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Abstract

Production-destruction systems (PDS) of ordinary differential equations (ODEs) are used to describe
physical and biological reactions in nature. The considered quantities are subject to natural laws. There-
fore, they preserve positivity and conservation of mass at the analytical level.

In order to maintain these properties at the discrete level, the so-called modified Patankar-Runge-
Kutta (MPRK) schemes are often used in this context. However, up to our knowledge, the family of
MPRK has been only developed up to third order of accuracy. In this work, we propose a method to
solve PDS problems, but using the Deferred Correction (DeC) process as a time integration method. Ap-
plying the modified Patankar approach to the DeC scheme results in provable conservative and positivity
preserving methods. Furthermore, we demonstrate that these modified Patankar DeC schemes can be
constructed up to arbitrarily high order. Finally, we validate our theoretical analysis through numerical
simulations.

1 Introduction

The modelling of geobiochemical processes or ecosystems leads often to systems of ordinary differential
equations (ODEs) which can be formulated in the so-called production-destruction systems (PDS) as
described in [5, 10] for example. To guarantee the physical and chemical laws, the quantities have to fulfil
several conditions like positivity and conservation.
The applied numerical method should not violate these conditions and big efforts have been devoted to
designing conservative and positivity preserving schemes, since classical approaches like Runge Kutta (RK)
schemes do not guarantee these properties.
In [4] the authors suggest modified Patankar-type methods of first and second order which verify the desired
properties, i.e., conservation and positivity. Recently, further extensions were done to construct modified
Patankar-Runge-Kutta (MPRK) schemes of second and third order [14, 16, 15, 12, 11]. As the name suggests,
all these schemes use, as a basic procedure, the Runge-Kutta method, which has been modified by weighting
the production and destruction terms as suggested in [20]. Thanks to these weighting coefficients, the schemes
are forced to maintain positivity of the variables and to conserve some quantities of interest. However, the
described and constructed schemes are, up to our knowledge, at most third order accurate.
In this paper, we present a way to construct arbitrary high-order, positivity preserving, numerically
robust and conservative schemes for PDS. Differently from previous schemes, we do not start building our
schemes on RK methods. We consider the Deferred Correction (DeC) procedure, a high order time integration
technique, and we modify it, in order to obtain a positivity preserving, conservative and arbitrary high-order
scheme. Moreover, we provide a proof of the desired properties.
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The paper is organised as follows.
In section 2 we introduce the production-destruction systems and we give a short introduction about the
so-called Patankar trick and how it was applied in [5] to construct a modified Patankar-type scheme starting
from the explicit Euler method. Afterwards, in section 3, we introduce the Deferred Correction (DeC) method
and we discuss conservation and positivity for this classical formulation. In section 4, we build the main core
of this work, explaining our modification of DeC through the Patankar trick (mPDeC) and we prove that
the obtained mPDeC schemes are positive preserving, conservative and arbitrary high-order accurate. In
section 5, we validate our theoretical investigations, considering three different benchmark problems, which
are also discussed in different literature references, as [4, 14]. Finally, we give a summary and an outlook for
possible extensions.

2 Production–Destruction Systems

In this paper we consider production-destruction systems (PDS) of the form{
dtci = Pi(c)−Di(c), i = 1, . . . , I,

c(t = 0) = c0,
(1)

where c = (c1, . . . , cI)
T ∈ RI represents the vectors of I constituents, t denotes the time and c0 the initial

condition. Moreover, Pi(c) and Di(c) represent the production and destruction rates of the i-th constituent
and both terms are assumed to be non-negative, i.e, Pi, Di ≥ 0 for i = 1, . . . , I. These systems rise naturally
to describe geochemical processes as it is described in [4, 5] and we recapitulate their notations and definitions
in this section.
The production and destruction terms can also be written in a matrix form as follows

Pi(c) =

I∑
j=1

pi,j(c), Di(c) =

I∑
j=1

di,j(c), (2)

where each term pi,j ≥ 0 and di,j ≥ 0 are Lipschitz continuous functions and may depend linearly or non–
linearly on c. Furthermore, the term di,j describes the rate of change from the i-th to the j-th constituent
while pi,j is the rate at which the j-th constituent is transformed into the i-th.
We are interested in (fully) conservative and positive production–destruction systems. To clarify these
expressions we repeat the definitions from [14].

Definition 2.1. The PDS (1) is called positive if positive initial values ci(0) > 0 for i = 1, . . . , I imply
positive solutions, ci(t) > 0 for i = 1, · · · , I for all times t > 0.
The PDS (1) is called conservative if at any time t ≥ 0, we have that

I∑
i=1

ci(t) =

I∑
i=1

ci(0) (3)

is fulfilled. In the analytic form (1), the conservation property (3) is equivalent to the following relation for
the matrix representation (2)

pi,j(c) = dj,i(c), ∀i, j = 1, . . . , I. (4)

Moreover, the system is called fully conservative if additionally pi,i(c) = di,i(c) = 0 holds for all c ≥ 0
and i = 1, . . . , I.

As it is described in [14] every conservation PDS can be written in a fully conservative formulation. We can
rewrite the two terms of (4) into one matrix of exchanging quantities e(c) defined as

ei,j(c) := pi,j(c)− di,j(c). (5)
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Clearly, from property (4), we have that ei,i = 0. With this notation, let us define the total exchange rate
for the i-th constituent as

Ei(c) := Pi(c)−Di(c). (6)

A numerical method suited to solve a conservative and positive PDS (1) should mimic, at the discrete
level, the continuous setting properties. For a one-step methods, we can introduce the discrete analogues of
definitions (2.1).

Definition 2.2. Let cn denote the approximation of c(tn) at the time level tn. A one-step method

cn+1 = cn + ∆tΦ(tn, cn, cn+1,∆t), (7)

with process function Φ, is called

• unconditionally conservative if for all n ∈ N and ∆t > 0

I∑
i=1

cn+1
i =

I∑
i=1

cni (8)

holds;

• unconditionally positive if for all ∆t > 0 and cn > 0, we have that cn+1 > 0.

Example 2.3. Let us consider as an example the explicit Euler method. The method is defined by

cn+1 = cn + ∆tEi(c
n). (9)

It is conservative since

I∑
i=1

(
cn+1
i − cni

)
=

I∑
i=1

(
cni + ∆t

I∑
i=1

(pi,j(c
n)− di,j(cn))− cni

)
= ∆t

I∑
i=1

(pi,j(c
n)− di,j(cn)) = 0 (10)

holds. Conversely, the explicit Euler method is not unconditionally positive. Consider a conservative and
positive PDS (1) where we assume that the right hand side is not identical zero. Then, there exists a
cn ≥ 0 such that P(cn) −D(cn) 6= 0. Since the PDS is conservative, we can at least find one constituent
i ∈ {1, . . . , I}, where Di(c

n) > Pi(c
n) ≥ 0. Choosing

∆t >
cni

Di(cn)− Pi(cn)
> 0, (11)

we obtain

cn+1
i = cni + ∆t (Pi(c

n)−Di(c
n)) < cni +

cni
Di(cn)− Pi(cn)

(Pi(c
n)−Di(c

n)) = cni − cni = 0. (12)

This demonstrates the violation of the positivity for the explicit Euler method for unbounded timesteps ∆t.

