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Abstract
This paper provides a new modeling for air pollution, simultaneously taking into
account the six main pollutants (PM10 and PM2.5, Sulphate Dioxide, Nitrogen
Dioxide, Carbon Monoxide, ground level Ozone concentrations) and their key
determinants, employing Structural Equation Models (SEMs). The model is able
to estimate the complex links among air pollutants, often neglected in literature,
and identifies specific drivers of air pollution. In literature, indexes of air pollu-
tion achieved using a fully statistical methodology have not been proposed yet.
Indeed, an added value of this proposal is the statistical procedure itself, which
can be applied also to obtain indexes modeling different phenomena. In partic-
ular, in this study, the new Air Pollution Index (API) is based on a modeling
approach that allows to assess, through statistical criteria, the goodness of fit of
the SEM in modeling pollutants and the significance of their determinants. The
performance of the new index is assessed using air quality data for municipal
European areas, which are characterized by different socioeconomic, geograph-
ical, and meteorological features. SEMs are estimated and evaluated in terms of
best fit and model complexity. The index resulting by the best SEM is compared
with the well-established Air Quality Index (AQI). The new API is validated by
means of a sensitivity analysis, performed with a simulation study. Finally, to
visualize the meaningfulness of the obtained results, a model-based cluster anal-
ysis is estimated on the municipal areas. The proposed SEM contributes to a
better understanding of the relationships between air pollutants and their deter-
minants, and this knowledge can inform policy decisions aimed at reducing air
pollution and improving public health.
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1 INTRODUCTION

Air pollution has become a serious threat to human health (Hoskovec et al., 2022), particularly in urban areas and
cities (Antanasijević et al., 2018; Cromar et al., 2020; Dominici et al., 2000). The World Health Organization (WHO), the
European Commission, and several International Organizations and Institutions have proposed policy strategies to reduce
air pollution in cities, and its damage to health (EEA, 2022; WHO, 2021).
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Usually, the modeling of pollutants is conducted by considering gases separately, thus failing to account for the
combined effect of diverse air quality variables, or aggregating them on the basis of classical and simple techniques,
sometimes based on strong assumptions (Bruno & Cocchi, 2002; K & Kumar, 2022). Air quality models can be catego-
rized into single-pollutant and multi-pollutants models, based on the aggregation function employed (K & Kumar, 2022).
Single-pollutant models identify the highest pollutant value exceeding the threshold limit, underestimating the actual air
quality by neglecting the effects of other pollutants (Khanna, 2000), and the complex links among air pollutants are often
neglected (Garrido et al., 2021). On the other hand, multi-pollutants based models provide an aggregated measures of air
quality using various aggregation methods, such as arithmetic aggregation method (Makra, 2003), and more sophisticated
methods such as fuzzy-based (Sarkheil & Rahbari, 2016), entropy function (Cheng et al., 2004), factor analysis (Bishoi
et al., 2009). However, all these methodologies fail in providing the statistical assessment of their results.

Nowadays, a more reliable, extensible, and comparable index of air pollution, taking into account the complexity of the
phenomenon, is mostly needed (K & Kumar, 2022; Shipley, 2016), to be employed as a policy tool for designing strategic
pollution reduction programs to preserve public health.

Indeed, the aim of our paper is to propose a statistical approach to obtain an air quality index, overcoming most of the
drawbacks of the currently used models.

Recent studies have emphasized the SEM’s potential for modeling multidimensional phenomena. For instance, SEM is
widely employed in ecology (Budtz-Jørgensen et al., 2010; Fan et al., 2016; Garrido et al., 2021), but the SEM methodology
has not been completely exploited in the field of environmental research.

This paper tries to overcome this lack in the literature, proposing a unique model for different pollutants, and building
a model-based multidimensional index. This new index wishes to replace the usual monitoring of single gases, and tries
to overcome the usual drawbacks of environmental composite indices, for example, the strong hypotheses required and
the fact that multivariate relations among contaminants are not taken into consideration. The new methodology wants
to be rather general and flexible, and it can be employed with data from diverse sources. The approach used to specify the
appropriate SEM for air quality modeling requires three steps: the variable selection, that allows to properly characterize
air quality, not only on the basis of pollutants, but also by considering their determinants; the model selection from a set
of candidate models; and the model assessment to evaluate the performance of the index. In this way, the methodology to
obtain the new index is completely based on a statistical procedure that allows the evaluation of the best choice for each
step, considering specific statistical goodness of fit criteria and significance tests.

In this study, the proposed methodology is applied to a dataset of pollutants in European Union metropolitan areas.
The analyzed dataset includes Worldwide Air Quality data (https://aqicn.org/), which covers pollutants and atmospheric
conditions around the world, providing unified and worldwide air quality information (Boaz et al., 2019). In addi-
tion, to take into account the features of the analyzed cities, two other sources of data at municipal level have been
employed: the Organization for Economic Co-operation and Development (OECD) Metropolitan database, which pro-
vides socio-economic and environmental indicators in 36 countries (OECD, 2012), and the Eurostat metropolitan regions
(NUTS3) data (Eurostat, 2019). This multiple sources, complete dataset has allowed for the accounting of the com-
plex relationships among gases, also considering the specific social, demographic, economic and meteorological cities’
features.

The most meaningful and significant exogenous manifest variables have been selected by using a Multivariate Random
Forest (MRF) regression (Genuer et al., 2010; Grömping, 2009), to identify key predictors of the multivariate outcome
(the six pollutants).

The latent concept of air pollution has been estimated through SEMs with different specifications, based on multiple
endogenous and exogenous variables (Cole & Preacher, 2014; Fan et al., 2016; Landis et al., 2000; Tarka, 2018), identifying
the best model in terms of goodness of fit. The obtained Air Pollution Index (API) has been validated by means of a
sensitivity analysis that employs a simulation study to test its robustness with respect to variation of its input values to
understand how variations in the underlying SEM variables affect the final index score.

Moreover, API has been compared with the currently used Air Quality Index (AQI). The AQI (Tan et al., 2021) is a
well-established and largely employed tool for monitoring air pollution worldwide (Cromar et al., 2020; Xu et al., 2020).
It presents the great advantage to allow the comparison in time and space, being based on the same, simple method-
ology employed in many different countries and for a long (period) time. The AQI constitutes an effective method to
estimate air pollution levels (Suman, 2021), but it is based on debatable assumptions and thresholds, and it is built with
elementary aggregation methodologies. Moreover, employing classical methodology does not benefit from the evalua-
tion of models based on statistical fit measures and estimation of errors (Kanchan et al., 2015; Tan et al., 2021). Even
if the drawbacks of AQI have been identified in previous studies (Bruno & Cocchi, 2007), the alternative proposal of
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an air quality index has been based altogether on similar classical techniques, (Tan et al., 2021) even if it has been
proposed quite recently. The main difference with other air quality indexes is that, while they make use of consensus-based
expert opinion, the approach proposed in this paper to construct the API is empirical and model-based. However, the
goal of the study is not to replace the AQI, but rather to complement it with an approach that benefits from goodness of
fit measure.

Finally, to provide meaningful insights into the obtained results, a model-based cluster analysis is estimated on the
municipal areas.

