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Dissipative localized states and breathers in phase-mismatched singly resonant optical parametric
oscillators: Bifurcation structure and stability
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We study the emergence of dissipative localized states in phase mismatched singly resonant optical parametric
oscillators. These states arise in two different bistable configurations due to the locking of front waves connecting
the two coexisting states. In one of these configurations, the bistability is mediated by the coexistence of two
uniform states. Here the localized states are organized in a collapsed snaking bifurcation structure. Moreover,
these states undergo oscillatory instabilities which lead to a breathing behavior. When the bistability is related
to the coexistence of a uniform state and a spatially periodic pattern, localized states are organized in a
bifurcation structure similar to the standard homoclinic snaking. Performing an exhaustive bifurcation analysis,
we characterize in detail the previous structures, their linear stability, and the modification of their dynamics as
a function of the control parameters of the system.
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I. INTRODUCTION

Spatial localization is a fascinating emergent phenomenon
appearing in a large variety of extended nonlinear natural
systems out of the thermodynamic equilibrium, also known
as dissipative systems [1,2]. Localized coherent structures
(LSs) may appear spontaneously due to a continuous balance
between spatial coupling and nonlinearity on one hand, and
a continuous exchange of either energy or matter with the
surrounding medium on the other hand [3]. Dissipative LSs
have been found in the context of solid mechanics, population
dynamics, biology and optics, to cite only a few [1,2]. The
formation of LSs is generally related with the coexistence
of different stable states, domains or phases within the same
interval of the control parameters of the system, in what is
called a bistable regime. In this context, front waves or domain
walls connecting such states can arise [4], interact, and lock
[4,5], leading to a plethora of LSs of different morphology
and extension [4–10].

In optics, dissipative LSs were demonstrated experimen-
tally in cavities with a saturable absorber (1997) [11,12] and
in semiconductor microvacvities (2002) [13]. In this context,
the structures emerge in the transverse dimension and were
called spatial cavity solitons.

Later, in 2010, one-dimensional LSs were also shown ex-
perimentally in fiber cavities [14]. In this case, LSs form
along the propagation direction and are referred to as tem-
poral cavity solitons. Since then, LSs have been found
in other type of Kerr dispersive cavities and in different
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operational regimes [15,16]. In dispersive cavities, LSs have
been proposed for different technological applications includ-
ing all-optical buffering [14] and frequency comb generation
[15,17].

Another example of optical systems potentially supporting
LSs are pure quadratic nonlinear cavities. During the 1990s
and early 2000s a lot effort was dedicated to the theoreti-
cal characterization of LSs in diffractive quadratic cavities
[18–26]. In these systems, LSs were reported experimentally
in 1998 [27]. Recently, pure quadratic dispersive cavities at-
tracted renewed attention due to their multiple advantages
for frequency combs generation [28–33]. Since then, differ-
ent theoretical studies have tackled the investigation of light
localization in either cavity enhanced second-harmonic gen-
eration [34–36] or in degenerate optical parametric oscillators
(DOPOs) [37–41].

Temporal LSs have recently attracted attention in the con-
text of competing nonlinearities. Specifically, Kerr solitons
have been shown to form in quadratic optical parametric
oscillations [42–44]. These (sech shape) LSs correspond to
parametrically driven Kerr solitons and have been proposed
as key elements for random number generation and Ising
machines.

Parametrically driven dissipative LSs do not only arise in
optics, but also in many other situations such as in a paramet-
rically forced fluid [45–47], and magnetic systems [48,49].

Here, we investigate the formation of parametrically driven
LSs in phase mismatched singly resonant OPOs. The effective
Kerr nonlinearity, inherent to mismatched quadratic processes
[50], supports the formation of LSs which are absent in the
phase-matched configuration. The presence of sech pulses
in phase-mismatched OPOs have already been investigated,
both in the singly resonant [40,41] and in the doubly resonant
[19,26] configurations. In this paper, we focus on the former
and investigate the range of existence and stability of these
solitons as well as uncover the presence of novel LSs.
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FIG. 1. (a) shows an schematic example of a singly resonant
DOPO system. The cavity contains a nonlinear quadratic (χ (2) )
medium and is driven by a continuous-wave field Bin at frequency
2ω0. Only the generated field A at frequency ω0 resonates, while the
pump field B leaves the cavity at each round trip. (b) and (c) show
jR(k) and jI (k) in the absence of walk-off (d = 0) and � = −4, for
η2 = 0.01, and η2 = 1, respectively.

The paper is organized as follows. In Sec. II, we introduce
the mean-field model describing dispersive singly resonant
DOPOs. Later, in Sec. III, the uniform or homogeneous steady
state of the system is presented and its spatiotemporal linear
stability is analyzed. Doing so, we can determine the existence
of two different scenarios, namely the uniform-bistable and
Turing-bistable regimes. Section IV is devoted to the com-
putation of a weakly nonlinear localized solution close to a
relevant bifurcation of the trivial homogeneous state. This
solution will be then used as initial guess in a numerical
continuation procedure to compute the bifurcation structure
of LSs in the highly nonlinear regime (Secs. V and VII). In
Sec. V, such a structure is computed in a uniform-bistable
configuration, and Sec. VI is devoted to the study of the oscil-
latory dynamics undergone by the LSs in this regime. Later, in
Sec. VII, we focus on the Turing-bistable scenario. After that,
in Sec. VIII, we study how spatial symmetry breaking can
impact the dynamics and bifurcation structure of such states.
Finally, in Sec. IX, we conclude with the general discussion
and the conclusions.

II. THE MEAN-FIELD MODEL

In singly resonant DOPOs a continuous-wave field Bin at
frequency 2ω0 (the pump field) is injected in the cavity (see
Fig. 1). Within the cavity, this field interacts nonlinearly with
the quadratic (χ (2)) material and triggers the generation of a
signal field at frequency ω0, due to a parametric frequency
down conversion process. In contrast to doubly resonant cav-
ities where both fields resonate, here the pump is extracted at
every round trip, and only the signal field resonates.