To build an unconditionally positive numerical scheme, Patankar had the idea in [20] of weighting the
destruction term in the original explicit Euler methods with the following coefficient

cn+1
i = cni + ∆t

 I∑
j=1

pi,j(c
n)−

I∑
j=1

di,j(c
n)
cn+1
i

cni

 , i = 1, . . . , I. (13)

Hence, the scheme (13) is unconditionally positive, but the conservation relation is violated. In [4] a modifi-
cation of the Patankar scheme (13) was presented, resulting in an unconditionally positive and conservative
method. It is defined as follows.

cn+1
i := cni + ∆t

 I∑
j=1

pi,j(c
n)
cn+1
j

cnj
−

I∑
j=1

di,j(c
n)
cn+1
i

cni

 , i = 1, . . . , I. (14)
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The scheme is implicit and can be solved inverting the mass matrix M in the system Mcn+1 = cn where M
is {

mi,i(c
n) = 1 + ∆t

∑I
k=1

di,k(cn)
cni

, i = 1, . . . , I,

mi,j(c
n) = −∆t

pi,j(c
n)

cnj
, i, j = 1, . . . , I, i 6= j.

(15)

The construction of the mass matrix M must follow substantial prescriptions in order to preserve the positivity
of the scheme, as suggested in [15].

Remark 2.4. Extensions of the modified Patankar scheme (14) to Runge-Kutta schemes were proposed in
[14, 15] and further developed in [11, 12]. Special focus lies in the weighting of the production and destruc-
tion terms as it is investigated for example in [16] and references therein. Families of second and third
order modified Patankar-Runge-Kutta (MPRK) schemes can be found in the mentioned literature. We do
not provide the definition of MPRK because the modified Patankar scheme (14) already gives us the basic
idea for the new methods we want to propose. We will prove that these methods are positivity preserving,
conservative and arbitrary high-order.

3 Deferred Correction Methods

There are various approaches to solve numerically an ODE. A first approach is given by finite differences,
where the derivative in time is replaced by differences of states in different timesteps. Backward and forward
Euler are examples of this kind of strategy. Another approach would be to reformulate the ODE by inte-
grating it in time. With different quadrature formulas and approximation techniques one can obtain various
Runge-Kutta methods (explicit and implicit ones), see [9, 24] for details. However, we follow a different
approach in this paper.
We start our investigation with the Deferred Correction (DeC) method introduced in [7]. In its original
formulation, it is an explicit, arbitrary high order method for ODEs. Further extensions of DeC can be found
in the literature, including semi-implicit approaches as in [19]. However, in this work we will not consider the
semi-implicit framework. Instead, we will focus on the explicit DeC approach used by Abgrall in [1]. In our
opinion, his notation describes DeC in a more compact way than in previous works [7, 6, 17].1 Nevertheless,
the main idea is always the same and it is based on the Picard-Lindelöf theorem in the continuous setting.
The theorem states the existence and uniqueness of solutions for ODEs. The classical proof makes use of
the so-called Picard iterations to minimize the error and to prove convergence. The foundation of DeC relies
on mimicking the Picard iterations at the discrete level. The approximation error decreases with several
iteration steps. For the description of DeC, Abgrall introduces two operators: L1 and L2.
Here, the L1 operator represents a low-order easy-to-solve numerical scheme, e.g. the explicit Euler method,
and L2 is a high-order operator that can present difficulties in its practical solution, e.g. an implicit RK
scheme. The DeC method can be written as a combination of these two operators.
Given a timeinterval [tn, tn+1] we subdivide it into M subintervals {[tn,m−1, tn,m]}Mm=1, where tn,0 = tn and
tn,M = tn+1 and we mimic for every subinterval [t0, tm] the Picard–Lindelöf theorem for both operators L1

and L2. We drop the dependency on the timestep n for subtimesteps tn,m and substates cm,n as denoted in
Figure 1.

tn = tn,0 = t0

c0

tn,1 = t1

c1

tn,m = tm

cm

tn,M = tM = tn+1

cM

Figure 1: Figure: divided time interval

1We like to mention that Abgrall focused on DeC as a time integration scheme in the context of finite element methods.
Applying a classical RK method, a dense mass matrix has to be inverted and Abgrall wanted to avoid this. By using a DeC
scheme, instead, he showed that a mass matrix free approach is possible [1].
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Then, the L2 operator is given by

L2(c0, . . . , cM ) :=


cM − c0 −

∫ tM
t0
IM (E(c0), . . . , E(cM ))

...

c1 − c0 −
∫ t1
t0
IM (E(c0), . . . , E(cM ))

. (16)

Here, the term IM denotes an interpolation polynomial of order M evaluated at the points {tn,r}Mr=0. In

particular, we use Lagrange polynomials {ϕr}Mr=0, where ϕr(t
n,m) = δr,m and

∑M
r=0 ϕr(s) ≡ 1 for any

s ∈ [0, 1]. Using these properties, we can actually compute the integral of the interpolants, thanks to a

quadrature rule in the same points {tm}Mm=0 with weights θmr :=
∫ tn,m
tn

ϕr(s)ds. We can rewrite

L2(c0, . . . , cM ) =


cM − c0 −

∑M
r=0 θ

M
r E(cr)

...

c1 − c0 −
∑M
r=0 θ

1
rE(cr)

. (17)

The L2 operator represents an (M + 1) order numerical scheme if set equal to zero, i.e., L2(c0, . . . , cM ) = 0.
Unfortunately, the resulting scheme is implicit and, further, the terms E may be non-linear. Because of this,
the only L2 formulation is not explicit and more efforts have to be made to solve it.
For this purpose, we introduce a simplification of the L2 operator. Instead of using a quadrature formula at
the points {tm}Mm=0 we evaluate the integral in equation (16) applying the left Riemann sum. The resulting
operator L1 is given by the forward Euler discretization for each state cm in the timeinterval, i.e.,

L1(c0, . . . , cM ) :=


cM − c0 − βM∆tE(c0)
...

c1 − c0 − β1∆tE(c0)

. (18)

with coefficients βm := tm−t0
tM−t0 .

To simplify the notation and to describe DeC, we introduce the vector of states for the variable c at all
subtimesteps2

c := (c0, . . . , cM ) ∈ RM×I , such that (19)

L1(c) := L1(c0, . . . , cM ) and L2(c) := L2(c0, . . . , cM ). (20)

Now, the DeC algorithm uses a combination of the L1 and L2 operators to provide an iterative procedure.
The aim is to recursively approximate c∗, the numerical solution of the L2 = 0 scheme, similarly to the
Picard iterations in the continuous setting. The successive states of the iteration process will be denoted by
the superscript (k), where k is the iteration index, e.g. c(k) ∈ RM×I . The total number of iterations (also
called correction steps in the following) is denoted by K. To describe the procedure, we have to refer to
both the m-th subtimestep and the k-th iteration of the DeC algorithm. We will indicate the variable by
cm,(k) ∈ RI . Finally, the DeC method can be written as

DeC Algorithm

c0,(k) := c(tn), k = 0, . . . ,K,

cm,(0) := c(tn), m = 1, . . . ,M

L1(c(k)) = L1(c(k−1))− L2(c(k−1)) with k = 1, . . . ,K,

(21)

2We provide a table with all definitions and notations in the appendix A.
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where K is the number of iterations that we want to compute. Using the procedure (21), we need, in
particular, as many iterations as the desired order of accuracy, i.e., K = d = M + 1.
Notice that, in every step, we solve the equations for the unknown variables c(k) which appears only in the
L1 formulation, the operator that can be easily inverted. Conversely, L2 is only applied to already computed
predictions of the solution c(k−1). Therefore, the scheme 21 is completely explicit and arbitrary high order
as stated in [1] with the following proposition.