This paper is structured as follows: in Section 2 a description of data used for the empirical study of air quality is
shown. Section 3 is devoted to the illustration of Structural Equation Models theoretical basis, with particular reference
to hierarchical models with exogenous manifest variables. The empirical results are the subject of Section 4. Section 5
shows the validation of the proposed index, including a sensitivity analysis carried out by means of a simulation study,
a comparison between the well-established AQI and the proposed methodology, and a model-based cluster analysis to
visualize the results. Finally, in Section 6, a discussion on further developments is provided and some conclusions are
drawn.

2 DATA

The Worldwide Air Quality dataset is one of the main databases on air pollution. It covers around 380 main cities in the
world, starting from January 2015. For each city, it includes the median for each of the air pollutant species and mete-
orological data, among several stations. All air pollutants are converted to the U.S. Environmental Protection Agency’s
(EPA) standards.

2.1 Air quality data

The proposed procedure is applied considering 130 metropolitan areas across the European Union (EU). More in detail,
the pollutants considered are the following. Carbon Oxide (CO) is a colorless and odorless gas formed by the incom-
plete reaction of air with fuel. CO pollution occurs primarily from emissions produced by fossil fuel-powered engines,
including motor vehicles and non-road engines and vehicles (Stork & Anguish, 2005). Sulfur dioxide (SO2) forms when
sulfur-containing fuel such as coal, oil, or diesel is burned. The largest sources of sulfur dioxide emissions are Diesel
engines, electricity generation, industrial boilers, and other industrial processes such as petroleum refining and metal
processing (Gad, 2005). Particle pollution (PM2.5, PM10) is a complex mixture of air-borne particles and liquid droplets
composed of acids (such as nitrates and sulphates), ammonium, water, black (or “elemental”) carbon, organic chem-
icals, metals, and soil (crustal) material (EPA, 2022; WHO, 2021). EPA groups particle pollution into two categories:
“Inhalable coarse particles” such as those found near roadways and dusty industries, range in diameter from 2.5 to 10
micrometers (or microns) and “Fine particles”, such as those found in smoke and haze, are 2.5 micrometers in diam-
eter and smaller. PM2.5 is referred to as “primary” if it is directly emitted into the air as solid or liquid particles and
is called “secondary” if it is formed by chemical reactions of gases in the atmosphere. Major sources of primary fine
particles include cars and trucks (especially those with diesel engines), open burning, wildfires, fireplaces, woodstoves,
outdoor wood boilers (also called hydronic heaters), cooking, dust from roads and construction, agricultural operations,
coal, and oil-burning boilers. Main sources of secondary fine particles are power plants and some industrial processes,
including oil refining and pulp and paper production. Nitrogen dioxide (NO2) is a gaseous air pollutant composed
of nitrogen and oxygen and it belongs to a group of gases called nitrogen oxides. NO2 forms when fossil fuels such
as coal, oil, gas, or diesel are burned at high temperatures. However, it can also form indoors when fossil fuels like
wood or natural gas are burned. It is important to remark that NO2 contributes to chemical reactions that produce
ozone (Mukhopadhyay & Sahu, 2018). Cars and trucks are the largest sources of emissions, followed by power plants,
diesel-powered heavy construction equipment, other movable engines, and industrial boilers (EPA, 2022). Ground-level
ozone (O3) is not usually directly emitted, but rather forms from chemical reactions between oxides of nitrogen and
volatile organic compounds. This happens when pollutants emitted by cars, power plants, industrial boilers, refiner-
ies, chemical plants, and other sources chemically react in the presence of sunlight (Wennberg & Dabdub, 2008). For
this reason, as highlighted by Mukhopadhyay and Sahu (2018), rural sites are less polluted than the urban ones in
terms of NO2, whereas the converse is true for O3. This is due to the reaction with NOx emissions, which are greatest
in urban areas.
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2.2 Air quality index

Based on the pollutants described above, the AQI is calculated as follows:

AQI = max
p

AQIp, p = 1, … , 6 (1)

where

AQIp =
IHi − ILo

BPHi − BPLo

(
Cp − BPLo

)
+ ILo (2)

with:

• Ip= the index for pollutant p;
• Cp= the truncated concentration of pollutant p;
• BPHi, BPLo= concentration break-points greater than or equal and less than Cp, respectively;
• Ihi, Ilo= the AQI values corresponding to BPHi and BPLo, respectively.

The AQI runs from 0 to 500 (Tan et al., 2021): the higher the AQI value, the greater the level of air pollution and the
greater the health concern. The AQI is divided into six categories. Each category corresponds to a different level of health
concern, and it is represented by a specific color. For instance, an AQI value of 50 or below represents good air quality
(green color), while an AQI value over 300 represents hazardous air quality (in brown). In general, when AQI values are
above 100, air quality is unhealthy: at first for certain sensitive groups of people, then for everyone as AQI values get
higher (colors from orange to red). Therefore, the AQI relies on decisions made by field experts on the break-points for
AQI categories’ definition.

From Figure 1, it is possible to display the distribution of air pollutants in the EU. The size of each point is proportional
to the air pollutant concentration level of the city. Moreover, points are colored according to their specific AQI value. As it
is possible to observe, AQIs for each pollutant vary a lot among different countries. For instance, the AQI for SO2 ranges
from 0 to 30, while for CO2 and PM2.5 it goes from 0 to 200.

Broadly employed and well accepted (Cromar et al., 2020; Suman, 2021; Xu et al., 2020), AQI is based on debatable
choices that may appear not fully appropriate to evaluate air quality and that may lead to some ambiguous classification
(Bruno & Cocchi, 2007; Kanchan et al., 2015; Tan et al., 2021). For instance, as shown in Table 1, the “Unhealthy” category
mostly includes cities with only 1 pollutant over the stated threshold. This pollutant is always PM2.5. No category includes
more than 3 contaminants exceeding air quality standard in Europe.

Moreover, the first category only includes Zurich, while the last does not include any observation. This highlights a
limited discriminating power of the AQI technique for the European data: the AQI considers only the pollutant with the
highest concentration. However, this approach can be not exhaustive if the quite low correlations values among pollutants
are considered (Supporting Information (SI), Table A). A city with only one pollutant with high concentration may belong
to the same category of a city with more than one pollutant that exceeds the security threshold. For instance, consider
the city of Turin (in Italy): it presents 5 pollutants over 6 with values below the air quality threshold, and only PM2.5 is
in the purple category. In Milan, still in Italy and quite close to Turin, PM2.5 is in the purple category, but also NO2 and
PM10 present high values. However, according to the AQI, both cities are in the purple very polluted category: this result
provides some additional doubts on the cities classification according to the AQI.

2.3 Exogenous manifest variables

Exogenous manifest variables (MVs), chosen based on previous studies and theoretical knowledge, have been consid-
ered to estimate the latent construct of “air pollution” to study the complex relationships among gasses and identify air
pollution determinants.

The meteorological and atmospheric covariates already included in the Air Quality database have been considered.
Then, the Air Quality Dataset has been merged with two databases on socio-economic data at the municipal level. The
Eurostat metropolitan regions (NUTS3) database (Eurostat, 2019) provides data on the number of cars in EU cities, while
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F I G U R E 1 Distribution of pollutants’ concentrations for the EU cities (legend in black). Points are colored according to the
corresponding pollutant-specific AQI category.

T A B L E 1 Cities exceeding air quality standards by AQI categories and number of pollutants. Percentages.