In the mean-field approximation, the Ikeda map describing
the cavity can be reduced to the following dimensionless
partial differential equation with nonlocal nonlinearity [33]

∂t A = −(1 + i�1)A − iη1∂
2
x A − Ā(A2 ⊗ J) + SĀ, (1)

where t is the slow time, x the fast time, A is the slowly
varying envelope of the signal electric field circulating in the
cavity and Ā its complex conjugate, �1 is the normalized
phase detuning from the closest cavity resonance, η1 repre-
sents the normalized group velocity dispersion of A at ω0, and
S is the normalized amplitude of the driving field. The term
A2 ⊗ J represents the nonlocal nonlinearity defined through
the convolution (⊗) between A2 and the nonlocal kernel

J(x) = 1

2π

∫ ∞

−∞
j(k)e−ikxdx. (2)

The Fourier transform of J, F[J](k) ≡ j(k) = jR(k) + ijI (k) is
defined through the expressions

jR(k) = sinc2(Z (k)/2)

2a(�)
, (3a)

jI (k) = sinc(Z (k)) − 1

a(�)Z (k)
, (3b)

where

Z (k) ≡ � − dk − η2k2, a(�) ≡ 1
2 sinc2(�/2), (4)

and �, d , and η2 are the normalized phase mismatch, group
velocity mismatch or walk-off, and group velocity dispersion
of the pump field. Here, jR(k) mirror the dispersive two-photon
absorption, while the contribution related with jI (k) produces
a phase-shift, similar to the Kerr effect [40]. More details
about the model and the normalization considered here are
presented in Appendix A.

In what follows, we first study the features and dynamics of
LSs in the absence of walk-off (d = 0), and later, in Sec. VIII,
we elucidate the implications that a weak walk-off may have
on our results.

For d = 0, the nonlocal response J depends only on � and
η2, and two different regimes can be identified depending on
the sign of �η2 as reported in Ref. [40]. In this work, we focus
on the regime �η2 < 0, where jR(k) and jI (k) vary periodically
with �, as shown in Ref. [40]. Therefore we fix � = −4 ≈
−1.27π and η2 > 0. Figures 1(b) and 1(c) illustrate the shape
of jR(k) and jI (k) for different values of η2.

In most of this work, we deal with time-independent states,
in particular LSs, satisfying

−(1 + i�1)A − iη1∂
2
x A − Ā(A2 ⊗ J) + SĀ = 0, (5)

which is formally equivalent to the model describing time-
independent states in doubly resonant DOPO [37,38]. For
jR(k) and jI (k) with a very low group velocity dispersion at
2ω0, jR,I (k) ∼ jR,I (0), and Eq. (1) can be reduced to a local
parametrically forced Ginzburg-Landau equation as shown in
Ref. [37].

To unveil the dynamics and the bifurcation structure of
these states we combine pseudo-spectral exponential time
differentiating, or split-step, schemes [51] for the numeri-
cal integration of Eq. (1), and numerical path-continuation
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FIG. 2. (a) and (b) show respectively the homogeneous states Ah and their stability in a subcritical regime, and its associated MIC for
(�1, �, η2) = (−4,−4, 0.01). This configuration shows uniform-bistability in the interval ST < S < Sp (see shadowed area). The maximum
of the MIC corresponds to the Turing instability or MI occurring at (Ih, S) = (IT , ST ). Stable (unstable) branches are plotted with solid (dashed)
lines. (c) and (d) show a subcritical configuration for (�1, �, η2) = (−10,−4, 1). Here, in contrast, A+

h is always modulationally unstable [see
(c)] as shown in its corresponding MIC [see (d)]. In this configuration, uniform bistability is not present. However, different Turing pattern may
bifurcate from branching points all along A±

h , as the one shown in red in (c). The interval SP < S < Sp defines the Turing-bistability region
(see shadowed area).

algorithms to track the time-independent solutions of Eq. (5)
[52,53].

The temporal stability of the different time-independent
states is obtained by solving numerically the eigenvalue prob-
lem:

Lψ = σψ, (6)

where σ is the eigenvalue associated with the eigenmode
ψ , and L represents the linear operator obtained from the
linearization of Eq. (1) around a given stationary state. Thus a
time-independent state is stable whenever all the eigenvalues
satisfy Re[σ ] < 0 and unstable otherwise.

The analytical calculations are performed in an infinite
domain, while a finite domain of length l = 60 with periodic
boundary conditions is considered for the numerical compu-
tations.

III. UNIFORM WAVE STATE AND ITS
TEMPORAL STABILITY

The uniform, or homogeneous, steady state of the system
Ah satisfies ∂t Ah = ∂2

x Ah = 0, and therefore is solution of the
equation

−(1 + i�1)Ah − (1 + iβ )|Ah|2Ah + SĀh = 0, (7)

with β ≡ jI (0). Taking Ah = √
Iheiφ with Ih ≡ |Ah|2, we get

[−(1 + i�1) − (1 + iβ )|Ah|2 + Se−2iφ]|Ah| = 0,

which supports a trivial state solution A0
h = 0, and nontrivial

states A∅
h with phase

φ = 1

2
acos

( |A∅
h |2 + 1

S

)
. (8)

The trivial state undergoes a pitchfork bifurcation at

Sp ≡
√

1 + �2
1, (9)

from where the nontrivial state A∅
h arises.

For �1 < 0, and |�1| < 1/β, a single nontrivial state

|A∅
h |2 = r ≡

√
(1 + β2)S2 − (�1 − β )2

1 + β2
(10)

emerges supercritically from Sp. In the following we refer to
the point at �1 = 1/β as the nascent bistability point. For
|�1| > 1/β, however, two nontrivial states appear. They read

|A±
h |2 ≡ I f ± r, I f ≡ −1 + β�1

1 + β2
. (11)

Here, A−
h bifurcates subcritically from Sp, and merges with

A+
h at a fold occurring at (S, Ih) = (S f , I f ), where

S f ≡ �1 − β√
1 + β2

. (12)

We focus on the subcritical regime (�1 < 0). Two examples
of this configuration are shown in Figs. 2(a) and 2(c) for �1 =
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−4 and �1 = −10, respectively, where the energy of A:

||A||2 = 1

l

∫ l/2

−l/2
|A(x)|2dx,

is plotted as a function of the amplitude of the driving field S.
Note that for the homogeneous state ||Ah||2 = |Ah|2 ≡ Ih.

The next step in our analysis is to determine the linear
stability of the previous uniform states against spatiotemporal
plane-wave perturbations of the form eσ tψk (x) + c.c., where
σ is the growth rate of the perturbation and ψk is the mode
ψk (x) ∼ eikx associated with the wave number k. The linear
stability analysis around A0

h shows that this state undergoes a
Turing, or modulational instability (MI), at S = S0

T ≡ 0 when-
ever η1�1 > 0 [19,38]. When the contrary holds, A0

h is always
stable up to the pitchfork bifurcation at S = Sp, as shown in
Figs. 2(a) and 2(c). We fix η1 = 1 to further investigate this
configuration.

