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A B S T R A C T

Detecting early signs of impending eruptions and monitoring the evolution of volcanic phenomena are funda-
mental objectives of applied volcanology, both essential for timely assessment of associated hazards. Thermal
remote sensing proves to be a cost-effective, yet reliable, information source for these purposes, especially for the
hundreds of volcanoes still lacking conventional ground-based monitoring networks. In this work, we present an
innovative and effective single band TIR-based (11.45 μm) algorithm (TIRVolcH), capable of detecting thermal
anomalies in a broad range of volcanic settings, from low-temperature hydrothermal systems to high-
temperature effusive events. Based on the processing of Visible Infrared Imaging Radiometer Suite (VIIRS)
scenes, the algorithm offers an unprecedented trade-off between spatial (375 m) and temporal resolution
(multiple acquisitions per day), having the potential to detect thermal anomalies for pixel-integrated tempera-
tures as low as 0.5 K above the background, while maintaining a false positive rate of ~1.8 %. The analysis of
decadal time series of VIIRS data (2012− 2023), acquired at three different volcanoes, reveals how the algorithm
can: (i) detect hydrothermal crises at fumarolic fields (Vulcano, Italy), (ii) unveil thermal unrest preceding dome
extrusions and explosive eruptions (Agung, Indonesia), and (iii) spatially trace lava flows extent and quantify
their advancement rate, as well as track their long-term cooling behaviour (La Palma, Spain).
We envisage that the algorithm will prove instrumental for detecting early signs of volcanic activity and

following the evolution of eruptive phenomena, providing a useful tool for hazard management and risk
reduction applications. Furthermore, the compilation of statistically robust multidecadal thermal datasets will
provide novel insights and new perspectives into volcano monitoring, laying the ground for forthcoming higher-
resolution TIR missions.

1. Introduction

Volcanic eruptions and associated or cascading hazards pose a threat
to at least 800 million people living within a 100 km radius of one of the
~1400, potentially active, subaerial Holocene volcanoes on Earth
(Small and Naumann, 2001, Brown et al., 2015a, Lara et al., 2021).
Between 1600 and 2010, more than 270,000 fatalities were associated
with volcanic activity (Auker et al., 2013). Furthermore, these events
have the potential to cause widespread damage to infrastructures,
disrupt global aviation, lead to socio-economic losses, and cause adverse
effects on human health (Hansell et al., 2006, Horwell and Baxter, 2006,
Gudmundsson, 2011, Brown et al., 2015b, Brown et al. 2015c, Loughlin

et al., 2015). Given the transient nature of volcanic phenomena, the
capability of detecting, with early notice, variations in the equilibrium
of volcanic systems often draws the line between survival and fatality
rate (Garcia and Fearnley, 2012, Auker et al., 2013, Poland and
Anderson, 2020, Lowenstern and Ramsey, 2017).Even after an eruption
begins, the ability to monitor its progression (i.e., identifying active
vents, establishing directions and velocities of advancing lava flows,
etc.), remains essential for stakeholders and competent bodies to timely
review expected scenarios, update hazard maps, and issue exclusion
and/or evacuation orders (Ganci et al., 2012a; Harris et al., 2016; Harris
et al., 2017; Harris et al., 2019; Coppola et al., 2016a; Coppola et al.,
2020; Ganci et al., 2020).
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Forefront instruments for detecting early signs of volcanic unrest, as
well as advancements in tracking eruptive episodes, play a major role in
reducing the risk associated with volcanic events, lowering the overall
vulnerability of those exposed to volcanic hazards (Sparks et al., 2012;
Donovan et al., 2012). Studies suggested that advancements in volca-
nology likely saved as many as 50,000 lives in the twentieth century
alone (Auker et al., 2013). On the other hand, recent works also revealed
that ~50 % of the ~1400 potentially active volcanoes still lack con-
ventional ground-based instruments capable of detecting impending
volcanic resurgence (Brown et al., 2015a, Pritchard et al., 2018, Delgado
et al., 2019).
In this context, satellite data proves to be a cost-effective, yet reli-

able, information source for detecting early signs of volcanic activity and
monitoring the evolution of eruptive events at remote, poorly moni-
tored, volcanoes. Yet, even at well-monitored volcanoes, remotely
sensed data provides a spatiotemporal perspective of eruptive phe-
nomena, mitigating for the gaps in information left by ground-based
monitoring networks (Ebmeier et al., 2018; Reath et al., 2019b; Cop-
pola et al., 2020).
Spaceborne data have been employed with a range of techniques to

monitor various parameters, encompassing volcanic gas/ash emissions
(e.g., Carn et al., 2017; Prata, 2009), deformation (i.e., Pritchard and
Simons, 2004a, 2004b; Biggs et al., 2014; Pritchard et al., 2018), and
thermal output (i.e., Wright et al., 2015; Wright, 2016; Coppola et al.,
2023). Amongst them, the investigation of volcanic phenomena through
thermal infrared observations has been a central focus in remote sensing
studies for decades, leading to the establishment of a dedicated disci-
pline since the 1960s (Ramsey and Harris, 2013, Harris, 2013, Blackett,
2017).
The progress made in recent decades has allowed the development of

the first automatic volcano hotspot-detection systems such as MOD-
VOLC (Wright et al., 2002; Wright et al., 2004) and MIROVA (Coppola
et al., 2016b; see Steffke and Harris (2011) for a comprehensive review).
These systems, based on the joint availability of Thermal InfraRed (TIR)
and Mid-InfraRed (MIR) data acquired by the MODerate resolution
Imaging Spectroradiometer (MODIS) mounted aboard Terra (since
1999) and Aqua (since 2002) satellites are still used to detect eruptive
activity all over the world, exploiting the high sensitivity of MIR chan-
nels to high (i.e., magmatic) temperatures. With a resolution of 1 km and
a revisit time of approximately 12 h, MODIS sensors constitute an
important volcanic monitoring tool to support volcanological observa-
tories (Coppola et al., 2020).
However, due to the moderate spatial resolution and given that they

exploit the different spectral response of the MIR and TIR bands to hot
surfaces ⪆ 600 K (i.e., Normalised Thermal Index (NTI); see Wright
et al., 2002 for details), these algorithms are not designed to detect low-
temperature (⪅ 600 K) volcanic phenomena (Zhukov and Oertel, 2001,
Briess et al., 2003). Hydrothermal systems, crater lakes, and fumarolic
fields, for instance, as well as cooling lava bodies and cooler dome
carapaces, are often characterised by temperatures well below the MIR-
method-operational threshold (i.e., ⪆ 600 K) and, as such, the thermal
energy sourced by these volcanic features remains undetected and/or
unquantified. To track and quantify thermal radiations sourced from
these low-temperature volcanic features, scholars employed TIR chan-
nels, these better suited to track subtle thermal variations (Reath et al.,
2016; Ramsey et al., 2023). Yet, even in a high-temperature domain, TIR
observations typically prove more effective in accurately determining
the geometrical characteristics of emplaced and advancing lava flows. In
fact, the spectral response of MIR channels to hot surfaces is far greater
than that of TIR bands, meaning that, even a metrical subpixel hot
component lets the overall pixel-integrated temperature rise exponen-
tially (Steffke and Harris, 2011), following a power-law relationship
(Wooster et al., 2003). The substantial energy radiated from a relatively
small subpixel component causes the thermal signal to spread across
several adjacent pixels, following the convolution scheme dictated by
the sensor’s Point Spread Function (PSF) (Markham, 1985;

Schowengerdt, 2007; Calle et al., 2009; Zakšek et al., 2015a; Zakšek
et al., 2015). Blurring artefacts in the hotspot-contaminated MIR scenes
imply that even a small lava flow, factually contained within a few
pixels, may spread over a considerably larger area, thus significantly
affecting the estimation and accuracy of length, width, and shape of the
volcanic products (Harris, 1996; Harris, 2013; Harris et al., 2017;
Ramsey et al., 2019). On the other hand, TIR acquisitions do retain
sensitivity to hot surfaces (Aveni and Blackett, 2022; Verdurme et al.,
2022), reducing PSF-related distortions and, in turn, allowing a more
detailed interpretation of the eruptive scenario.
In this regard, together with MODIS, the Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER), aboard the Terra
satellite marked a transformative phase in the thermal remote sensing of
volcanic activity. With five TIR (8–12 μm) bands, and a spatial resolu-
tion of 90 m ASTER has been instrumental in detecting early (or pre-
cursory) signs of volcanic activity (Pieri and Abrams, 2005; Reath et al.,
2016), track the evolution of volcanic unrest (Corradino et al., 2023;
Pailot-Bonnétat et al., 2023), assess the progression of effusive episodes
(Harris et al., 2019; Genzano et al., 2021; Ramsey and Flynn, 2020;
Ramsey et al., 2023), quantify the thermal energy sourced by volcanic
and hydrothermal targets (Mia et al., 2018; Mannini et al., 2019;
Ramsey et al., 2023), locate thermal anomalies in volcanic regions,
fumarolic fields, geothermal areas, and hydrothermal systems (Genzano
et al., 2021, Taryn et al., 2018, Uchôa et al., 2023, Hellman and Ramsey,
2004, Vaughan et al., 2012a, Vaughan et al., 2020, Chalik et al., 2019,
Braddock et al., 2017, Silvestri et al., 2019, Hilman et al., 2020, Caputo
et al., 2019, and references therein), and creating comprehensive mul-
tidecadal database of volcanic thermal behaviour (Reath et al., 2019a,
Urai and Pieri, 2011a, 2011b [https://gbank.gsj.jp/vsidb/image/Agun
g/volinfo.html]). Previous authors employed TIR bands to monitor
low-energy fumarolic fields (Vaughan et al., 2012b; Braddock et al.,
2017; Caputo et al., 2019; Reath et al., 2019a; Silvestri et al., 2019;
Ramsey and Flynn, 2020; Way et al., 2022), whilst others were suc-
cessful in quantifying the heat flux sourced by hydrothermal systems
(Harris and Stevenson, 1997a, 1997b; Mannini et al., 2019). Further-
more, TIR-based retrospective studies conducted on selected targets
revealed early evidence of variations in the thermal activity associated
with impending eruptions (e.g., Dehn et al., 2002; Pieri and Abrams,
2005; Reath et al., 2016). These studies revealed how TIR radiation
analyses are effective in measuring the heat sourced from volcanic tar-
gets. However, despite ASTER’s high spatial resolution, its low temporal
resolution (1 image every 16 days, at nadir over the equator) poses a
major limitation for volcano monitoring. This is further exacerbated by
the irregular acquisitions of ASTER scenes over several volcanic targets
(Reath et al., 2019b; Ramsey and Flynn, 2020) which makes it quasi-
impossible to timely detect potential manifestation of subtle thermal
anomalies. Even during eruptive crises, despite the off-nadir pointing
capabilities of the instrument and the Urgent Request Protocol (URP)
program (see Ramsey, 2016 for details) can be invoked to increase the
acquisition frequency up to 1 image every 4 days (depending on target
latitude), the revisit time of ASTER impedes a timely assessment of the
progression and variations in the eruptive dynamics, especially at vol-
canoes exhibiting short-living episodes (i.e., Waythomas et al., 2017;
Letourneur, 2008; Coppola et al., 2005; Coppola et al., 2021; Bonaccorso
and Aloisi, 2021; Marquez et al., 2022; Proietti et al., 2023; Calvari and
Nunnari, 2022; Guerrieri et al., 2023; Ganci et al., 2023; Bignami et al.,
2020; Werner et al., 2017) or those characterised by persistently
unfavourable meteorological conditions where the likelihood of
acquiring a cloud-free scene is lowered by more than 65 % (i.e., Mannini
et al., 2019, Coppola et al., 2022, Blackett and Wooster, 2011, Reath
et al., 2019a, 2019b, Henney, 2012, Carter and Ramsey, 2010, Gray
et al., 2019).
The limitations described above have meant that, at present, there is