Proposition 3.1. Let L1 and L2 be two operators defined on RM , which depend on the discretization scale
∆ = ∆t, such that

• L1 is coercive with respect to a norm, i.e., ∃α1 > 0 independent of ∆, such that for any c,d we have
that

α1||c− d|| ≤ ||L1(c)− L1(d)||,

• L1 − L2 is Lipschitz with constant α2 > 0 uniformly with respect to ∆, i.e., for any c,d

||(L1(c)− L2(c))− (L1(d)− L2(d))|| ≤ α2∆||c− d||.

We also assume that there exists a unique c∗∆ such that L2(c∗∆) = 0. Then, if η := α2

α1
∆ < 1, the DeC is

converging to c∗ and after k iterations the error ||c(k) − c∗|| is smaller than ηk||c(0) − c∗||.
Remark 3.2. The DeC procedure is naturally conservative if L1 is conservative, but it is not positivity
preserving if L1 is positivity preserving. Indeed, the coefficients θmr of the operator L2 can be negative and
spoil the positivity of the scheme. This is one of the points that make us modify the classical DeC into the
scheme that we propose in this work.

Remark 3.3. Any DeC scheme can be interpreted as a RK scheme [6]. The main difference between RK and
DeC is that the latter gives a general approach to the time discretization and does not require a specification
of the coefficients for every order of accuracy. On the other side, by rewriting a DeC method as a RK
scheme, it requires a number of stages equal to K×M = d×(d−1), which is bigger than classical RK stages.
However, one can notice that every subtimestep is independent of another, so one can compute sequentially
the corrections and in parallel the subtimesteps, obtaining a computational cost of just K = d corrections.

Example 3.4. For clarity, we provide here an example of a second order DeC scheme. To get this order
of accuracy, we need K = 2 DeC iterations and one subtimestep [tn = tn,0, tn,1 = tn+1]. Reminding that
c0,(k) = c(tn)∀k, the method (21) for the first step reads

L1(c(1))
!
= L1(c(0))− L2(c(0))

⇐⇒c1,(1)
i − c0,(0)

i −∆tβ1Ei,j(c
0,(1)) =

c
1,(0)
i − c0,(0)

i −∆tβ1Ei(c
0,(0))

−c1,(0)
i + c

0,(0)
i + ∆t

M∑
r=0

θ1
rEi(c

r,(0))

⇐⇒c1,(1)
i = c

0,(0)
i + ∆tEi(c

0,(0)) = c
0,(0)
i + ∆t

I∑
j=1

(
pi,j(c

0,(0))− di,j(c0,(0))
)

Substituting this term into the first correction steps leads finally to

L1(c(2)) = L1(c(1))− L2(c(1))

⇐⇒c1,(2)
i − c0,(2)

i −∆tEi(c
0,(2))

= c
1,(1)
i − c0,(1)

i −∆tEi(c
0,(1))

− c1,(1)
i + c

0,(1)
i +

1∑
r=0

θ1
r∆tEi(c

r,(1))

6



The correction step is not modifying the initial subtimestep. Therefore, with c0,(1) = c0,(2), we get

cn+1
i = c

1,(2)
i = c

0,(0)
i +

1∑
r=0

θ1
r∆t

I∑
j=1

(
pi,j(c

r,(1))− di,j(cr,(1))
)

where θ1
0 = θ1

1 = 1
2 . This scheme coincides with the strong stability preserving Runge-Kutta method of second

order [8].

Remark 3.5. Before we modify our DeC framework, we want to give some final remarks.
The presented DeC approach is not the most general version. In our description we always include both
endpoints in the point distribution of the subtimesteps, i.e., t0 = tn and tM = tn+1. However, this is
not necessary, as it is already described in [7], where also Gauss-Legendre nodes are applied. Then, the
approximation at the endpoint is done via extrapolation. Nevertheless, we do not consider in this work this
class of point distribution.
Secondly, instead of using the explicit Euler method in L1, explicit high-order RK methods can also be applied.
In principle, this yields a faster increase of the order of accuracy in the iterative procedure, but it has been
shown, that it leads also to some problems of smoothness of the error behaviour as it is described in [6], which
results in a drop down of the expected accuracy order. However, we will consider this approach in future
research.

4 Modified Patankar Deferred Correction Scheme

In this section, we are going to propose a positivity preserving, conservative and arbitrary high-order scheme,
that will be denoted as modified Patankar Deferred Correction (mPDeC).
The DeC procedure (21) serves us as a starting point to construct this scheme, and, thanks to its structure,
we will be able to prove the hypotheses of Proposition 3.1. This yield us directly the desired order condition
for our modified DeC scheme without performing a specific Taylor expansion for every order of accuracy.
We will adapt DeC in such a way to obtain all the properties we are interested in.
The conservation can be easily guaranteed by the consistency of the two operators, i.e., by the consistency
of the two schemes described by L1 and by L2.
Conversely, more effort is required to produce a positivity preserving scheme. For this purpose, we follow
the ideas of Patankar [20] and Burchard et al. [4] of weighting the destruction and production terms in the
scheme. Their aim is to obtain a mass matrix shaped as in the modified Patankar scheme (14) where all of
the positive terms are collected on the diagonal, while the negative terms are put in the non-diagonal entries.
This will guarantee that the mass matrix is diagonally dominant by columns, with positive diagonal values,
and, thus, its inverse will be positive. Therefore, we introduce some coefficients similar to the ones proposed
in (14).
Finally, as we have seen in the example (2.3), an explicit scheme is not positivity preserving and the investi-
gation in [4, 16, 11] support our decision to modify the DeC scheme in order to get a fully implicit method.
Because of all the above mentioned considerations, we came to the conclusion of modifying the L2 operator,
to make it fully implicit. In particular, it has to depend on both the previous and the current corrections of
the DeC procedure. We redefine it as follows.

L2(c0,(k−1), . . . , cM,(k−1), c0,(k), . . . , cM,(k)) = L2(c(k−1), c(k)) :=

c
M,(k−1)
i − c0,(k−1)

i −
M∑
r=0

θMr ∆t
I∑
j=1

(
pi,j(c

r,(k−1))
c
M,(k)

γ(j,i,θMr )

c
M,(k−1)

γ(j,i,θMr )

− di,j(cr,(k−1))
c
M,(k)

γ(i,j,θMr )

c
M,(k−1)

γ(i,j,θMr )

)
,∀i = 1, . . . , I

...

c
1,(k−1)
i − c0,(k−1)

i −
M∑
r=0

θ1
r∆t

I∑
j=1

(
pi,j(c

r,(k−1))
c
1,(k)

γ(j,i,θ1r)

c
1,(k−1)

γ(j,i,θ1r)

− di,j(cr,(k−1))
c
1,(k)

γ(i,j,θ1r)

c
1,(k−1)

γ(i,j,θ1r)

)
,∀i = 1, . . . , I

,

(22)
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where γ(a, b, θ) = a if θ > 0 and γ(a, b, θ) = b if θ < 0.