The linear stability of the nontrivial state A∅
h = A±

h is char-
acterized by means of the marginal instability curve (MIC)
obtained from the condition Re[σ ] = 0 [38]. Thus the MIC is
solution of the following quadratic equation:

c2I2
h + c1Ih + c0 = 0, (13)

where

c2 = 4
(
j2R + j2I

)
, (14a)

c1 = 4(jR − (η1k2 − �1)jI ), (14b)

c0 = η2
1k4 − 2η1�1k2. (14c)

The MIC defines the band of unstable modes ψk , and is plotted
for two different sets of parameters in Figs. 2(b) and 2(d).
A±

h is unstable against a given mode ψk if its intensity Ih lays
within the MIC [see shadowed green region in Figs. 2(b) and
2(d)], and stable otherwise. In correspondence, Figs. 2(a) and
2(c) show stable (unstable) uniform states using solid (dashed)
lines. The points on the MIC at k = 0 mark the two stationary
instabilities corresponding to the pitchfork bifurcation Sp and
the saddle-node bifurcation (SNh), i.e., to the fold occurring
at S f .

Let us first focus on the configuration shown in Figs. 2(a)
and 2(b) for (�1, η2) = (−4, 0.01). Here, A−

h is always unsta-
ble, whereas A+

h is only unstable between the fold SNh and
the Turing instability occurring at S+

T [see Fig. 2(a)]. At this
point, a spatio-temporal perturbation of A+

h may slowly evolve
to a spatially periodic Turing pattern (SPP) characterized by
a critical wave number kT . This instability corresponds to the
maximum of the MIC occurring at (k, Ih) = (kT , IT ) as shown
in Fig. 2(b). In this case, the Turing pattern arises subcritically
from S+

T , but it remains unstable until merging again with
A+

h very close to SNh. The interval S+
T < S < Sp defines a

region of bistability between A0
h and A+

h [see shadowed area
in Fig. 2(a)]. In what follows we refer to this configuration as
uniform-bistability. In this bistable scenario, plane fronts or
domain walls can form connecting A0

h and A+
h and vice-versa

[see Fig. 2(e)]. These fronts normally propagate at a constant
speed which depends on the control parameter of the system.
However, close to the uniform Maxwell point, where the
speed cancels out, these fronts can lock one another, leading
to the formation of LSs of different widths, provided there

are damped spatial oscillations (oscillatory tails) in the front’s
profile. This phenomenon has been studied analytically by dif-
ferent authors (see, for example, Refs. [8,9]). Two examples of
these types of LSs are shown in Fig. 2(e). These LSs undergo
a particular bifurcation diagram which is presented in detail in
Sec. V.

Another scenario leading to bistability is the one depicted
in Figs. 2(c) and 2(d) for (�1, η2) = (−10, 1). Here, A−

h and
A+

h [see Fig. 2(c)] are always spatiotemporally unstable as
shown by the MIC in Fig. 2(d). For this set of parameters,
Turing patterns emerge along A−

h and A+
h . When this patterned

state emerges subcritically [see red solid-and-dashed curve in
Fig. 2(c)], a new bistable configuration appears between A0

h
and the stable SPP, spanning the parameter region in-between
SNP and Sp [see shadowed area in Fig. 2(c)]. We refer to
this scenario as Turing or pattern bistability. In this context,
patterned fronts can emerge connecting such stable states
[see Fig. 2(f)], and eventually they can also lock leading to
the formation of localized patterns consisting in a slug of
SPP embedded in A0

h [6,7]. In Sec. VII, we will analyze the
stability and bifurcation organization of such states.

IV. WEAKLY NONLINEAR SOLUTIONS

In the weakly nonlinear regime, one can analytically com-
pute approximate asymptotic small amplitude LS solutions
around some particular bifurcations of the uniform state. In
this way, the birth of such states can be understood from a
bifurcation perspective. Here, we use multiscale perturbation
theory (see Appendix B) to compute such solutions near the
pitchfork bifurcation occurring at S = Sp in an infinite domain
system. In the neighborhood of this point, weakly nonlinear
states are captured by the ansatz:

A(x) − Ah ∼ εB(X )eikcx + c.c., (15)

where ε 	 1 measures the onset from the bifurcation, kc is
the characteristic wave-number of the marginal mode at the
bifurcation, and B is the amplitude or envelope describing
a modulation occurring at a larger scale X = εmx, with the
election of m depending on the problem. Close to the pitchfork
bifurcation Ah = A0

h ≡ 0, kc = 0, and m = 1, and the ampli-
tude B(X ) is described by the time-independent normal form
equation

C1∂
2
X B = δB + C3B3, (16)

with the coefficients

C1 ≡ −2η1ξ

1 + ξ 2
, C3 ≡ 2ξβ(�) − (ξ 2 − 1), (17)

where ξ = �1/(1 − Sp), and the bifurcation parameter δ is
defined as S = Sp + δε2.

In the subcritical regime (C3 > 0), this equation supports
pulse solutions of the form

B(X ) =
√

−2δ

C3
sech

(√
δ

C1
X

)
,
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FIG. 3. Agreement between the asymptotic weakly nonlinear
state (18) computed analytically (see blue solid lines), and the exact
numerical solution obtained through a Newton-Raphson solver (or-
ange dots) for (�1, η2) = (−4, 0.01) and l = 200. (a) and (b) show
the agreement of the real and imaginary parts of A, respectively.

which leads to the weakly nonlinear state

A(x) =
(

�1

1 − Sp
+ i

)√
2(Sp − S)

C3
sech

(√
Sp − S

−C1
x

)
. (18)

Figure 3 shows the real and imaginary parts of the weakly
nonlinear solution (18) for (�1, η2) = (−4, 0.01), Sp − S =
0.01, and a large domain l = 200 (see solid blue line). The
orange dots show the exact numerical solution computed by
means of a Newton-Raphson algorithm taking the profile
defined by Eq. (18) as initial solution guess. As shown in
this plot, the agreement is excellent. This state solution is
temporaly unstable.

Equation (16) describes locally the time-independent be-
havior of the system close to the pitchfork bifurcation, where
the approximate asymptotic LS (18) fits well the exact solu-
tion. However, the good agreement shown in Fig. 3 worsens
as S moves away from Sp, and the systems enters the highly
nonlinear regime.

V. LOCALIZED STATES IN THE
UNIFORM-BISTABILITY SCENARIO

To unveil the features and bifurcation structure of LSs
in the highly nonlinear regime (i.e., far apart from Sp) nu-
merical approaches must be taken into consideration. Here,
we apply numerical path-continuation methods, based on a
pseudo-arclength predictor and a Newton-Raphson corrector,
to Eq. (5). These methods allow us to track any time-
independent state, either stable or unstable, as a function of
the different parameters of the system. The computation of
their stability is performed simultaneously by solving Eq. (6).