no automatic satellite-based system for detecting low-to-high tempera-
ture anomalies using a single approach. To address the numerical
challenges related to the automatic or supervised recognition and
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detection of anomalous pixels using a single TIR band, previous studies
applied in-scene contextual and/or statistical thresholding (Murphy
et al., 2011; Blackett, 2014; Rabuffi et al., 2022; Pailot-Bonnétat et al.,
2023), long-term change-point detection (Tramutoli, 1998; Tramutoli,
2005; Genzano et al., 2021), combination of image processing and sta-
tistical techniques (Ramsey et al., 2023), Machine Learning (ML) ap-
proaches (Corradino et al., 2023), and supervised inspection and
selection routines (Reath et al., 2019a).
Yet, these studies and/or algorithms were exclusively based on the

processing and elaboration of ASTER-like scenes, thus constrained by
the temporal availability of these acquisitions. Furthermore, the desig-
nated lifetime of TERRA (6 years) has long passed, and its forthcoming
disposal must be taken into account (Wright et al., 2015). In this regard
and supporting the continuity of satellite-based volcano monitoring,
Corradino et al. (2019) and Campus et al. (2022), revealed how the
Visible Infrared Imaging Radiometer Suite (VIIRS) sensor aboard Suomi-
NPP and NOAA-20 platforms is an excellent candidate to mitigate for the
decommissioning of TERRA (and AQUA) platform.
Amongst the comprehensive spectral range embraced by VIIRS sen-

sors, the I-5 band, occupying the TIR portion of the spectrum with the
central peak placed at 11.45 μm, is of most interest (Table 1). The
intriguing compromise between the spatial (375 m) and temporal res-
olution (up to 4 acquisitions of the same target per day (in constellation;
at the equator)) of this sensor might provide innovative, yet crucial
advancements for the systematic monitoring of low-temperature volca-
nic settings and, in turn, might be key for detecting subtle thermal
anomalies associated with early evidence of volcanic unrest.
In this work, we present an innovative and effective single band TIR-

based algorithm, devised to elaborate VIIRS scenes to detect volcano-
genic thermal anomalies at specific volcanic targets. The algorithm, at
its current stage, is conceived to work solely on nighttime acquisitions,
to prevent contamination from solar irradiance and reflectance which
may affect both the number of alerts and the quality of the retrieved
measures (Pieri and Abrams, 2004; Reath et al., 2019a; Pailot-Bonnétat
et al., 2023). The algorithm can detect thermally anomalous pixel(s) as
low as 0.5 K above the surrounding background pixels, located as far as
25 km from the volcano’s summit.
We present the results obtained from the analysis of more than 10

years of data acquired at three different volcanoes (Fig. 1a) that have
experienced various types of volcanic activity: (i) Vulcano Island (Italy)
which underwent a hydrothermal crisis in 2021–2022 (Fig. 1b), (ii)
Mount Agung (Indonesia) that erupted, explosively, on November 21st,
2017 preceded by mid-term thermal precursors (Fig. 1c), and (iii), La
Palma (Spain) which produced a large lava flow during the 85-day long
effusive eruption begun on September 19th 2021 (Fig. 1d). To determine
the reliability of our results, we first conducted a visual selection of the
hotspot-contaminated scenes during the whole 10-year period, and then
compared the algorithm detections against the supervised outputs. To
further validate the results, we performed a cross-correlation against the
same parameters obtained from the higher-resolution ASTER scenes and

with independent measures collected via ground-truth instruments.
Finally, we demonstrate the benefits of operating a single band TIR
based hotspot detection system for volcano monitoring.

2. Case studies

2.1. Vulcano

Vulcano Island, Italy (38.39◦N, 14.97◦E), is the southernmost
emerged volcano of the Aeolian Archipelago (Fig. 1b). The island was
formed in the geodynamical context of the Aeolian Arc, originating from
the subduction of the African plate underneath the European Plate
(Keller, 1980; Ellam et al., 1989). In this subduction regime, the
volcanism of Vulcano began ~130 ka (Keller, 1980, De Astis et al.,
2013). The last magmatic eruption occurred from 1888 to 1890 (Selva
et al., 2020). Following this event, a fumarolic field reaching tempera-
tures up to 700 ◦C was established within the Gran Cratere area (Fig. 1b;
Diliberto, 2017 and Diliberto et al., 2021, Barberi et al., 1991, Capasso
et al., 1994, Chiodini et al., 1995). In 1987, after almost a century of low
and relatively stable activity, a 6-year-long period of unrest led to a
significant increase in the fumarolic activity (Barberi et al., 1991,
Chiodini et al., 1996, Montalto, 1996), later followed by minor unrests
in 2004–2005, 2009, and 2017 (Granieri et al., 2006, Paonita et al.,
2013, Ricci et al., 2015, Selva et al., 2020).
In September 2021, variations in micro-seismicity associated with

hydrothermal fluid circulations, ground deformation, increased fuma-
roles temperatures, and alteration in geochemical composition of
ground-exhaling gasses at La Fossa cone (Fig. 1b; Federico et al., 2023),
prompted the Italian Department of Civil Protection (DPC) to raise the
alert level from green to yellow, effectively announcing the beginning of
a new period of unrest (DPC, 2021).

2.2. Mount Agung

Mount Agung, located on the island of Bali, Indonesia (8.34◦S,
115.51◦E) (Fig. 1c), is considered one of the highest-risk volcanoes in the
country (Ardianto et al., 2021). The stratovolcano, located within the
Sunda arc, is the superficial manifestation of the geodynamic processes
characterising the subduction zone between the Indo-Australian plate
and the Sunda block (Syafitri et al., 2022). Extending for 3142 m above
sea level, Mt. Agung is renowned for its explosive activity and, given its
proximity to populated areas, for the human, social, and economic
impact its eruptions have had on the inhabitants of rural villages located
along its slopes (Gunawan et al., 2020). According to the Center for
Volcanology and Disaster Hazard Mitigation of Indonesia (CVGHM),
Mount Agung has erupted four times in the last two centuries: in 1808,
1821, 1843, and 1963 (Gunawan et al., 2020). The 1963 – VEI 5 –
eruption claimed 1148 lives and injured 296 people (Zen and Hadiku-
sumo, 1964). The elevated death toll was mainly related to far-reaching
(10 to 14 km) pyroclastic flows, ejection of large ballistics up to ~6.5 km
from the summit, and ensuing lahars (Kusumadinata, 1964; Surjo, 1965;
Self and Rampino, 2012).
After a 53-year interval of dormancy, the volcano underwent an

eruptive phase between November 21, 2017, and June 13, 2019, rein-
vigorating the scientific focus on the Indonesian volcano (Andaru et al.,
2021). The most recent eruptive phase could have been anticipated
based on significant ground deformation, occurrence of seismic swarms,
and increasing intra-crater thermal activity since 2017 (Ardianto et al.,
2021, Gunawan et al., 2020, Syahbana et al., 2019, Bemelmans et al.,
2023).

2.3. La Palma

La Palma, Canary Islands, Spain (28.71◦N, 17.91◦W) (Fig. 1d), is one
of the most active volcanoes of the intraplate hot-spot archipelago
(Romero et al., 2022; Montesinos et al., 2013). Subsurface volcanism at

Table 1
Main characteristics of VIIRS sensors. 1Cao et al. (2014), 2Cao et al. (2013b), 3

Schroeder and Giglio (2017), 4Oudrari et al. (2016).

VIIRS (S-NPP/N20) / VIIRS (S-NPP/N20)

Orbit altitude (km) 824
Swath (km) 3060
Equator crossing time 12:40 LT / 13:30 LT
Pixel resolution at nadir (km) 0.375
Pixel resolution at the edge (km) 0.75
ID TIR Band I-5
Spectral range (μm) 10.560–12.428 (1)

Central Wavelength (μm) 11.45
T Min (K) ~ 205 (2)

T Max (K) ~ 380 (2)

NEΔT (K) @ 210 ~ 0.40 (3)

NEΔT (K) @ 267 ~ 0.05 (4)
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La Palma started ~4–3 Ma ago (Carracedo et al., 2001). In the last 125
ka activity was mainly located in the southern part of the emerged is-
land, known as the Cumbre Vieja volcanic complex (Cabrera-Pérez et al.,
2023). In the last ~500 years, at least 6 eruptions took place within the
Cumbre Vieja ridge, in 1585, 1646, 1677–1678, 1712, 1949, and 1971
(Guillou et al., 1998; Carracedo et al., 1998; Klügel et al., 2000; Carra-
cedo et al., 2001; Casillas Ruiz et al., 2020).
On September 19th, 2021, after a 2-year long period of unrest

characterised by seismic swarms, geochemical anomalies, and ground
inflation (e.g., Torres-González et al., 2020, Padrón et al., 2021, Carra-
cedo et al., 2022, Civico et al., 2022, D’Auria et al., 2022, Pankhurst
et al., 2022), a new eruption began. The event was characterised by the
simultaneous emission of lava flows and tephra plumes from multiple
vents located along a NW-SE-orientated fissure (Bonadonna et al., 2022;
Birnbaum et al., 2023). After 85 days of fluctuating activity, the eruption
was officially announced to have ended on December 13th, 2021 (Plank
et al., 2023). Subaerial lava flows covered an area of ~11.8 km2,
affected a total of 3126 buildings (of which 2800 were eventually
destroyed), and led to the evacuation of ~7500 inhabitants (JRC, 2021;
Amonte et al., 2022; Civico et al., 2022). The effused lava volume was
estimated to be 177.6 ± 5.8 Mm3, with a Mean Output Rate (MOR) of
~24.1 m3/s, and a maximum and average lava flow thickness of 65 m
and 15.2m, respectively (Civico et al., 2022; Bonadonna et al., 2022;
Plank et al., 2023).

3. VIIRS sensor and input data

3.1. Visible Infrared Imaging Radiometer Suite (VIIRS) sensors

The Suomi National Polar-Orbiting Partnership (SNPP) and the Joint
Polar Satellite System’s (JPSS) JPSS-1 (NOAA-20 or N20) have been in
orbit since October 2011 and November 2017, respectively (Goldberg,
2018; Xiong et al., 2018). Both Suomi-NPP and JPSS-1 satellites are
placed in a polar orbit at a nominal altitude of 824 km (Cao et al., 2017).
Boasting a cross-track field-of-view (FOV) of 112.56◦, and a swath width
of 3060 km, each VIIRS sensor provides full coverage of the globe daily
(Cao et al., 2013a). The sensors gather information across 22 spectral
bands, encompassing the electromagnetic spectrum from 0.412 μm to
12.01 μm. This includes 16 moderate-resolution bands (M-bands), a
panchromatic Day-Night Band (DNB) characterised by a spatial resolu-
tion of 750 m, and 5 imaging resolution bands (I-bands) with a spatial
resolution of 375 m. Amongst the comprehensive spectral range of VIIRS
instruments, the I-5 TIR band centred at 11.45 μm (Table 1), is the one
used in this work to detect thermal anomalies of volcanic origin.

