometrical
recoil.

Going now to the fluid recoil contributions,
as illustrated in the section 2, the linearity of the
present model allows for the separation of the
potential-induced velocity components (Uφ,Vφ,Ωφ)
from the vortical-induced velocity components
(Uv,Vv,Ωv) which, once combined, give the total
fishlike body kinematics. This particular property of
the model led to the results reported in figures 4–6
which clearly show how, even though the poten-
tial recoil gives another negative effect, the vortical
recoil contribution is always leading to a consistent
improvement of the flapping parameters. The oppos-
ite behaviour of the vortical contribution with respect
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Figure 8. Comparison between the time history of the potential, Ωφ, and vortical, Ωv, contributions to the body angular velocity.

Figure 9. Flow field sketches for (a) the potential fluid recoil and (b) the vortical fluid recoil.

to the potential one is observable from the com-
parison between the time history of the potential-
induced angular velocity Ωφ with the vortical-
induced angular velocity Ωv reported in figure 8 for
one sample case. The potential contribution Ωφ has
an opposite phase with respect to the vortical oneΩv.
This behaviour is perfectly consistent with the phys-
ical meaning of the two contributions related to the
added mass and to the vortex shedding, respectively.
The sample flow fields reported in figure 9, inspired
by previous analyses [41, 42], may give a simple idea
to understand their counteracting role. As illustrated
in figure 9(a), the potential acyclic field uφ gener-
ated by the caudal fin downstroke leads to a coun-
terclockwise angular velocity Ωφ in the opposite dir-
ection with respect to tail motion. It follows that
the potential recoil contribution, increasing with the
body deformation (see figures 4–6), tends to counter-
balance and to attenuate the tail oscillation. On the
other hand, the vortical field reported in figure 9(b)
shows an opposite behaviour since the fluid vortical
velocity uv induced by the vortex cluster just released

by the body is going to enhance the tail motion via the
angular recoil velocity Ωv, as it may easily result from
figure 4(a).

As a general comment, it is worth to underline
the tendency of the fluid recoil to enhance the heave
amplitude up to a value strictly comparable with the
trailing edge excursion Ate as shown by the increase
of the ratio Ah/Ate which represents the fraction of
the trailing edge amplitude due to the heave motion
of the peduncle. The more Ah/Ate approaches unity,
the more the caudal fin is flat at its maximum lateral
position, so to lay, together with the anterior body, on
the sinusoidal trajectory and to obtain a good swim-
ming performance [9, 43]. Actually, the relationship
between a high swimming performance and a flat tail
excursion was already envisaged in the early sixties by
Lighthill [15] who suggested to annihilate the slope of
the midline amplitude modulation to maximize the
swimming efficiency. Interestingly for the no-recoil
swimmer, since the body is not able to align with
the flow, the expended energy keeps increasing with
Ah/Ate as shown in figure 3(c).
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5. Concluding remarks

The different style of swimming proper of different
fish species brought, in the past, to several specific
approximations, which in most cases are not any-
more strictly required [44]. For instance, oscillatory
swimming, classically investigated in axial motion to
look for the best propulsive efficiency of the caudal
fin, should be analyzed by considering the free mode
of the whole body, as commonly done for undu-
latory swimming. In fact, the free self-propulsion
reveals the importance of the recoil rigid motions,
given by the fluid interaction, which are essential to
guarantee the overall equilibrium and may drastic-
ally modify the kinematics of the caudal fin with
respect to the prescribed one, to finally obtain a bet-
ter swimming performance. The recoil reaction and
the locomotion speed are obtained here by a simple
impulse model able to highlight the added mass and
the released vorticity contributions, together with
their coupling terms which are especially import-
ant in transient conditions [45]. This model allows
to understand the capability of the potential terms
to attenuate the recoil reaction continuously forced
by the vortex shedding which is directly related to
the wasted energy. Since the input deformation pre-
scribed in a design procedure usually is not satisfy-
ing the equilibrium equations to guarantee null rigid
motions of the body in the absence of fluid inter-
action, the induced spurious rigid displacements are
removed by a geometrical recoil correction. The dir-
ect application of the impulsemodel to such corrected
shape deformation helps the physical interpretation
of the results since it provides a more clear pattern
from the input to the output values of the caudal
fin parameters. In fact, by combining the fluid recoil
with both heave and pitch motions modified by the
geometrical recoil, the actual features of the caudal
fin in the inertial frame are identified together with
the associated phase velocity which drives the loco-
motion speed in inviscid flows. In a few words, the
illustrated simple model may give helpful suggestions
to figure out the free motion of a biomimetic body in
water and to select a deformation able to generate the
desired swimming performance for biomimetic tech-
nological means.
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Appendix. Anterior body deformation