In this section, we focus on the bifurcation structure of
LSs arising in the uniform-bistable configuration. To begin
the numerical continuation a suitable initial guess is necessary,
which in our case, is provided by the asymptotic solution (18).
The outcome of this computation is shown in the bifurcation
diagram of Fig. 4 for �1 = −4, where solid (dashed) lines
represent stable (unstable) states. Close to Sp, the LS is similar
to the one depicted in Fig. 3, and temporally unstable. De-
creasing S the LS increases its amplitude as it withdraws from
Sp and the system enters in a highly nonlinear regime. The LS
stabilizes at the first left fold of the bifurcation curve which
corresponds to a saddle-node bifurcation SNl

1. The stable high

FIG. 4. Collapsed homoclinic snaking in the uniform-bistable configuration. This bifurcation curve arises from Sp at A0
h and snakes in a

damped oscillatory manner around the uniform Maxwell point of the system SM . Eventually the diagram connects with subcritical periodic
Turing pattern emerging from the MI at S+

T . (i)–(vi) show different LSs solution along this curve. (i′)–(vi′) represent the frequency spectrum of
the LSs. For the computations, we have considered l = 60, and the parameters are fixed to (�1, η2) = (−4, 0.01).
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amplitude LS is similar to the one depicted in Fig. 4(i), and
their Fourier transform F [i.e. FT (·) = 10log10(|F[·]|2)] is
depicted in Fig. 4(i′). Its region of existence extends all the
way until SNr

1 where it loses its stability once more. Soon
after passing this fold, a dip start to nucleate at x = 0 which
deepens with decreasing S. At SNl

2 such a state becomes
stable and looks like the one depicted in Fig. 4(ii).

Proceeding up in the bifurcation curve (i.e., increasing
||A||2), the dip nucleation process continues and the LS broad-
ens as more and more spatial oscillations (i.e., dips) appear at
the top of the structure, which now can be seen as an almost
flat plateau around A+

h embedded in A0
h. Several examples of

such states along the bifurcation diagram and their Fourier
transforms are shown in Figs. 4(iii)–4(vi) and 4(iii′)–4(vi′).

At this stage the formation of the LSs [see Fig. 4(vi)] is
mediated by the locking of plane fronts like those shown in
Fig. 2(e). The damped oscillatory shape of the bifurcation
curve and the stability of the LSs is a direct consequence of the
plane front interaction and their locking around the uniform
Maxwell point of the system SM [38]. The exponential weak-
ening of the interaction as the fronts separate from one another
results in a exponential shrink of the extension of LS solution
branches with increasing ||A||2, and therefore, to the collapse
of the bifurcation curve to SM . Due to this characteristic, the
bifurcation structure depicted in Fig. 4 is commonly known as
collapsed homoclinic snaking [9,38,54,55].

The collapsed snaking structure persists for different values
of �1 as shown in the (�1, S)-phase diagram of Fig. 5. This
diagram shows the main bifurcation lines of the system for this
regime of parameters: the stationary uniform bifurcation lines
Sp and S f , the MI line S+

T , and the first four folds SNl,r
1,2 of the

collapsed snaking diagram shown in Fig. 4. This last diagram
corresponds to a slice of constant �1 (see dashed vertical line)
of Fig. 5.

Increasing |�1|, the existence region of the single-peak LS
(see shadowed region in-between SNl,r

1 ) broadens as does the
region of existence of the multibumps LSs, here spanned by
the lines SNl,r

2 . Decreasing �1, however, SNl,r
2 approach one

another and eventually collide in a cusp bifurcation C2 where
single-dip states disappear. Similarly, the region of existence
of the single-peak LS shrinks as SNl,r

1 gradually come closer,
and eventually, it also fades away at another cusp C1.

The cusp bifurcations involving the collision of SNl,r
i (with

i > 2) occur successively in a similar fashion than in Ref. [55].
The single-peak LSs persist below the MI curve S+

T , and
therefore outside the uniform bistability region, in contrast to
the multibump states which need the presence of bistability to
be formed.

For the range of parameters studied here, the single-bump
and two-bump LSs remain stable between SNl,r

1 and SNl,r
2 ,

respectively. However, multibump states with more than two
bump lose their stability when increasing the value of |�1|.
The loss of stability can be clearly observed in the bifurcation
diagram shown in Figs. 5(i)–5(iii).

VI. BREATHERS IN THE
UNIFORM-BISTABILITY SCENARIO

So far, the states reported here were static, i.e., they do not
show any kind of permanent temporal dynamics. However,

FIG. 5. Phase diagram in the (�1, S)-parameter space show-
ing the main attractor regions and bifurcations of the system in
a uniform-bistable configuration for η2 = 0.01. The vertical point-
dashed line at �1 represents the bifurcation diagram shown in Fig. 4.
The different bifurcation lines correspond to the pitchfork bifurcation
Sp, the saddle-node of Ah SNh, the MI (see purple point-dashed line)
and the saddle-node bifurcations SNl,r

1 and SNl,r
2 of the single- and

two-bumps LSs. The bifurcation diagrams shown in (i)-(iii) corre-
spond to slices of constant �1 (namely �1 = −5, −6 and −10) of
the (�1, S) phase shown on top. Solid (dashed) lines represent stable
(unstable) states. The uniform nascent bistability point is marked
with •.

a careful exploration of the parameter space, applying direct
numerical simulations, shows that spatially localized oscilla-
tions can also arise when modifying the pump GVD parameter
η2. Figure 6 shows the bifurcation diagram of the LSs in a
uniform-bistable regime for η2 = 0.25 and �1 = −4, where
the L2-norm ||A||2 is plotted as a function of S. Here, sim-
ilarly to the bifurcation diagrams shown in Figs. 5(i)–5(iii),
LSs with more than two bumps are temporally unstable [see
for example Fig. 6(i) corresponding to the red dot shown in
Fig. 6(a)]. Decreasing ||A||2, the two-bump (i.e., single-dip)
LS [see profile in Fig. 6(ii)] is stable when it arises from SNr

2
and destabilizes at a supercritical Hopf (H) bifurcation. Below
this point, oscillatory LSs, also called oscillons or breathers,
emerge. One example of the periodic temporal evolution of
such a state is shown for S = 3.3 in Fig. 6(I) (top) together
with the temporal variation of its norm (bottom). The maxima
and minima of the breather’s norm are plotted in Figs. 6(a) and
6(b) [close-up view of (a)] using orange dots. This localized
oscillation resembles the oscillatory pattern emerging due to
the interaction of LSs in a parametrically driven water channel
[47].

Decreasing S, the amplitude and period of the breather
increase. An example of such a situation is shown in Fig. 6(II)
for S = 3.2 [see the dashed vertical lines shown in Fig. 6(b)].