Number of pollutants exceeding air quality standards

AQI categories 0 1 2 3 Total

Good 100 0 0 0 100

Moderate 0 75.0 25.0 0.0 100

Unhealthy for sensitive 0 66.7 33.3 0.0 100

Unhealthy 0 70.8 20.2 9.0 100

Very unhealthy 0 7.1 14.3 78.6 100

Hazardous - - - - -

Total 0.8 63.1 21.5 14.6 100

the Metropolitan database from the OECD provides socio-economic indicators for 691 OECD functional urban areas over
250,000 inhabitants in 36 countries (OECD, 2012). The OECD and the EU have developed a harmonized definition of
functional urban areas (FUAs), being composed of a city and its commuting zone. FUA’s definition aims at maximizing
international comparability and overcoming the limitation of using administrative aggregation approaches.

From the Air Quality database, the following variables on atmospheric conditions have been employed. Temperature
(Celsius degrees): it has been studied that air temperature can affect the movement of air pollution. In fact, energy from
the sun is absorbed by the Earth’s surface and therefore air near the ground is warmer than the one that is in the tropo-
sphere. The warmer, lighter air at the surface rises, and the cooler, heavier air in the upper troposphere sinks. This induces
the pollutants movement from the ground to higher altitudes (De Sario et al., 2013). Humidity (g/m3) affects the natural
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deposition of Particulate Matter in the air. With an increase in humidity, the size of the PM also increases. It may also
happen that it becomes too heavy to remain in the air and begins to fall off: this phenomenon is called dry PM deposition
(Center for Science and Education, 2020). Pressure (Pa): the concentration of most air pollutants is affected by meteoro-
logical conditions, but the impact level depends on the pollutants type and varies across different areas (Liu et al., 2020).
Wind-gust (m/s) and Wind-speed (m/s) may influence air pollution movements. A passing storm front can wash pollu-
tants out of the atmosphere or transport them to a new area. In Asia, it has been noticed that powerful spring winds carry
clouds of industrial pollutants from China across the Gobi Desert. These contaminated winds cross the desert, picking
up particle pollution as well. This causes massive yellow dust storms across the Korean Peninsula and parts of Japan. On
the other hand, the absence of wind can create stagnant air. When the air stops moving pollutants, such as vehicle and
factory exhaust, concentrate over an area (Center for Science and Education, 2020).

Two geographical covariates (Latitude and Longitude) have been included in the analysis, in order to take into account
the spatial configuration of the phenomenon of air pollution (Urdangarin et al., 2022). According to Liu et al. (2020), as
the latitude increases, the impact of temperature on air pollutants’ concentration becomes more obvious. According to
Eurostat (2021), Eastern Europe has some EU’s most polluted cities. In particular, the highest concentrations of danger-
ous fine particles are in Bulgaria (19.6 μg/m3) and Poland (19.3 μg/m3), followed by Romania (16.4 μg/m3) and Croatia
(16.0 μg/m3). In contrast, the concentrations are lowest in urban areas of Estonia (4.8 μg/m3), Finland (5.1 μg/m3) and
Sweden (5.8 μg/m3).

In addition, from Eurostat database, the motorization rate (Number of passenger cars per thousand inhabitants,
available at country level), and the Number of registered cars per 1000 population (at city level) have been included.
Traffic-related air pollutant emissions have become a global environmental problem, especially in urban areas, and recent
studies point out that O3, PM2.5 and NO2 are emitted from cars’ engines (Choma et al., 2021). Indeed, Eurostat’s road
transport emission data are used in several studies on air pollution. For instance, Antanasijević et al. (2018) employs
a multiple-input–multiple-output general regression neural network model, based on basic socioeconomic and trans-
port related indicators for the simultaneous prediction of sulfur oxides, nitrogen oxides, ammonia, non-methane volatile
organic compounds and PM emissions at the national level.

Vegetation and green spaces have shown reductive effects on air-borne pollutants concentrations, especially of PM
(Diener & Mudu, 2021; Villani et al., 2021). Therefore, also the “Share of land (%): Green urban areas and sports and
leisure facilities” Eurostat indicator has been included. Scientific assessments of agricultural air quality are an important
emerging area of environmental science that offers significant challenges to policy and regulatory authorities. Agri-
cultural emissions play an important role in several atmospherically mediated processes of environmental and public
health concerns. These atmospheric processes affect local and regional environmental quality, including PM exposure
(Aneja et al., 2009). To take into account possible emissions due to agricultural activities, the Eurostat “Share of land (%):
Agricultural areas” indicator at city level has been considered in the analysis.

Recent literature has focused on the links between pollution and socio-economic characteristics (Martori et al., 2022;
Ren & Matsumoto, 2020). Therefore, socio-economic and demographic variables have been included in the dataset for
each European city. These variables come from the OECD database and refer to population features in urban areas, such as
GDP per capita, population density, and employment rate at city level. For instance, an OECD study (Dechezleprêtre et al.,
2020) provides evidence that air pollution causes economy-wide reductions in market economic activity based on data for
Europe. An instrumental variables approach based on thermal inversions is used to identify the causal impact of air pol-
lution on economic activity. The estimates show that a 1 μg/m3 increase in PM2.5 concentration (or a 10% increase at the
sample mean) causes a 0.8% reduction in real GDP that same year. Ninety-five per cent of this impact is due to reductions
in output per worker, which can occur through greater absenteeism at work or reduced labour productivity. Therefore,
results suggest that public policies to reduce air pollution may contribute positively to economic growth. Indeed, the large
economic benefits from pollution reduction uncovered in the study compare with relatively small abatement costs. Lit-
erature on the relationships between GDP and pollution is very wide and presents mixed results. It is not the aim of this
paper to state the sign and intensity of such link. However, in this analysis, the GDP Per Capita (GDPPC in Million USD,
constant prices, constant PPP, base year 2015) at city level, has been included, representing the economic development
level as one of the major driving forces of air pollution in large cities (Chen & Kan, 2008). High population density (PD,
inhabitants per km2) is expected to induce an increasing in pollution emissions, especially for developing countries (Chen
& Kan, 2008). According to Borck and Schrauth (2019), based on a panel analysis for Germany, a one-standard deviation
increase in population density increases air pollution by 3%–12%. Other socio-economic and demographic variables con-
sidered in literature are the Elderly Dependency Ratio (EDR), the Employment and Unemployment Rate. For instance,
the unemployment rate has an expected negative impact on all pollutants, especially on CO and NO2 (Davis, 2012).
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3 STATISTICAL FRAMEWORK

Structural equation modeling enables researchers to simultaneously model and estimate complex relationships among
multiple dependent and independent variables. The concepts under consideration are typically unobservable and mod-
eled indirectly by multiple indicators. In estimating the relationships, SEM accounts for measurement error in observed
variables. As a result, a model for the theoretical concepts of interest is obtained (Cole & Preacher, 2014). The SEM
methodology has seen a huge attention recently for its wide application possibilities and its powerful estimation
capabilities (Budtz-Jørgensen et al., 2010; Hair et al., 2019; Hair et al., 2020).

The model-based approaches allow to split the relations among latent, manifest endogenous and exogenous variables
in two parts (Landis et al., 2000). First, there is a structural model that links together the latent endogenous and exogenous
variables corresponding to latent constructs, usually represented by ovals in the path diagram (Hair et al., 2020). Second,
there are the measurement models of the latent variables that display the relationships between the constructs and the
manifest variables, represented by rectangles in the path diagram (Figure 2).