3.2. Input data

The proposed algorithm is currently based on VIIRS I-5 nighttime
scenes elaborated by the MIROVA system (Campus et al., 2022). The
datasets are made of daily acquisitions from both Suomi-NPP and
NOAA-20 VIIRS Level 1B radiances (VNP02IMG and VJ102IMG 6-Min
L1B Swath 375 m, respectively; atmospherically uncorrected) and
associated geolocation data products (VNP03IMG and VJ103IMG Im-
agery Resolution Terrain-Corrected Geolocation 6-Min L1 Swath 375 m,
respectively), covering a period of more than 10 years (since January
2012). These are freely distributed by NASA’s Level-1 and Atmosphere
Archive & Distribution System–Distributed Active Archive Center
(LAADS-DAAC) in netCDF4/HDF5 format. The original granules, as per
MIROVA workflow, are resampled to a regular 134 × 134 UTM grid
centred on the volcano summit according to the coordinates provided by
the Global Volcanism Program (2023). This step ensures consistency
across all the scenes that now cover an area of ~2500 km2. Once the
scenes are processed, these are stored in a local database, together with
information regarding date and acquisition time, zenith angle, geo-
location information, etc., thus ready for further processing (see Coppola
et al., 2016b for details).

4. TIRVolcH algorithm

4.1. Overview

When satellite scenes of the same region are stacked together, at-
pixel resolution long-term statistics can be obtained and, in turn,
anomalous variations from the long-term behaviour can be detected
both in time and space (Tramutoli, 1998). To embrace both conditions,
this algorithm combines spatial and temporal checks to determine the
occurrence of anomalous pixels within the scene.
In the following paragraphs, the different steps of the algorithm will

be detailed. These are (i) initialisation, where the ancillary data and the
pre-processing phase necessary for identifying hotspot-contaminated
pixels (i.e., Confirmed Alerts) are created, (ii) hotspot detection, detail-
ing the distinction between land- and water-dominated scenes, together
with the higher sensitivity statistics applied to high-interest volcano-
specific features (i.e., VSROI) and (iii), outputs, where the volcanologi-
cally relevant parameters are retrieved. The whole process is scripted in
a MATLAB environment, following the workflow summarised in Fig. 2.

4.2. Step 1 – Initialization

4.2.1. Ancillary data
To identify hotspot candidate pixels (i.e., Candidate Alerts) and

minimise the number of false alerts the hotspot detection phase requires

Fig. 1. a) Orthographic World projection (M_Map package; Pawlowicz, 2020) showing the location of the three studied volcanoes. b’) Digital Surface Model (DSM)
of Vulcano Island at 1 m spatial resolution, adopted from Ministero dell’Ambiente e della Tutela del Territorio e del Mare (MATTM under Creative Commons License
CC-BY-SA 3.0 IT). The red shape depicts the Main Fumarolic Zone (MFZ) as described by Mannini et al. (2019). The blue line approximates the perimeter of La Fossa
cone. Bold and regular black lines represent equidistant contour intervals at 250 m and 50 m, respectively. b”) Location map of Vulcano island and the Aeolian Arc.
b”’) VIIRS I5 band at 375 m resolution acquired on May 8th, 2014, at 00:48 (UTC), superimposed the DSM and centred over Gran Cratere area. c’) Digital Elevation
Model (DEM; Demnas) of Bali island at ~8.25 m spatial resolution, adopted from the Geospatial Information Agency (Badan Informasi Geospasial—BIG). Available
from: https://tanahair.indonesia.go.id/demnas/#/ (Accessed July 4th, 2022). The red shape depicts the fumarolic and solfataric zone as inferred from (Syahbana
et al., 2019; Andaru and Rau, 2019; Bemelmans et al., 2023). The blue line approximates the perimeter of the main volcanic edifice. Bold and regular black lines
represent equidistant contour intervals at 1000 m and 250 m, respectively. c”) Location map of Bali Island and the central portion of the Indonesian archipelago. c”’)
VIIRS I5 band at 375 m resolution acquired on May 19th, 2016, at 17:36 (UTC) superimposed the DEM, centred over Mount Agung. d’) Digital Terrain Model (DTM)
of La Palma island at 2 m spatial resolution, adopted from the Autonomous body National Center for Geographic Information (CNIG) under Creative Commons
License CC-BY 4.0 (Accessed January 31st, 2023). Available from: https://centrodedescargas.cnig.es/CentroDescargas/busquedaSerie.do?codSerie=MDT02. Bold
and regular black lines represent equidistant contour intervals at 1000 m and 250 m, respectively. The yellow star depicts the location of the Tajogaite cone. The red
shape demarks the extent of the lava flow (September 19th-December 13th, 2021) as provided by Copernicus Emergency Management Service (2024). Available
from: https://emergency.copernicus.eu/mapping/ems-product-component/EMSR546_AOI01_GRA_MONIT63_r1_VECTORS/1 (Accessed January 31st, 2023). d”)
Location map of La Palma Island and the Canarian archipelago. d”’) VIIRS I5 band at 375 m resolution acquired on October 17th, 2021, at 02:48 (UTC) superimposed
the DTM and centred over the Cumbre Vieja ridge. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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some ancillary parameters that must be provided before running the
whole workflow. These parameters, stored in a structure named Vol-
canoes Info, are:

• Coordinates of Interest: the revised location of the volcano’s summit
(or active vent) to compensate for any offset in the GVP list (Latitude
and Longitude coordinates, in degrees; GVP, 2023). These correc-
tions, where needed, ensure that coordinates are representative of
the active vents and/or thermal target locations, where higher
sensitivity statistics are applied (see Section 4.3).

• Land/Water Mask (LW Mask): Land/Water mask of the region (binary
matrix 134 × 134 pixels) as provided with L1B VIIRS products.

• Monthly Reference Scenes (REF): mostly cloud-free scenes of the
investigated region (one per each month of the year; 12 REF per
volcano), representing the average temperature conditions of the
area. These scenes are compared against the observed ones (i.e.,
satellite acquisitions) to detect variations from the normal behaviour
(see Section 4.2.2 and 4.3).

• Regions of Interest (ROIs): Four regions are defined as ROI1, extending
for ~1 km from the volcano’s summit, ROI2, from ~1 to ~5 km,
ROI3, from ~5 to ~12.5 km, and ROI4, beyond 12.5 km.

• Volcano-Specific Region of Interest (VSROI): an ad hoc mask within
which higher sensitivity statistics are applied for volcanoes

Fig. 2. Workflow of TIRVolcH. The top panel shows input data, followed by (Step 1) Initialisation, (Step 2) Hotspot Detection, and (Step 3) Outputs (i.e., parameters
retrieval). Note, the dashed and grey shaded box in Step 2 indicates iteration of the loop (dashed arrow) until no (further) Candidate Alerts are detected (see text for
details). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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exhibiting persistent activity such as crater lakes, fumarolic fields,
etc. (x,y coordinates; see Section 4.3.4).

• Volcano-specific exclusion Region of Interest (VSExcROI): to reduce the
number of false alerts (binary matrix 134 × 134 pixels); This, simi-
larly to the data-removal mask previously applied by Tramutoli
(1998), is generated for each volcano based on the type of volcanism
and on the distance from the summit reached by lava flows and/or
magmatic products within the last 2 decades. This is established by
evaluating the volcano’s long-term behaviour observed by the
MIROVA system together with ground-based volcanological obser-
vations outlined in bulletins issued by volcanic observatories and
available literature. With that in mind, VSExcROI are generated
following the conditions outlined below:

(i) For targets featuring quasi-exclusively confined activity (i.e.,
crater lakes, lava lakes, fumarolic fields, etc.), anomalous pixels
are searched within a 2 km radius from the summit area;

(ii) For targets featuring effusive and/or explosive episodes confined
within the summit area, anomalous pixels are searched within a
5 km radius from the volcano’s summit;

(iii) For targets featuring far-reaching lava flows (> 5 km) or for those
where no thermal activity was detected in the past two decades,
no spatial restrictions apply.

It must be noted that a VSExcROI, where needed, can be promptly
resized to accommodate the ongoing eruptive dynamics.

4.2.2. Pre-processing and generation of monthly reference scenes (REF)
The pre-processing phase enables retrieval of monthly reference

matrices (REF), these representing the average, monthly-based, Bright-
ness Temperature (BT) for each investigated region. The first time a new
target is processed, the initial step consists of extracting and stacking
together all VIIRS nighttime TIR acquisitions for the designated volcano
from the MIROVA database. The resampled I-5 radiance scenes (134 ×

134 pixels) are converted into BT and then stored in a single cubic
matrix (Fig. 3a), accompanied by temporal and spatial information. A
first reference image is then generated by averaging all the stacked
scenes, to obtain a time-averaged BT matrix of the investigated region
(Fig. 3b). Notably this reference image, although obtained by averaging
several images contaminated by clouds, has the property of maintaining
the texture and pattern of the cloud-free scene and can be used as a first,
temporary reference matrix. Hence, each scene is compared against this
reference image and a coefficient of determination (R2) is computed.
This coefficient is empirically assumed to be a proxy of the cloud frac-
tion, since the mostly cloud-free images show high R2 values, while poor
correlation is found for cloudy scenes (Fig. 3c). Images with an R2 co-
efficient < 0.5 are discarded and a new reference scene, containing
mostly cloud-free acquisitions, is generated following the stacking
approach discussed above. The process is repeated a second time to
further reduce the number of unsuitable scenes in the stacked compi-
lation. The remaining acquisitions are divided into months (Fig. 3d) and
the BT time series of each pixel is retrieved. Datapoints (pixels)
exceeding three scaled Median Absolute Deviation (MAD) from the
monthly median BT (i.e., outliers; Leys et al., 2013) are removed from
the matrix and replaced by interpolating the remaining values along the
third dimension (Fig. 3e). This step ensures that most of the remaining, if
any, sparse clouds, wildfires, or anomalous pixels are removed. The final
reference package includes a cubic matrix of 12 scenes, one per every
month of the year (REF; Fig. 3f), and it is stored locally, ready to be used
when recalled within the hotspot detection step described below.
For volcanoes characterised by persistent activity, such as those

related to fumarolic activity (i.e., Mt. Agung or Vulcano) or crater lakes,
the construction of monthly reference matrices requires a further step.
For these targets, the hotspot-contaminated pixels are visually identified
and removed from the matrix; the gaps are filled by assigning the BT
value of the surrounding, non-thermally anomalous pixels, using a bi-

cubic interpolation (Fig. 4).