013044-6



DISSIPATIVE LOCALIZED STATES AND BREATHERS IN … PHYSICAL REVIEW RESEARCH 4, 013044 (2022)

FIG. 6. (a) shows the bifurcation diagram showing ||A||2 as a
function of S for η2 = 0.25 and �1 = −4. Stable (unstable) solution
branches are plotted using solid (dashed) lines. The orange dots show
the variation of the maxima and minima of the breather LS from their
birth at a supercritical Hopf bifurcation to their disappearance at the
Hom bifurcation. A close-up view of these branches are plotted in
(b). Labels (i) and (ii) correspond to the static LSs shown on the
right. (I)–(III) shown below correspond to the vertical dashed lines
in (b), and represent the spatiotemporal evolution of the breathers
[top] and the temporal evolution of its norm [bottom].

Decreasing S even further, the breather eventually collides
with the two-bump unstable LS [see Fig. 6(b)] and is
destroyed in a homoclinic (Hom) bifurcation [56,57]. Ap-
proaching this global bifurcation, the breathers’ oscillation
period diverges with a characteristic scaling law T ∝ ln(S −
SSH) [56] [not shown here]. An example of a breather and
its oscillation period very close to this bifurcation is shown

Hom

Hom

Hom

FIG. 7. Phase diagram in the (η2, S)-parameter space associated
with the two-bump LSs showing the bifurcation lines SNl,r

2 , H and
Hom, and the different dynamical regions. The temporal dynamics
arise from the TB point (see red dot) as depicted in the inset close-up
view. In the shadowed red region I, the LSs are static. Breathers exist
in region II between the H and Hom lines. In region III, the two-bump
LS is unstable and breathing behavior absent.

in Fig. 6(III) for S = 3.10435. Very close to this point, the
system may exhibit excitability as has been reported in other
optical systems [58]. Interestingly, the bifurcation diagram
shown in Fig. 6 is morphologically very similar to the one
appearing in the context of doubly resonant DOPOs [59]
(see Fig. 1). Due to the universal mechanism describing the
formation of these states, one could imaging that the whole
bifurcation scenario depicted here could also be present in
doubly resonant configurations.

The (η2, S)-phase diagram plotted in Fig. 7 shows the
bifurcation lines SNl,r

2 , H and Hom for �1 = −4. The vertical
dashed line corresponds to the bifurcation diagram shown in
Fig. 6. To the left of the H line (see red shadowed region I)
the two-bump LSs are stable. The breather LS, created at H,
persists until the Hom bifurcation line (see shadowed orange
region II) where it is destroyed. Below this line (see region
III), the breathing behavior is absent, and the two-bump LSs
are unstable. Here the temporal evolution of the system leads
to the closest attractor of the system, which corresponds to the
single-bump LS.

Decreasing η2, the H bifurcation line eventually folds
back and collides with SNl

2 in a Takens-Bogdanov (TB)
codimension-two bifurcation [60,61], which is also responsi-
ble for the emergence of the Hom line tangent to H. The birth
of H and Hom lines from the TB point is shown in the close-up
view of Fig. 7.

VII. LOCALIZED STATES IN THE
TURING-BISTABILITY SCENARIO

In this section, we follow a similar procedure to the
one shown in Sec. V, focusing this time on the Turing-
bistable configuration shown in Fig. 2(c). The outcome of
the path-continuation procedure, starting from the initial an-
alytical guess (18), leads to the bifurcation diagram shown in
Fig. 8. As in the uniform-bistability scenario, the single-peak
LS [see Fig. 8(i)] increases its amplitude with decreasing
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FIG. 8. Standard homoclinic snaking in a Turing-bistable configuration. This bifurcation curve arises from Sp at A0
h , and snakes in S with a

constant amplitude within the bistable region. Eventually, the diagram connects with a subcritical periodic Turing pattern emerging from A−
h .

(i)–(vi) show different LS solutions along this curve. (i′)–(vi′) represent the frequency spectrum of the LSs. For the computations, we have
considered l = 60, and the parameters are fixed to (�1, η2) = (−10, 1).

S, stabilizes at SNl
1 and persists stably until SNr

1. Beyond
this fold, however, the LSs undergo a bifurcation structure
completely different to the collapsed homoclinic snaking de-
picted in Fig. 4. Here, the LSs solution curve (see lines in
blue) oscillates back-and-forth within the locking, or snaking,
region Sl < S < Sr [6,62] which extends to the whole Turing-
bistable region SP < S < Sp. This oscillation maintains a
constant amplitude all along the diagram and reflects the
successive addition of a pair of Turing pattern’s peaks, one
on each side of the state, as one follows the diagram upwards
(i.e. increasing energy ||A||2). The symmetric nucleation of
a pair of peaks can be easily observed in the profiles shown
in Figs. 8(i)–8(vi). The LS states belonging to this curve
are composed of an odd number of peaks, and hereafter
we refer to them as �o. The different folds of the curve
correspond to saddle-node bifurcations that we have labeled
SNl,r

i , with i corresponding to the number of peaks in the
structure. At each saddle node, the LSs gain and lose sta-
bility in a similar manner than in the collapsed snaking
scenario.

In a finite domain like ours, the nucleation process ends
once the domain is completely filled. The LSs solution curve
then reconnects with one of the multiple subcritical SPPs
within the bistability region as shown in Fig. 8.

This bifurcation scenario shares most features with the
standard homoclinic snaking [6], and in what follows we refer
to it using the same term. In that context, the formation of
LSs is related with a complex process known as heteroclinic
tangle [6,63], which can be also understood through a locking
mechanism involving patterned fronts. Thus both LSs and
their bifurcation structure can be predicted completely from

the underlying bifurcation structure of the patterned fronts
[10,64]. Note that the homoclinic snaking curve can be recon-
structed analytically for some models (see for example [65]),
which could be derived in some particular limits of Eq. (1).

In the standard homoclinic snaking, �o emerge from the
Turing instability together with the subcritical spatially peri-
odic pattern, and another family of states characterized by LSs
with an even number of pattern peaks (hereafter �e). Here,
in contrast, no Turing instability is present, and the snaking
curve �o arises from the pitchfork bifurcation at Sp, while the
periodic pattern emerges from one of the many branching bi-
furcation points occurring along A−

h (see Fig. 8). Furthermore,
the normal form (16) around the S = Sp only supports single
pulse solutions [see Eq. (18)], and thus �e, if it exists, can not
emerge from that point.

At this stage, one question to answer is whether �e states
exit, and if so, how do they organize. To answer this question
we first integrate numerically Eq. (1) starting from a suitable
initial condition, which allows us to compute �e LSs of dif-
ferent extensions. Afterwards, we numerically continue such
states in S, computing their bifurcation curves. The results
of these computations are shown in Fig. 9(a) for the same
parameters than the diagram shown in Fig. 8 (i.e., �1 = −10).
For this set of parameters, states with different (even) peak
numbers are disconnected from each other, and organized in
several bifurcation curves that we label �i

e, with i denoting the
number of peaks of each state. Figure 9(a) shows �2

e and �4
e ,

and two examples of stable LSs are plotted in Figs. 9(i)–9(ii).
�2

e is detached from A0
h, confirming our previous hypothesis.