The classical SEM formulation is reported (3), i refers to the generic population unit (Table 2).

⎧
⎪
⎨
⎪
⎩

𝜂i = B𝜂i + 𝜞 ′
𝜉i + ζi (Structural model)

yi = C𝜂i + 𝜀i (Measurement model for endo variables)
xi = A𝜉i + 𝛿i (Measurement model for exo variables)

(3)

Now, let us suppose that a sample of size n from the population of N units is drawn. Thus, SEM can be formulated in
a compact matrix form. The structural model and the measurement models of endogenous and exogenous variables are
presented in (4), (5) and (6), respectively.

N = NB′ + F𝜞 + Z (4)

Y = NC′ + E (5)

X = FA′ +D (6)

Path models are diagrams used to visually display the hypotheses and variable relationships that are examined when
SEM is applied (Figure 2). The left part shows the measurement model for the exogenous latent variables in Equation (6)
(i.e., those constructs that only explain other constructs in the model). In the right part, the measurement model for
the endogenous LVs in Equation (5) (i.e., those constructs that are being explained in the model) is depicted. In this

F I G U R E 2 SEM path model.
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T A B L E 2 SEM vector and matrix notations.

Vector/matrix Coefficients

𝜂i (L× 1) Factor scores of the endogenous latent variables (LVs) for unit i

B (L×L) Regression coefficients of the endogenous LV, L is the number of endogenous LVs

Γ (H ×L) Regression coefficients of exogenous LVs, H is the number of exogenous LVs

𝜉i (H × 1) Ractor scores of the exogenous LVs for unit i

𝜁i (L× 1) Errors of the structural model associated to unit i

yi (M × 1) Endogenous Manifest Variables (MVs) for unit i, M is the number of endogenous MVs

C (M ×L) Coefficients (covariances or correlations) between MVs and endogenous LVs (orthogonal matrix)

𝜀i (M × 1) Errors of the measurement model for endogenous LVs associated to unit i

xi (J × 1) Exogenous MVs for unit i, J is the number of exogenous MVs

A (J ×H) Coefficients (covariances or correlations) between exogenous MVs and LVs, J is the number of
exogenous MVs (orthogonal matrix)

𝛿i (J × 1) Errors of the measurement model for exogenous LVs

N (n×L) Factor scores of endogenous LVs

F (n×H) Factor scores of exogenous LVs

Z (n×L) Errors of the structural model

Y (n×M) Endogenous MVs

E (n×M) Errors of the measurement model of endogenous variables

X (n× J) Exogenous MVs

D (n× J) Errors of the measurement model for exogenous variables

measurement part, the relations between MVs and LVs are studied. Finally, the central part of the path diagram contains
the structural part, the one that studies the relationships of the latent constructs among themselves (4). All relations are
estimated simultaneously (Hair & Sarstedt, 2021; Tarka, 2018).

To estimate SEM coefficients, the formulation of the model covariance matrices should be investigated. The theoretical
covariance matrices in (7)–(11) can be obtained extending the sample to all the population of N units:

𝚺N =
( 1

N

)
N′N =

( 1
N

)((
F𝚪′ + Z

)(
I− B′)−1

)′((
F𝚪′ + Z

)(
I− B′)−1

)
=

= (I − B)−1
(( 1

N

)(
F𝚪′ + Z

)′(F𝚪′ + Z
))(

I − B′)−1 =

= (I − B)−1
(( 1

N

)
𝚪F′F𝚪 +

( 1
N

)
Z′Z + 𝚪

( 1
N

)
F′Z +

( 1
N

)
Z′F𝚪′

)(
I − B′)−1 =

= (I − B)−1(𝚪𝚺F𝚪′ + 𝚺Z
)(

I − B′)−1 (7)

Supposing that COV(F,Z) =
(

1
N

)
F′Z = 0.

The variance covariance matrix of Y can be rewritten as:

𝚺YY =
( 1

N

)
Y′Y =

( 1
N

)
CN′NC +

( 1
N

)
CN′ + E +

( 1
N

)
E′NC′ =

(
C𝚺NC′ + 𝚺E

)
(8)

Supposing that COV(N,E) =
(

1
N

)
N′E = 0, we have:

𝚺YY = C𝚺NC′ + 𝚺E = C
[
(I − B)−1(𝚪𝚺F𝚪′ + 𝚺Z

)(
I − B′)−1(𝚪𝚺F𝚪′ + 𝚺Z

)(
I − B′)−1

]
C′ + 𝚺E (9)
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The variance covariance matrix of X can be written as:

𝚺XX =
( 1

N

)
X′X = A

( 1
N

)
F′FA′ +

( 1
N

)
D′D +A

( 1
N

)
F′D +

( 1
N

)
D′FA′ = A𝚺FA′ + 𝚺D (10)

Supposing that COV(F,D) =
(

1
N

)
F′D = 0 a non-orthogonal FA model is considered. Similarly:

𝚺XY =
( 1

N

)
X′Y =

( 1
N

)(
FA′ +D

)′(NC′ + E
)
=
( 1

N

)
AF′NC′ +

( 1
N

)
D′E +

( 1
N

)
AF′E +

( 1
N

)
E′FA′

=
( 1

N

)
AF′NC′ + 0 + 0 + 0 =

( 1
N

)
AF′

(
F𝚪′ + Z

)(
I − B′)−1C′ = A𝚺F𝚪′

(
I − B′)−1C′ (11)

If the structural equation is included in the endogenous measurement model equation, we obtain:

Y =
(
F𝚪′ + Z

)(
I − B′)−1C′ + E = F𝚪′(I−B′)−1

C′ + Z
(
I − B′)−1C′ + E (12)

Therefore, the SEM can be rewritten starting from the joint distribution of the manifest variables X, Y in a block data
matrix [X, Y]:

[X,Y] =
[
FA′

, F𝚪′(I−B′)−1C′
]
+
[
D, Z

(
I − B′)−1C′ + E

]
(13)

Thus, to summarize, the SEM requires the following hypotheses:

1. E(X) = E(Y) = E(N) = E(F) = E(E) = E(Z) = E(D) = 0, (all centred variables);
2. COV(F,Z) = COV(N,E) = COV(D,F) = COV(N,D) = COV(F,E) = 0, (uncorrelated LVs and errors);
3. COV(Z,E) = COV(Z,D) = COV(E,D) = 0, (null correlation between errors);
4. (I − B) is of maximum rank;
5. All variables are supposed normally distributed.

Now we can rewrite the variance covariance matrix of the entire SEM model as

𝚺 =
( 1

N

)
[X, Y]′[X,Y] =

=
( 1

N

)([
FA′

, F𝚪′(I−B′)−1C′
])′([

FA′
, F𝚪′(I−B′)−1C′

])

+
( 1

N

)([
D, Z

(
I − B′)−1C′ + E

])′[
D, Z

(
I − B′)−1C′ + E

]
=

=

[
A𝚺FA′ A𝚺F𝚪′

(
I − B′)−1C′

C(I − B)−1𝚪𝚺FA′ C(I − B)−1𝚪𝚺F𝚪′(I−B′)−1C′

]

+

[
𝚺D 0
0 C(I − B)−1𝚺Z

(
I − B′)−1C′ + 𝚺E

]

=

=

[
A𝚺FA′ + 𝚺D A𝚺F𝚪′

(
I − B′)−1C′

C(I − B)−1𝚪𝚺FA′ C(I − B)−1(𝚪𝚺F𝚪′ + 𝚺Z
)(

I − B′)−1C′ + 𝚺E

]

=

[
𝚺XX 𝚺XY

𝚺YX 𝚺YY

]

(14)

Recalling that the product between LVs and errors and between errors are for hypothesis null. 𝚺XX, 𝚺XY,𝚺YY are the
variance and covariance matrices of the measurement and structural models.