Remark 4.1. The modification of the scheme is done only through the coefficients
c
m,(k)
j

c
m,(k−1)
j

on both the

production and the destruction terms. The fact that these coefficients depend on the new correction (k)
means that we are modifying the mass matrix of the whole DeC correction step.
These coefficients allow to choose in which term of the mass matrix we want to put each term θmr pi,j and
θmr di,j, according to the sign of the θ coefficient. The pseudo-algorithm 1 provides the construction steps
of the mass matrix, see B. There, it is straightforward to see that the diagonal terms are all positive and
the off–diagonal are all negative. The index γ takes care of the sign of the destruction and production
terms which are added in the mass matrix. It is inspired by the explanation given in [14, Remark 2.5], that
states that, when negative entries in the Butcher Tableau of the RK scheme appear, one has to interchange
the destruction terms with the production ones to guarantee the positivity preserving property. With the γ
function we are taking this into account. In our opinion, it is complicated and unclear to investigate higher
order (> 3) RK schemes properties because of these exchanges depending on the Butcher Tableau. While,
with this DeC approach, we can in few lines generalize every order scheme.
Moreover, it is helpful to notice that the coefficients that we are using to modify the contributions, namely
c
m,(k)
j

c
m,(k−1)
j

, are converging to 1 as the iteration index of the DeC increases. In subsection 4.2 we will make this

statement more precise and we will study how fast these coefficients converge to 1.

Most of the terms in the L1 operator will cancel out through the iteration process, therefore we keep the L1

operator as presented in the original DeC (18).

L1(c0,(k), . . . , cM,(k)) =

c
M,(k)
i − c0,(k)

i − βM∆t

(
I∑
j=1

pi,j(c
0,(k))−

I∑
j=1

di,j(c
0,(k))

)
,∀i = 1, . . . , I

...

c
1,(k)
i − c0,(k)

i − β1∆t

(
I∑
j=1

pi,j(c
0,(k))−

I∑
j=1

di,j(c
0,(k))

)
,∀i = 1, . . . , I

.
(23)

Now, we propose the modified Patankar DeC scheme as follows.

mPDeC Algorithm

c0,(k) := c(tn), k = 0, . . . ,K,

cm,(0) := c(tn), m = 1, . . . ,M

L1(c(k)) = L1(c(k−1))− L2(c(k−1), c(k)) with k = 1, . . . ,K.

(24)

One can notice that, using the fact that initial states c
0,(k)
i are identical for any correction (k), the DeC

correction step (24) can be rewritten for k = 1, . . . ,K, m = 1, . . . ,M and ∀i ∈ I into

c
m,(k)
i − c0i −

M∑
r=0

θmr ∆t

I∑
j=1

pi,j(cr,(k−1))
c
m,(k)
γ(j,i,θmr )

c
m,(k−1)
γ(j,i,θmr )

− di,j(cr,(k−1))
c
m,(k)
γ(i,j,θmr )

c
m,(k−1)
γ(i,j,θmr )

 = 0. (25)

We keep both formulations (24) and (25) to prove different properties. The DeC formulation (24) will
help us to demonstrate the accuracy order of the scheme whereas formulation (25) will be used to prove
conservation and positivity. Before we start to prove these properties, we give a small example to get used to
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the formulation (24). Furthermore, we like to mention that although the algorithm (24) seems quite complex,
it is actually easy to implement. We put a small pseudo-code in the B and we refer to the repository 3 for a
Julia version of the code.

Example 4.2. We give a small example of the constructed method, applying the DeC approach at second
order of accuracy, as already considered in example 3.4, i.e., K = 2 DeC iterations and one subtimestep
[tn = tn,0, tn,1 = tn+1]. In this case, we recall that θ1

0 = θ1
1 = 1

2 and that c0,(0) = c1,(0).
The method (24) for the first step reads

L1(c(1))− L1(c(0)) + L2(c(0), c(1))
!
= 0

⇐⇒c1,(1)
i − c0,(1)

i −∆t

I∑
j=1

(
pi,j(c

0,(1))− di,j(c0,(1))
)

=

c
1,(0)
i − c0,(0)

i −∆t

I∑
j=1

(
pi,j(c

0,(0))− di,j(c0,(0))
)

−c1,(0) + c
0,(0)
i + ∆t

1∑
r=0

θ1
r

I∑
j=1

(
pi,j(c

r,(0))
c
1,(1)
j

c
1,(0)
j

− di,j(cr,(0))
c
1,(1)
i

c
1,(0)
i

)

⇐⇒c1,(1)
i = c

0,(0)
i + ∆t

I∑
j=1

(
pi,j(c

0,(0))
c
1,(1)
j

c
1,(0)
j

− di,j(c0,(0))
c
1,(1)
i

c
1,(0)
i

)
,

where the last step is obtained considering, again the fact that for the iteration (0) all the states coincide.
Collecting the mass matrix terms as in (15), one can solve the previous equation for c1,(1). Substituting this
term into the second iteration step leads finally to

L1(c(2)) = L1(c(1))− L2(c(1), c(2))

⇐⇒c1,(2)
i − c0,(2)

i −∆t

I∑
j=1

pi,j(c
0,(2)) +

I∑
j=1

di,j(c
0,(2))

= c
1,(1)
i − c0,(1)

i −∆t

I∑
j=1

pi,j(c
0,(1)) +

I∑
j=1

di,j(c
0,(1))

− c1,(1)
i + c

0,(1)
i +

1∑
r=0

θ1
r∆t

 I∑
j=1

pi,j(c
r,(1))

c
1,(2)
j

c
1,(1)
j

−
I∑
j=1

di,j(c
r,(1))

c
1,(2)
i

c
1,(1)
i

 .

The correction step has no effect on the initial subtimestep. Therefore, we get with c0,(1) = c0,(2):

cn+1
i = c

1,(2)
i = c

0,(0)
i +

1∑
r=0

θ1
r∆t

 I∑
j=1

pi,j(c
r,(1))

c
1,(2)
j

c
1,(1)
j

−
I∑
j=1

di,j(c
r,(1))

c
1,(2)
i

c
1,(1)
i


where θ1

0 = θ1
1 = 1

2 . This scheme coincides with a modified Runge Kutta Patankar scheme of second order
as it is presented in [14] .

4.1 Conservation and positivity of modified Patankar DeC

In this section, we are proving that the proposed scheme is unconditionally conservative and positivity
preserving.

3https://git.math.uzh.ch/abgrall_group/deferred-correction-patankar-scheme
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Theorem 4.3. The mPDeC scheme in (25) is unconditionally conservative for all substages, i.e.,

I∑
i=1

c
m,(k)
i =

I∑
i=1

c0i ,

for all k = 1, . . . ,K and m = 0, . . . ,M .