A detailed examination of these curves [see close-up view in
Fig. 9(a)] shows that �2

e and �4
e are disconnected and undergo
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FIG. 9. (a) Solution state curves �2
e and �4

e for �1 = −10. The
close-up view shows the saddle-node bifurcations SNb

2 and SNa
4. The

labels (i)–(ii) correspond to the LSs profiles shown below. (b) Solu-
tion state curve �e for �1 = −11, after the reconnection of SNb

2 and
SNa

4 through a necking bifurcation.

two saddle-node bifurcation SNb
2 and SNa

4, which are very
close to one another. Increasing the energy, similar disjoint
curves are found involving LSs with 6, 8, 10, . . . peaks (not
shown here).

For larger values of |�1|, SNb
2 and SNa

4 eventually collide
in a necking bifurcation [66], and �2,4

e merge in a single one,
as depicted in Fig. 9(b) for �1 = −11. Increasing |�1| even
further, similar reconnections occur between wider states, and
eventually, a fully connected bifurcation curve �e appears.
These localized patterns persist while changing the value of
�1 as shown in the (�1, S)-phase-diagram of Fig. 10. This
diagram shows the main bifurcation of the system, namely
Sp, S f , SNl,r

1 and SNl,r
3 , together with the pinning region (see

shadowed area). Similarly to the collapsed snaking case (see
Fig. 5), the localization region enlarges with increasing |�1|
and shrinks with decreasing it, until eventually the pairs of
saddle-node bifurcations SNl,r

i collide in a sequence of cusp
bifurcations, and the LSs disappear sequentially as one ap-
proaches the uniform nascent bistability point at �1 = 1/β.

Despite the persistence of these states, the bifurcation
structure shown in Fig. 8 is not preserved and suffers a dis-
connection process, mediated by necking bifurcations while
decreasing �1, similar to the one shown in Fig. 9.

As far as we know, this type of homoclinic snaking is rare,
and so far has only been previously reported in the context
of the Lefever-Lejeune model describing vegetation patterns
in dryland ecosystems [67]. In that case, however, �o emerge
from a transcritical bifurcation at the trivial state. Moreover,
the reconnection of bifurcation curves through necking bi-
furcations is an infrequent phenomenon in the context of
homoclinic snaking. However, we believe that it can be found

FIG. 10. Phase diagram in the (�1, S)-parameter space showing
the main attractor regions and bifurcations of the system in a Turing-
bistable configuration for η2 = 1. The vertical point-dashed line at
�1 = −10 corresponds the bifurcation diagram shown in Fig. 8.
The different bifurcation branches are the pitchfork bifurcation Sp,
the saddle-node of Ah (SNh), and the saddle-node bifurcations SNl,r

1

in red. Here, SNl,r
3 overlap with SNl,r

1 . The red shadowed region
corresponds to the snaking region. The uniform nascent bistability
point is marked with •.

in other systems where the uniform state and the periodic
pattern share similar stability properties [67].

VIII. IMPLICATIONS OF THE WALK-OFF:
PROPAGATING LOCALIZED STATES

In the previous sections, we have neglected the effect of
group velocity mismatch or temporal walk-off by setting d =
0. In the presence of walk-off (d �= 0), the reflection symmetry
x → −x is broken, and the LSs studied previously start to
propagate at a constant speed v which depends on d . An ex-
ample of this dependence, computed through path-numerical
continuation in d , is shown in Fig. 11 for the single-peak LS
with (η2,�1, S) = (0.01,−4, 3). Increasing d , the x → −x
asymmetry increases and so does the speed |v| of the LS
[see profiles (i)–(iii)]. Very close to d = 0, the speed can be
described by |v| ∝ √

d , as has been formally demostrated in

FIG. 11. Dependence of |v| with d for a single-peak LS. The
asymmetry of these states increase with d as shown in (i)–(iii). The
parameters are (η2, �1, S) = (0.01, −4, 3).
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FIG. 12. Implication of walk-off on LSs in the uniform-bistable scenario for d = 0.1. (a) shows the modification of the collapsed snaking
of Fig. 4, whereas (b) shows the modification of the speed of the LSs with the width measured through the norm ||A||2. (i)–(vii) show several
examples of asymmetric and propagating LSs along the diagrams shown in (a) and (b). (vii) and (viii) show the propagation with different
speeds of two three-bump state. Here, (η2, �1, �) = (0.01, −4, −4).

[68]. Far from that point, higher order corrections must be
included and may lead to the deviation shown in Fig. 11.

In what follows, we focus on a weak reflection symme-
try breaking (d = 0.1), and present the implication that such
asymmetry may have on the bifurcation structures of the LSs
studied previously.

Figure 12 shows the effect of a weak walk-off on the
collapsed snaking presented in Fig. 4. For this value of d , the
collapsed snaking structure is preserved [see Fig. 12(a)], up to
small shape modifications due to the effect of the asymmetry
on the front’s interaction. Panels 12(i)–12(vi) show some ex-
amples of propagating LSs along the bifurcation diagram of
Fig. 12(a), where we can easily appreciate their asymmetry in
x.

The path-continuation algorithm allows us to also compute
the speed v of these states as a function of S or any other
tracking parameter. The diagram plotted in Fig. 12(b) shows
v as a function of the width of the LS, here measured through
its L2-norm ||A||2. Proceeding up in the diagram, v oscillates
in an irregular manner around v = 0, and broad states prop-
agate with positive speed. This feature agrees with the case
previously reported regarding the influence of third-order dis-
persion on dark LSs in Kerr cavities [69]. The propagation of a
three-bump LSs with negative velocity is shown in Fig. 12(vii)
for S ≈ 3.317.

We have also studied the effect of the walk-off on LSs
in a standard homoclinic snaking context. The results are
presented in Fig. 13. In this case, the x − reflection symmetry
breaking yields the merging of LSs with odd and even number
of peaks, and thus to the mixed snaking shown in Fig. 13(a)
which alternates odd and even LSs. Examples are depicted in
Figs. 13(i)–13(vi). For this value of d , the LSs profiles look
quite symmetric. However, all these states drift with a negative
speed whose dependence with ||A||2 is shown in Fig. 13(b).
Here, the speed along a given stable segment of the diagram
seems almost constant. Furthermore, |v| increases with the
width (i.e., with ||A||2) of each LS and collapses to a vertical
asymptote, such that the LSs shown in Figs. 13(v) and 13(vi)
have almost the same speed.