For the prescribed deformation of the anterior body,
we followed a path similar to the one suggested by
Li et al [38] for a pure oscillation up the peduncle,
but we consider a proper undulatory motion with
wavelength λ to better represent the shape deforma-
tions observed in real fish and to better fit the flapping
motion of the caudal fin. In details, the first third of
the anterior body midline is fixed and the remaining
rear-end of length lr = lb − 1/3 is divided intoN seg-
ments of length li. For a given penduncle oscillation
amplitude h0, the lateral motion yi(t) of the left edge
of each segment is defined as





y1(s1, t) = 0

yi(si, t) = hi sin

(
2πft− 2π

λ
si

)
i = 2, ..., N

yp(t) = hp sin

(
2πft− 2π

λ
lr

)
for the peduncle

(.1)

where the coefficients hi is the maximum lateral dis-
placement of the ith segment and si is a curvilinear
abscissa going from 0 to 1, i.e. from the first third of
the body to the penducle. The coefficients hi and the
instantaneous inclination of each segment Ψi may be
obtained as follows





h1 = 0

hi = h0

(∑i−1
j=1 lj

lr

)2

i = 2, ..., N
(.2)





Ψi(si, t) = arcsin
yi+1(si+1, t) − yi(si, t)

li
i = 1, ..., N− 1

ΨN(sN, t) = arcsin
yp(t) − yN(sN, t)

lN
.

(.3)
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The fish ability to accelerate 
and suddenly turn in fast 
maneuvers
Damiano Paniccia1,5*, Giorgio Graziani1,5, Claudio Lugni2,3,4,5 & Renzo Piva1,5

Velocity burst and quick turning are performed by fish during fast maneuvers which might be essential 
to their survival along pray–predator encounters. The parameters to evaluate these truly unsteady 
motions are totally different from the ones for cruising gaits since a very large acceleration, up to 
several times the gravity, and an extreme turning capability, in less than one body length, are now 
the primary requests. Such impressive performances, still poorly understood, are not common to 
other living beings and are clearly related to the interaction with the aquatic environment. Hence, 
we focus our attention on the water set in motion by the body, giving rise to the relevant added mass 
and the associated phenomena in transient conditions, which may unveil the secret of the great 
maneuverability observed in nature. Many previous studies were almost exclusively concentrated on 
the vortical wake, whose account, certainly dominant at steady state, is not sufficient to explain the 
entangled transient phenomena. A simple two-dimensional impulse model with concentrated vorticity 
is used for the self-propulsion of a deformable body in an unbounded fluid domain, to single out the 
potential and the vortical impulses and to highlight their interplay induced by recoil motions.

The aquatic motion of fish is characterized by paths of long term cruising swimming and by very fast maneuvers 
during pray–predator encounters, either for escaping or for foraging needs. Such maneuvers, for instance the 
so called C-start characterized by a C shape bending, give rise to a sudden change of the swimming direction 
together with a huge acceleration leading the fish to follow a proper path to survive or to capture the desired 
 pray1. Their purpose is very different from the one for standard cruising and the usual performance parameter, 
i.e. the cost of transport given by the ratio between expended power and locomotion  speed2,3, is no longer a 
priority so that different measures are needed to search for optimal performances. The most common fast start 
swimming gaits were largely described in a survey paper by Domenici and  Blake4 with a large set of experimental 
data, very useful for understanding the relevant phenomena. In particular, both C-start and S-start maneuvers 
are deeply analyzed, but we will concentrate here only on the first one since, in our opinion, it is more rich of 
interesting aspects like the sudden change of the swimming direction. Anyhow, a full comprehension of many 
facets of the physical behavior is still not available and a satisfactory account of all the reasons for such unique 
achievements is still missing. Some recent and very interesting  contributions5–7 investigated a problem, in a way 
related to the present one, concerning the peculiar acceleration properties of the octopus that is propelled by a 
water jet expelled by the body itself, which in the mean time experiences a simultaneous reduction of its volume. 
The reported results for this case show a dominant effect of the added mass reduction which acts as a substantial 
improvement of the propulsion due to the water jet. Along with the proper differences essentially due to the una-
voidable recoil  motions8–10, the C-start under investigation may be brought back to the above problem since the 
added mass and its variability may play a central role for the maneuver’s performance. For the analysis, we have 
to consider the full system of the evolution equations for the kinetic variables pertaining to the body center of 
mass. Since the numerical results may be quite involved, we consider a simple impulse model with concentrated 
vorticity, so to isolate the potential and the vortical contributions as a conditio sine qua non for a proper physical 
interpretation of the results. As a major goal, we intend to confirm the added mass and its variability to be key 
items during the transient phase though the release of vorticity is always significant to definitely prevail at the end 
of the maneuver. Other interesting contributions analyzed the C-shape deformation accompanied by a traveling 
wave from head to tail to show, by numerical results, a more impressive  performance11–14. Also in this case, we 
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intend to provide the proper reasons for the increased efficiency of the maneuver. In the following sections we 
report and discuss a few numerical results for a deeper understanding of fast start swimming maneuvers whose 
comprehension, beyond a basic value per se, may provide a technical contribution to the design of biomimetic 
fishlike robots for particular applications requiring excellent maneuverability.