Let us define S the sample variance and covariance matrix of the MVs [X, Y] ∶

S =

[
SXX SXY

SYX SYY

]

and recall the estimators 𝚺 =
[
𝚺XX 𝚺XY

𝚺YX 𝚺YY

]

. (15)

Different estimation methods for the SEM model can be adopted: Least Square (LS), Maximum Likelihood (ML), and
Generalized LS. In this study, a ML estimation has been employed and the discrepancy function to minimize is:

FML[𝚺] = log |𝚺| + tr
[
S𝚺−1] − log |S| − (J +M) (16)
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where (J +M)is the number of MVs. The Likelihood is distributed according to 𝜒2with degree of freedom: df = 1
2
(J +

M)(M + J + 1) − twhere t is the number of estimated parameters.

4 EMPIRICAL RESULTS

SEM models are implemented using “sem” function of the R “lavaan” package (Rosseel, 2012). This R function auto-
matically standardized the six pollutants, assigning negative weights to the variables that the factor reconstructs in the
opposite direction from the others.

The process of modifying the model to improve its fit to the empirical data seems to be necessary for all SEM models
(Tarka, 2018). In this study, a forward specification was employed, starting with a baseline model, and then estimating
two more comprehensive models (Bentler & Chou, 1987), exploiting the results provided by an Exploratory Factor Anal-
ysis (EFA) and considering the additional information provided by the available exogenous MVs. Following this forward
approach, the first model is an initial Confirmatory Factor Analysis model with six indicators of a single latent variable
(measurement model). The second model (Section 4.2) introduces a hierarchy, considering two latent factors, and subse-
quently a structural model among the latent constructs. This approach is based on the results on an EFA estimated on the
six pollutants (SI, Table B) and the internal consistency analysis on the one factor SEM (Section 4.1). In the third model, a
measurement model of exogenous MVs is introduced to exploit the information available from the explanatory covariates
(Section 2.3).

The estimated models’ fit has been compared based on several indices (Section 4.4). In this way, it is possible to verify if
a very simple baseline model is sufficient to model simultaneously the six pollutants in the best way or if a more complex
hierarchical model is needed to provide more accurate modeling of the phenomenon. The comparison with the third
model assesses the significance of the selected exogenous MVs to model city air pollution.

4.1 Single factor model estimation

The first SEM specification aimed at modeling city air pollution, based on the six different pollutants concentrations,
and obtaining an Air Pollution Index (API_1), foresees a single latent construct, directly related to the six pollutants.
This baseline specification allows to estimate the API_1 as a weighted combination of the pollutants’ concentration,
considering directly the endogenous MVs coefficients as weights (Figure 3a).

All six pollutants coefficients’ estimates are strongly significant (p values of the significance tests always equal to zero).
The model estimates also the variance for each pollutant. All path coefficients are in modulus greater than 0.3, meaning
that the “air pollution” single factor reconstructs well the 6 pollutants, in particular the 2 PM ones. The model correctly
detects that O3 is reconstructed in the opposite direction with respect to the other 5 pollutants.

F I G U R E 3 SEM estimates. All latent factors are standardized.
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This model presents some advantages: it is easy to understand and it allows the direct calculation of the API_1.
The relation between pollutants and API_1 is straightforward: policy makers know that, reducing for example, PM10,
the overall pollution will be reduced by the amount indicated by the estimate coefficient (weight). However, it presents
some limitations: it does not consider the cities’ features and therefore it does not exploit the information power of some
explanatory variables that could be considered to assess the quality of the air.

4.2 Hierarchical path-model estimation

Hierarchical models measure latent concepts defining sets of MVs. Therefore, the general latent concept can be rep-
resented by a tree structure where each internal node represents a specific order of abstraction for the latent concept
measured (Cavicchia & Vichi, 2022). In this study, the higher order general latent factor, representing a broader concept
of “air pollution”, is estimated through a Higher Order SEM, taking into account two latent concepts, grouping different
pollutants (as in the measurement model on the right of Figure 2). The air pollutants modeling the two latent factors are
chosen based on the EFA presented in the SI. The system of equations simultaneously estimated is:

⎧
⎪
⎨
⎪
⎩

f 1 = PM10 + PM2.5 + O3 + SO2
f 2 = CO + NO2
f 3 = f 1 + f 2

(17)

The 2 first-order factors and the second-order one are estimated simultaneously and produce an estimate of the latent
concept “air pollution” called API_2_s.

Some constraints for the hierarchical path model are set to fulfill the restrictions on the degrees of freedom required for
the SEM estimation. In fact, to allow estimates’ convergence, some constrains must be introduced. For instance, when a
single factor loads on two observable variables (e.g., CO and NO2), the parameters to estimate are 2 (one for each manifest
indicator), but the information provided is just 1, namely the covariance between the 2 indicators. Consequently, the
degree of freedom is equal to−1. The solution usually applied is to constrain the loadings to be equal to 1 and/or constrain
some variances to be unitary: in this way, the degree of freedom is 0 and the model can be identified.

Therefore, the following model constraints had to be introduced: (1) The path coefficient of CO in the second factor
is set equal to 1. The choice of fixing to 1 the coefficient of CO and not NO2 is due to the fact that CO has a positive
relationship with the latent construct, while NO2 has a negative coefficient. (2) The path coefficient of f1 is set equal to 1.
In this case, the choice of constraining the coefficient of f1 and not f2 is because f1 loads on more pollutants than f2 and
has a larger impact on the higher order latent construct f3. (3) To allow the convergence of the estimates of the impact of
NO2 and CO on f3, their variances are set equal to 1.

Figure 3b reports model’s estimates together with their standard errors. According to the usual R notation of pack-
ages “lavaan” and “semPlot”, the equal sign of Equation (17) is graphically represented as arrows pointing outwards. All
loadings and variances estimates are strongly significant. The 2 first order factors (f1 and f2) loadings present the same
sign, with the first showing a triple coefficient, compared to the second. Each pollutant’s importance in determining the
API is similar to the one estimated in the single factor SEM (Section 4.1). PM10 presents the highest coefficient, followed
by PM2.5, confirming the role of PM in causing city pollution.

4.3 Hierarchical path-model with explanatory variables estimation

Given the constraints of the traditional SEM approaches, the predictors (or exogenous MVs) are usually selected on the
basis of theoretical or empirical considerations. To optimally select the explanatory variables to be employed in the esti-
mation of the latent concept of air pollution, based on a SEM, the MRF regression seemed the most appropriate approach,
since it provides information about the importance of each MV, taking into account simultaneously all the six pollutants
(Grömping, 2009; Jacobucci et al., 2019; Speiser, 2022). Random forests, introduced by Breiman (2001), are a very effi-
cient methodology for both classification and regression. The MRF regression takes as input all the possible explanatory
variables to predict the 6 pollutants variables simultaneously. The most meaningful and appropriate exogenous MVs have
been identified following a backward approach, correcting any possible errors of inclusion. To perform variable selection,



12 of 22 BOTTAZZI SCHENONE et al.