In each right fold of these diagrams, a single new peak
is nucleated at the right of the state as depicted in the LSs
profiles (ii) and (iv). The emergence and growing of this new
peak yields a large variation of the speed [see Fig. 13(b)].
Similar scenarios have also been studied in other conserva-
tive and dissipative nonspatial reversible systems [64,70,71].
Other plausible scenario that could appear in this context re-
lates with the breaking of the homoclinic snaking in a stuck of
isolas [70–72]. However, for the range of parameters studied
here, such a scenario is absent.

IX. DISCUSSION AND CONCLUSIONS

The existence of single-peak LSs in phase mismatched
singly resonant dispersive DOPOs was first reported in
Ref. [40], although a detailed taxonomic classification of the
different types of LSs was so far lacking.

In this work, we have presented a complete and detailed
description of the bifurcation structure, stability and dynam-
ics of the variety of LSs, either static or dynamic, arising
in the context of singly resonant DOPOs. In the mean-field
approximation, these cavities can be described by paramet-
rically forced Ginzburg-Landau equation (see Sec. II) with
nonlocal nonlinearity A2 ⊗ J describing a time delay induced
by the pump field parameters through the kernel or response
function J [33]. The formation and bifurcation structure of
LSs in systems with nonlocal long-range coupling terms ap-
pear naturally in a variety of scientific domains, and has
been particularly tackled in the context of neural field models
[73,74], nonlinear optics [75], and in the prototypical Swift-
Hohenberg equation [76].

We have applied a pattern forming and dynamical systems
approach [77], which has allowed us to unveil the general
mechanism behind the formation of LSs and their bifurcation
origin. As usual when considering this procedure, the starting
point is the analysis of the uniform or homogeneous steady
state solution and its linear stability (Sec. III). This analysis
has allowed us to identify two regimes leading to the emer-
gence of LSs: the uniform-bistable and the Turing-bistable
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FIG. 13. Implication of walk-off on LSs in the Turing-bistable scenario for d = 0.1. (a) shows the modification of the standard homoclinic
snaking of Fig. 8, whereas (b) shows the modification of the speed of the LSs with their width, measured through the norm ||A||2. (i)–(vii)
show several examples of asymmetric and propagating LSs along the diagrams shown in (a) and (b). (vii) and (viii) show the propagation of
two different states. Here, (η2, �1, �) = (1, −10, −4).

regimes. In the first one, two uniform steady states coexist in
a stable manner within the same interval of parameters. This
situation allows the formation of plane fronts connecting such
states, which eventually can lock, leading to LSs of different
extensions. In the second case, in contrast, the coexistence
appears between a uniform state and a spatially extended
pattern. Similarly, patterned fronts may form and lock, leading
to different kinds of localized patterns.

We have shown, applying weakly nonlinear analysis
(Sec. IV), that in both scenarios small amplitude LSs with a
single bump emerge from the pitchfork bifurcation undergone
by the trivial uniform state A0

h. These weakly nonlinear LSs
undergo a very different bifurcation structure which depends
on the type of bistability.

In the uniform bistability regime, these small amplitude
states undergo collapsed homoclinic snaking around the uni-
form Maxwell point of the system, as they enter the highly
nonlinear regime (see Sec. V). All along this diagram the
region of existence of the different states shrinks as a function
of their width (i.e., measured by ||A||2). We have shown that
LSs of this kind persist in the (�1, S)-parameter space and
that they disappear when approaching the nascent uniform
bistability point at �1 = 1/β. This scenario is very similar
to the one reported in the context of doubly resonant DO-
POs where the uniform-bistable configuration was explored
[38].

Modifying the GVD parameter η2, the system undergoes
oscillatory instabilities (see Sec VI) and breathers emerge.
These dynamical states arise supercritically from the sta-
tionary two-bump states and are destroyed in a homoclinic
bifurcation. We have analyzed the modification of the differ-
ent dynamical regions as a function of η2. Furthermore, we
have found that the birth and death of the breathing behavior
is related with the presence of a TB codimension-two point,
from where the H and Hom bifurcations arise. As far as we
know, the single-bump stable LS does not suffer this kind of
instability.

In the Turing-bistable scenario LSs undergo a particular
bifurcation structure that shares similarities with the stan-

dard homoclinic snaking (see Sec. VII). In contrast to the
collapsed snaking case, LSs of different width exist within
the same interval of parameters, the so called snaking re-
gion. The LSs and the spatial pattern emerge from different
points: while LSs with an odd number of peaks emerge from
the pitchfork bifurcation at Sp, the pattern related with these
states bifurcates from one of the many branching bifurcation
points along A−

h . Localized patterns with an even number of
peaks are also present, although their bifurcation curves are
detached from Sp. This particular type of bifurcation structure
is not that common, and has been also reported in the con-
text of mathematical models describing vegetation patterns
in dryland ecosystems [67]. Localized patterns persist in the
(�1, S)-parameter space, although their homoclinic snaking
does not as it breaks up in different bifurcation curves through
a sequence of necking bifurcations.

Finally we have also elucidated how the bifurcation struc-
ture of LSs is modified when considering a weak walk-off
(d 	 1) (see Sec. VIII). In the uniform-bistable configuration,
the collapsed snaking is conserved, while in the Turing-
bistable scenario branches of LSs with even and odd number
of peak interconnect, forming a mixed snaking curve similar
to the one reported in the context of Kerr cavities with third-
order dispersion [71]. In both cases, the dependence of the
LSs speed with the energy ||A||2 has been computed.

In this study, we have considered a fixed phase mismatch
� ≈ −1.27π and positive GVD η1,2. This selection corre-
sponds to the �η2 < 0 regime reported in Ref. [40]. Other
regimes of parameters are so far unexplored and could lead to
other interesting localization phenomena, as well as patterned
dynamics that we expect to explore in the future.

The bifurcation structure underlying the localization phe-
nomena presented here establishes a useful map linking
different kinds of LSs with the control parameters of singly
resonant DOPOs which will prove hopefully useful for their
experimental exploration.

One natural extension of this work could focus on two
main topics. First, one could study the influence that higher
order effects, such as high-order dispersion and stimulated
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Raman scattering, may have on the previous states and their
bifurcation sekeleton. Some of these effects have been studied
in other optical systems [69,75,78,79]. Second, the consider-
ation of stochastic terms in our model would help make more
realistic predictions, as noise is present in any experimental
realization. In this context, we would like to tackle the mod-
ification suffered by the bifurcation structure of LSs due to
nondeterministic terms [80,81].