Proof. Using formulation (25), we can easily see that ∀k,m∑
i∈I

c
m,(k)
i −

∑
i∈I

c0i = (26)

=∆t

I∑
i,j=1

M∑
r=0

θmr

pi,j(cr,(k−1))
c
m,(k)
γ(j,i,θmr )

c
m,(k−1)
γ(j,i,θmr )

− di,j(cr,(k−1))
c
m,(k)
γ(i,j,θmr )

c
m,(k−1)
γ(i,j,θmr )

 = (27)

=∆t

I∑
i,j=1

M∑
r=0

θmr

dj,i(cr,(k−1))
c
m,(k)
γ(j,i,θmr )

c
m,(k−1)
γ(j,i,θmr )

− di,j(cr,(k−1))
c
m,(k)
γ(i,j,θmr )

c
m,(k−1)
γ(i,j,θmr )

 = (28)

=∆t

M∑
r=0

θmr

 I∑
i,j=1

dj,i(c
r,(k−1))

c
m,(k)
γ(j,i,θmr )

c
m,(k−1)
γ(j,i,θmr )

−
I∑

i,j=1

di,j(c
r,(k−1))

c
m,(k)
γ(i,j,θmr )

c
m,(k−1)
γ(i,j,θmr )

 = 0. (29)

To get this result, we have just used the definition of the scheme (25) in (27) and the property (4) of the
production and destruction operators di,j = pj,i in (28). In the last step, we have exchanged the sums over
j and i.

To demonstrate the positivity of the scheme, we introduce some preliminary results.

Lemma 4.4. The mass matrix of every correction step of the mPDeC scheme described in (25) is diagonal
dominant by columns.

Proof. At each step (m, k) we are solving an implicit linear system where the mass matrix is given by

M(cm,(k−1))ij =


1 + ∆t

M∑
r=0

I∑
l=1

θmr
c
m,(k−1)
i

(
di,l(c

r,(k−1))1{θmr >0} − pi,l(cr,(k−1))1{θmr <0}
)

for i = j

−∆t
M∑
r=0

θmr
c
m,(k−1)
j

(
pi,j(c

r,(k−1))1{θmr >0} − di,j(cr,(k−1))1{θmr <0}
)

for i 6= j

. (30)

Under the assumption that pi,j and di,j are always positive, it is straightforward to see that all the terms of
the sum of M(cm,(k−1))ii are positive by construction and that all the terms of the sum of the non-diagonal
terms M(cm,(k−1))ij for i 6= j are negative. Moreover, we can demonstrate that

|M(cm,(k−1))ii| = M(cm,(k−1))ii >

I∑
j=1,j 6=i

−M(cm,(k−1))ji =

I∑
j=1,j 6=i

|M(cm,(k−1))ji|, (31)

by showing

M(cm,(k−1))ii = 1 + ∆t

M∑
r=0

I∑
j=1

θmr

c
m,(k−1)
i

(
di,j(c

r,(k−1))1{θmr >0} − pi,j(cr,(k−1))1{θmr <0}

)
>

> ∆t

M∑
r=0

I∑
j=1

θmr

c
m,(k−1)
i

(
pj,i(c

r,(k−1))1{θmr >0} − dj,i(cr,(k−1))1{θmr <0}

)
=

= −
I∑

j=1,j 6=i

M(cm,(k−1))ji =

I∑
j=1,j 6=i

|M(cm,(k−1))ji|,

(32)
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where we have used the property of the p and d matrices to obtain the previous computation. Finally, this
proves that the mass matrix is diagonally dominant by columns.

Using Lemma 4.4 we prove the following theorem.

Theorem 4.5. The mPDeC scheme defined in (25) is positivity preserving, i.e., if c0 > 0 then cm,(k) > 0,
for all m = 1, . . . ,M and k = 1, . . . ,K.

Proof. Using lemma 4.4, we can prove that the inverse of any mass matrix obtained from the DeC iterations
is positive, i.e., (M−1)ij ≥ 0, ∀i, j. The proof follows the path of what was proposed in [14]. Using the
Jacobi method, we can converge to M−1 with iterative matrices Z(s) for s ∈ N, where

Z(s+1) := (I −D−1M)Z(s) +D−1, with Z(0) = I. (33)

Here, I is the identity and D is the diagonal of M. If we denote the iteration matrix as B := I − D−1M,
we can see that it has spectral radius smaller than one, since M is diagonally dominant. This means that
the Jacobi method is convergent to M−1. Now, since B > 0 and D−1 > 0 from previous lemma 4.4 and, by
induction, also Z(s) is positive, we can say that M−1 = lim

s→∞
Z(s) will be positive.

4.2 Convergence order

To prove that the solution of the mPDeC procedure is high-order accurate, we mimic the proof of the original
DeC convergence as in [1]. We denote by c∗ the solution of the L2 operator, i.e., L2(c∗, c∗) = 0. This solution
c∗ coincides with the solution of the classical L2 operator defined in (16).
We want to prove that for each iteration step the following inequalities are fulfilled:

||c(k) − c∗|| ≤C0||L1(c(k))− L1(c∗)|| = (34)

=C0||L1(c(k−1))− L2(c(k−1), c(k))− L1(c∗) + L2(c∗, c∗)|| ≤ (35)

≤C∆t||c(k−1) − c∗|| (36)

which implies that for each iteration step we obtain one order of accuracy more than the previous iteration.
After K iterations we, finally, get

||c(K) − c∗|| ≤ CK∆tK ||c0 − c∗||. (37)

To prove that the inequalities (34) and (36) are valid, we have to demonstrate the following

1. the coercivity of the operator L1 (as in the inequality (34))

2. the Lipschitz inequality for operator L1 − L2 used in (36)

3. the high-order accuracy of the operator L2, i.e., ||c∗ − cexact|| ≤ Cd∆td.

Let us start with the coercivity lemma.

Lemma 4.6 (Coercivity of L1). Given any c(k), c∗ ∈ RM×I , there exists a positive C0, such that, the
operator L1 verifies

||L1(c(k))− L1(c∗)|| ≥ C0||c(k) − c(∗)||. (38)

Proof. We remind that the beginning states coincide for all the variables, i.e., c0,(k) = c0,∗ = c0. So, the
evolution part simplifies in the two operators and we get the following relation

L1(c(k))− L1(c∗) = (c(k) − c(∗)). (39)

This proves that with constant C0 = 1 the equation (38) holds.
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Before proving Lipschitz continuity, we need two lemmas. The first one proves that each stage of the scheme
is a first order approximation of the previous timestep.

Lemma 4.7. For every subtimestep m = 1, . . . ,M and correction k = 1, . . . ,K, there exists a matrix G,
such that

cm,(k) = c0 + ∆tG(cm,(k−1))c0 (40)

holds. Moreover, G(cm,(k−1)) = W (cm,(k−1)) +O(∆t), where W does not depend on ∆t.