F I G U R E 4 Two factors with exogenous MVs SEM estimates. All latent factors are standardized.

a score of importance of each covariate must be assigned. In the regression random forests framework, the most widely
used importance score for a given variable is the increasing in Mean Square Error (MSE) of a tree in the forest, when the
observed values of this variable are randomly permuted in the Out Of Bag (OOB) samples (Genuer et al., 2010). Another
importance score is based on the Mahalanobis distance. It has the advantage of being additive in the components of the
outcomes and it does not consider correlations between the continuous coordinates of the outcome vector (Ishwaran &
Kogalur, 2022).

In the analysis, the 12 most important variables have been chosen, corresponding to those that, included in the tree,
produced the highest reductions in the MSE. Most of them remain the same according also to the Mahalanobis criterion.
In the latter, the employment rate variable appears in the first 12 places (SI, Table C).

Among these variables, the number of circulating cars appears to be, by far, the most important according to the MSE
criterion, and one of the most important for the Mahalanobis one. The number of new cars (registered in the year of
reference), at city level, also appears important for the level of air pollution, being the fifth selected variable with the MSE
method, and the eighth on the basis of the Mahalanobis distance. Other variables such as latitude, longitude, temperature,
air pressure and humidity are identified as important drivers of air pollution. Economic and social features of European
cities contribute to the air pollution estimates: the share of young population, the characteristics of the labour market
in terms of unemployment and participation rates and the level of GDP per capita all appear among the most important
variables, according to the MRF methodology. On the other hand, the estimates indicate that the share of agricultural
areas and green spaces are not among the variables most influencing urban air pollution.

Moreover, starting from a more general SEM, including all the 12 selected covariates, a backward procedure has been
applied to the explanatory variables, to further select the most meaningful ones, used to estimate the API_2 (SI, Table D).
More in detail, the coefficients related to total number of passenger cars, Elderly Dependency Ratio, GDP per capita, and
Humidity are not significant. Therefore, the final SEM is estimated considering 8 variables.

The final model can written as follows:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

f 1 = PM2.5 + PM10 + O3 + SO2
f 2 = CO + NO2
API = f 1 + f 2
API∼Lat + Lon + car + tmp + prs + YDR + PAR + wnd

(18)

The estimated relationships between the 6 pollutants and the 2 latent concepts related to “air pollution” can be graph-
ically seen in the path diagram below (Figure 4), while the estimated standard errors for all the variables included in the
model are reported in SI, Table D.

The equal sign of Equation (18) is graphically represented as arrows pointing outwards and the tilde sign as arrows
pointing inwards, referring to the exogenous MVs (as in Figure 2). Results show that loadings related to the six pollutants
are greater or close to the threshold of 0.3 and strongly significant (all p-values are very low). The first factor (f1) includes
the same four pollutants as the previous model (Section 4.2). Also in this case, PM10 and PM2.5 present the highest
coefficients, followed by SO2.

The number of cars in the city (car) strongly influences the whole air pollution level: an increase of this
variable by 1, implies an API_2 value 0.63 higher. Northern cities are less likely to be polluted (Latitude (Lat)
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T A B L E 3 Effect of each pollutant on API_2.

Pollutant Effect on API_2

PM10 0.45

PM2.5 0.41

O3 −0.23

SO2 0.24

CO 0.14

NO2 −0.04

coefficient equal to −0.63), while Eastern European countries present a higher probability of being polluted (Longitude
(Lon) coefficient of 0.31). The Youth Dependency ratio (YDR: population under 15 years of age, compared to the number
of people of working age, i.e., 15–64) presents a negative coefficient, indicating that “younger” cities are also less polluted.
Negative effects on the air pollution level are also given by the Participation to the labour market (PAR) coefficient. Both
temperature (tmp) and pressure (prs) coefficients are negative: these results are in line with what is known in literature
on the subject (see Section 2.3).

Results obtained analyzing the proposed API_2 measure are in line with literature on the subject that takes into
account single pollutants. The advantages of this methodology are that it exploits the additional information provided
by exogenous MVs and directly explains how the determinants of the air pollution influence the total API_2. In other
words, the exogenous variables can be considered as drivers of the pollution concentration and therefore they can be
useful to policy makers. The fact that all the coefficients of the exogenous MVs are significant means that inclusions of
such variables in the model is indeed useful for a better estimate.

Table 3 shows the effects of each pollutant on the API_2; they are obtained as in Bollen (2011) considering the coef-
ficients of Figure 4 (e.g., the PM10 coefficient is obtained multiplying 0.45, which is the effect of PM10 on f1 by 1, which
is the effect of f1 on API_2).

The highest effects for API_2 are those of Particulate Matter emissions, which are the same 2 pollutants that determine
most of the AQI values for the 130 cities. However, while -for instance- the AQI assigns effect equal to 1 to a single pollutant
and 0 to all the others, the proposed index attributes a specific effect to each pollutant, considering also the negative effects
that some pollutants may have on the air pollution index (for example, O3).

4.4 Evaluation of the estimated models

In the final step of the model assessment procedure, models’ performances have been compared. The most appropriate
SEM to describe air pollution is chosen considering the evaluation of the path coefficients’ significance and the analysis
of the model’s explanatory and predictive power (Shmueli et al., 2019). In research situations, when a theory is not well
established or confirmed by the empirical observation, the comparison of alternative models is required. To compare
different model configurations and select the best model, an information criterion likelihood-based finding a trade-off
between the fit of the model and its complexity (specifically the number of parameters) should be used. With this aim,
the Bayesian Information Criterion (BIC) is employed. The model, which yields the smallest BIC value, is considered the
best model in the set. In addition, the Akaike Information Criterion (AIC) can be chosen to offer further evidence for a
model compared to alternative models in the set (Hair & Sarstedt, 2021).

The three theoretically justifiable competing models (API_1, API_2_s and API_2), presented in the previous section
are here compared based on the most reliable measures of goodness of fit and information criteria (Table 4).

AIC and BIC facilitate the comparison of models in terms of model fit (Burnham & Anderson, 2004; Hair & Sarst-
edt, 2021), providing a relative likelihood of being the data generation model, given the data and a set of competing models
(Danks et al., 2020).

The Root Mean Square Error of Approximation (RMSEA) and the Standard Root Mean Squared Residual (SRMR) also
provide measure of errors of the models (Pavlov et al., 2021).

From the overall analysis, the best measure appears to be the API_2 (Table 4).
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T A B L E 4 Goodness of fit measures for the three models.

API_1 API_2_s API_2

AIC 1954.139 2010.268 1969.935

BIC 1988.549 2038.943 1979.551

RMSEA 0.255 0.306 0.176

SRMR 0.146 0.316 0.178

5 VALIDATION OF THE SEM-BASED AIR POLLUTION INDEX

Indexes have a crucial role, functioning not only as descriptive tools but also as aids that can impact significant policies.
Even if the proposed index is based on a statistical procedure that benefits intrinsically from the assessment of its goodness
of fit, we rigorously verify the index construction, employing simulations to perform a sensitivity analysis of the latent
construct (Grimaccia et al., 2023; Janováa et al., 2019; Ozenne et al., 2022).