APPENDIX A: MEAN-FIELD NORMALIZATION

Under the mean-field approximation the dynamics of in-
tracavity signal field in singly resonant dispersive DOPO is
described by the following partial differential equation with
nonlocal nonlinearity [33]

tR∂t A = −(α1 + iδ1)A − i
k′′

1 L

2
∂2
τ A

− μ2Ā(A2 ⊗ J ) + μsinc(�/2)BinĀei(π/2−�/2), (A1)

where A is the envelope of the signal field, t is the slow
time describing time evolution of A over successive round
trips, tR is the round-trip time, τ is the fast time describing
the temporal profiles in the retarded time frame, α1 are the
total linear cavity losses associated with the signal, and δ1

is the phase detuning to the closest frequency resonance, k′′
1

is the group velocity dispersion (GVD) associated with A,
and L is the length of the cavity. μ = κL with κ being the
second order nonlinear coefficient, � = �kL, where �k is the
phase mismatch, and Bin is the continuous wave driving field
or pump. A2 ⊗ J represents the nonlocal nonlinearity, with
⊗ representing the convolution between A2 and the nonlocal
response function or kernel

J (ω) = 1

2π

∫ ∞

−∞
j(ω)e−iωτ dτ, (A2)

with

j(ω) = 1 − e−iZ (ω) − iZ (ω)

Z (ω)
, (A3)

Z (ω) = � + ig(ω)L, (A4)

and

g(ω) = −αc,2/2 + i

(
�k′ω + k′′

2

2
ω2

)
. (A5)

The last expression contains the group velocity mismatch �k′,
the propagation losses αc,2, and the group velocity dispersion
k′′

2 associated with the pump field B, which is extracted from
the cavity at each round trip.

As done in similar studies [30,33,40], we neglect the losses
associated with the pump field, that is, we take αc,2 = 0. Thus
the nonlocal kernel reads

j(ω) = jR(ω) + i jI (ω), (A6)

with

jR(ω) = 1

2
sinc2(Z (ω)/2), jI (ω) = sinc(Z (ω)) − 1

Z (ω)
,

and Z (ω) = � − L�k′ω − 1
2 k′′

2 Lω2.

Considering the transformations

A =AceiψA/
√

a(�), τ =τcx, t =tct
′,

with a(�) ≡ jR(0) = 1
2 sinc2(�/2), and the characteristic co-

efficients and phase

Ac =
√

α1

μ
, tc =tR/α1, τc =

√
L|k′′

1 |
2α1

, ψ = (π − �)/4

we can transform the dimensional Eq. (A1) into the dimen-
sionless equation

∂t ′A = −(1 + i�1)A − iη1∂
2
x A − Ā(A2 ⊗ J) + SĀ, (A7)

where the normalized control parameters read

�1 = δ1

α1
, S = μsinc(�/2)

α1
Bin, (A8a)

η1 = sgn(k′′
1 ), η2 = α1k′′

2

|k′′
1 | , d =

√
2α1L

|k′′
1 | �k′. (A8b)

In what follows, we write t instead of t ′.

APPENDIX B: WEAKLY NONLINEAR ANALYSIS
AROUND THE PITCHFORK BIFURCATION

Following the procedure in Refs. [38,82], we fix �1 and
consider the asymptotic expansion of the fields U ≡ Re[A],
and V ≡ Im[A] as a function of the expansion parameter ε

defined by S = Sp + δε2, where δ is the bifurcation parameter.
Then the expansion reads[

U
V

]
= ε

[
u1

v1

]
+ ε3

[
u3

v3

]
+ · · · , (B1)

where we allow each of the terms in the previous expansion to
depend just on the long scale X ≡ εx. Considering Eq. (B1)
the linear operator expands as

L = L0 + ε2L2, (B2)

with

L0 =
[

Sp − 1 �1

−�1 −(Sp + 1)

]
(B3a)

and

L2 =
[

δ η1∂
2
X

−η1∂
2
X −δ

]
. (B3b)

Similarly, the nonlinear operator becomes

N = ε2N2 = −
[
N a

2 N b
2

N b
2 −N a

2

]
, (B4)

with

N a
2 = u2

1 ⊗ JR − v2
1 ⊗ JR − 2u1v1 ⊗ JI , (B5a)

N b
2 = u2

1 ⊗ JI − v2
1 ⊗ JI + 2u1v1 ⊗ JR. (B5b)

The insertion of the previous expansions in the stationary
equation (5) yields a hierarchy of equations for successive
orders in ε, which up to third order read

O(ε) : L0

[
u1

v1

]
=

[
0
0

]
(B6a)
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and

O(ε3) : L0

[
u3

v3

]
+ (L2 + N2)

[
u1

v1

]
=

[
0
0

]
. (B6b)

At first order in ε, the solvability condition provides

Sp =
√

�2
1 + 1, (B7)

which confirms the position of the pitchfork bifurcation al-
ready calculated in Sec. IV. The solutions at this order are of
the form [

u1

v1

]
=

[
ξ

1

]
B(X ), (B8)

where ξ = �1/(1 − Sp) and B(X ) is the real envelope ampli-
tude to be determined at next order in the expansion.

At O(ε),

L0

[
u3

v3

]
= −(L2 + N2)

[
u1

v1

]
. (B9)

The amplitude equation about Sp is then obtained from the
solvability condition

wT · L2

[
u1

v1

]
+ wT · N2

[
u1

v1

]
=

[
0
0

]
, (B10)

where wT = [−ξ, 1], such that L†
0w = 0.

The evaluation of the first term yields

wT · L2

[
u1

v1

]
= −δ(ξ 2 + 1)B − 2ξη1∂

2
X B, (B11)

while the second one gives

wT · N2

[
u1

v1

]
= (ξ 2 + 1)N a

2 B(X ). (B12)

Thus the only term of N2 contributing is N a
2 . To evaluate this

term we follow the same approach than in Refs. [76,83,84]:
we consider B(X ) to be constant within its convolution with
J, using the implicit decoupling of the short and long length
scales x and X = εx that arises as ε → 0. With these consid-
erations we obtain

u2
1 ⊗ JR =

∫ ∞

−∞
u2

1(y)JR(x − y)dy

= ξ 2
∫ ∞

−∞
B(Y )2JR(x − y)dy ≈ ξ 2B(X )2

×
∫ ∞

−∞
JR(x − y)dy

= ξ 2B(X )2 jR(0) = ξ 2B(X )2a(�), (B13)

u1v1 ⊗ JI =
∫ ∞

−∞
u1(y)v1(y)JI (x − y)dy

≈ ξB(X )2
∫ −∞

∞
JI (x − y)dy

= ξB(X )2 jI (0) = ξB(X )2β(�), (B14)

and with the same approach

v2
1 ⊗ JR ≈ B(X )2JR(0) = B(X )2a(�),

Putting all the terms together, we have

N a
2 = (ξ 2 − 1)a(�) − 2ξb(�), (B15)

which finally leads to the stationary amplitude equation

C1∂
2
X B = δB + C3B3, (B16)

with coefficients

C1 ≡ −2η1ξ

1 + ξ 2
, C3 ≡ 2ξβ(�) − (ξ 2 − 1). (B17)
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