Results
As a first step, let us make a short description of the C like fast start just to recall by a few snapshots (see Fig. 1 
and the related animation reported in Movie S1) the main phases of this pretty elaborated maneuver which obeys 
to the conservation of both linear and angular momenta, since no external actions are applied. The fish willing 
to suddenly accelerate and change its swimming direction initiates a preparatory phase via a rotation of its tail 
which induces a simultaneous opposite rotation of the body fixed frame.

The successive propulsive phase, corresponding to the rapid return of the tail to the position aligned with 
the forward axis, gives rise to a substantial velocity boost in the same direction while the whole motion is 
accompanied by a significant release of vorticity. The kinematic performance of the C-start maneuver for a 
neutrally buoyant fish may be furtherly appreciated by the velocity components reported in Fig. 2 where we see 
that during the preparatory phase, i.e. for 0 ≤ t/T < 0.5 when the tail is raised towards the head (see Fig. 1), the 
body fixed frame starts to counter-rotate with an angular velocity � whose maximum occurs approximately for 
t/T = 0.5 . A relatively small forward velocity U from right to left (i.e. negative in sign) is also obtained halfway, 
but a much larger forward speed is finally achieved at the end of the propulsive phase when the tail is pushed 
back. No comments are made about the lateral velocity component V since, in a first approximation, its presence 
is quite negligible.

The literature on the subject was mostly focused on the study of the vortex shedding and of the vortical wake 
geometry as a potential source of comprehension, while a little attention was given to the added mass that we 
consider instead of primary importance for the maneuver. For a quantitative evaluation of all these contributions, 
we rely on the conservation of the linear impulse along the forward direction:

where m is the body mass and m11 is the added mass coefficient as properly defined when deriving the full 
system of equations (12) reported in the Methods section. Namely, Eq. (1) represents the first equation of the 
system once all the contributions but the one containing the unknown forward velocity U are grouped together 
within a single term P1 = −Pv1 − Psh1 −m12V −m13� to ease the interpretation of the results. Specifically P1 , 
beyond the component Pv1 associated to the shed vortices and Psh1 associated to the shape deformation, includes 

(1)(m+m11)U = P1

1=T/t57.0=T/t5.0=T/t52.0=T/t0=T/t

Figure 1.  Snapshots of the C-start maneuver of a neutrally buoyant fish from the numerical simulation. The 
relative animation is reported in Movie S1.
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Figure 2.  Velocity components for the C-start maneuver of a neutrally buoyant fish.
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the coupling terms given by the lateral and angular velocities times the proper added mass coefficients m12 and 
m13 , respectively. We may easily appreciate from Fig. 3a the very large difference between P1 and its vortical 
component, obviously covered by the left aside terms whose large impact on the maneuver clearly appears. It 
is interesting to evaluate the relative weight of the various terms to highlight the overwhelming predominance 
of the coupling term −m13� which provides a substantial momentum transfer from the angular to the forward 
direction (diagrams reported in Fig. S2a). All the terms covering the above difference are shown to become 
negligible at the end of the propulsive phase where the deformation is over and the fish returns to its straight 
configuration. Actually, in this condition the total and vortical impulses P1 and −Pv1 perfectly coincide, hence we 
may assess that the value of the final swimming velocity at the end of the C-start maneuver may be obtained by 
accounting only for the shed vortices  contribution15. At the same time, the vortical wake is shown to be unable to 
give a correct picture of the global physical phenomenon since all the other terms, in a way related to the added 
mass, have a dominant influence during the transient phase. By following the same reasoning, let us write the 
equation for the angular momentum:

