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Summary

Among the variety of statistical intervals, highest-density regions (HDRs) stand out for their abil-
ity to effectively summarise a distribution or sample, unveiling its distinctive and salient features.
An HDR represents the minimum size set that satisfies a certain probability coverage, and current
methods for their computation require knowledge or estimation of the underlying probability dis-
tribution or density f. In this work, we illustrate a broader framework for computing HDRs, which
generalises the classical density quantile method. The framework is based on neighbourhood mea-
sures, that is, measures that preserve the order induced in the sample by f, and include the density f
as a special case. We explore a number of suitable distance-based measures, such as the k-nearest
neighbourhood distance, and some probabilistic variants based on copula models. An extensive
comparison is provided, showing the advantages of the copula-based strategy, especially in those
scenarios that exhibit complex structures (e.g. multimodalities or particular dependencies). Finally,
we discuss the practical implications of our findings for estimating HDRs in real-world
applications.

Key words: anomaly detection; copula models; density estimation; k-nearest neighbourhood; statistical
intervals.

1 Introduction

A ubiquitous problem in statistics is to derive statistical intervals or regions—especially in
the multivariate setting—for population parameters or other unknown quantities. Their role is
to provide a way to quantify and describe the uncertainty about a quantity of interest, or simply
a way to summarise the information contained in a distribution. Statistical regions may address
different problems. For example, a confidence interval (CI) describes the uncertainty related to
an estimate for an unknown parameter, while a prediction interval provides bounds for one or
more future observations. Alternatively, a tolerance interval is the interval expected to contain a
specified proportion of the sampled population. In a Bayesian setting, highest posterior density
or credible regions provide, in a natural way, set estimates for a specific parameter (Box &
Tiao, 1992; Turkkan & Pham-Gia, 1993). We refer to Meeker et al. (2017) and Krishnamoorthy
& Mathew (2009) for an overview. Furthermore, even when the focus is on a specific type of
interval, for example, a two-sided 95% prediction interval, questions on how this should be de-
fined may still arise. Should we use the interval symmetric about the mean or the interval of
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shortest length, among others? Although each of these intervals has 95% coverage, they may all
be different. Consider, for example, the case of nonsymmetric and/or multimodal distributions,
with an illustration given in Figure 1. An additional layer of complexity arises in multivariate
settings, where there are no unique agreed definitions, and generalisations include the concept
of simultaneous CIs (Guilbaud, 2008), multivariate CIs (Korpela et al., 2017), or different def-
initions for multivariate quantiles (Cai, 2010; Coblenz et al., 2018; Figalli, 2018), among
others.

The multivariate setting will be the target of this work, with a focus on bivariate distributions.
In particular, our interest is devoted to statistical regions for summarising probability distribu-
tions in the form of highest-density regions (HDRs; Hyndman, 1996). Statistical regions other
than HDRs are beyond the scope of the present work, and we refer to Meeker et al. (2017) and
Krishnamoorthy & Mathew (2009) for a comprehensive survey on the broader topic. As the
name suggests, an HDR specifies the set of points of highest density: the density for points in-
side the region must be higher than that for points outside it. More specifically, considering a d
-dimensional continuous variable of interestX ∈ ℝd; d ≥ 1, with probability density function f ,
the problem is to estimate minimum volume sets of the form Cðf αÞ ¼ fx : f ðxÞ ≥ f αg, such that
PðX ∈ Cðf αÞÞ ≥ 1 � α, where 1 � α, with α ∈ ð0; 1Þ, represents a prespecified coverage prob-
ability. Although they share substantial similarities with multivariate quantiles, estimating an
HDR differs from estimating level sets in that one is interested in specifying a probability con-
tent rather than the level directly. This complicates the problem, and we refer to Doss &
Weng (2018) for more details.

The scope of an HDR can be wide and diverse; the following are possible applications.

Forecasting To obtain a prediction or forecast region for a set of observable variables
in order to inform the most likely future realisations and convey in a sim-
ple way the accuracy of a forecast (for illustrative examples, see, e.g.
Hyndman, 1996; Kim et al., 2011).

Anomaly detection To detect abnormal observations from a sample: if a data point does not
belong to a region of ‘normal’data (the HDR), then it is regarded anoma-
lous (see, e.g. Steinwart et al., 2005, and references therein).

FIGURE 1. Comparison between two 100ð1 � αÞ% probability intervals for a normal mixture density: an HDR and an
equal-tailed interval. The coverage parameter α is set to 0.05.
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Unsupervised or
semi-supervised
classification

To identify areas or clusters with a relatively high concentration of a given
phenomenon; see, for example, the work of Saavedra-Nieves (2022),
aimed at finding areas of high incidence of coronavirus.

This work will primarily be driven by the problem of anomaly detection, characterising a
broad spectrum of applied domains, going from astrophysics to diagnostics and sport analytics.
More specifically, our interest is to develop a valid and efficient framework in support of the
worldwide doping detection mission headed by the World Anti-Doping Agency
(WADA, 2021). In practice, WADA’s current analytical implementation is based on identifying
reference ranges that discriminate well between normal and abnormal values for predefined bio-
markers of interest (Sottas et al., 2007). This is done following a univariate approach, with ref-
erence ranges, in the form of equal-tailed intervals, derived for each biomarker separately.
Clearly, addressing this problem over increased dimensions presents significant challenges, in-
cluding the presence of data with complex dependence structures, in addition to distributional
multimodalities or skewness.
Due to their flexibility ‘to convey both multimodality and asymmetry’, HDRs are argued to

be a more effective summary of the distribution (Hyndman, 1995). In the case of unimodal sym-
metric distributions, such as the normal distribution, an HDR coincides with the usual probabil-
ity region symmetric about the mean, spanning the α=2 and 1 � α=2 quantiles. However, in the
case of a multimodal distribution, it may consist of several disjoint subregions, each containing
a local mode. This provides useful information that could not be traced by other probability re-
gions such as an equal-tailed interval (see Figure 1 for an illustrative example).
As the name suggests, estimating an HDR is based on knowing the density function f of the

variable of interestX . However, as typically occurs in practice, this quantity is unknown and the
estimation of an HDR requires estimating f first. The seminal paper of Hyndman (1996) dis-
cusses the density-quantile approach for computing HDRs in such settings. Although for uni-
dimensional problems this task can be achieved very accurately using methods such as the ker-
nel density estimator (KDE Parzen, 1962) or the local likelihood approach (Hjort &
Jones, 1996), it may be inefficient for multidimensional problems (Liu et al., 2007). In fact, over
increased dimensions, KDE suffers from the difficulty of finding optimal kernel functions and
the corresponding bandwidths (i.e. the smoothing parameters). In particular, bandwidth selec-
tion in KDE is recognised as the most crucial and difficult step (see, e.g. chapter 2 in Wand
& Jones, 1994a), with no definite and widely accepted solution. Furthermore,
high-dimensional data also pose challenges from an algorithmic/computational perspective
when deriving the associated HDR.
In this work, we illustrate a broad framework for estimating HDRs, which generalises the cur-