4.3. Step 2 – Hotspot detection

Within this step, each observed image (OBS, in K) is compared
against its associated reference scene (REF, in K), to detect the presence
of hotspots-contaminated pixels (Confirmed Alerts). This is made through
a series of tests to identify potentially hotspots-contaminated pixels
(Candidate Alerts). The same approach is employed to detect cloud-
contaminated pixels (Cloud Pixels). After the initial set of tests (Initial
thresholding setting; see Section 4.3.1) the algorithm splits the processing
into two separate workflows, one for Land-dominated scenes and one for
Water-dominated scenes. The algorithm checks the percentage of land in
the scene using the information contained in the LW Mask file (see
Section 4.2.1). Scenes containing more than 20 % of land pixels (~500
km2) are flagged as ‘Land-dominated’, whilst those showing less than 20
% are flagged as ‘Water-dominated. This main distinction is necessary
because of the very different temperature distribution in the two set-
tings. In particular, while in Land-dominated contexts the algorithm ex-
ploits clustering analysis of the heterogeneous temperature distribution
within the investigated region, this is not possible in Water-dominated
scenes, as water surfaces are mainly characterised by a homogenous
temperature distribution. Furthermore, at volcanoes exhibiting persis-
tent, yet subtle, thermal activity confined within a well-defined area
such as fumarolic fields or crater lakes, the algorithm employs a volcano-
specific ROI (VSROI). These features are characterised by considerably
lower temperatures as compared to those of magmatic bodies, so that
clustering or thresholding approaches usually fail to detect these subtle
volcanic features.

4.3.1. Initial thresholds setting
In this initial step, OBS is analysed and pixels exceeding a fixed

threshold (ABSBT) are considered Candidate Alerts:

OBS ≥ ABSBT [test 1]

where ABSBT is equal to 313.15 K, this being consistent with the
maximum nighttime temperature recorded on Earth, not contaminated
by a hotspot (NOAA, 2024).
Then, a scene of residues (RES, in K; Fig. 5c,f,i) is computed by

subtracting the monthly REF scene (Fig. 5a,d,g) from the BT of the
observed image (Fig. 5b,e,h), so that:

RES = OBS − REF (1)

The 99.5 percentile of RES (pRES99.5) is used to label Candidate Alerts
and Cloud Pixels according to test 2 and test 3, respectively:

RES > ABSDT [test 2]

RES < ABSCL [test 3]

where ABSDT and ABSCL result from the following conditions:

if pRES99.5 > 10 then

⎧
⎨

⎩

ABSDT = 20

ABSCL = 0
, else

if 5 < pRES99.5 < 10 then

⎧
⎨

⎩

ABSDT = 15

ABSCL = − 5
, else

if pRES99.5 < 5 then

⎧
⎨

⎩

ABSDT = 10

ABSCL = − 10

Once tests 1, 2, and 3 are executed, the Cloud Pixels are removed from
RES and, a Z-Score matrix (Z − RES) is computed as:
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Fig. 3. Workflow for generating REF matrices (Mount Agung example). a) All scenes stacking b) Temporary REF scene c) Scatter plot showing the typical rela-
tionship between cloud-free and cloud-contaminated scenes. Note that scenes with R2 < 0.5 are discarded. d) Monthly division (only scenes with R2 > 0.5). e) Pixel-
by-pixel outlier removal in monthly REF matrices. f) REF output. See text for details. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Z − RES =
RES − RES

σRES
(2)

where RES and σRES are the mean and the standard deviation of RES,
respectively. Accordingly, pixels not detected by previous test but
satisfying test 4 are added to the Candidate Alerts:

Z − RES > 7 [test 4]

4.3.2. Hotspot detection for Land-dominated scenes
Within the hotspot detection for Land-dominated scenes, two distinct

blocks are executed. The first operates on a cartesian domain by inves-
tigating the temperature distribution in a scatter plot to identify
anomalous (i.e., outliers) pixels (i.e., datapoints). The second block
works on the images anew, performing contextual statistics on the
scenes.

First Block: On the assumption that an approximately linear rela-
tionship exists between clear sky and hotspot-free OBS and REF, if we
plot these two variables in a scatter plot, most of the data should lie
around the 1:1 ratio. In contrast, scattered and low-density data points
(i.e., outliers) located above the main cluster should represent hot
anomalies (i.e., volcanic surfaces). Datapoints representing clearly
contaminated pixels are usually comprised between the ~0.005 % and
the ~1 % of the whole scene (i.e., 1 to 200 pixels or ~ 0.1 to ~30 km2)
and significantly deviate from the main cluster of uncontaminated data.
This implies that their density distribution is much lower than pixels
representing average conditions.
At first, REF and OBS matrices are reshaped into vectors and are

plotted on a scatterplot in the x and y axis, respectively (Fig. 6). Any
pixel(s) previously flagged as Candidate Alerts or Cloud Pixels are
removed. Then, for each pair of data (x, y) in the scatterplot, the
Euclidean Distance (EDxy) with respect to the eight smallest distances (i.
e., the eight nearest datapoints in the plot with respect to the examined
x, y pair) is calculated as:

EDxy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(OBSx − REFx)2 +
(
OBSy − REFy

)2
√

(3)

The choice of selecting eight neighbouring datapoints was made to
resemble the in-scene conditions, namely the number of pixels sur-
rounding any given pixel. Datapoints with EDxy < 1 are considered part
of the Main Cluster (MC; non-anomalous data), and a polygon, hereafter
named PolyED, is automatically drawn around them (Fig. 6). At this
point, four concentric envelopes (PolyROIn) are drawn around PolyED by
adding a ROI-dependent buffer (bΔTROIn) so that:

PolyROIn = PolyED + bΔTROIn (4)

with bΔTROIn equal to 0.5, 1, 2 and 4 K for ROI1, ROI2, ROI3, and ROI4,
respectively (Fig. 6).
Any datapoint in the scatterplot is also associated with its specific

ROIn in the spatial domain (matrix; see Fig. 7a,b,c). Hence, any data-
point (x, y)ROIn in the scatterplot (or its corresponding pixel in the ma-
trix), is considered a Candidate Alert if the following condition is
satisfied:

(x, y)ROIn ∕∈ PolyROIn [test 5]

where (x, y)ROIn is a datapoint of a specific ROI and PolyROIn is the
associated envelope. Graphically this test is used to identify the data
points located outside the polygon defined for each ROI (PolyROIn).

Second Block: This block operates on the spatial domain (matrix)
anew, to detect remaining, or missed anomalous pixels within ROI1. This
test increases the capability to detect subtle thermal anomalies within
ROI1, the region where there is the highest likelihood of encountering
volcanogenic anomalies. To do this, after temporarily removing any
detected Candidate Alert resulting from all previous tests (Test 1 to 5),
the mean and standard deviation of the non-alerted pixels within ROI1
are computed both for theOBS (OBSROI1 and σOBSROI1, respectively) and
for the RES images (RESROI1 and σRESROI1, respectively). Pixels of
OBSROI1 satisfying the following test are flagged as Candidate Alerts:

OBSROI1 ≥ OBSROI1 + 3σOBSROI1 & OBSROI1 ≥ RESROI1 + 3σRESROI1
[test 6]

The Candidate Alerts are therefore those that have passed at least one
of the tests 1 to 6.

4.3.3. Hotspot detection for Water-dominated scenes
Over Water-dominated scenes the normal temperature distribution

implies that clustering approach described above (Section 4.3.2) fails
because of the homogeneous temperature distribution over sea and/or
water bodies. Hence, we only apply a contextual approach based on the
statistical analysis of the investigated region. The average temperature
(OBS) of the observed scene and its standard deviation (σOBS) are
computed and the following test is performed to detect new Candidate
Alerts:

OBS ≥ OBS+10σOBS or OBS ≥ pOBS99.5 [test 7]

where pOBS99.5 is the 99.95th percentile of the whole scene.
Candidate Alerts are removed from the scene, and a new ROI

(ROIIsland) of ~2 km centred on the volcano’s summit is defined. Hence,
the mean (OBSROIIsland ) and standard deviation (σOBSROIIsland ) of ROIIsland
are computed to perform the last test:

Fig. 4. Mount Agung. a) REF scene as resulting from Fig. 3f. Note how a thermal anomaly persists within Agung’s crater (a’). b) REF scene with the persistent
thermal anomaly visually identified and removed (b’). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

S. Aveni et al. Remote Sensing of Environment 315 (2024) 114388 

9 



OBSROI1 ≥ OBSROI1 +3σOBSROI1 [test 8]

The Candidate Alerts are therefore those that have passed at least one
test amongst tests 1 to 4 and/or 7 to 8.

4.3.4. Hotspot detection within Volcano-Specific ROIs (VSROI)
If a persistent thermal anomaly can be distinguished, a VSROI –

usually extending for ~1 × 1 or ~ 2 × 2 km depending on the size of the
thermal feature(s) – is centred on the hottest pixel (Fig. 8). To detect

Candidate Alerts within the VSROI region(s), a similar approach to that
presented in tests 4 and 6 is applied, yet thresholds are lowered to in-
crease the detection sensitivity exclusively within the VSROI:

Z − RESVSROI ≥ 5 [test 9]

The already detected Candidate Alerts (tests 1 to 9), if any, are tem-
porary removed from the scene, and the mean and standard deviation of
both observed (OBSVSROI and σOBSVSROI , respectively) and RES (RESVSROI
and σRESVSROI , respectively) scenes are computed. Hence:

Fig. 5. Reference (REF), Observed (OBS), and Residual (RES) scenes for Vulcano (a,b,c), Agung (d,e,f), and La Palma (g,h,i), respectively. Blue patches represent
cloudy pixels resulting from Test 3. Red and orange shapes in f (and f’) and i (and i’) depict the anomalous pixels detected after Test 1 and 2, and after Test 4,
respectively. Note how, in figure c (and c’), tests based on fixed thresholds (i.e., tests 1, 2, and 4), failed to detect the thermal anomaly, although a thermally
anomalous pixel can be visually identified. b) acquired on August 17th, 2019, at 01:00 (UTC). e) acquired on June 15th, 2018, at 17:42 (UTC). h) acquired on
October 21st, 2018, at 03:12 (UTC). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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OBSVSROI ≥ OBSVSROI +2σOBSVSROI or OBSVSROI ≥ RESVSROI +2σRESVSROI
[test 10]

Where pixels satisfying test 10 are added to the Candidate Alerts.
It is worth it to mention that in a single scene multiple VSROI can be

placed over different location, enabling a greater coverage of sparse
thermal features (i.e., fumarolic fields) over the entire volcanic edifice.
Detailed evidence on the role of a VSROI over low-temperature targets is
provided as Supplementary Material (S1).