where, as before, the term � is grouping together all the other contributions but the one containing the angular 
velocity � , while Izz is the body moment of inertia and m33 is the proper added mass coefficient. Analogously, the 
difference between � and its vortical contribution −�v , reported in Fig. 3b, shows again the relevance of the left 
aside terms on the maneuver with a special regard to the coupling ones due to added mass (reported in Fig. S2c). 
At this point, since we have verified the limited role of the vortical wake for understanding the C-start, we may 
now pass to the dynamics of the maneuver to account for the effects of the added mass variability. Namely, by 
taking the time derivative of Eq. ((1)), we obtain

where the acceleration dUdt  is split into two forcing terms. The first one depends directly on the time derivative of 
the forward impulse P1 , while the second one depends on the time derivative of the added mass coefficient m11 
along the forward direction. Both terms on the right hand side of Eq. ((3)) are divided by the sum of the body 
mass and of its added mass coefficient m11 . Hence, the added mass coefficient accounting for all the water set 
in motion by the body forward translation behaves like the body mass, i.e. the smaller its value, the more effec-
tive are the forcing terms on the body acceleration. Moreover, the time derivative of the added mass coefficient 
m11 appears also as a forcing term which, for a reducing value of m11 , may provide a boost in the body forward 
velocity, as highlighted by Spagnolie and  Shelley16.

By proceeding in an analogous way, similar equations may be obtained for the lateral and angular velocity 
components but, since the lateral velocity is much smaller and less important than the angular one, we report 
here only the expression for the angular acceleration:

where the first term on the right hand side depends on the time derivative of the angular impulse � , while the 
second one accounts for the variation of the added mass coefficient m33 . For an easier understanding of the 
effects due to the added mass variation on the forward and the angular acceleration experienced by the fish, 
we reported in Figs. 4a and 5a, respectively, the time history of the added mass coefficients m11 and m33 while 
the behaviour of all the other coefficients is reported for completeness in Fig. S3. The total forward and angular 
accelerations and their contributions as given by Eqs. (3) and (4) are reported in Figs. 4b and 5b. In the first one, 
i.e. Fig. 4b, we observe how the two combined contributions always give rise to an acceleration from right to left 

(2)(Izz +m33)� = �

(3)
dU

dt
=

1

m+m11

dP1

dt
−

U

m+m11

dm11

dt

(4)
d�

dt
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1
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dt
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�
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Figure 3.  Fluid impulses for C-start maneuver: (a) total forward impulse P1 and its vortical contribution Pv1 ; 
(b) total angular impulse � and its vortical contribution �v.
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(with a negative sign in our frame of reference) until the end of the maneuver. To this regard, according also to 
Fig. 4a, the time history of the second term on the r.h.s. of Eq. ((3)), accounting for the added mass variation, 
represents the main source of acceleration in the forward direction along the propulsive phase, even though a 
lighter opposite acceleration, substantially a drag, is shown during the preparatory phase. At the same time, the 
term accounting for dP1

dt  shows a quite similar but opposite behaviour since the favorable effect appears during 
the preparatory phase, while the resistive effect occurs during the propulsive phase. By looking at the different 
components of dP1

dt  reported in the Supplementary Material (see Fig. S4a), we have a further assessment of the 
dominant role played by the coupling among the angular and the forward velocities. With regard to the angular 
acceleration reported in Fig. 5b, the term related to the variation of the added mass coefficient m33 goes along 
with the time derivative of the angular impulse d�/dt for most of the entire maneuver. The cooperative action 
of these two terms enhances the fish capability to perform quick turnings leading to a large angular velocity 
� which also has a favourable influence on the forward velocity through the coupling terms included in P1 as 
reported for completeness in Fig. S4b.