rent density-quantile approach implementable on the basis of a consistent estimator of the (mul-
tivariate) density (Hyndman, 1996). The proposed framework is based on neighbourhood mea-
sures (Munoz & Moguerza, 2006), that is, measures that preserve the order induced in the
sample by the density function. Notably, it includes the widely-used density estimation proce-
dure as a special case. We then elaborate on and evaluate a number of suitable probabilistic-
and distance-based measures, including a variation of the measure adopted by the k-nearest
neighbours algorithm. In particular, motivated by the ubiquitous role of copula modelling
(Nelsen, 2006) in modern statistics, among probabilistic-based measures, we explore the use
of copulae in an HDR estimation context. Interestingly, copulae introduce more flexibility to
deal with multivariate random vectors, by separately estimating the marginals and their depen-
dence structure, that is, the copula model. In addition, by placing a strong focus on the depen-
dence model, a copula approach has the advantage of better capturing data specificities, espe-
cially when these exhibit complex relationships such as asymmetric and/or tail dependencies.
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The remainder of this manuscript is organised as follows. In Section 2, we introduce the prob-
lem of interest and review existing methods for HDR estimation. The general
neighbourhood-quantile framework is described in Section 2.3. In Section 3, we discuss and
propose alternative measures in the context of HDRs, including some variants based on copulae.
Section 4 provides a comprehensive comparison among the introduced measures and the stan-
dard kernel density estimator. Empirical studies are focused on bivariate scenarios that vary ac-
cording to the complexity of the data (marginal and dependence structure, multimodality etc.)
and the sample size. A distribution on a compact support, namely, the Dirichlet distribution,
is also considered to support practical applications with compositional data. An application to
the MAGIC data set, which classifies high-energy Gamma particles in the atmosphere (Bock
et al., 2004), is illustrated in Section 4.5. We conclude in Section 5 by summarising the main
findings and discussing their implications for estimating HDRs in real-world problems.

2 A General Framework for HDR Estimation

Let fX 1; …; Xng be a sample ofn independent and identically distributed (iid) replications of
a random variable X defined on ℝd, with d ≥ 1. In our problem, we assume to have access to a
sample sn ¼ fx1; …; xng ∈ Sn of their actual realisations, with Sn the sample space. We then
wish to use sn for estimating an HDR, that is, a statistical region containing those sample values
of relatively high density (see Definition 1, attributed to Hyndman, 1996). We denote byX ij ðxijÞ
the j-th component of X i ðxiÞ, for j ¼ 1; …; d and i ¼ 1; …; n. We restrict our discussion to
continuous random variables X and, unless otherwise stated, we denote by f their probability
density function (PDF) and by F their cumulative density function (CDF).

Definition (Highest-density region; Hyndman, 1996) Denote by f the PDFof a continuous, pos-

sibly multivariate, random variable X ∈ ℝd; the 100ð1 � αÞ% HDR is defined as the subset Cðf αÞ
of the sample space of X such that:

Cðf αÞ ¼ fx: f ðxÞ ≥ f αg;
where f α is the largest constant such that PðX ∈ Cðf αÞÞ ≥ 1 � α, with α ∈ ð0; 1Þ.

One of the most distinctive properties of HDRs is that, among all regions of probability cov-
erage 100ð1 � αÞ%, the HDR has the smallest possible volume. The notion of ‘smallest’ is to
be understood with respect to some measure such as the usual Lebesgue measure; in the contin-
uous one-dimensional case that would lead to the shortest-length set, while in two dimensions
that would be the smallest-area set. It also follows from the definition that the boundary of an
HDR consists of those values of the sample space with equal density. Hence a plot of a bivariate
HDR has as the boundary a contour plot.

2.1 Density Quantile Approach

The study of HDRs has been largely enhanced by Hyndman, who proposed the density
quantile approach (outlined in Proposition 1) to estimate multivariate HDRs (Hyndman, 1996).
Today, this still represents the typical strategy and involves estimating the density.

Proposition 1. (Hyndman, 1996) Let ff ðx1Þ; …; f ðxmÞg be a sample of independent observa-
tions of size m of the random variable Y ¼ f ðX Þ, with f a bounded and continuous function in x.
Consider the ordered sample ff ð1Þ; …; f ðmÞg with f ðjÞ the j-th largest among the f ðxiÞ’s so that

f ðjÞ is the ðj=mÞ sample quantile of Y . Then, given a constant α ∈ ½0; 1�, and denoted with bjc the

greatest integer less than or equal to j, in probability,
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f̂ α≐f ðbαmcÞ→f α asm→∞; Cmðf̂ αÞ≐fx: f ðxÞ > f̂ αg→Cðf αÞ asm→∞:

Basically, the HDR is derived based on the sample quantile of the density f . However, the
density function itself is often unknown and one has to estimate it based on a set of available
iid observations sn≐fx1; …; xng. In this case, the 100ð1 � αÞ% HDR can be estimated as

Ĉn f̂ α

� �
≐fx: f nðxÞ > f ðbαncÞg; (1)

with f n being a possibly consistent estimator of f . Note that for small n, it may not be possible to
get a reasonable density estimate. Also, with few observations and no prior knowledge on the
underlying density function, there seems to be little point in attempting to summarise the
density.

2.2 One-Class Neighbour Machines (OCNM) Approach

An alternative approach to HDR estimation, inspired by the theory of support vector ma-
chines (Schölkopf et al., 2001) has been introduced in the machine learning literature by Munoz
& Moguerza (2006). The procedure is outlined in Proposition 2, and involves the notion of
neighbourhood measures (see Definition 2, attributed to Munoz & Moguerza, 2006).

Definition (Neighbourhood measure Munoz & Moguerza, 2006) Let X be a random variable

with density function f defined on ℝd . Denoted by Sn the set of random iid samples sn ¼
fx1; …; xng of size n (drawn from f ), the real-valued function g :ℝd � Sn→ℝ is a neighbourhood
measure if one of the following holds:

ðaÞ f ðxÞ < f ðyÞ ⇒ limn→∞ℙ gðx; snÞ > gðy; snÞð Þ ¼ 1; x; y ∈ sn; ∀sn ∈ Sn;

ðbÞ f ðxÞ < f ðyÞ ⇒ limn→∞ℙ gðx; snÞ < gðy; snÞð Þ ¼ 1; x; y ∈ sn; ∀sn ∈ Sn:

The function g is called either a (a) sparsity or a (b) concentration measure.

Proposition 2. (Munoz & Moguerza, 2006) Consider an iid sample sn ¼ fx1; …; xngand a spar-
sity measure g. Define ρ∗ ¼ gðxðνnÞ; snÞ, with xðνnÞ being the ðνnÞ-th sample in the order induced in sn
by g, provided that νn ∈ ; otherwise, the least integer greater than νn, denoted by ⌈νn⌉, is taken.
Then, the binary decision function hðxÞ ¼ signðρ∗ � gðx; snÞÞ is such that:

ℙ
1

n
∑
n

i¼1
 ðhðxiÞ ≠ � 1Þ ¼ ν

� �
→1 asn→∞:

where  denotes the indicator function, and

COCNM
n ≐fx:hðxÞ ≥ 0g→Cðf νÞ≐fx: f ðxÞ ≥ f νg asn→∞;

where Cðf νÞ is the minimum-volume set such that ℙðCðf νÞÞ ≥ ν, with ν ∈ ½0; 1�.

Notably, the OCNM algorithm relaxes the HDR estimation problem in the following sense:
instead of estimating and evaluating the density f , a more general and potentially simpler mea-
sure g that asymptotically preserves the order induced by the density, can be considered. It is,
however, important to remark that the quality of the estimation procedure heavily depends on
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using a neighbourhood measure. If the measure used is neither a concentration nor a sparsity
measure, there is no reason why the method should work.