4.3.5. Removal of residual false alerts, background BT computation and
iterations
In this final step, all Candidate Alerts are subjected to a series of tests

to remove potential false alerts and define Confirmed Alerts (hotspot-
contaminated pixels).
The algorithm initially verifies that the BT of Candidate Alerts

(BTcandidate) is at least 0.5 K above the background temperature (BTbg).
This ensures that pixels approaching the sensor’s noise limits (see
Table 1) are not identified as hotspot-contaminated. To further minimise
the number of distal false alerts, we test whether their BT is higher than
the theoretical BTbg plus a ROI-dependent threshold (ΔTbg):

BTcandidate > BTbg +ΔTbg [test 11]

where ΔTbg takes one of the following values: 0.5 K (for VSROI, ROI1,
ROI2), 0.75 K (for ROI3) and 1 K (for ROI4).
The BTbg is computed iteratively by removing the Candidate Alerts

from the scene and interpolating the gaps using a bi-cubic interpolation

of the surrounding non-contaminated pixels (Fig. 9). Hence all pixels
failing test 11 are unflagged and return to the original matrix. The
procedure is iterated until all Candidate Alerts satisfy test 11.
Finally, a set of spatial conditions is applied to minimise the number

of false alerts by taking into consideration the typical spatial pattern
characterising volcanic phenomena. These are:
If ROI1 and ROI2 contain no Candidate Alerts & there are less than 10
Candidate Alertswithin ROI3 and/or ROI4& these all fail Test 1 and
2, then these are assumed to be false alerts and are ‘unflagged’

[test 12]

If ROI1, ROI3, and ROI4 contain no Candidate Alerts & ROI2, contains
a single Candidate Alert, then this is assumed to be a false alert and
is ‘unflagged’

[test 13]

If Candidate Alerts are located on water bodies (as per LWMask)& are
not connected to inland Candidate Alerts, then these are assumed to
be false alerts and are ‘unflagged’

[test 14]

If Candidate Alerts are located outside the VSExcROI , then these are
assumed to be false alerts and are ‘unflagged’

[test 15]

If Candidate Alerts are located more than ~1 km from the shoreline
(as per LW Mask), then these are assumed to be false alerts and are
‘unflagged’

[test 16]

Candidate Alerts, namely pixels satisfying at least one Test between 1
and 11 and failing Test 12 to 16 are finally labelled Confirmed Alerts, thus
pixels most likely contaminated by hotspots of volcanic source.
If Confirmed Alerts are detected and, after temporarily removing

these from the scene, the whole process is repeated until no further
Confirmed Alerts are detected between two consecutive runs. At this
stage, following the approach described above, Confirmed Alerts are
removed from the scene and the final BTbg is calculated to allow esti-
mation of the volcanologically relevant parameters detailed in Section
4.4 and Supplementary Material S2.

4.4. Step 3 – Radiative power and parameters retrieval

With the Confirmed Alerts retrieved, a final step is dedicated to esti-
mating and storing the volcanological relevant parameters (see Sup-
plementary Material S2). Amongst them, the quantification of thermal
energy sourced by volcanic targets is a key metric to assess the status of
the volcanic system (Wang and Pang, 2023). Previous studies attempted
to estimate the intensity of the volcanic events by mean of statistical
and/or normalised indices (i.e., Tramutoli, 1998; Tramutoli, 2005;
Rabuffi et al., 2022), others adopted the maximum temperature above
the background of the alerted pixel(s) as a proxy of the energy involved
(i.e., Ball and Pinkerton, 2006; Calvari et al., 2020; Ramsey and Dehn,
2004; Reath et al. 2019a and 2019b). Nonetheless, as advised by Ramsey
et al. (2023), a maximum pixel temperature may not be representative of
the energy associated with thermal anomalies spreading over an
extensive area. As such, following the approach previously employed by
others (i.e., Ramsey et al., 2023; Corradino et al., 2023; Blackett, 2014;
Mia et al., 2018; Thompson et al., 2022) we estimate the radiative power
(ΦRad; in watt) of each alerted scene as:

ΦRad =
∑Npix

i=1
σ • ε •

(
BT4alert,i − BT4bg,i

)
• A (5)

where Npix is the number of Confirmed Alerts, σ is the Stefan-Boltzmann
constant (5.67 × 10− 8 W m− 2 K− 4), ε is the surface spectral emissivity,
here assumed to be unity for sake of simplicity (i.e., Pieri and Abrams,
2005; Kervyn et al., 2008; Coppola et al., 2016b), BTalert and BTbg are the
temperature of the alerted pixel and its corresponding background
value, respectively, and A is the pixel surface area, namely 140,625 m2

for VIIRS I5 pixels.

Fig. 6. Scatter plot showing the relationship between the vectorised REF (x-
axis) and OBS (y-axis) matrices presented in Fig. 5d and 5e, respectively. The
grey dashed line shows the 1:1 ratio. Note how most of the datapoints (i.e.,
Main Cluster - MC) lie around this line. Orange stars depict the pixels already
flagged as candidate alerts during tests 1–4 (see Fig. 5f’; Note, these pixels are
factually excluded from the ED clustering approach (the same applies to cloudy
pixels (blue dots); see text) but have been included in the figure to show their
typical distribution). The black line (PolyED) shows the result of the ED-
clustering approach, delimiting the MC of non-anomalous data. Red, yellow,
green, and cyan envelopes depict the buffer (PolyROIn) added to PolyED for ROI1,
ROI2, ROI3, and ROI4, respectively. Note, the same plot after running Test 5 and
6 is shown in Fig. 7 (note how anomalous data points have been detected, thus
added amongst the Candidate Alerts). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of
this article.)
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5. Algorithm performance

The efficiency of the algorithm was assessed on three case studies
(Vulcano, Agung, La Palma), to evaluate its performance both on land-
and water-dominated scenarios, as well as on low- (i.e., fumarolic) and
high- (i.e., effusive) thermal regimes. Validation of the algorithm’s
outputs was conducted by visually inspecting the ~23,000 scenes ac-
quired within the investigated period, labelling the outputs according to
the criteria presented by Massimetti et al. (2020), namely:

(i) True Volcanic Alert (TVA): an anomaly detected by the algorithm
explicitly related to volcanic activity (hot degassing, lava body
exposed, hot eruptive materials exposed and possibly confirmed
by literature or consistent with the background knowledge of
volcano activity), showing a distinguishable thermal inconsis-
tency with the surrounding environment;

(ii) Fires or Anthropogenic alert (FoA): an anomaly detected by the
algorithm expressly and visually related to wildfire occurrence
and/or located near human-settled areas;

(iii) False Positive Alert (FPA): an anomaly detected by the algorithm,
visually related to cloud coverage and/or cloud edges, secondary
cloud fringes, geometrical artefacts, or clearly not related to
known or ongoing volcanic processes;

(iv) False Negative Alert (FNA): a visually distinguishable thermal
anomaly undetected by the algorithm, clearly related to volcanic
processes, having a ΔT, with respect to their surrounding pixels,
higher than the thresholds outlined in Section 4.3.5.

Following Genzano et al. (2020), we define the False Positive Rate
(FPR) as the ratio between the number of false detections (NFPA), the
latter resulting from the visual inspection, and the total number of
scenes (NScenes) available for the two investigated regions:

FPR =
NFPA

NScenes
(6)

From now on, we also name True Volcanic Alerts (TVA) the alerts
confirmed to be of volcanogenic source via visual inspection, thus those
not flagged as FPA as:

TVA = NAlerts − NFPA (7)

Finally, we provide the False Negative Rate (FNR) as the number of
missed alerts (NFNA) divided by the number of visually selected scenes
displaying evidence of volcanogenic thermal anomalies (NManual) as:

FNR =
NFNA

NManual
(8)

As evinced from Table 2, the algorithm well performs both on land
and islands, with an intrinsic FPR of 1.77 %, 1.90 % and 1.79 % for
Vulcano, Agung, and La Palma, respectively. A detailed investigation
revealed that most of these false alerts (~85 %) are associated with
cloud-edge effects, with the remaining due to geometric distortions
(high satellite zenith resulting in a mismatch between REF and OBS) (see
Supplementary Material S3). Nonetheless, as summarised in Table 2, the
already-minimal occurrence of FPAs can be simply, yet drastically
reduced to 0.47 % by applying distance (from the summit of the volcano,

Fig. 7. a,d) Residual (RES) scenes of Mount Agung and La Palma, respectively, as seen in Fig. 5f,I with ROIs overimposed. Blue patches represent cloudy pixels (Test
3). b,e) ED-clustering. Orange stars represent Candidate Alerts identified with Test 1–4, red stars show Candidate Alerts detected with Test 5–6. Blue datapoints show
the location of cloud-contaminated pixels. The horizontal red dotted line in (e) shows the I-5 channel saturation threshold (see Table 1). c,f) Zoom up over the
eruptive scene of Agung and La Palma, respectively (for acquisition dates see Fig. 5). Filled orange patches show the pixels detected with tests 1–4. Red outlines show
the Candidate Alerts detected after ED clustering and contextual analyses (Tests 5–6). Note, ROIs distortions (flattening) in (d) is a graphical artefact due to WGS84
projection. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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or from the thermally anomalous zone) and geometrical filtering, while
avoiding removal of any relevant TVA (see Supplementary Material S4).
These results are in excellent agreement with those reported for other
hotspot detection systems, featuring FPR ranging from⪅1% to>20% (i.
e., Kervyn et al., 2008, Steffke and Harris (2011), Massimetti et al.,
2020, Coppola et al., 2014, Genzano et al., 2023, Marchese and Gen-
zano, 2022, Lacava et al., 2018, Ramsey et al., 2023, Chu et al., 2020).

6. Thermal trends

6.1.1. Vulcano
Since the late 19th century, following the latest magmatic eruption

(1888–1890; Selva et al. 2020), a fumarolic field established within
Gran Cratere (see Fig. 1b; Diliberto, 2017 and Diliberto et al., 2021,
Barberi et al., 1991, Capasso et al., 1994, Chiodini et al., 1995). Several
studies provided estimates of the thermal outputs associated with the
fumarolic activity, both collected via ground instruments and space-
borne platforms. Amongst them, combining ASTER and ground truth
data, Mannini et al. (2019) presented the results of a detailed investi-
gation conducted between 2000 and 2019. These authors suggested that
the average diffuse radiative power, at the time of sampling (see Man-
nini et al., 2019 for details), was 1.22 ± 0.39 MW (1σ). These values are

largely in agreement (R2 = 0.86; Fig. 10c) with the VIIRS-derived
average radiative power obtained proximally to Mannini et al. (2019)
field surveys (Fig. 10a), namely 1.07 ± 0.37 MW (1σ). Extending the
period of analysis, Pailot-Bonnétat et al. (2023) presented the
ASTER-derived thermal outputs for 2021, thus including the beginning
of the unrest period. These authors suggested that, between January and
July 2021, the radiative power was comprised between ~3–8 MW,
reaching~16MWat the beginning of October 2021 (see Pailot-Bonnétat
et al. (2023) for details). These findings, as depicted in Fig. 10b, are
consistent with our VIIRS-derived measurements, where values of ~2–8
MWwere recorded until July 2021, to reach ~15.5 MW in the first week
of October 2021.
In terms of overall trends, the baseline activity of Vulcano shows an

average ΦRad of ~1.99 MW, characterised by a seasonal pattern with
thermal maxima recurring within summer periods (Fig. 10a). This is
consistent with the seasonal tendency observed by Corradino et al.
(2023) who investigated the ~15-year-long thermal outputs of Vulcano
through ASTER acquisitions. These authors further explored the causes
of these seasonal fluctuations, finding a strong negative correlation be-
tween meteoric precipitations and areal expansion of the radiating
source(s), in line with previous observations made by Gaudin et al.
(2015) and de Bremond and Gibert (2022) in other hydrothermal set-
tings. Noteworthy, during the summer of 2019, a transient increase in
radiative power was recorded by our data, in concomitance with the
highest pre-unrest H2O flux value recorded at least since 1982