Proof. For any m = 0, . . . ,M and k = 0, . . . ,K, the equation (25) tells us that the mass matrix M(cm,(k−1))
can be written as M(cm,(k−1)) = I −∆tW (cm,(k−1)) where W does not depend on ∆t, but only on cm,(k−1)

and the production–destruction functions. It is defined as

W (cm,(k−1))ij =


−

M∑
r=0

I∑
l=1

θmr
c
m,(k−1)
i

(
di,l(c

r,(k−1))1{θmr >0} − pi,l(cr,(k−1))1{θmr <0}
)

for i = j

+
M∑
r=0

θmr
c
m,(k−1)
j

(
pi,j(c

r,(k−1))1{θmr >0} − di,j(cr,(k−1))1{θmr <0}
)

for i 6= j

. (41)

This leads to an inverse

(M(cm,(k−1)))−1 = I + ∆tW (cm,(k−1)) +O(∆t2).

Now, we can define G by

G(cm,(k−1)) :=
1

∆t

(
(M(cm,(k−1)))−1 − I

)
= W (cm,(k−1)) +O(∆t).

So, we can write
cm,(k) = (M(cm,(k−1)))−1c0 = c0 + ∆tG(cm,(k−1))c0. (42)

With the following lemma, we prove that the mPDeC process generates a Cauchy sequence similar to the
continuous Picard iterations. Moreover, at each iteration, we differ from the previous step by an error of one
order of accuracy more. We will drop the dependency on the subtimestep m, as all the relations hold for all
of them.

Lemma 4.8. Let c(k) and c(k−1) ∈ RI verifying Lemma 4.7, then

c
(k)
i

c
(k−1)
i

= 1 + ∆tk−1gi +O(∆tk) (43)

holds where gi are constants independent from ∆t.

Proof. We prove the lemma by induction.

For k = 1, equation (43) follows directly from Lemma 4.7, i.e.,
c
(1)
i

c
(0)
i

= 1 +O(∆t).

Given k ∈ N, as induction hypothesis, (43) holds for k, i.e.,

c
(k)
i = c

(k−1)
i

(
1 + ∆tk−1gi

)
+O(∆tk), (44)
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where gi = Gi(c
(k−1))c0 and Gi denotes the ith row of the matrix G. We can prove that (43) is verified also

for k + 1. Using Lemma (4.7), we obtain

c
(k+1)
i

c
(k)
i

=
c
(0)
i + ∆tGi(c

(k))c(0)

c
(0)
i + ∆tGi(c(k−1))c(0)

=

=

(
c
(0)
i + ∆tGi(c

(k))c(0)
)(

c
(0)
i −∆tGi(c

(k−1))c(0)
)

(
c
(0)
i + ∆tGi(c(k−1))c(0)

)(
c
(0)
i −∆tGi(c(k−1))c(0)

) =

=

(
c
(0)
i

)2

+ ∆tc
(0)
i Gi(c

(k))c(0) −∆tc
(0)
i Gi(c

(k−1))c(0)(
c
(0)
i

)2

−
(
∆tGi(c(k−1))c(0)

)2 +

−
(
∆tGi(c

(k−1))c(0)
) (

∆tGi(c
(k))c(0)

)(
c
(0)
i

)2

−
(
∆tGi(c(k−1))c(0)

)2 .

Inserting the induction step (44) we get

c
(k+1)
i

c
(k)
i

=

(
c
(0)
i

)2

+ ∆tc
(0)
i

(
Gi
(
c(k−1) •

(
1 + ∆tk−1g

)
+O(∆tk)

)
−Gi(c(k−1))

)
c(0)(

c
(0)
i

)2

−
(
∆tGi(c(k−1))c(0)

)2 +

−
(
∆tGi(c

(k−1))c(0)
) (

∆tGi
(
c(k−1) •

(
1 + ∆tk−1g

)
+O(∆tk)

)
c(0)

)(
c
(0)
i

)2

−
(
∆tGi(c(k−1))c(0)

)2
Here, • denotes the Hadamard product and 1 := (1, . . . , 1)T ∈ RI . The induction step is evaluated for every
entry i. Using the regularity of Gi, we expand its Taylor series in c(k−1) for every constituent i. Thanks
again to the result of Lemma (4.7), we can write

c
(k+1)
i

c
(k)
i

=

(
c
(0)
i

)2

+ ∆tc
(0)
i Gi

(
c(k−1)

)
c(0) + ∆tkc

(0)
i ∇Gi(c)gc(0) −∆tc

(0)
i Gi(c

(k−1))c(0)(
c
(0)
i

)2

−
(
∆tGi(c(k−1))c(0)

)2 +

−
(
∆tGi(c

(k−1))c(0)
) (

∆tGi
(
c(k−1)

)
c(0) + ∆tk∇Gi(c)gc(0) +O(∆tk)

)(
c
(0)
i

)2

−
(
∆tGi(c(k−1))c(0)

)2
where c is the point of the Lagrange form of the remainder of the Taylor expansion. Hence, we can proceed
as follows

c
(k+1)
i

c
(k)
i

=

(
c
(0)
i

)2

+ ∆tc
(0)
i Gi

(
c(k−1)

)
c(0) + ∆tkc

(0)
i ∇Gi(c)gc(0) −∆tc

(0)
i Gi(c

(k−1))c(0)(
c
(0)
i

)2

−
(
∆tGi(c(k−1))c(0)

)2 +

−
(
∆tGi(c

(k−1))c(0)
)2

+O(∆tk+1)(
c
(0)
i

)2

−
(
∆tGi(c(k−1))c(0)

)2 =

=

(
c
(0)
i

)2

−
(
∆tGi(c

(k−1))c(0)
)2

+ ∆tkc
(0)
i ∇Gi(c)gc(0) +O(∆tk+1)(

c
(0)
i

)2

−
(
∆tGi(c(k−1))c(0)

)2 =

=1 + ∆tkĝi +O(∆tk+1)
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which finally proves equation (43) for k + 1.

Now, let us prove on the Lipschitz continuity of the operator L1 − L2.

Lemma 4.9 (Lipschitz continuity of L1 − L2). Let c(k), c(k−1), c∗ ∈ RM×I+ fulfil Lemma 4.7. Then, the
operator L1 − L2 is Lipschitz continuous with constant ∆tCL, i.e.,

||L1(c(k−1))− L2(c(k−1), c(k))− L1(c∗) + L2(c∗, c∗)|| ≤ CL∆t||c(k−1) − c∗||. (45)

Proof. Now, we apply Lemma (4.8) to substitute the new L2 operator (22) with the original one of the
classical DeC (17) adding an error of order ∆tk−1 to the operator. We get another order from the time
integration, such that

L2(c(k−1), c(k)) = L2(c(k−1)) +O(∆tk)

and, trivially, L2(c∗, c∗) = L2(c∗) holds. Together, we obtain∣∣∣∣∣∣L1(c(k−1))− L2(c(k−1), c(k))− L1(c∗) + L2(c∗, c∗)
∣∣∣∣∣∣ ≤ (46)

≤
∣∣∣∣∣∣L1(c(k−1))− L2(c(k−1))− L1(c∗) + L2(c∗)

∣∣∣∣∣∣+O(∆tk). (47)

Now, we have to take care about the different variables in the operators. Let us start studying the operator
L1 − L2. We are focusing on each line of the schemes for an arbitrary subtimestep. The difference is given
by

L1,m
i (c(k−1))− L2,m

i (c(k−1)) =∫
tm

t0

IM
({

Ei(c
r,(k−1))

}M
r=0

)
− I0

({
Ei(c

r,(k−1))
}M
r=0

)
dt

=

∫
tm

t0

(IM − I0)

({
Ei(c

r,(k−1))
}M
r=0

)
dt.