2.3 Neighbourhood-Quantile Approach

We now discuss a hybrid approach that can be viewed as (i) a generalisation of the density
quantile approach and (ii) a restatement of the OCNM method directly in terms of its solution
ρ∗. Compared with the former, it ensures a wider applicability allowing for a more general set of
functions, including the density f as a special case; with respect to the latter, it offers a more
direct, interpretable, and computationally efficient method.

Theorem 1. Let X be a continuous random variable defined on ℝd with density function f , and

consider a set sn ¼ fx1; …; xng ∈ Sn of size n (drawn from f ). Assume g :ℝd � Sn→ℝ is a
neighbourhood measure. Then an estimate of the 100ð1 � αÞ% HDR can be obtained as

Cn ¼ fx:gðx; snÞ ≤ gðxð⌈ð1 � αÞn⌉Þ; snÞgif g is a sparsity measure; Cn ¼ fx:gðx; snÞ ≥ gðxðbαncÞ; snÞg

if g is a concentration measure;

where gðxðbαncÞ; snÞ is the α-quantile of the sample fgðx1; snÞ; …; gðxn; snÞg, and bjc denotes the

greatest integer less than or equal to j.

The proof is straightforward when considering the relationship between the region COCNM
n as

defined in Proposition 2 and the regionCn as defined in Theorem 1. In fact, without loss of gen-
erality, taking g to be a sparsity measure, and noticing that ν plays the role of 1 � α, one can
observe that:

COCNM
n ¼ fx:hðxÞ ¼ signðρ∗ � gðx; snÞÞ ≥ 0g

¼ fx: signðgðxð⌈νn⌉Þ; snÞ � gðx; snÞÞ ≥ 0g
¼ fx:gðx; snÞ ≤ gðxð⌈ð1 � αÞn⌉Þ; snÞg
¼ Cn:

Remark. If g is chosen to be a concentration measure, then, to ensure a 100ð1 � αÞ% cov-
erage (notice that in this case ℙðCðf νÞÞ ¼ 1 � ν), the decision value ρ∗ induced by the concen-
tration measure is given by ρ∗ ¼ gðxðbαncÞ; snÞ.

Noticing that the density represents a concentration measure, the resemblance with the den-
sity quantile approach in Proposition 1 should now be clear. In fact, from the perspective of the
density quantile approach, one can view Theorem 1 as a generalisation of Proposition 1, where f
is replaced by any function g that satisfies the criteria of neighbourhood measures. Intuitively,
provided that the density function f is replaced by a function that preserves the order induced
in the sample by f, the estimated HDR is asymptotically valid. Neighbourhood measures ensure
this ranking. To see it, without loss of generality, consider a sparsity measure g and a sample
sn ¼ fx1; …; xð1 � αÞn; …; xng ordered so that

f ðx1Þ < … < f ðxð1 � αÞnÞ < … < f ðxnÞ;
where, for simplicity, we suppose ð1 � αÞn ∈  and f ðxjÞ ≠ f ðxjÞ for all i ≠ j. From Definition 2
(a), for each pair ðxi; xjÞ, with i < j, it holds that ℙ gðxi; snÞ > gðxj; snÞ

� �
→1. Hence, given ϵ ∈ ð0; 1Þ,

there exists nij ∈  such that ℙ gðxi; snijÞ > gðxj; snijÞ
� �

> 1 � ϵ. Taking n ≥ maxfnijg, it is guaran-
teed that ℙ gðx1; snÞ > … > gðxð1 � αÞn; snÞ > … > gðxn; snÞ

� �
> 1 � ϵ. Therefore, as n→∞
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ℙ gðx1; snÞ > … > gðxð1 � αÞn; snÞ > … > gðxn; snÞ
� �

→1:

Remark Proposition 1 is a special case of Theorem 1 with gðx; snÞ being either: (a) a concen-

tration measure gðx; snÞ ∝ f̂ ðx; snÞ or; (b) a sparsity measure gðx; snÞ ∝ 1

f̂ ðx; snÞ
, where f̂ can

be any consistent density estimator. Among the plethora of density estimators, in this work we
focus on KDE (Parzen, 1962), and use it as a benchmark measure for the proposed comparators
in Section 3. Specifically, given a set of iid observations sn≐fx1; …; xng drawn from an un-
known target density f , the KDE measure M0ðx; sn; hÞ at the location x is defined as

M 0ðx; sn; hÞ ¼ 1

nhd
∑
n

i¼1
K

‖x � xi‖
h

� �
; (2)

where K :ℝd→ℝ denotes the kernel function, satisfying ∫KðxÞdx ¼ 1 and KðxÞ ≥ 0; ∀x, and
h > 0 the bandwidth hyperparameter. Details on the chosen kernel and bandwidth value will
be given in Section 4.

3 Alternative Measures for Estimating HDRs

We now propose a number of neighbourhood measures that could be used to estimate HDRs.
We elaborate on some measures that have been successfully employed in areas such as classi-
fication or clustering and introduce some novel ideas, including a copula-based approach. Al-
though some of the discussed distances are popular in existing statistical domains, for example,
the k-nearest neighbours distance and its use in classification and regression, these have not been
considered in the context of HDRs.

3.1 kNN-Euclidean Distance

This corresponds to the sum of all Euclidean distances of a given point x from its k-nearest
neighbours. The concept of closeness (‘nearest’) is defined according to the Euclidean metric
or L2-norm denoted by ‖ · ‖2; for k ¼ 1, the nearest neighbour is the point x itself, and in this
case, the distance is zero.

Definition kNN-Euclidean distanceGiven a data point x ∈ ℝd of a sample set sn of size n, and an
integer k ∈ ½1; n�, we define the k-nearest neighbourhood Euclidean distance of point x from sample
sn as

M1ðx; sn; kÞ≐ ∑
k

i¼1
‖x � xðiÞ‖2;

where xðiÞ denotes the i-th observation in the reordered data such that 0 ¼ ‖x � xð1Þ‖2 ≤ … ≤ ‖x �
xðiÞ‖2 ≤ …‖x � xðnÞ‖2.

M 1ðx; sn; kÞ is entirely based on a metric distance, that is, the Euclidean metric, and repre-
sents a sparsity measure. The property follows from the convergence in probability of the k
-nearest neighbour density estimator (Silverman, 1996). Similar distances have been used in
the literature for nonparametric classification and regression starting from the seminal work
of Fix & Hodges (1951) and Cover & Hart (1967), which led to the well-known k-nearest neigh-
bours (kNN) algorithm. Notably, the distance to the nearest neighbours can also be seen as a
local density estimate (Loftsgaarden & Quesenberry, 1965; Silverman, 1996) and as a special
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case of a variable-bandwidth KDE with a uniform kernel (Terrell & Scott, 1992). A large kNN
distance indicates that the density is small and vice versa. Furthermore, by ranking each data
point according to the distance from its k -nearest neighbours, this measure can also be used
as an outlier score in anomaly detection (Ramaswamy et al., 2000).

Compared with other methods, the kNN approach has several advantages such as (i) being
purely nonparametric, hence able to flexibly adapt to any continuous distribution; (ii) having
a reasonable time complexity; (iii) depending on a unique hyperparameter k, whose tuning is
relatively simple. The choice of k should be made based on the sample data. Generally, higher
values of k reduce the effect of noise; however, they underfit the model—making boundaries
between classes less distinct—and are computationally more expensive, especially for large d.
A general rule of thumb in classification is k ¼ b ffiffiffi

n
p c, with n the number of samples in the

dataset. Further investigation of the role of k in different settings and how it relates to the
missclassification error is given in Supplementary Material B and in Meeker et al. (2017).