Fig. 8. Subtle thermal anomaly at Agung (February 10th, 2013, at 17:24 UTC) missed by initial fixed thresholds (a; Tests 1–4), ED clustering (b; Test 5) and ROI1
contextual statistics (c; Test 6), but detcted applying a VSROI (d; i.e., Tests 9–10). Note how the VSROI-detected Candidate Alert is indeed not anomalous in the
cartesian domain, so that it gets embedded within the main cluster of data (red dot in b; indicated by the black arrow). However, when placed in a spatial domain, the
thermally anomalous pixel stands out against its surrounding (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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(Inguaggiato et al., 2023), and consistent with increased thermal
anomalies reported by Rabuffi et al. (2022) and Coppola et al. (2022).
In September 2021, ground instruments detected sudden variations

in micro-seismicity and ground deformation, these associated with cir-
culations of pressurised hydrothermal fluids (Inguaggiato et al., 2022a;

Federico et al., 2023). In the latter half of September 2021, the anom-
alous geophysical parameters were followed by increased fumarole
temperatures and alteration in the geochemical composition of ground-
exhaling gasses (Inguaggiato et al., 2022a; Di Traglia et al., 2023). The
rapid escalation of the volcanic crisis prompted the DPC to raise the alert
level from green to yellow on October 1st, 2021 (DPC, 2021; Fig. 10a,b).
The time series presented in Fig. 10a reveals that a sudden and

marked increase of the radiative power was observed since August 2021,
in agreement with in-situ observations (Inguaggiato et al., 2022a, Di
Traglia et al., 2023). A peak of ~15 MW was recorded on October 4th,
2021, this being temporally consistent with the maximum Volcanic
Radiative Power (VRP) value reported by Coppola et al. (2022) and
Campus et al. (2024). Thereafter, a lowering of the radiative power was
observed, in agreement with a reduction in seismicity, deformation, and
ground exhaling CO2 fluxes. The thermal activity reinvigorated in April
2022, concurrently with an anomalous degassing from underwater hy-
drothermal vents in the Baia di Levante (INGV, 2022a; Inguaggiato
et al., 2022b; Gurrieri et al., 2023). By June 2022, measurements
matched the previous peak of ~15MW, consistently with a new increase
in VRP values and SO2 emissions (Coppola et al., 2022; INGV, 2022b).
Thereafter, a steady decline was observed, with radiative power values
returning below 8 MW by the end of August 2022.

6.1.2. Agung
After 53 years of quiescence, Mt. Agung underwent major unrest in

late September-early October 2017, with variations in the equilibrium of
the system reported since May 2017 (Syahbana et al., 2019). Despite the
half-century-long quiescence, fumarolic and solfataric activity within
the inner crater was reported since late 1980s by GVP (1989), while
thermal evidence was distinguishable at least since ASTER acquisitions

Fig. 9. a,c) Observed (OBS) scenes at Mount Agung and La Palma, respectively (for acquisition dates see Fig. 5). c,d) Theoretical background BT (BTbg) for Agung
and La Palma, respectively, obtained by first removing the Confirmed Alerts and then filling the gaps using a bi-cubic interpolation.

Table 2
Summary of TIRVolcH performance. *Raw FPA as obtained from TIRVolcH
processing. **Residual FPA, namely the FPA remaining after applying geomet-
rical and spatial filtering. In particular, we discarded all alerted scenes acquired
with a zenith angle >50◦ (see Section 7.5 for rationale). Furthermore, in
agreement with the volcano-specific type of activity that occurred within the
investigated period, we discarded scenes with thermal anomalies originating
more than 0.75, 2, and 7 km away from the central coordinates of Vulcano,
Agung, and La Palma, respectively.

Vulcano Agung La Palma Total

NScenes 8656 6849 7413 22,918
NAlerts (%) 2179 (25.17) 2566 (37.47) 1173 (15.82) 5918 (25.82)
NManual (%) 2608 (30.13) 2863 (41.80) 1107 (14.93) 6578 (28.70)
TVA (%) 2026 (92.98) 2436 (94.93) 1054 (89.86) 5516 (93.21)
FoA – 2 7 9
NFNA 582 427 68 1077
FNR 22.32 % 14.91 % 6.14 % 16.37 %

Raw FPA*

NFPA 153 130 133 416
FPR 1.77 % 1.90 % 1.79 % 1.82 %

Residual FPA (after filtering)**

NFPA 45 34 29 108
FPR 0.52 % 0.50 % 0.39 % 0.47 %
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begun (Way et al., 2022; see ASTER Image Database for Volcanoes (Urai
and Pieri, 2011a, 2011b, Way et al., 2022); https://gbank.gsj.jp/v
sidb/image/Agung/volinfo.html) and throughout the first two decades
of 2000s (i.e., Triyono and Khomarudin, 2020). Although remotely
sensed data revealed the occurrence of thermally distinct volcanogenic
activity, at the time of writing, no previous studies have attempted to
quantify the thermal energy associated with these phenomena, likely
discouraged by a lack of monitoring programs and ground instruments
prior to the 2017 unrest (Syahbana et al., 2019).
To mitigate the lack of data, cross-validation with ASTER-retrieved

radiative power was carried out (see Supplementary Material S5) to
validate both trends and magnitudes of the time series presented in
Fig. 11a. The average ASTER-retrieved radiative power for the whole
period was 12.14 MW, closely matching the 11.78 MW computed from
VIIRS measurements.
To statistically corroborate the visually remarkable association be-

tween ASTER and VIIRS time series (Fig. 11a,b), we identified 49 cloud-
free scenes acquired concurrently from both sensors with a gap
comprised between ±3 h. Statistical evaluation confirmed the strength
and robustness of the association, returning R2 = 0.92, m = 0.75, and ρ
= 0.94 (p-value <0.001; Fig. 11c). The best-fit coefficient between the
two variables suggests that a minor deviation between VIIRS- and
ASTER-retrieved radiative power measurements exist. Nonetheless, the
above analyses assume that no thermal variations occurred between
acquisitions and that geometrical views and meteorological conditions
remained unchanged between pairs of data. This, however, is seldom the
case, especially in mountainous environments where acquisition

geometries play a major role in the correct quantification of thermal
energy (Coppola et al., 2010), and where drastic variations in meteo-
rological conditions can take place within minutes (Aveni and Blackett,
2022; Aveni et al., 2023). Nonetheless, assuming that these discrep-
ancies were not related to geometrical artefacts and/or meteorological
factors, this deviation remains consistent with that observed at Vulcano
between the results of this work and those presented by Pailot-Bonnétat
et al. (2023), suggesting that minor discrepancies between measure-
ments are likely related to the coarser resolution of VIIRS pixels.
Further evaluation of the time series revealed an extraordinary

parallel with the unrest timeline (Fig. 11a,b) which has been subdivided
into coloured phases, according to the alert level raised by the Indone-
sian Center for Volcanology and Geological Hazard Mitigation
(CVGHM). Accordingly, the average radiative power of the baseline
thermal activity (i.e., the green alert period in Fig. 11a) was 4.21 MW
and 3.94 MW, from ASTER and VIIRS, respectively (that is slightly
higher than the baseline of Vulcano; see Section 6.1.1).
The pre-unrest maximum value ⪅ 10 MW was exceeded three days

prior to the alert level being raised from green (Normal; Level I) to
yellow (Waspada; Level II) in response to a sudden increase in ground
deformation and seismic tremor amplitude that occurred on September
14th (Fig. 11a; Syahbana et al., 2019). Corroborating the veracity of
these measurements, the same pattern was observed on the manually
picked time series and, on September 12th, further validated by ASTER
measurements returning a quasi-identical value, the latter exceeding for
the first time the 10 MW threshold. Indeed, the empirically derived
threshold was only reached once prior to the escalation of the unrest.

Fig. 10. a) Grey bars show the VIIRS-derived radiative power at Vulcano. The black line represents the 30-point moving average. Red triangles depict ground-truth
observations reported by Mannini et al. (2019). Coloured bars at the top show the alert level timeline according to the DPC. The yellow vertical bar depicts the
variation of the alert level (October 1st, 2021). The red box depicts the pre-unrest and (part of the) unrest period, as highlighted in b), where the horizontal black line
shows the 8 MW transition discussed by Pailot-Bonnétat et al. (2023). c) Relationship between ground-truth data collected by Mannini et al. (2019), and the closest
value obtained by TIRVolcH-processed imagery searched on a 7-day window centred on Mannini and co-authors survey dates (note, the 7-day search window was
necessary to compensate for lack of information due to cloud coverage). To reduce seasonal noise, acquisitions <1 MW within the red box were discarded. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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This was in mid-May 2017, in concomitance with the occurrence of the
first seismic swarm associated with the volcanic unrest (Syahbana et al.,
2019; Zulfakriza et al., 2020; Ardianto et al., 2021).
On September 18th and 22nd the alert level was raised to orange

(Siaga; Level III) and red (Awas; Level IV), respectively, in response to an
increase in seismicity and ground deformation (Syahbana et al., 2019).
On October 29th a reduction in the geophysical parameter led the au-
thorities to lower the alert level to orange again (Syahbana et al., 2019).
Thermal anomalies recorded in this period oscillated between ~10 and
~ 13 MW (Fig. 11b). A series of phreatomagmatic explosions began on
November 21st, leading, on the 25th of the same month, to the first
magmatic event, as reported by Syahbana et al. (2019). The eruption
was characterised by intense explosive activity coupled with the fast
extrusion of lava inside the crater, prompting the authorities to raise the
alert to the red level again (Syahbana et al., 2019). Although the
detection frequency was largely affected by extreme cloud fraction, the
latter exceeding 90 % during the Indonesian wet season (Novem-
ber–May; Hidayat et al., 2012, Tampubolon et al., 2020), the so far
highest thermal anomalies reached 15–20 MW and persisted on this
level until February 10th, 2018 when the alert level was lowered to
orange due to a decrease of all the eruptive parameters (Syahbana et al.,
2019).
Thereafter, the disbandment of cloud coverage permitted a better

observation of the eruptive dynamics, revealing a gradual re-
intensification of the thermal activity (Fig. 11b). The increasing ther-
mal trend climaxed on June 28th, 2018, where a maximum value of

~280 MW was recorded, the latter associated with a new surge of lava
into the summit crater, major explosive activity, and substantial SO2
emissions (GVP, 2018; Syahbana et al., 2019; Andaru et al., 2021).
Thereafter, a steady decline in thermal activity continued until January
2019, when a sudden shift in the thermal regime announced the
beginning of a new phase, the latter characterised by the alternation of
dome-growing episodes and eruptive events (Andaru et al., 2021). This
phase led toward a second thermal peak, reaching its maxima on May
12th, 2019, punctuated by a radiative power of ~200 MW, recorded in
concomitance with a major explosion that produced a significant fallout
of incandescent ejecta along the volcano’s slopes (GVP, 2019). The
thermal signal gradually decreased and returned within a range of
10–20 MW in July 2020, in agreement with the lowering of the alert
level from orange to yellow. Return to a green alert level was eventually
declared in September 2021, consistently with further lowering of the
radiative power output. Since 2022, the radiative power remained
relatively stable, oscillating around the ~10 MW threshold with spo-
radic detections up to ~14 MW, still slightly higher than the values
recorded prior to the unrest.