The presence of an undulatory motion cooperating with the main C-shape bending fully maintains the 
validity of the above reasoning about the relevance of the added mass for a good maneuverability. Indeed, the 
addition of a proper traveling wave is even enhancing the full deformation by leading, on the one side, to larger 
values of the added mass coefficients together with their time variation and, on the other side, to an increase 
of the angular velocity, which keeps providing the predominant forward momentum transfer. The increased 
deformation involving a larger amount of water to be accelerated was also mentioned by Gazzola et al.17 as a 
fostering effect for the C-start performance. The snapshots in Fig. 6 and the related animation in Movie S2 give 
a first glance evaluation of the more efficient maneuver, while the diagrams in Fig. 7 show the larger forward and 
angular velocities compared with the ones without traveling wave. Further figures on this case, quite similar to 
the previous ones for the basic C-start, are reported in Figs. S5 and S6.
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Figure 4.  Time history of (a) the added mass coefficient m11 and of (b) the forward acceleration contributions 
for the C-start maneuver.
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Figure 5.  Time history of (a) the added mass coefficient m33 and of (b) the angular acceleration contributions 
for the C-start maneuver.
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Discussion
The surprising performances that fish may reach when engaged in fast start maneuvers have attracted the atten-
tion of biologists, physicists and engineers since such events are not fully understood and, even more, they are 
far from being reproduced by the actual more advanced technologies. It was our intention to analyze, as the most 
significant sample case, the C-start of a fishlike body by a simple impulse model which is instrumental to evaluate 
separately the various contributions for the accomplishment of the maneuver. Several previous  studies14,15,17–20 
analyzed in detail position and strength of the shed vortices with the intent to draw some hints for a sound physi-
cal interpretation of the fish maneuvering performance. For instance, Epps and  Techet15 investigated the vortical 
wake released during the C-start and measure the complete variation of the fish linear momentum through the 
linear momentum of the released vortices. In other words, by evaluating the momentum associated to the vortex 
clusters right after the fast start, they manage to estimate the swimming velocity at the end of the maneuver. 
However, as suggested by many  authors21–24 and clearly stated by  Zhang25, the shed vortices behave like terrestrial 
footprints hence they are not telling the whole story about the fish dynamics. The debate on this point is quite 
subtle and we like to add a further deepening by reporting the main findings obtained by our numerical simula-
tions. On the one hand, the vortical contributions, even though eventually dominant, are shown to be unable 
to explain all the intermediate steps of the maneuver. On the other hand, the added mass and its variation are 
proven to have, in aquatic environment, the larger impact on the extreme accelerations and on the high turning 
capabilities. Apart from assessing the key role of the reducing value of the coefficients m11 and m33 , we did show 
the prevailing action of the mutual momentum transfer between the angular and the forward direction due to the 
coupling terms related to the mixed coefficients. Among these terms which involve the proper recoil motions, the 
one associated to the angular velocity is shown to have the largest influence on the entire maneuver. No qualita-
tive changes were observed when the C-shape bending was accompanied by a traveling wave along the fishlike 
body as usually observed in nature and repeatedly reported in the  literature11–14. From a quantitative point of 
view, it has to be mentioned that, when a traveling wave is prescribed, the maneuver performances are even more 
impressive. From the above numerical results and from their analysis, we are able to draw a quite straight conclu-
sion. In a nutshell: when considering truly unsteady motions like the fast start of a deformable body in aquatic 
environment, the vortical wake is not sufficient to catch the essence of the maneuver as it would be in presence 
of a light fluid like air, but the multiple effects associated to the added mass, though vanishing at the end of the 
maneuver, are prevailing for the description of the transient phase and for the realization of the maneuver itself.

1=T/t57.0=T/t5.0=T/t52.0=T/t0=T/t

Figure 6.  Snapshots of the C-start maneuver combined with a wave undulation from the numerical simulation. 
The relative animation is reported in the Movie S2.
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Figure 7.  Comparison between forward and angular velocity components for the C-start maneuver with and 
without wave undulation.
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Materials and methods
We study the motion of a fish B swimming in a quiescent fluid within an unbounded fluid domain V . The self 
propelled motion is generated by the internal forces and moments exchanged between the swimming body and 
the surrounding fluid. These actions are expressed through the impulse formulation to avoid the convergence 
problems actually appearing for the momentum in unbounded fluid  domains26,27. We consider the planar, two-
dimensional motion of an impermeable, flexible body (with density ρb ) whose bounding surface Sb is moving 
with velocity ub in an incompressible flow field with density ρ and velocity u vanishing at the far field boundary. 
By using well known vector identities for the unbounded two-dimensional fluid  volume28–31, the linear fluid 
impulse is defined as