3.2 kNN-CDF Distance

Although the Euclidean distance and other general notions of measures (including concepts
like area or volume) can certainly be useful for capturing relevant insights on the topology of a
given set, they may be equipped with a probability measure to better resemble the notion of den-
sity. Letℙ be a probability measure defined onℝd and denote byF its associated CDF and byFi

the CDF of the i-th marginal.
Given two data points x1 ¼ ðx11; …; x1dÞ ∈ ℝd and x2 ¼ ðx21; …; x2dÞ ∈ ℝd from the sam-

ple set sn, a preliminary version of the CDF distance between the two data points, denoted by
dℙðx1; x2Þ, has been defined in Venturini (2015) in the context of clustering problems as

dℙðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
d

j¼1
Fjðx1jÞ � Fjðx2jÞ
� �2s

: (3)

In the typical case of unknown marginal CDFs, their empirical counterpart Fn; jðtÞ ¼
1

n
∑ n
i¼1ðxij ≤ tÞ; j ¼ 1; …; d, could be considered.

The distance dℙ can be interpreted as the composition of the (nonlinear) transformation
F :ℝd→½0; 1� and the computation of the ordinary Euclidean distance. It fulfils all the properties
of being a proper metric. Furthermore, it has the nice property that the distance between two

FIGURE 2. Illustration of the CDF-distances computed on the set of points x1 ¼ �2; x2 ¼ �1:6; x3 ¼ �0:72; x4 ¼ 0:5
based on a Gaussian mixture model.
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points is proportional to the probability contained between the two points. However, as defined
in Equation (3), it presents some key limitations for inferring the underlying density and esti-
mating HDRs. Consider for simplicity the univariate Gaussian mixture model illustrated in Fig-
ure 2 and the set of points x1 ¼ �2; x2 ¼ �1:6; x3 ¼ �0:72; x4 ¼ 0:5. When evaluating the
CDF distance between x2 and all other points, we have that dℙðx2; x1Þ ≈ dℙðx2; x3Þ, but there
is little to say about the density around x1 and x3, apart from realising that they are clearly dif-
ferent. One could gain more information if one were to compute the CDF distance from the
global mode x1, assuming one has this information, noticing that the higher dℙðx1; xiÞ, for all
i, the lower the density of xi. However, this is no longer verified for multimodal densities. In fact,
we have dℙðx1; x4Þ > dℙðx1; x3Þ , but f ðx4Þ > f ðx3Þ , contrasting with the definition of a
neighbourhood measure.
Motivated by these limitations and inspired by the idea of the kNN distance in Definition 3,

we propose a new variant consisting of the sum of CDF-distances between a point x and its k
-nearest neighbours. Here, ‘nearest’ should again be understood according to the Euclidean dis-
tance. The rationale is simple: the higher the CDF distances between a point and its neighbours,
the higher one expects the density to be at that point. Because the k neighbours of each data
point will be at different (Euclidean) distances compared with the k neighbours of the other data
points, one needs to properly scale or weight the CDF distances according to this information.
The proposed measure is reported in Definition 4.

Definition kNN-CDF distanceGiven Fi, the i-th marginal of a CDF F, for i ¼ 1; …; d, and an
integer k ∈ ½1; n�, we define the k-nearest neighbourhood CDF distance as

M2ðx; sn; kÞ ¼ ∑
k

i¼2

dℙðx; xðiÞÞ
‖x � xðiÞ‖2

¼ ∑
k

i¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ d
j¼1 FjðxjÞ � FjðxðiÞjÞ

� �2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ d
j¼1 xj � xðiÞj

� �2q k > 10 k ¼ 1;

8><
>:

where x ¼ ðx1; …; xdÞ ∈ ℝd, and xðiÞ ¼ ðxðiÞ1; …; xðiÞdÞ is the i-th observation in the sample sn such

that ‖x � xð1Þ‖2 ≤ … ≤ ‖x � xðiÞ‖2 ≤ …‖x � xðnÞ‖2.

Property SemimetricConsider the M 2 measure as defined in Definition 4. It can be easily ver-
ified that, for any k ∈ ½1; n�, if one restricts the CDF distance to x and its k-th neighbour xðkÞ, then

M2ðx; xðkÞ; kÞ:ℝd �ℝd→ℝ is a semimetric. In fact, for any set x; xðkÞ ∈ ℝd, it follows that:

• If x ¼ xðkÞ; M2ðx; xðkÞ; 1Þ ¼ 0 by definition.
• If x ≠ xðkÞ; M2ðx; xðkÞ; kÞ > 0. In fact, ðxj � xðkÞjÞ2 > 0 and ðFjðxjÞ � FjðxðkÞjÞÞ2 > 0 for all j
and all k, when x ≠ xðkÞ and X is continuous.

• M2ðx; xðkÞ; kÞ ¼ M2ðxðkÞ; x; kÞ , as ðxj � xðkÞjÞ2 ¼ ðxðkÞj � xjÞ2 and ðFjðxjÞ � FjðxðkÞjÞÞ2 ¼
ðFjðxðkÞjÞ � FjðxjÞÞ2 for all j and all k.

The triangular inequality, stating that M2ðx; xðkÞ; kÞ ≤ M2ðx; xðk0Þ; kÞþM2ðxðk 0Þ; xðkÞ; kÞ, for all
x; xðkÞ; xðk 0Þ ∈ ℝd , does not hold. It is enough to consider a simple counterexample such as d ¼
1; F the CDF of a standard normal distribution, and the three points x ¼ 1 < xðkÞ ¼ 2 < xðk 0Þ ¼ 3.

3.3 ϵ-Neighbourhood Multivariate CDF Distance

The measureM 2ðx; sn; kÞ introduced in Section 3.2 has several advantages; for example: (i) it
takes into account the probabilistic information in the data, (ii) it is based on marginal CDFs
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which may be easy to estimate, and (iii) it has convenient computational times. However, using
only the marginal CDFs may compromise their validity whenever the marginal components of a
multivariate random variable X ∈ ℝd show a significant dependence structure. In that case, the
use of a multivariate CDF may be more appropriate. If the multivariate CDF is unknown, one
could use its empirical counterpart. Notice, however, that this estimation part may compromise
computational efficiency, especially in high dimensions and for large values of k. We therefore
focus on an ϵ-neighbourhood version, which reduces the number of operations from k to 1, once
ϵ is determined.

Definition ϵ-neighbourhood multivariate CDF distanceGiven the CDF F of a multivariate var-

iable X ∈ ℝd, we define the ϵ-neighbourhood multivariate CDFdistance of a point x ¼ ðx1; …; xdÞ
to be the probability of that point belonging to a hyperrectangle of dimension d defined on vertexes
½x1 � ϵ1; x1 þ ϵ1� �…� ½xd � ϵd; xd þ ϵd� scaled by hyperrectangle’s d-volume:

M3ðx; ϵÞ ¼ ℙðX ∈ ½x � ϵ; xþ ϵ�Þ
∏d
j¼12ϵj

¼ ∑ ν ∈ Vð�1ÞnðνÞFðνÞ
∏d
j¼12ϵj

∝
P

ν ∈ Vð�1ÞnðνÞFðνÞ; (4)

where ν ¼ ðν1; …; νdÞ , with νj ∈ fxj � ϵj; xj þ ϵjg , for j ∈ 1; …; d , and nðνÞ ¼ ∑ d
j¼1ðνj ¼

xj � ϵjÞ. The sum is computed over the 2d vectors of the set V.