6.1.3. La Palma
At 14:10 UTC, on September 19th, 2021, a fissure opened along the

Cumbre Vieja ridge, in La Palma, beginning a new eruption (Castro and
Feisel, 2022). The eruption lasted 85 days, producing 177.6 ± 5.8 Mm3

of lava, the latter effused with a Mean Output Rate (MOR) of ~24.1 m3/s
(Civico et al., 2022; Bonadonna et al., 2022; Plank et al., 2023).

Fig. 11. a) Grey bars show the VIIRS-derived radiative power of Agung. The black line represents the 30-point moving average. Red triangles depict ASTER-derived
radiative power values. Coloured bars at the top show the alert level timeline according to the CVGHM. The yellow vertical bar depicts the first variation of the alert
level (September 14th, 2017). The blue dotted line depicts the pre-unrest maxima value of 10 MW. The yellow star marks the first phreatomagmatic explosion
(November 21st, 2017). The red box depicts the pre-unrest into the unrest period, as highlighted in (b). c) Relationship between ASTER- and TIRVolcH-derived
radiative power. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Subaerial lava flows covered an area of ~11.8 km2 and reached a
maximum and average thickness of 65 m and 15.2m, respectively
(Civico et al., 2022; Bonadonna et al., 2022; Plank et al., 2023; JRC,
2021; Amonte et al., 2022). The thermal signal associated with the
initial stage of the eruption (Fig. 12) shows a gradual increase, from 253
MW on September 20th to a first peak of ~2.7 GW on September 29th,
consistently with the trend described by Plank et al. (2023). After the
initial peak of September 29th, the thermal signal gradually decreased to
reach ~1 GW on October 6th. On October 7th, a sudden shift in the
thermal regime was evidenced by ΦRad values of ~2.2 GW, these
remaining relatively stable until two peaks of ~3 GW were recorded
between the 17th and 21st of October. These peaks coincide with the
opening of a new vent located approximately 300 m SE from the base of
Tajogaite cone (GVP, 2022) and, possibly, with the highest trade-off
between maximum areal expansion of the still-active lava flow and
the still relatively high temperature of the emplaced chilling lava field.
Since October 21st, a new decline in the thermal activity was observed,
this reaching a new minima at the beginning of November, with radia-
tive power values approaching ~1.1 GW. Thereafter, gradual intensifi-
cation of the thermal activity led to a new peak of ~2.4 GW, the latter
recorded between the 27th and 28th of November, in concomitance with
the opening of a new vent to the NE of Tajogaite edifice and with the
widening of the furthest extending right branch of the lava field (GVP,
2022). Thereafter, the activity gradually decreased, until December
13th, 2021, when an evident drop in the thermal signal effectively
marked the end of the eruption, in agreement with the observations
made by the ground-based personnel (Benito et al., 2023).
It is worth it to note that values recorded throughout the eruption are

one order of magnitude greater than that registered at Mount Agung,
and two orders of magnitude greater than the values recorded during the
unrest at Vulcano. Nonetheless, it must be acknowledged that the
thermal energy measured during the mainly effusive stages of the
eruption is likely underestimated. This intrinsically relates to the
application of the Stefan-Boltzmann approach (Eq. 8) on the assumption
that a mainly homogenous temperature distribution exists, this being
seldom the case over an active lava flow (see Wright and Flynn, 2003,
Wright et al., 2010, and Harris, 2013 for details).
Fig. 12 also reveals that, unlike other systems, the high sensitivity of

TIRVolcH enables the retrieval of the long-term (>2 years) cooling curve
of the emplaced lava. Although beyond the purpose of this work, cooling

curves have been used to comprehensively estimate emplaced volumes
(Ganci et al., 2012b; Torrisi et al., 2022), understand post-emplacement
dynamics (Wittmann et al., 2017; Beccaro et al., 2023), and numerically
model lava cooling behaviours (Patrick et al., 2004; Patrick et al., 2005).
In this regard, we envisage that future studies might explore the valu-
ableness of this information for volcanological purposes.
Similarly to the quantification of radiated energy, accurate geo-

spatial information on the extent and advancement rate of lava flows
remains key information for stakeholders and competent bodies to
timely evaluate eruptive phenomena and revise expected scenarios;
these being essential requirements for hazard management and risk
reduction applications (Tsang and Lindsay, 2020, Hyman et al., 2022,
Martín-Raya et al., 2023). The so far unprecedented trade-off between
spatial and temporal resolution offered by the VIIRS instruments enables
TIRVolcH to timely provide accurate geospatial information on the
evolution of the eruptive activity. Fig. 13 corroborates this claim,
revealing the outstanding agreement between the cumulative number of
alerted pixels and the superimposed lava field outline.
The remarkable agreement between the extent of the lava field and

the one retrieved by TIRVolcH-processed imagery suggests that evalu-
ation of VIIRS-derived geospatial information during the eruptive crisis
can provide crucial information to assess the evolution of the eruptive
phenomena.
In the first stages of a volcanic eruption, the likelihood of inundation

can be provided by calculating the speed at which the front(s) move
downslope (Marquez et al., 2022). For instance, at La Palma, the initial
Average Flow Front Velocity (AFFV) was estimated to be ~700 m/h,
prompting the Spanish authorities to issue an evacuation order to
~5500 people (GVP, 2021). The AFFV, according to field measures, was
revised to ~400 m/h by 17:38 UTC of the same day, with the further
reaching front extending for ~1.4 km from the Tajogaite cone (Fig. 14a,
i,j). The advancement rate reduced to ~200 m/h by the end of the day
(GVP, 2021). Shortly after, at 02:54 UTC on September 20th, 12 h and
44 min after the magma reached the surface, VIIRS acquired the first
scene over the Canary Island (Fig. 14a). The TIRVolcH-processed image
showed that lava flows travelled westward for 2.37 (± 0.375) km,
resulting in an average flow rate of 202 (± 32) m/h, perfectly consistent
with ground observations (~200 m/h; GVP, 2021) and with a steady
advancement rate since last ground measures were available (Fig. 14j).
Field observations made at 19:13 UTC on September 20th (Fig. 14i)

Fig. 12. a) VIIRS-derived radiative power recorded during the eruption of La Palma. The vertical dashed arrow depicts the end of the eruptive period. The red box
highlights the period shown in b), where the grey shaded area shows the eruptive period. The red line within the eruptive period shows the thermal trends resulting
from the visual inspection and selection of non-cloud-contaminated scenes. The red-to-green gradient-filled arrow represents the pluriannual cooling curve. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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showed that the emplacement velocity further dropped to ~60 m/h. At
that stage, lava flows reached ~3.22 km from the vent (Fig. 14j),
covered an area of ~1 km2 (Fig. 14i), and destroyed 166 buildings (GVP,
2021). At 02:30 UTC on September 21st, a new VIIRS acquisition sug-
gested that the lava flow had reached 3.46 (± 0.375) km, advancing at
an average velocity of 46 (± 16) m/h (Fig. 14b). Between September
21st and the early hours of the 26th, flows advancement was much
slower. The further extending fronts advanced at a rate ⪅ 5 m/h (GVP,
2021), moving from ~3.5 km to ~3.8 km from the vent (Fig. 14i). A
consistent trend was inferred by VIIRS imagery, with lava flows confined
at ~3.5 (± 0.375) km from the vent (Fig. 14c,d,e). In the evening of
September 26th, a transient shift in the eruptive regime let the AFFV
reach ~100 m/h, this reducing to a relatively steady ~30 m/h shortly
after. On September 27th at 03:12 UTC, a new VIIRS overpass (Fig. 14f)
provided new estimates, with the further extending lava flow reaching
4.19 (± 0.375) km from the vent, propagating with an AFFV of 31 (± 16)
m/h (Fig. 14j), perfectly in agreement with the latest ground-based
observations. After ~9 days from the beginning of the eruption, the
lava flows reached the coast, entering the sea on September 28th at
22:02 UTC (Fig. 14j), as clearly depicted from VIIRS imagery acquired in
the early hours of September 29th (Fig. 14 g).
The excellent agreement between ground- and VIIRS-derived dis-

tances and velocities throughout the first two weeks of the eruption is
shown in Fig. 14j, statistically corroborated by an R2 = 0.94 and a ρ =

0.94 (Fig. 14k).
The remarkable consistency between ground truth and remotely

sensed information confirms that the algorithm may effectively provide
the location of the front(s) and its velocity with an accuracy of ±1 pixel
(375 m), to account for geolocation offsets and PSF-induced blurring
effects. This information, especially at remote locations, might be
essential to arrange evacuation plans, coordinate rescue operations, and
timely locate affected areas and/or infrastructures (Coppola et al.,
2016b).

7. Limits of TIRVolcH algorithm

As with all satellite-based systems, TIRVolcH faces a number of issues

that must be considered when interpreting the data. These are outlined
below, together with steps that are planned to be implemented in the
near future to enhance the quality and accuracy of the system.

7.1. False alerts

TIRVolcH algorithm has an intrinsic False Positive Rate (FPR) of
~1.8 %, largely within the range of other volcano monitoring systems.
As detailed in Supplementary Material S3, ~95 % of these false alerts
result either from severe temperature contrasts at cloud edges or mis-
matches between reference and observed scenes acquired at high zenith
angles, due to geometrical distortions. The remaining ~5 % are gener-
ally related to anomalous surface temperature conditions (i.e., thermal
inversions), wildfires, and/or anthropogenic factors (i.e., controlled
fires, variations in land use, etc.). Although an initial screening attempts
to discard clearly cloud-contaminated pixels (see Section 4.3.1) and,
despite most false alerts can be identified and removed via spatial and
geometrical filtering as demonstrated in Section 5, it must be noted that
residual false alerts may generate spikes in the time series which, in turn,
might erroneously be interpreted as occurrence of high-intensity ther-
mal activity. To minimise the number of false alerts, current work is
being conducted to develop a single-band cloud detection algorithm
which can be fully integrated within the TIRVolcH workflow, without
the need for adding external data and/or spectral bands.

7.2. Clouds and volcanic plumes

Clouds and volcanic plumes remain a major limitation in thermal
remote sensing of volcanic activity and represent a major error source.
During wet seasons, for instance, persistent cloud coverage may prevent
observations of the eruptive phenomena for months. Similarly, clouds
and volcanic plumes may partially or completely obscure the eruptive
scene, leading to underestimation or miss detection of the thermal
anomaly. Even if an alert is detected, thin cirrus may attenuate the
thermal signal, resulting in an underestimation of the quantified radia-
tive power. The above also applies to subpixel cloud contamination,
affecting the overall pixel-integrated temperature, and in turn the

Fig. 13. a) Total extent of the lava flow as provided by Copernicus Emergency Management Service (2024). b) Outline of the lava flow extent, overlaid the cu-
mulative number of alerts obtained from TIRVolcH-processed VIIRS imagery. The yellow star marks the location of the Tajogaite cone. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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radiative power. Moreover, cloud-contaminated pixels adjacent to
alerted ones would be included in the interpolation of the theoretical
background temperature, causing the background temperature to be
lower than expected, thus affecting the estimation of the thermal energy.
Hitherto, no robust methods exist capable of quantifying the amount of
thermal radiation attenuated by clouds and/or volcanic plumes. As such,
little can be done to assess the effect of clouds/plumes on remotely

retrieved thermal information, leaving visual inspection as the only
solution to assess the quality of the scene (Coppola et al., 2016b).