Once the best SEM specification to describe air pollution has been chosen (Section 4.4), next step is the model results’
validation. Results will show that the proposed index represents accurately the concept of air pollution, as intended in
the literature.

A sensitivity analysis is carried out to monitor the projected behavior of the new index in 3 possible scenarios. The
simulation relies on the observation of the changes in the model behavior upon variation of its input values.

Furthermore, a graphical visualization of the solutions, as well as a cluster analysis, are being used to provide a better
understanding of the index.

Finally, an external validation has been carried out comparing the model’s results with those of the well validated
AQI, considering data for the years 2019 and 2022.

5.1 Sensitivity analysis of API_2 and AQI: Simulation study

The sensitivity analysis is conducted through a simulation study that examines, for API_2 and AQI, three different sce-
narios: Scenario A, where pollution improves over time with decreasing emissions; Scenario B, where pollution remains
stable with constant emissions; and Scenario C, where pollution worsens over time with increasing emissions. Each
scenario involves running 1000 simulations every 3 months from January 2023 to December 2030.

In Scenario A, starting from January 2023, the emissions for each subsequent period (t+ 1) are obtained by subtracting
a percentage of the emission at period t from the emission at period t. To determine the distribution of this percentage,
the variation of the 6 pollutants over the 36-month period from 2019 to 2022 has been studied. For example, PM2.5
increased on average by 30% in three years. Assuming a linear increase over time, the increase every 3 months is calculated
using the geometric mean. To compute the geometric mean (Equation 19), an initial value of 100% and a final value of
100%+ 30%= 130% are considered.

Geometric Mean =
(

Final value
Initial value

)(
1

Number of 3−Month Periods

)

− 1 (19)

In this case, there are 12 three-month periods in 3 years, resulting in a geometric mean of approximately 0.0242.
Therefore, the percentage used to perturbate the value of PM2.5 will follow a normal distribution with a mean of 0.0242
and a standard deviation equal to twice the mean. The same approach is applied to the other five pollutants, each with
their respective means (CO: 0.0376, SO2: 0.0241, O3: 0.0196, PM10: 0.0201, NO2: 0.0242).

Scenario C is obtained in a similar manner, but instead of subtracting the percentage, it is added. Finally, in Scenario
B, a normally distributed percentage with mean 0 and standard deviation of 0.01 is added. To allow comparisons between
the AQI and API_2 indexes, both are normalized in 0–1. The AQI takes values in 0–500 and therefore its range is 500.
The range is divided into 6 categories, corresponding each to the 10%, 10%, 10%, 10%, 20% and 40% of the overall range:
Good (green) Moderate (yellow), Unhealthy for Sensitive Groups (orange), Unhealthy (red), Very Unhealthy (purple) and
Hazardous (brown), as indicated by the experts’ recommendations. When we normalize the AQI to the 0–1 range, the
breakpoints for each category are correspondingly rescaled to 0.1, 0.2, 0.3, 0.4, and 0.6.
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F I G U R E 5 Top-left: simulation A, evolution of API_2 with slight pollutants’ reduction. Top-center: simulation B, evolution of the
API_2 with constant values of the pollutants. Top-right: simulation C, evolution of the API_2 with slight pollutants’ increase. Bottom-left:
simulation A for AQI. Bottom-center: simulation B for AQI. Bottom-right: simulation C for AQI.

Similarly, we have applied the same normalization approach to the new index. To determine the range of API_2,
we consider the index value when all pollutants are set to 0, as well as when they assume the breakpoints’ values
corresponding to the highest AQI category. This method, based on the E.P.A. concentrations’ quality standards (refer
to SI, Table E), SI ensures a consistent and comparable scale for both indices. By employing this normalization tech-
nique, we can visually compare AQI and API_2 (Figures 6 and 7). Figure 5 depicts the results for the three scenarios
for both indexes, showing the mean API_2 and AQI over the 1000 simulations highlighted in red, for each of the
32 periods considered.

The simulation results demonstrate API_2’s stability under perturbations in pollutant levels and its accurate represen-
tation of input value variations. Its mean values are all slightly higher with respect to the AQI means. Notably, API_2 has
a lower dispersion around the mean with respect to AQI: this uncertainty is of approximately 5% for Scenarios A and C
and even smaller for Scenario B, while this percentage increases to 10% considering AQI. This reduced variability further
underscores the API_2 precision and reliability.

5.2 Graphical comparison of AQI with the new index API_2

The analysis of the two indexes’ distributions for the European cities adds information on the quality of their classifica-
tions (Figure 6). The histograms’ columns are colored according to the categories to which cities belong. API_2 shows
a more symmetrical distribution, with the 50% of the cities below 0.28. Considering AQI, most of the cities are concen-
trated in the red Unhealthy category. This is due mainly to the PM2.5 that almost everywhere determines the AQI (70.8%
of Unhealthy and 7.1% of Very Unhealthy). It is possible to conclude that the API_2 better discriminates among different
air pollution values, compared to the AQI: firstly, the presence of cities in the sixth Hazardous category (a category in
which AQI does not have any city in); and secondly, the larger number of cities falling within the first “Good” category.

This is because API_2 considers the effect of each pollutant and does not solely rely on the one of the pollutant with
the maximum emission level, as the AQI does.

Figure 7 shows the geographical distribution of cities according to the six categories for both indexes. Considering
the example for Turin and Milan (see Section 2.2), the API_2 index correctly identifies that Milan is more polluted with
respect to Turin and places Milan in the purple Very Unhealthy category and Turin in the orange Unhealthy for sensitive
groups category.
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F I G U R E 6 Distribution of AQI and API_2 values for the European cities in 2019. Both indexes are normalized in 0–1.

F I G U R E 7 AQI and API_2 distributions (normalized in 0–1) for the 130 EU cities (year 2019). Points are colored according to the
corresponding category.

According to both indexes, the less polluted cities are in Finland and Estonia. On the other hand, the most polluted
areas are in the North of Italy, Hungary, Poland and Bulgaria.

Almost all French and Spanish cities are “Moderate” for the API_2 and “Unhealthy” for the AQI.
Finally, the less polluted cities (yellow points) have mostly lower longitude with respect to the “Unhealthy” Eastern

cities. These results demonstrate that API_2 validity is supported also by its alignment with existing literature and other
air quality indexes.

5.3 Cluster analysis

An interesting possibility offered by the proposed approach is to cluster cities on the basis of the new index of air pollution
(Bottazzi et al., 2023). The 130 European cities are grouped into clusters, homogeneous with respect to the air pollution
level, each represented by a centroid that corresponds to an API_2 value. The clustering technique of k-means is applied.
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F I G U R E 8 Clusters of cities with respect to homogeneous air pollution level (year 2019). The optimal number of clusters has been
chosen according to the maximum Average Silhouette Width.

Groups are ranked from 1 to k (k= total number of clusters) considering the centroids’ values from the highest to the
lowest: rank 1 corresponds to the largest centroid and therefore to the group of more air polluted cities. In this study,
according to the silhouette average method, the optimal number of clusters is 5 for both indexes (SI, Figure 1).

The grouping of cities is shown in Figure 8. These maps show the air pollution distribution in Europe, highlighting
groups of cities with a similar situation in terms of air pollution levels.

The clustering obtained employing the API_2 presents less points in the “average” group, and more often assigns the
same ranking to cities in the same country.