As in the case of the density f itself, when the CDF F is unknown, a consistent estimator, say
Fn, may be used leading to

M3ðx; sn; ϵÞ ¼ ∑ ν ∈ Vð�1ÞnðνÞFnðνÞ
∏d
j¼12ϵj

∝
P

ν ∈ Vð�1ÞnðνÞFnðνÞ:

Relationship in Equation (4) can be derived by recursion starting from small d values. Ford ¼ 2,
for example, it is easy to verify that

M3ðx; ϵÞ ∝ ℙðX ∈ ½x � ϵ; xþ ϵ�Þ ¼ ℙðX 1 ∈ ½x1 � ϵ1; x1 þ ϵ1�; X 2 ∈ ½x2 � ϵ2; x2 þ ϵ2�Þ

¼ ℙðX 1 ∈ ½x1 � ϵ1; x1 þ ϵ1�; X 2 ≤ x2 þ ϵ2Þ � ℙðX 1 ∈ ½x1 � ϵ1; x1 þ ϵ1�; X 2 < x2 � ϵ2Þ
¼ ℙðX 1 ≤ x1 þ ϵ1; X 2 ≤ x2 þ ϵ2Þ � ℙðX 1

< x1 � ϵ1; X 2 ≤ x2 þ ϵ2Þ � ℙðX 1 ≤ x1 þ ϵ1; X 2 ≤ x2 � ϵ2ÞþℙðX 1 < x1 � ϵ1; X 2

< x2 � ϵ2Þ
¼ Fðx1 þ ϵ1; x2 þ ϵ2Þ � Fðx1 � ϵ1; x2 þ ϵ2Þ � Fðx1 þ ϵ1; x2 � ϵ2ÞþFðx1 � ϵ1; x2
� ϵ2Þ
¼

P
ν ∈ Vð�1ÞnðνÞFðνÞ;

with V ¼ fðx1 þ ϵ1; x2 þ ϵ2Þ; ðx1 � ϵ1; x2 þ ϵ2Þ; ðx1 þ ϵ1; x2 � ϵ2Þ; ðx1 � ϵ1; x2 � ϵ2Þg.
We now state the following result for this measure.
Property Density equivalenceConsider the M3 measure as defined in Definition 5 and assume

that F is differentiable at any point x of its support. Then, as ϵ→0; M3ðx; ϵÞ→f ðxÞ, for any x ∈ ℝd.

The proof follows from basic probability and calculus theory.
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3.4 Copula-Based Measures

A d-dimensional copula C : ½0; 1�d→½0; 1� is a CDF with uniform marginal distribution func-
tions (Nelsen, 2006). If we consider a random vector X ¼ ðX 1; …; XdÞ with joint CDF F and
marginals F1; …; Fd , then the copula of X is represented by the joint distribution of
F1ðX 1Þ; …; FdðXdÞ and is derived as

Cðu1; …; udÞ ¼ ℙðF1ðX 1Þ ≤ u1; …; FdðXdÞ ≤ udÞ
¼ ℙðX 1 ≤ F�1

1 ðu1Þ; …; Xd ≤ F�1
d ðudÞÞ

¼ FðF�1
1 ðu1Þ; …; F�1

d ðudÞÞ:
Letting uj≐FjðxjÞ, this yields the following well-known result due to Sklar (1959):

Fðx1; …; xdÞ ¼ CðF1ðx1Þ; …; FdðxdÞÞ; for allx ¼ ðx1; …; xdÞ ∈ ℝd: (5)

Furthermore, when the random vector X is continuous with density f , we also have that

f ðx1; …; xdÞ ¼ c F1ðx1Þ; …; FdðxdÞð Þ � f 1ðx1Þ �…� f dðxdÞ; (6)

where c is the density of the random vector F1ðX 1Þ; …; FdðXdÞð Þ ∈ ½0; 1�d.
In summary, one can decompose every d-dimensional CDF F or PDF f into a composition of

their marginal distribution functions and a d-copula. This allows us to redefine bothM 0 in Equa-
tion (2) andM3 in Definition 5 in terms of their copula representation. For example, in the case
of the M3 measure, we may construct its copula-based alternative given in Definition 6.

Definition ϵ-neighbourhood copula-based CDF distanceGiven the CDF F of a random vector
X ¼ ðX 1; …; XdÞ , we define the ϵ -neighbourhood copula-based CDF distance of point x ¼
ðx1; …; xdÞ to be

MCop
3 ðx; ϵÞ ¼ ∑ ν ∈ Vð�1ÞnðνÞCðF1ðν1Þ; …; FdðνdÞÞ

∏d
j¼12ϵj

∝
P

ν ∈ Vð�1ÞnðνÞCðF1ðν1Þ; …; FdðνdÞÞ;

(7)

where ν ¼ ðν1; …; νdÞ , with νj ∈ fxj � ϵj; xj þ ϵjg , for j ∈ 1; …; d , and nðνÞ ¼ ∑ d
j¼1ðνj ¼

xj � ϵjÞ.

For d ¼ 2, it is immediate to verify that

MCop
3 ðx; ϵÞ ∝ C F1ðx1 þ ϵ1Þ; F2ðx2 þ ϵ2Þð Þ � CðF1ðx1 � ϵ1Þ; F2ðx2 þ ϵ2ÞÞ

� CðF1ðx1 þ ϵ1Þ; F2ðx2 � ϵ2ÞÞþCðF1ðx1 � ϵ1Þ; F2ðx2 � ϵ2ÞÞ:
The main advantage of this representation over the one involving the joint CDF is that the

estimation of the multivariate distribution, when unknown, is performed through the estimation
of the (univariate) marginals, evading thus the curse of dimensionality (see, e.g. Nagler &
Czado, 2016). Furthermore, copulae offer a flexible framework that captures complex depen-
dence structures while offering direct control over the marginals.
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4 Empirical Evaluation

4.1 Simulation Setup

We now evaluate and compare the proposed measures in an extensive number of simulated
bivariate settings that vary according to the complexity of the data. In particular, we consider
scenarios with different dependence structures induced by the copula model (e.g. tail or asym-
metric dependencies), different marginal distributions (e.g. heavy-tailed or multimodal distribu-
tions), as well as different sample sizes.

(i) We consider different copula models for the dependence structure among marginals, all
sharing the same degree of dependence, expressed via Kendall’s τ , and set equal to 0.5.
The list of different copulae follows.

FIGURE 3. Evaluated scenarios with their contour plots at different levels, included the one delimiting the 95% HDR (blue
colour).
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CGauss
θ¼0:7

Gaussian family (Elliptical class) with zero tail dependence and radial symmetry.

Ct
θ¼0:7; ν¼6

Student’s t family (Elliptical class) with radial symmetry.

CFrank
θ¼5:75

Frank family (Archimedian class) with radial symmetry.

CClay
θ¼2

Clayton family (Archimedian class) not restricted to radial symmetry.