7.3. Satellite viewing geometry

Although drastic improvements have been made in the last decade,
satellite viewing geometry still plays a major role in the quality of the

Fig. 14. a-h) Selection of mostly cloud-free VIIRS scenes acquired within the first 9 days of the eruption*, overlaid i) flow extent at different time intervals
(digitalised from Gobierno de Canarias, 2023). The yellow star marks the location of the Tajogaite cone. j) Flow front distance (in red) and advancement velocity (in
blue) as obtained from TIRVolcH. The black line (with coloured dots referring to inset i) shows the flow front distance calculated from (i) by taking the furthest vertex
from the Tajogaite cone. The black dotted line represents the coastline. The cyan star marks when the lava first entered the sea. k) Scatterplot showing the consistency
between hourly-interpolated ground truth and TIRVolcH retrieved flow distances. *Acquired on (all times are in UTC): a) 20/9/21 at 2:54; b) 21/9/21 at 2:30; c) 25/
9/21 at 3:00; d) 25/9/21 at 3:48; e) 26/9/21 at 3:30; f) 27/9/21 at 3:12; g) 29/9/21 at 2:30; h) 30/9/21 at 3:06. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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acquisitions and, in turn, in the accurate quantification of the radiated
energy (Coppola et al., 2010; Aveni et al., 2023). The aggregation
function implemented on VIIRS sensors (Cao et al., 2013a) allows
improved accuracy even for scenes acquired with a zenith angle up to
~55◦ (Campus et al., 2022). Yet, scenes acquired with high zenith angles
may prevent hotspot detection, depending on the incidence angle of the
sensor with respect to that of the morphological features of the sensed
region. For instance, thermal anomalies located inside steep crater rims,
are likely masked at high zenith angles (Dehn et al., 2002; Coppola et al.,
2015; Coppola et al., 2016b; Henderson et al., 2019). Besides, high scan
angles produce distortions of the projected thermal anomaly, which may
be spread over several adjacent pixels (Nishihama et al., 1997). The
above is further exacerbated by a reduced pixel(s) geolocation accuracy,
which compromises the correct identification of the eruptive vent(s)
and/or the location of the lava front(s) (Coppola et al., 2012). That said,
is common practice to discard scenes acquired with a zenith angle >50◦
(van Manen et al., 2006; Zakšek et al., 2015a, b; Marchese et al., 2019;
Coppola et al., 2009), yet authors suggest that, especially in steep
mountainous regions, scenes >30◦ should be rejected (i.e., Harris et al.,
1997; Worden et al., 2014; Plank et al., 2019; Plank et al., 2021; Plank
et al., 2023).

7.4. Atmospheric and emissivity corrections

At present, TIRVolcH does not apply atmospheric or emissivity cor-
rections to the processed scenes. This choice is led by the will to operate
a self-contained single-channel algorithm, capable of functioning
without the addition of external data or bands. This implies that both in-
scene atmospheric parameters and emissivity adjustments are impos-
sible to estimate boasting a single TIR channel. Nonetheless, we might
have followed the approach of previous authors who have assumed fixed
emissivity values in the range of 0.90–0.98 (i.e., Lombardo et al., 2012;
Blackett, 2013; Morgan et al., 2013; Blackett, 2014; Kaneko et al., 2019;
Nádudvari et al., 2020), these being typical for basalts (Harris, 2013).
Yet, in factual conditions, emissivity ranges from ~0.6 for molten rocks
to ~0.995 for cooled basalt (Flynn et al., 1993; Ball and Pinkerton,
2006; Mia et al., 2014; Mia et al., 2017; Thompson and Ramsey, 2021;
Ramsey et al., 2019). As such, accurate estimation of emissivity value to
be applied to a pixel containing a mix of thermal components ranging
from molten and cooling rocks to vegetated areas and water bodies re-
mains unrealistic. As such, for the sake of simplicity, we followed the
rationale of Pieri and Abrams (2005), assuming emissivity to be unity.
Likewise, following the monoband rationale and, as previously adopted
for other volcano hotspot detection systems (i.e., Kervyn et al., 2008),
atmospheric corrections were not applied. Nonetheless, future studies
will be conducted to assess the benefits introduced by applying standard
atmospheric transmission models, which may be a good trade-off be-
tween data accuracy and minimal resources. Yet, cross-validation of our
results against ground truth data confirms the overall accuracy of the
presented radiative power measurements.

7.5. Reference scenes: Accuracy, availability, and limitations

Reference scenes are generated by applying a priori filtering and a
number of statistical steps in the attempt to discard scenes contaminated
by clouds and/or thermal anomalies (i.e., lava flows; see Section 4.2.2).
At most locations, these steps are sufficient to generate uncontaminated
reference images. However, for regions experiencing quasi-persistent
cloud coverage, the quality of the reference scenes is considerably
compromised. This is a combination of two factors: i) the reduced
number of cloud-free scenes and ii) the inclusion of cloud-contaminated
pixels in the generation of the reference images. Unless cloud detection
is implemented a priori, little can be done to enhance the quality of these
reference scenes, other than selecting scenes one-by-one and discarding
contaminated pixels, one-by-one. Considering that the MIROVA VIIRS
archive contains ~10,000 nighttime VIIRS acquisitions (2012–2023),

for a total of 1.7956 × 108 pixels, per volcano, the above consideration
remains unrealistic. Besides, for regions where cloud fraction exceeds
90% (i.e., Indonesia, see Section 6.1.2), even amanual inspection would
return a small number of cloud-free imagery. However, as the archive
continues to grow daily, and a higher number of scenes become avail-
able, the likelihood of acquiring uncontaminated scenes increases.
Furthermore, on November 10th, 2022, the VIIRS-equipped NOAA’s
Joint Polar Satellite System-2 (JPSS-2) was launched (Román et al.,
2024), further increasing the number of available scenes (although not
available for download at the time of writing). As such, future revisions
will attempt to improve the quality of the reference scenes for those
regions mostly affected by cloud coverage
Is it worth it to mention that, at polar latitudes, Midnight Sun con-

ditions cause i) fewer nighttime acquisitions in May and July (in the
Northern hemisphere) and in November and January (in the Southern
hemisphere), thus affecting the number of available scenes for these
months, and ii) the total absence of nighttime scenes for the months
between these intervals, namely June and December, in the Northern
and Southern hemisphere, respectively, due to the presence of contin-
uous daylight. Finally, discrepancies between observed and reference
scenes may arise due to due to climate change effects.

8. Summary and future perspectives

In this work, we introduced a single-band TIR-based algorithm
capable of detecting thermal anomalies in a variety of volcanic settings,
from fumarolic fields and hydrothermal systems to high-temperature
effusive events. By applying a set of temporal and contextual analyses,
we were able to identify thermal anomalies for pixel-integrated tem-
peratures as low as 0.5 K above the surrounding hot-spot-free back-
ground and as far as 25 km from the volcano’s summit. In spite of its
high sensitivity, TIRVolcH retains a false positive rate of just ~1.8 %.We
also showed that the rate of false alerts can be further reduced to 0.47 %
by applying geometrical and spatial filtering. Applying our algorithm to
three case studies (Vulcano, Agung, and La Palma) – these diverging for
i) type of activity (from hydrothermal to effusive), ii) thermal magnitude
(~0.5MW to~3GW), iii) topographic context (small islands to (mainly)
land), and iv) climatological setting (from tropical and sub-tropical to
Mediterranean) – we demonstrated the adaptability of TIRVolcH to a
broad range of volcanic and geographical settings, and confirmed its
capability to detect low-to-high thermal volcanic activity. The algorithm
can be applied for detecting volcanic resurgence, tracking volcanic un-
rest, and monitoring the evolution of effusive events, thus also repre-
senting a useful tool for hazard management and risk reduction
applications.
Assessing the long-term thermal signature at Vulcano Island, we

identified an anomalous increase of the radiative power since August
2021, in large agreement with ground-based observations. These vari-
ations were detected weeks prior to the DPC raised the alert level from
green to yellow. Radiant power trends were consistent with the unrest
dynamics throughout the whole investigated period, highlighting the
usefulness of our approach for tracking the evolution of volcanic unrests
and measuring the heat sourced by hydrothermal systems. Similarly, by
investigating the long-term thermal behaviour at Mt. Agung, we detec-
ted, in September 2017, an escalation in thermal activity three days
prior to the Indonesian authorities raising the alert level from green to
yellow. We also showed how the satellite-derived radiative power
output was in remarkable agreement with the unrest and eruption
timeline, and how variations in the thermal regime were consistent with
both raising and lowering of the alert level throughout the whole
investigated period. Furthermore, investigating the 2021 eruption at La
Palma Island, we demonstrated the accuracy of TIRVolcH in locating the
position of the further extending lava front(s), providing detailed mea-
surements of the average flow front advancement velocity. Together,
this information corroborates the applicability of the algorithm during
major eruptive crises, providing, in a timely and accurate manner,
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supporting information to competent bodies and stakeholders to
respond to eruptive events.
Overall, the long-term cross-validation of VIIRS-derived radiative

power, both in terms of trends and magnitude, as well as on geospatial
accuracy, supports the veracity of our data. As such, we envisage that
TIRVolcH-processed thermal information acquired at an unprecedented
high temporal resolution will prove instrumental for detecting early
signs of volcanic activity and for monitoring the evolution of thermal
emissions, from unrest to eruption, at volcanoes worldwide.
At the time of writing, we continue to grow the number of monitored

volcanoes. Current work is being conducted to assess the capabilities of
TIRVolcH for quantifying thermal emissions at large and active crater
lakes such as Poás (Costa Rica), Ruapehu (New Zealand), Ijen
(Indonesia) (i.e., Aveni et al., 2024), and at large hydrothermal systems
such as Campi Flegrei (Italy) and Yellowstone (USA).
Further studies are also being carried out to better interpret TIR

thermal information, compiling statistically robust multidecadal ther-
mal datasets, and assess this information against MIR-derived radiative
power databases (i.e., Wright, 2016; Coppola et al., 2023), with the aim
of providing novel insights and new perspectives into volcano moni-
toring. Finally, we envisage that the algorithm may be adapted, applied,
and extended to present and forthcoming missions featuring high-
resolution TIR instruments (see Supplementary Material S6 for a
comprehensive list), such as the Global Change Observation Mission -
Climate “SHIKISAI” (GCOM-C; Tanaka et al., 2010, Tanaka et al., 2014),
the Surface Biology and Geology (SBG; Shreevastava et al., 2023,
Thompson et al., 2023), the Thermal infraRed Imaging Satellite for
High-resolution Natural resource Assessment (TRISHNA; Lagouarde
et al., 2018, Buffet et al., 2021, Roujean et al., 2021, Vidal et al., 2022),
and the VULCAIN mission (Buongiorno et al., 2023).
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