where N is the dimension (here N = 2 is assumed) and x is the position vector in the inertial frame. In Eq. (5), 
ω is the vorticity, u+ stays for the limiting value of the fluid velocity on Sb and the integral over the external 
boundary receding to infinity has been proven to exactly vanish  (Wu28, Wu et al.31, Noca et al.32). The normal n 
points out of the flow domain V which encloses all the vorticity. The right-hand side of Eq. (5) is independent 
of the choice of the reference frame  origin30–32.

Similarly, the angular impulse is

We consider here the moment with respect to a given pole, so x is the generic distance of the field point from the 
pole. Due to the absence of external forces the total linear and angular momenta are conserved and, by assuming 
null initial conditions, we have

where the forces acting on the body and on the fluid are obtained by time differentiating the two terms appearing 
in (7), respectively. The motion of the body can be expressed as the sum of the prescribed shape deformation with 
velocity ush plus the translational ( ucm ) and rotational ( � ) velocity of the frame with origin in the centre-of-mass.

where x′ is the position vector in the body frame, i.e.: x = xcm + x′ . The prescribed deformation of the body has 
to conserve linear and angular momenta, as formally given by 

∫

B
ρbush dV = 0 and 

∫

B
ρbx

′
× ush dV = 0 . By 

combining the expression of ub with Eqs. (7) and (8) we obtain

where m and Izz are the inertial properties of the body. We may then express p and π , via a Helmholtz decom-
position, in terms of their potential and vortical contributions as p = pφ + pv and π = πφ + πv , where the 
added mass effects are embedded within the potential impulses pφ and πφ while the vortical impulses pv and 
πv are related to the vortex sheet around the body and to the vortices shed into the  wake33–35. A complete and 
detailed description of the procedure can be found in Paniccia et al.36, where all the steps up to the final system 
of equations written in the body fixed frame are reported to obtain the two linear velocity components U and 
V and the angular velocity �

where the added mass coefficients mij , which are usually fully embedded into the forcing terms for standard CFD 
 simulations37, are here easily obtained by the following definition

In the above system the potential impulses have been split into some terms related to the unknown rigid body 
motions, which are expressed through the added mass coefficients, and other terms with the subscript sh, due 
to the shape deformation, which remain on the r.h.s. of the equations together with the vortical contribution. 
The flow solutions are obtained by an unsteady potential code for a slender  body38 while vortex shedding from 
the trailing edge is taken into account by a classical unsteady Kutta  condition39. This well-known numerical 

(5)p =

∫

V

ρ u dV =

1

N − 1

[
∫

V

x × ω dV +

∫

Sb

x × (n× u+) dS

]

(6)π =

∫

V

ρ x × u dV =

1

2

[
∫

V
|x|2ω dV +

∫

Sb

|x|2(n× u+) dS

]

(7)
∫

B

ρb ub dV + p = 0

(8)
∫

B

ρb x × ub dV + π = 0

(9)ub = ush + ucm +�× x′

(10)m ucm + p = 0

(11)Izz �+ π = 0

(12)





(m11 +m)U +m12V +m13� = −Psh1 − Pv1

m21 U + (m22 +m)V +m23� = −Psh2 − Pv2

m31 U +m32V + (m33 + Izz)� = −�sh −�v

(13)mij = −

∫

Sb

φj
dφi

dn
dS
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procedure has been extensively used in the literature to study rigid bodies like airfoils moving with a fully 
prescribed motion while we study here the free swimming of a deformable  body40,41 which presents a much 
larger complexity since the linear and angular rigid body velocities are now unknown. A short description of 
the prescribed deformation is reported in the Supplementary Material together with the specific data for the 
numerical simulation collected in Table S1.