(48)

Now, we can compute the difference of the two terms

||L1,m
i (c(k−1))− L2,m

i (c(k−1))− L1,m
i (c∗) + L2,m

i (c∗)|| =

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∫

tm

t0

(IM − I0)

({
Ei(c

r,(k−1))− Ei(cr,∗)
}M
r=0

)
dt

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

≤∆tC1||Ei(c(k−1))− Ei(c∗)|| ≤

≤∆tCL||c(k−1) − c∗||.

(49)

In last step, we have used the regularity of the solutions c(k−1) and c∗ and the fact that IM − I0 brings an
error of order zero O(1) times ∆t given by the time integration. Then, we have used the Lipschitz continuity
of the functions Ei.
Overall, the constant CL depends on the operators p and d and the Lemma is proven.

Finally, we need to show that the solution c∗ of the operator L2(c∗, c∗) = 0 is an (M + 1)-order accurate
solution. This is given directly by the definition of the operator (22), since it is an (M + 1)-order accurate
approximation of the original problem (1) when the two input coincide and, thus, the modification coefficients
become 1 and the operator becomes the original one (17).
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Theorem 4.10 (Convergence of mPDeC). Let L1(·) and L2(·, ·) be the operators defined in (23) and (22)
respectively. The mPDeC procedure (24) gives an approximation solution with order of accuracy equal to
min(M + 1,K).

Proof. With Lemma 4.6 we proved the coercivity of the operator L1, which verifies the inequality in (34).
The definition of the mPDeC scheme (24) gives us the equality (35) and the Lipschitz continuity lemma 4.9
proves the inequality (36). Moreover, we know that c∗ is an (M + 1)-accurate approximation of the cex

exact solution.
So, overall, we have

||c(K) − cex|| ≤ ||c∗ − cex||+ (C∆t)K ||c∗ − c(0)|| ≤ C∗∆tM+1 + (C∆t)K . (50)

All the desired properties (unconditionally positivity, unconditionally conservation and high-order accuracy)
are fulfilled by the proposed scheme.

5 Numerics

In this section, we validate our theoretical investigation of section 4 considering some test cases from [14, 4].
We focus here only on systems of ordinary differential equations (ODE) (stiff and non-stiff). However, the
mPDeC schemes can be in general used as time-integration methods for a semidiscrete formulation of partial
differential equations, where the spatial discretization is already provided by RD, DG, FR, (c.f. [2, 3, 23])
or your favourite space discretization method.
As part of future research, we will consider these schemes in real applications like non-equilibrium flows or
shallow water equations as it was already done, for example, for MPRK together with a WENO approach in
[11] or a DG one in [18]. In this work we focus on systems of ODEs. In all the numerical tests, we applied
the mPDeC approach on equidistant subtimestep points distributions.

5.1 Linear Model

We start by considering a simple linear test case proposed in [4, 18]. The initial value problem for the PDS
is given by

c′1(t) = c2(t)− 5c1(t), c′2(t) = 5c1(t)− c2(t),

c1(0) = c01 = 0.9, c2(0) = c02 = 0.1 .
(51)

The initial values of (51) are positive and we can rewrite the right hand side of the ODE system in a PDS
format as follows

p1,2(c) = d2,1(c) = c2, p2,1(c) = d1,2(c) = 5c1

and pi,i(c) = di,i(c) = 0 for i = 1, 2. The system describes the exchange of mass between two constituents.
The analytical solution is given by

c1(t) =
1

6

(
1 +

13

5
exp(−6t)

)
and c2(t) = 1− c1(t). (52)

The problem is considered on the time interval [0, 1.75] and, analogously to [4], we use ∆t = 0.25 in the
simulations. In Figure (2) we plot the analytical solution (dotted, blue line) and the approximated solutions
using 2-nd (solid line, green) and 5-th (dash-dotted line, black) order mPDeC methods. The purple lines
represent the sum of the constituents and they are constantly equal to 1, since the methods are conservative.
Qualitatively, we see that the 5-th order method approximates better the analytical solutions. Furthermore,
to verify the order of convergence of the methods, we consider also the error behavior of the different order
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Figure 2: Second and fifth order methods together with the reference solution (52)

schemes. Differently from Kopecz and Meister [14, 15] instead of calculating the relative errors, we compute
the absolute discrete L2 errors taken over all the timesteps {tn}Nn=0 and all the constituents:

E =
1

N

N∑
n=1

(
1

I

I∑
i=1

(ci(t
n)− cni )

2

) 1
2

. (53)

After a comparison between the final time error and the one proposed (53), we do not observe much discrep-
ancy. Therefore, we will provide only results obtained with (53).
In Figure 3, the left picture shows the error decay for mPDeC schemes at different discretization scales
∆t. In the right picture, we plot the slope of the error decay for different orders of accuracy. These graphs
demonstrate the high-order accuracy of the proposed methods and the expected convergence rates, validating
the theoretical results. It is also possible to test the scheme with higher order of accuracy. However, we have
notice a reduction of the order as we reach orders higher than 10, probably due to Runge phenomena. These
are well known issues that arise also with the usual DeC methods [7] using equidistant points distribution
in the subtimesteps. A possible solution of this problem can be the usage of Gauß-Lobatto nodes as point
distributions. This and stability investigations will be part of future research.

5.2 Nonlinear test problem

In this next subsection, we consider the nonlinear test problem

c′1(t) = −c1(t)c2(t)

c1(t) + 1
,

c′2(t) =
c1(t)c2(t)

c1(t) + 1
− 0.3c2(t),

c′3(t) = 0.3c2(t)

(54)
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Figure 3: Second to sixth order error decay and slope of the errors

with initial condition c0 = (9.98, 0.01, 0.01)T . As before, this problem was proposed in [14]. The PDS system
in the matrix formulation can be expressed by

p2,1(c) = d1,2(c) =
c1(t)c2(t)

c1(t) + 1
, p3,2(c) = d2,3(c) = 0.3c2(t)

and pi,j(c) = di,j(c) = 0 for all other combinations of i and j. This system (54) is used to describe an
algal bloom, that transforms nutrients c1 via phytoplankton c2 into detritus c3. In our test, we consider the
time interval [0, 30] and ∆t = 0.5. We calculate the reference solution with the strong stability preserving
Runge-Kutta method 10 stages 4th order introduced by Ketcheson [13], further investigated in [22] and
implemented in Julia, see [21] for details.
In Figure 4, the 6-th order mPDeC (black, dash-dotted lines) approximates very precisely the reference
solution. The 2-nd order method (solid line, green) shows the same structure as the reference solution but
it exhibits a severe error. However, the approximated second order solution is comparable with the results
obtained in [14]. We see again that the conservation property is fulfilled in the purple lines.
Since we lack of an analytical solution, in the error plots, we compare successive errors between two refine-
ments of the time mesh

EN =
1

N

N∑
n=1

(
1

I

I∑
i=1

(
cni,N − c2ni,2N

)2) 1
2

. (55)

Here, the subscript N indicates the number of equispaced timesteps used to subdivide the total time inter-
val. The results are presented in Figure 5. As for the linear case, we can see that the error decay fulfils the
expected behavior and that the order of accuracy tends to the correct one. The slight decrease of the slope
function in the right picture using sixth order can be explained by the fact that the error values are close to
machine precision in that area and this causes the deprecation of the slope.