(ii) Each of the above copulae is then combined with different simulation schemes for the mar-
ginals, according to the following details. Fixing σ2 ¼ 2 and w1 ¼ 1 � w2 ¼ 0:5, and taking
μ11 ¼ 0; μ12 ¼ 9; μ21 ¼ 1; μ22 ¼ 8, we consider the following:

Unimodal—heavy tails Student’s t model X i ∼ tν¼2; i ¼ 1; 2.
Unimodal Gaussian model X i ∼ Nðμi1; σ

2Þ; i ¼ 1; 2.
Bimodal Gaussian X 1 ∼ Nðμ11; σ

2
1Þ & Gaussian

mixture X 2 ∼ ∑ 2
k¼1wkNðμ2k þ 5ðk ¼ 2Þ; σ2Þ.

Quadrimodal Gaussian mixture X i ∼ ∑ 2
k¼1wkNðμik ; σ

2Þ; i ¼ 1; 2.

(iii) We also consider a distribution on a compact supports, that is, the Dirichlet distribution defined
on the ðK � 1Þ-simplex, with K ¼ 3 and with parameters α ¼ ð1; 1; 2Þ. In this case, the de-
pendence structure is uniquely determined and its closed-form copula expression is given in
Section 4.4.1.

(iv) We finally cover different sample sizes, with n ∈ f50; 100; 500; 1000g.
In total, 17 different scenarios are considered, named S1 to S17. Their graphical representa-

tion, in the form of contour plots, is provided in Figure 3 (S1–S16) and Figure 4 (S17).
By exploring such an extended number of simulation setups, we hope to cover a broad spec-

trum of potential scenarios that may occur in practice. In addition to offering a comprehensive
understanding of the performances of the different measures, it may provide guidance to applied
scientists who may need to choose the most ideal measure for their specific application. For

FIGURE 4. Contours of a Dirichlet(1,1,2) density (left) and of its induced copula density (right). The 95% HDR is repre-
sented by the blue contour.
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example, the problem of doping detection when relying on the two primary biomarkers of the
haematological module could well be related to scenario S15 (Gaussian and Gaussian mixture
marginals and a Clayton copula; see Deliu & Liseo, 2024, for an illustrative example).

4.2 Evaluated Measures

In all settings, we employ the proposed neighbourhood-quantile method (see Section 2.3) on
data samples of different sizes generated according to the aforementioned scenarios. For each
scenario, we evaluate the following eight methods, with full details on their hyperparameter
tuning reported in Supplementary Material B.

M 0:KDE
Direct estimation of the bivariate density. We use KDE, with Gaussian kernel and
bandwidth selection based on the asympotically optimal solution proposed in
Chacón et al. (2011), where its adequacy is shown in general settings, including
Gaussian mixture models.

MNPCop
0 :DE

Nonparametric indirect density estimation with copula. We use standard KDE with
the same optimal bandwidth of Chacón et al. (2011) for the univariate marginals,
and KDE with the transformation local likelihood estimator and
nearest-neighbour bandwidth for the copula density. We refer to Nagler &
Czado (2016) for details.

MPCop
0 :DE

Parametric indirect density estimation with copula. We adopt a fully parametric ap-
proach (with maximum likelihood fitting) to estimate both marginals and the cop-
ula. For the copula model, we select the best model using the AIC criterion; no
misspecification is introduced for the marginals.

M1 :k NN-

Eucl

Cumulative Euclidean distances from the kNNs. We sum the Euclidean distances
between each point and its k neighbours defined according to the Euclidean metric.
The choice of the hyperparameter k is based on an extensive cross-validation proce-

dure, leading to a general rule of thumb aligned with the existing literature: k ¼ffiffiffiffiffiffiffiffi
n=2

ph i
, with ½x� the integer closest to x.

M2 :k NN-

CDF

Cumulative CDF distances from the kNNs. We sum the CDF distances between
each point and its k neighbours, which are defined according to the Euclidean met-
ric. The measure follows a univariate approach as detailed in Section 3.2. The
choice of the hyperparameter k is based on an extensive cross-validation procedure,
suggesting a uniform choice across different scenarios and sample sizes: k ¼ 30.

M 3 :ϵ-CDF
This represents the ϵ -neighbourhood multivariate CDF distance introduced in
Section 3.3. The empirical CDF is used as the CDF estimator. The optimal choice
of the hyperparameter ϵ is based on an extensive cross-validation procedure, leading
to the following heuristic for S1-S16 as a result of an exponential decay model fit
with respect to the sample size: ϵ ¼ exp 2:13 � 0:3log nð Þ.

MNPCop
3 :ϵ

-CDF

Fully nonparametric indirect estimation of the ϵ-CDF measure with copula. We use
the empirical CDF for estimating the univariate marginals, and KDE with the trans-
formation local likelihood estimator and nearest-neighbour bandwidth for the cop-
ula density. The optimal choice of the hyperparameter ϵ follows the same strategy
as the previous measure, leading to the following heuristic for S1-S16: ϵ ¼
exp 1:74 � 0:26log nð Þ.
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MPCop
3 :ϵ

-CDF

Parametric indirect CDF estimation with copula. We adopt a fully parametric ap-
proach (with maximum likelihood fitting) to estimate both marginals and the cop-
ula. For the copula model, we select the best model using the AIC criterion; no
misspecification is introduced for the marginals. The optimal choice of the
hyperparameter ϵ follows the heuristic ϵ ¼ exp 1:60 � 0:41log nð Þ for S1-S16.

Exception made for the measures depending on ϵ (with considerations deferred to Section
4.4.1), the same hyperparameter choices are adopted in scenario S17.

4.3 Performance Metrics

The measurement of the performance of an HDR estimator can be closely related to the spe-
cific problem of interest. In a context where the interest is in detecting abnormal values, for ex-
ample, estimating an HDR would allow to understand which points fall outside the
normal-points region. This motivates certain metrics of common use in one-class classification
problems, which we also employ in this work. However, we emphasise that the derivation of an
HDR can in principle have a wider scope compared with a classification goal. Indeed, it would
define the region of highest-density points (e.g. normal values), regardless of whether these
points have been observed or not. Thus, it would not only allow us to classify an observed point
as normal or abnormal, but it would also provide the entire region of normal values, useful, for
example, in a prediction setting prior to observing a point.
Let FP, TP, FN, and TN be the number of false positive, true positive, false negative, and true

negative points, respectively, where positive refers to those points that should be outside the true
ð1 � αÞ% HDR and negative the others:

TN ¼
P

i ∈ sn
ðxi ∈ Cðf αÞÞ; FN ¼

P
i ∈ sn

ðxi ∈ Ĉnðf̂ αÞjxi ∉ Cðf αÞÞ; TP ¼
P

i ∈ sn
ðxi ∉ Cðf αÞÞ; FP ¼

P
i ∈ sn

ðxi ∉ Ĉnðf̂ αÞjxi ∈ Cðf αÞÞ:

Well-established measures of inefficiency are false negative/positive rates (FNR/FPR), and
the total error rate (ERR), that is, the one-complement of accuracy:

FNR ¼ FN

FN þ TP
; FPR ¼ FP

FP þ TN
; ERR ¼ FN þ FP

FN þ FP þ TN þ TP
¼ 1 � Accuracy:

To account for the potentially high imbalance between positives and negatives, we also evaluate
the two-sided F1 score, and the Matthews correlation coefficient (MCC; Matthews, 1975) alter-
natively known in statistics as the ϕ-coefficient (see p. 282 in Cramér, 1946):

F1 ¼ 2TP

2TP þ FP þ FN
þ 2TN

2TN þ FP þ FN
; MCC

¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞp :

In particular, MCC has been shown to produce good scores only if the classification is ade-
quate in all four elements of interest (true positives, false negatives, true negatives, and false
positives), overcoming the overoptimistic inflated results, especially on imbalanced datasets,
of other popular classification measures (Chicco & Jurman, 2020). All evaluations are based
on α ¼ 0:05, that is, a coverage probability of 95%, or, alternatively stated, 5% and 95% of pos-
itives and negatives, respectively.
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4.4 Simulation Results

Comparative performance results are reported in Table 1 in terms of their mean (standard de-
viation) across a number of 1,000 independent Monte Carlo (MC) replicates. We primarily fo-
cus on discussing four scenarios that are representative of the different copula-induced depen-
dencies and multimodalities, specifically those on the diagonal of Figure 3 (S1, S6, S11 and
S16), and the sample size n ¼ 500; all the other scenarios and sample sizes are deferred to Sup-
plementary Material C. The Dirichlet case is covered in Section 4.4.1.
In general, copula-based approaches result in the most performing measures, with classifica-

tion errors (ERR, FPR and FNR) uniformly smaller than those of the other measures and at no
cost in terms of variability. Their advantage is particularly interesting in more complex scenar-
ios, such as the quadrimodal case, where the parametric copula approach (both MPCop

0 :DE and

MPCop
3 :ϵ-CDF) practically halves the total error rate (ERR) of a standard M0:KDE. Although

the difference may be considered relatively negligible when looking at the ERR (maximum dif-
ference of 0.015 in S16) and the FPR (maximum distance of 0.008 in S16), it plays a significant
role for the FNR, with an error difference of 0.157. In practice, the probability of a true positive
being missed by the ‘test’ or measure decreases from around 28% (M0:KDE; S16) to around
13% (MPCop

0 :DE, MPCop
3 :ϵ-CDF; S16). This aspect is well-captured by the alternative perfor-

mance metrics of F1 and MCC, which offer a more reliable global measure of efficiency com-
pared with the ERR or the Accuracy. As shown in Table 1—S16, when comparingM 0:KDE to
MPCop

0 :DE or MPCop
3 :ϵ-CDF, the MCC, for example, increases from 0.693 to more than 0.85.

Note that MCC varies from �1 (worst value) to 1 (best value).
When comparing the non-copula based measures, no substantial difference is noticed be-

tween M0 :KDE, M1 :kNN-Eucl and M3 :ϵ-CDF, with a slightly improved performance of
the second. In particular, M 1 :kNN-Eucl provides the only exception to the uniform advantage
of copula-based approaches. This occurs in S1 for n ¼ 50, where M 1 :kNN-Eucl shows an en-
hancement, although negligible (results are given in Supplementary Material C—Table 2 and
Figure 31). Interestingly, S1 represents a scenario with heavy-tailed marginals, that is, Student’s
t distribution with ν ¼ 2, which translates into a substantially wider 95% HDR (see Figure 3).
Relatively good results are also achieved in the other heavy-tailed cases (S5, S9 and S13), and
only in small samples (in particular n ¼ 50; see Figure 31 in the supporting information). Out-
side these scenarios, compared with the classical M0:KDE, M1 :kNN-Eucl has typically supe-
rior performances in more complex cases, in particular, in all quadrimodal distributions (S4, S8,
S12 and S16), and for smaller sample sizes (n ¼ 50 and n ¼ 100). As the sample size increases (
n > 100), M0:KDE shows some improvements, especially in simpler settings with Gaussian
marginals (result are given in Supplementary Material C).
The worst behaviour is shown by M2 :kNN-CDF (with FNR being as high as 72% in S16).

Note that this was expected as M 2 :kNN-CDF follows a univariate rationale, motivating there-
fore the multivariate M 3 :ϵ-CDF proposal (see Section 3).

4.4.1 Simplex scenario: Dirichlet

A particular interest is dedicated to the simplex scenario, which plays an important role as the
sample space of compositional data. Compositional data quantitatively describe parts of some
whole and consist of vectors of positive components subject to a unit-sum constraint
(Aitchison, 1982). Measurements involving proportions, probabilities, or percentages can all
be thought of as compositional data. These commonly arise in many disciplines; for example,
in demography, cause-specific mortality rates can be studied by considering them as
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compositions, where no single rate is free to vary separately from the rest of the rate composi-
tion(see, e.g. Stefanucci & Mazzuco, 2022). This induces a particular and unique dependence
structure (represented, e.g. by the correspondent copula), which is fully entangled in the whole
system.

The Dirichlet distribution represents a natural candidate for analysing compositional data, as
its support is the simplex. Let X ∼ Dðα1; α2; α3Þ denote a Dirichlet random vector defined on
the 2-dimensional simplex, where αj > 0 , for j ¼ 1; 2; 3 ; we refer to chapter XI in
Devroye (1986) for a detailed exposition. Up to a normalising constant, the density ofX is given
by

f ðx1; x2; α1; α2; α3Þ ∝ xα1 � 1
1 xα2 � 1

2 ð1 � x1 � x2Þα3 � 1; x1; x2 ∈ ½0; 1�; x1 þ x2 ≤ 1:

In the 2-dimensional simplex, when α1 ¼ 1; α2 ¼ 1; α3 ¼ a, the associated copula density has
the following expression up to a normalising constant:

c u1; u2; α1 ¼ 1; α2 ¼ 1; α3 ¼ að Þ ∝
ð1 � u1Þ

1
a þ 1 þ ð1 � u2Þ

1
a þ 1 � 1

h ia � 1

ð1 � u1Þð1 � u2Þ½ � a
a þ 1

;

with u1; u2 such that u1; u2 ∈ ½0; 1� and ð1 � u1Þ
1

a þ 1 þ ð1 � u2Þ
1

a þ 1 ≥ 1 . The analytical

FIGURE 5. Performance results of the compared methods in the Dirichlet scenario for varying sample sizes. Data are
summarised in terms of mean and error bounds across 1,000 independent Monte Carlo (MC) replicates.
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derivation is given in Supplementary Material A, while its graphical representation—in terms of
a set of random draws and different level sets—is illustrated in Figure 4.
To evaluate the proposed measures in this specific scenario, one first needs to perform an ac-

curate tuning of their hyperparameters. As shown in Supplementary Material B, the optimal
choice of k—which represents the optimal number of neighbours to take into account for com-
puting both M1 :kNN-Eucl and M2 :kNN-CDF—remains the same as for the other scenarios:

k ¼ ffiffiffiffiffiffiffiffi
n=2

ph i
. However, for measures depending on ϵ—which defines the length, area, or vol-

ume of the neighbourhood—the optimal choice depends on the support of the underlying var-
iable. Being defined on a simplex, in a Dirichlet scenario, the optimal values of ϵ have a smaller
magnitude compared with noncompact or less restrictive scenarios such as S1-S16. In this case,
the following choices are made for ϵ, guided by simulation studies reported in Supplementary
Material B:

M3 :ϵ-CDF
Performances are robust to sample size, with the empirical optimal ϵ ¼ 0:10.

MNPCop
3 :ϵ

-CDF

Performances depend on the sample size, according to a heuristic given by: ϵ ¼
exp �1:22 � 0:23log nð Þ. This relationship is obtained by fitting a nonlinear regres-
sion (exponential decay model), with the empirical optimal ϵ and the sample size n
as dependent and independent variables, respectively.