Data availability
All data generated or analysed during this study are included in this published article (and its supplementary 
information files).
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Deformation and data for the numerical simulations
The C-start maneuver is mainly characterized by a C-shaped oscillatory bending through which the fish accelerates the
surrounding fluid to obtain a large increase of the forward velocity and an impressive turning capability. The C bending
deformation is usually accompanied by an undulatory deformation which is eventually leading to a more efficient maneuver1–4.
In the present work we focused on the basic phenomena underlying the outstanding fish performance by means of a mathematical
and a numerical model able to isolate and separate all the different physical contributions. To this purpose, we used the impulse
formulation to satisfy the conservation of the total linear and angular momenta for a self-propelled deformable body and we
obtained the numerical solutions by means of a two-dimensional panel method with concentrated vortex shedding through an
unsteady Kutta condition. Both the mathematical and numerical models have been deeply described in Paniccia et al.5.
The fish body is represented by a NACA0010 airfoil while its prescribed deformation is taken from Liu et al.4 and briefly
described in the following. The deformation is given by the curvature k(s, t) of the airfoil midline and, in general, it is divided
in two parts

k(s, t) = kb(s, t)+ kw(s, t) (S1)

where kb(s, t) is the part associated to the main C-shaped oscillatory bending and kw(s, t) is a curvature traveling wave.
Specifically, the main bending is defined as

kb(s, t) =





0 0 ≤ s< 0.1

ab

(
1− cos

(
2π

t
T

))
s ≥ 0.1

(S2)

where ab is the maximum bending amplitude and T is the time period of the entire maneuver. The curvature traveling wave is
given as

kw(s, t) = awA(s)τ(t)sin
(

2π
(

s− t
T

)
+ψ

)
(S3)

where aw is maximum wave amplitude and the ramp function τ(t) is assigned as

τ(t) =





t
Tr

− 1
2π

sin
(

2πt
Tr

)
0 ≤ t ≤ Tr

1 t ≥ Tr

(S4)

where Tr is the duration of the ramp and A(s) is an amplitude modulation is assigned as

A(s) =

{
0 0 ≤ s< 0.1

s2 −0.2s+0.5 s ≥ 0.1
(S5)

The values of all the different parameters used for the numerical simulations are collected in Table S1. The corresponding
deformations in the body-fixed frame are reported in fig.S1 for the preparatory and the propulsive phase. To be notice the
significant difference among the two phases once the undulatory deformation is considered.



Table S1. Parameters for numerical simulations

bending only bending + traveling wave
ab 0.465π 0.465π
T 2 2
aw 0 1.4
ψ 0 π
Tr 0 0.4
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Figure S1. Midline envelope of the C-start deformation: (a) bending only and (b) bending plus traveling wave.
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Additional Results
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Figure S2. Time history of the impulses contributions for the C-start maneuver: (a) forward, (b) lateral and (c) angular
direction. The blue and red curves in fig.S2a and fig.S2c, appearing also in fig.3a and fig.3b, are here compared with all the
other impulse contributions not in the main text. It is worth to notice the large impact of the green curve in fig.S2a representing
the momentum transfer from the angular to the forward direction discussed in the main text. With regard to the lateral impulses
reported in fig.S2b, they are not mentioned in the main text due to the relatively small importance of the lateral velocity for the
maneuver.
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Figure S3. Time history of the added mass coefficients mi j for the C-start maneuver governed by eq.(12) in the main text: (a)
added mass coefficients m1 j appearing in the equation along the forward direction, (b) added mass coefficients m2 j appearing in
the equation along the lateral direction and (c) added mass coefficients m3 j appearing in the equation along the angular
direction. Notice the very large added mass coefficient m22 leading to a very small lateral velocity as reported in the main text.

4/8



0 0.2 0.4 0.6 0.8 1

t/T

-0.1

-0.05

0

0.05

0.1

0.15

(a)

0 0.2 0.4 0.6 0.8 1

t/T

-0.06

-0.04

-0.02

0

0.02

0.04

(b)

Figure S4. Splitting of the time derivative of (a) the total forward impulse term P1 and (b) the total angular impulse term Π.
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Figure S5. Time history of the impulses contributions for the C-start maneuver in presence of a traveling wave: (a) forward,
(b) lateral and (c) angular direction. The curves are very similar to the ones in the absence of a traveling wave despite a certain
increase in their absolute value may be appreciated.
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Figure S6. Time history of (a) the forward and (b) the angular acceleration contributions. The curves are very similar to the
ones in the absence of a traveling wave despite a certain increase in their absolute value may be appreciated.
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Supplementary Video Legends
Movie S1 Animation of the C-start maneuver for a neutrally buoyant fish from the numerical simulation.

Movie S2 Animation of the C-start maneuver with the addition of a traveling wave for a neutrally buoyant fish from the
numerical simulation.
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