These plots verify our theoretical investigations from section 4.

5.3 Robertson Test case

In the last test case, we prove the robustness of the mPDeC schemes in presence of stiff problems. The
proposed test is the Robertson problem for a chemical reaction system. It consists of

c′1(t) = 104c2(t)c3(t)− 0.04c1(t)

c′2(t) = 0.04c1(t)− 104c2(t)c3(t)− 3 · 107c2(t)2

c′3(t) = 3 · 107c2(t)2

(56)
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Figure 4: Second order and sixth order methods together with the reference solution (SSPRK104)
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with initial conditions c0 = (1, 0, 0).4 The time interval of interest is [10−6, 1010]. The PDS for (56) reads

p1,2(c) = d2,1(c) = 104c2(t)c3(t), p2,1(c) = d1,2(c) = 0.04c1(t), p3,2(c) = d2,3(c) = 3 · 107c2(t)

and zero for the other combinations.
In the Robertson test case, the numerical scheme has to deal with several time scales. Therefore, a constant
time step size is not suitable for this purpose. Following again the literature [14], we use increasing time
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Figure 6: Second and fifth order solutions and references

steps ∆tn = 2n−1∆t0 with ∆t0 = 10−6, where n indicates the n-th timestep. To make the small c2 values
visible on the plot, we multiply it by 104. As a comparison, we calculate the reference solution (dotted,
blue line) using the function Rodas45 from Julia, where we split the time-interval into 55 subdomains and
we solve it on every subdomain with relative tolerance 10−20 and absolute tolerance 10−20. We plot again
a second order (green, solid lines) and fifth order (black, dashed-dotted lines) approximations generated by
the mPDeC methods and, as it can be seen in figure 6, the designed methods produce reliable and robust
results for this kind of stiff problems. As always, the conservation and the positivity properties are fulfilled.
Finally, we can say that the simulations run in this section express the quality of the mPDeC schemes.
Moreover, they show that all the targeted properties are obtained even for very problematic test cases.

6 Summary and Outlook

In this paper, we presented a way to build positivity preserving, conservative and arbitrary high-order
numerical schemes for production-destructions systems of equations. We adapted the idea of [4] to build
modified Patankar type schemes to the Deferred Correction method as an underlying scheme. By altering
the L1 and L2 operators using the modified Patankar trick, we were able to obtain schemes with the desired
properties. We proved that the proposed modified Patankar DeC (mPDeC) schemes are arbitrary high-order,

4To avoid the division by zero in the mPDeC scheme, we slightly modify the initial condition in the practical implementation,
i.e., c0 = (1− 2eps, eps, eps) with eps = 2.22 · 10−16.

5 A 4-th order A-stable stiffly stable Rosenbrock method with a stiff-aware 3rd order interpolant.
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Notation Meaning
I Number of constituents and dimension of the ODE system
i Index for constituents
ci Value of the ith constituents
c Vector of all the constituents c = (c1, . . . , cI)

T

N Number of time intervals
n Index for a timestep
tn Timestep
cn Variables at timestep tn

M Number of subtimeintervals in a timeinterval
m Index for subtimesteps

tn,m = tm Subtimestep
cn,m = cm Variable at subtimestep m

c Vector of variables at all subtimestep m = 0, . . . ,M
K Number of iterations of the DeC procedure

(k) Index of the iteration
cn,m,(k) = cm,(k) Variables for timestep n at the subtimestep m and iteration k

c(k) Vector of variables for all subtimesteps m = 0, . . . ,M at the iteration k
L1(·) First order operator of DeC procedure
L2(·) High order operator of DeC procedure
L2(·, ·) High order operator of mPDeC procedure

c∗ Solution of the system L2(c∗) = 0.

Table 1: Notation table

conservative and positivity preserving. In numerical simulations, we confirmed our theoretical considerations
with various test cases.
However, further research can be pursued in this direction. As it was investigated in [15, 14] for families of
MPRK, it is possible to study the accuracy and the stability of the method varying the weightings of the
production-destruction terms of the schemes. In the spirit of the work [14], a change of the weighting of
the Patankar modification in the L1 and L2 operators should be easily applicable to the mPDeC schemes
and theoretical investigations will be considered in future research, in particular regarding the stability
conditions. Also the distribution of the subtimesteps between tn and tn+1 plays a big role on stability and
accuracy of the scheme. Many choices are valid and the possible influence of the properties of the method
must be carefully analysed. This idea is already work in progress for the classical DeC approach and will be
extended to the mPDeC version in the future. Finally, we want to apply and analyse this type of schemes
in context of partial differential equations. Here, we focus on applications and problems as described in
[11, 12, 18]. As one can see, there are still many open questions and tasks for the mPDeC schemes and we
are looking forward to continue our work in this field.

A Notation

We provide a small table 1 with the notation of symbols used along the paper. Even if some of the notations
are ambiguous, the used indices should always clarify the referred meaning. We prefer to keep this notation
to keep fluid the reading.

B Algorithm

We present a pseudo-code for the creation of the mass matrix in Algorithm 1 and one for the mPDeC
algorithm in box Algorithm 2. Both algorithms are very simple. The first one consists of 3 loops: 2 for the
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constituents i, j = 1, . . . , I and one for the subtimesteps r = 0, . . . ,M and an if statement. The second one
consists of 3 nested loops: one for timesteps {tn}Nn=0, one for corrections of the DeC algorithm k = 1, . . . ,K
and one for the subtimesteps m = 1, . . . ,M .

Algorithm 1 Mass

Require: Production-destruction functions pi,j(·), di,j(·), previous correction variables c(k−1), actual sub-
timestep m.

1: M := 0
2: for i = 1 to I do
3: for j = 1 to I do
4: for r = 0 to M do
5: if θmr ≥ 0 then

6: Mi,j = Mi,j −∆tθmr
pi,j(c

r,(k−1))

c
m,(k−1)
j

7: Mi,i = Mi,i + ∆tθmr
di,j(c

r,(k−1))

c
m,(k−1)
i

8: else

9: Mi,j = Mi,j + ∆tθmr
di,j(c

r,(k−1))

c
m,(k−1)
j

10: Mi,i = Mi,i −∆tθmr
pi,j(c

r,(k−1))

c
m,(k−1)
i

11: end if
12: end for
13: end for
14: end for

Algorithm 2 mPDeC

Require: Production-destruction functions pi,j(·), di,j(·), timesteps {tn}Nn=0, initial condition c0.
1: for n = 1 to N do
2: for k = 0 to K do
3: Set c0,(k) := cn

4: end for
5: for m = 1 to M do
6: Set cm,(0) := cn

7: end for
8: for k = 1 to K do
9: for m = 1 to M do

10: Compute the mass matrix M(cm,(k−1)) :=Mass(c(k−1),m) using algorithm 1
11: Compute cm,(k) solving the linear system M(cm,(k−1))cm,(k) = cn given by (25)
12: end for
13: end for
14: Set cn+1 := cM,(K)

15: end for
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