MPCop
3 :ϵ

-CDF

Performances are robust to sample size, with the empirical optimal ϵ ¼ 0:02.

In terms of results, as suggested in Table 1, the more complex the scenario, the more difficult
one should expect it to be to identify the highest-density points (or true negatives) versus the
true positives. In this particular case, as shown in Figure 5, the discrepancy between the differ-
ent measures is remarkable, with persistently high FNR values, even when the sample size in-
creases, for M0:KDE and M2 :kNN-CDF. All other measures improve with the sample size,
achieving results comparable to the other scenarios.

4.5 MAGIC Data

We now apply the proposed measures to derive an HDR for the joint distribution of two se-
lected variables from the MAGIC dataset (Bock et al., 2004). These data simulate the registra-
tion of high-energy gamma particles in a ground-based atmospheric Cherenkov gamma tele-
scope and have been studied in classification problems (Dvořák & Savický, 2007), as well as
to analyse the dependence structure of some of the characterising variables(see, e.g. Grazian
et al., 2022; Nagler & Czado, 2016).
In this evaluation, we focus on gamma-ray observations (overall n ¼ 12; 332) and consider

the two variables ‘fConc1’ and ‘fM3Long’, after scaling them. We refer to Bock
et al. (2004) for a full description of the dataset. In this case (as deduced from the complex
structure of the data; see Figure 6), the parametric approach is inappropriate for both the estima-
tion of the marginal distribution and, more importantly, the copula model. Thus the 95% HDR
is estimated using the nonparametric measures only. Although in the absence of the underlying
truth it is not possible to perform a reliable evaluation, it seems that the two nonparametric
copula-based approaches (MNPCop

0 :DE and MNPCop
3 :ϵ -CDF), as well as the distance-based

M1 :kNN-Eucl andM 3 :ϵ-CDF, more sensibly exclude tail data points (which may be expected
to have a lower density) from the HDR.
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To deal with estimation and data uncertainty, we also explore the potential of a ‘measure av-
eraging’ in a similar, but simplified, manner to model averaging (see, e.g. Hoeting et al., 1999;
Hjort & Claeskens, 2003). By forming a consensus between the different available measures,
one would expect the resulting averaged HDR to be more robust than the individual estimates.
Specifically, in Figure 7, we illustrate a 95% HDR formed by averaging across the different non-
parametric measures: the estimated HDR is defined by the set of points identified as
highest-density points by more than half of the evaluated metrics. Notably, when comparing
the resulting HDR in Figure 7 and those obtained by the individual measures (Figure 6), we
identifyM3 :ϵ-CDF andMNPCop

3 :ϵ-CDF as the regions better resembling the average (both with
<1% classification difference). Therefore, these may result in a possible superior ability to de-
tect anomalous values in scenarios where a parametric assumption is unrealistic.

5 Discussion and Conclusions

In this work, we have discussed some generalisations of the standard density-based approach
for estimating highest-density regions, using neighbourhood measures. Various measures, with
distinct properties, have been introduced and compared with the classical kernel density estima-
tor, across different scenarios and sample sizes. Furthermore, the use of copula models for rep-
resenting a multivariate distribution through a combination of its marginals and their depen-
dence structure has been investigated. Our results suggest that such a generalised approach
may provide great advantages to HDR estimation when considering several alternative measures
to KDE, especially those based on copulae. In fact, compared with traditional KDE,

FIGURE 6. Estimated 95% HDR of two scaled variables (‘fConc1’ on x-axis and ‘fM3Long’ on y-axis) of the MAGIC
dataset. Only nonparametric measures are evaluated. Cadet-blue points define the estimated 95% HDR; in contrast, purple
points are those lying outside the HDR.
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copula-based HDR resulted in greater accuracy and lower FPR and FNR in a number of simu-
lation scenarios and possibly in real data (as suggested by the MAGIC data application). Such
performances are particularly important when the interest is in balancing different types of er-
rors, minimising both false positives and false negatives, and maximising therefore the proba-
bility of detecting atypical or anomalous values. In a doping detection problem, for example,
this would directly translate into an enhanced ability of identifying doping abuse.
It is important to emphasise that among the various copula-based measures, the parametric

ones generally outperformed the non-parametric measures. This outcome was expected because
all the considered scenarios, despite their complexity, were generated from parametric models
and were evaluated under the assumption of no model misspecification for the marginals. In
real-world applications, one would first need to select the most appropriate family using a cri-
terion of fit, such as the Akaike information criterion (AIC) or the Bayesian information crite-
rion (BIC). Notably, an important advantage of using copulae is that marginal model selection is
implemented separately for each marginal, restricting the analysis to simpler univariate cases.
Concerning the copula model, we account for potential misspecification, with model selection
performed using the AIC (note that built-in functions are available in R software, for example,
the BiCopSelect() function from the VineCopula package; Nagler et al., 2023).
Relative to the scenarios and measures considered in this work, the main recommendation for

the neighbourhood measure is thus a copula-based alternative. In particular, parametric variants
should be preferred when distributions show a pattern traceable to a parametric family. When
parametric measures do not appear appropriate for the data at hand, we would recommend
the nonparametric copula-based options, with the exception of scenarios with heavy-tailed mar-
ginals. Here,M 1 :k NN-Eucl achieves the best results, and the nonparametricMNPCop

0 :DE mea-

sure is among the most inferior ones, especially in small samples. On the contrary, theMNPCop
3 :ϵ

-CDF measure using the ϵ-neighbourhood multivariate CDF distance shows promising results.
Because the main characteristic of the latter is that it is based on the CDF rather than the PDF, it

FIGURE 7. Estimated 95% HDR based on a ‘measure averaging’ approach of two scaled variables (‘fConc1’ on x-axis and
‘fM3Long’ on y-axis) of the MAGIC dataset. Cadet-blue points define the estimated 95% HDR; in contrast, purple points are
those lying outside the HDR.
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may suggest that focusing on estimating the former may be advantageous. Similar findings are
reported by Magdon-Ismail & Atiya (2002), who acknowledge that, compared with directly es-
timating the PDF with, for example, KDE, approximating the CDF is less sensitive to statistical
fluctuations and its convergence rate is faster than the convergence rate of KDE methods. We
also emphasise that although heuristic considerations for each specific measure are made in
terms of their hyperparameters, for example, the choice of k in the kNN-based approaches, fur-
ther work may investigate the existence of optimal theoretical values in a similar fashion to the
asymptotic works on the optimal bandwidth choice in KDE (see, e.g. Chacón et al., 2011;
Wand & Jones, 1994b).

In this work, we focused on estimating HDR for continuous distributions that are dominated
by the Lebesgue measure. Furthermore, despite providing a general multidimensional frame-
work for building HDRs, we evaluated the proposed approach in a bivariate context. Future
lines of research may examine the problem in the underappreciated setting of discrete probabil-
ity distributions and in higher dimensions. In the first case, possible connections could be made
with the work of O’Neill (2022), which established some theory and an algorithm for HDRs for
discrete distributions. In the second case, and more specifically with reference to copula-based
measures, our aim is to explore the use of vine copulae (Nagler & Czado, 2016) to construct
flexible dependence models for an arbitrary number of variables using only bivariate building
blocks. We expect, in fact, to see remarkable advantages in using copulae over an increased
number of variables, as the extension of the common KDE to high dimensions has proven chal-
lenging in terms of both computational efficiency and statistical inference.
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