The meaningful clustering of units based on API_2 highlights its capability to provide valuable insights into air quality
categorization.

5.4 Comparison of API_2 and AQI for 2022 data

To assess the external consistency of the innovative index, data for 2022 have been considered. The air pollution’s distri-
butions in 2022 are analyzed, considering both the currently used AQI and the proposed API_2 (first 2 plots, Figure 9).
Furthermore, clusters of cities in 2022 are compared (last 2 plots, Figure 9).

Data from 2022 is available for 79 European cities only; because of this, the following analysis is conducted just on the
70 cities that provided data for both years.

To compute the API_2 for 2022, the coefficients estimated for 2019 are employed as weights for 2022 values of the six
air pollutants.

From 2019 to 2022, for both indexes, the overall air pollution level increased. Being the API_2 really multidimensional,
it accounts for the increasing of all the pollutants and not only of the most widespread as PM2.5 and PM10. Consequently,
API_2 demonstrates a more evident reflection of this increasing effect, as depicted in Figure 9 (first 2 plots on the left).
The successful detection for API_2 of the increase in air pollution that occurred between 2019 and 2022 reinforces its
reliability as a robust index. Cluster analysis, proposed in Section 5.3, has been estimated for the AQI and API_2 referring
to 2022. Results show that the classification of cities according to the new API_2 in 2022 is still meaningful: 5 groups of
cities with respect to air pollution level have been identified (always considering the maximum average silhouette width),
with Cluster 1 containing the most polluted cities, while Cluster 5 the less polluted ones.

It is possible to see that Cluster 1 contains the same cities for both indexes, Clusters 2 and 3 have a higher cardinality
for AQI while the cardinality of Clusters 4 and 5 is higher considering API_2.

The higher discriminative power of API_2 is further confirmed in the second two plots of Figure 9. Specifically, the
new index allocates fewer units to Cluster 3, which contains cities with an average air pollution level. This outcome
highlights the ability of API_2 to categorize air quality levels more effectively than AQI.
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F I G U R E 9 First 2 maps on the left: distributions for the 70 EU cities (year 2022). Points are colored according to the corresponding
category. Second 2 maps on the right: clusters of cities with respect to homogeneous air pollution level (year 2022).

F I G U R E 10 Distance of each city from the 2030 air pollution WHO goal in terms of API_2 value (range 0–1). The blue dots represent
cities which already met the target.

To conclude, the obtained results for the API_2 are in line with previous knowledge about air pollution, from litera-
ture and from other indices. The innovation in the proposed methodology is the SEM based approach and the statistical
procedure that relies each choice at every step on statistical measures of significance and goodness of fit. This procedure
overcomes subjective and debatable choices in the index definition.

5.5 The new index (API_2) as a decision support tool

The novel index holds a great potential as a decision support tool, empowering the implementation of sustainable policies
at both national and EU levels. More specifically, API_2 can be employed to draw policy scenarios. For instance, based on
the WHO guidelines (WHO, 2021),1 the maximum acceptable levels of pollutants correspond to an API_2 value of 0.117.
The mean API_2 value for the European cities is 0.424 in 2022.
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By examining the index for the 130 European cities in 2019, those represented with blue dots have already met the
target identified by WHO for 2030 (Figure 10).

Assuming a 15% annual decrease from 2022 and 2030, according to the projected API_2 value, approximately the 68%
of the European cities will reach the WHO target.

6 DISCUSSION AND CONCLUSIONS

An innovative procedure for developing an Air Pollution Index, based on an optimal specification of a Structural Equation
Model (SEM), is proposed in this paper. The added value of our approach is in its reliance on objective choices rather than
subjective thresholds and legislative assumptions made by field specialists. At each step of the procedure, we meticulously
assess the goodness of fit and significance of the model, ensuring a rigorous and robust methodology and accounting for
possible error estimation. Moreover, a significant advantage of the proposed methodology is the identification of exoge-
nous manifest variables that are meaningful drivers of air pollution and that can be employed as policy making tools to
reduce air pollution.

Indeed, many air pollution models lacks in the interpretation of the synergistic and antagonistic relationships among
pollutants (Khanna, 2000). Moreover, multi-pollutants models encounter rigidity issues, as the employed aggregation
functions may not be adaptable to the inclusion of new pollutants (Makra, 2003). For instance, fuzzy based informa-
tion models can be not unequivocally interpletable, since they require a priori knowledge to be provided by field experts
(Sarkheil & Rahbari, 2016). In contrast, SEMs offer a more reliable approach, allowing for the straightforward incor-
poration of all relevant parameters: as a result, the final estimates automatically adjust to accommodate the additional
parameters, providing a deep understanding of the determinants influencing the API_2. Moreover, the selection of
parameters is guided by statistical goodness-of-fit measures.

Another drawback of traditional multi-pollutants models is the choice of the aggregation function that could overes-
timate or underestimate pollutants’ effects. SEMs address this concern by offering a model-based aggregation of multiple
determinants, mitigating subjectivity and concerns related to over or underestimation.

To our knowledge, the index discussed in this paper is the first SEM-based index of air pollution that simultaneously
considers the six main contaminant gases and significant pollution drivers.

Indeed, applying the proposed methodology to the European cities, model-based weights for each pollutant on
the latent concept of air pollution have been estimated. The results show that PM10 and PM2.5 have the strongest
impact (weight) on the Air Pollution Index, while Ozone exhibits a negative impact (consistently with litera-
ture). The most meaningful explanatory variable, that can be used as leverage to reduce air pollution in European
cities, is the number of cars. The meteorological conditions of a city are also key aspects to take into account:
in cities with higher temperature and pressure, the air pollution level is lower on average, the other covariates
fixed.

Although the robust statistical procedure proposed benefits by itself of statistically measured optimal choices, the
new index has been further validated. A sensitivity analysis assesses its robustness with respect to variation of its input
values and a face validation is used to confirm that the index’s output is in line with existing knowledge on air pollution
in Europe. Finally, the external validity of API_2 is checked assessing the coherence of its results with the currently used
AQI. API_2 has great advantages with respect to AQI, including its totally objective construction approach and its higher
discriminating power among different levels of air pollution. This superiority arises from the fact that API_2 employs
a statistical model that considers simultaneously the effect of each pollutant, rather than only the one with the highest
emission.

In conclusion, the paper proposes a statistical methodology to model air pollution, employing a hierarchical SEM with
exogenous manifest variables, selected through a multivariate random forest regression. However, the proposed procedure
remains rather flexible, as it can be applied to derive an index measuring different phenomena, by considering the optimal
specification of a SEM. Each step of the index construction process relies on statistical choices made considering the
goodness of fit as well as the significance of the obtained results.

DATA AVAILABILITY STATEMENT
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ENDNOTE
1 Annual average concentrations of PM2.5 should not exceed 5 μg/m3, while 24-h average exposures should not exceed 15 μg/m3. PM10 (partic-
ulate matter with a diameter of 10 microns or less) concentrations of 15 μg/m3 annual mean, 45 μg/m3 24-h mean. Ozone (O3) concentrations
of 100 μg/m3 8-h mean. Nitrogen dioxide (NO2) concentrations of 10 μg/m3 annual average and 25 μg/m3 24-h mean. Sulfur dioxide (SO2)
concentrations of 40 μg/m3 24-h mean. Carbon monoxide (CO) concentrations of 7 μg/m3 24-h mean.
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