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Abstract. We study truthful mechanisms for welfare maximization in online bipartite matching. In
our (multi-parameter) setting, every buyer is associated with a (possibly private) desired set of items,
and has a private value for being assigned an item in her desired set. Unlike most online matching
settings, where agents arrive online, in our setting the items arrive online in an adversarial order while
the buyers are present for the entire duration of the process. This poses a significant challenge to the
design of truthful mechanisms, due to the ability of buyers to strategize over future rounds. We provide
an almost full picture of the competitive ratios in different scenarios, including myopic vs. non-myopic
agents, tardy vs. prompt payments, and private vs. public desired sets. Among other results, we identify
the frontier for which the celebrated e/(e−1) competitive ratio for the vertex-weighted online matching
of Karp, Vazirani and Vazirani extends to truthful agents and online items.

1 Introduction

Matching in bipartite graphs is a fundamental model that has found numerous applications with the growth of
the Internet. Some examples include items and buyers in e-commerce, drivers and passengers in ride-sharing
platforms, ad slots and advertisers in online ad auctions, and jobs and workers in online labor markets. In
these applications, it is common that vertices on one side are known from the outset, while vertices from
the other side arrive one-by-one in an online fashion. Upon the arrival of an online vertex, its information is
revealed (containing, e.g., its set of adjacent edges, and their weights), and the algorithm has to immediately
and irrevocably decide either to match it with an available offline partner or leave it unmatched forever. The
goal is to maximize the sum of the weights along the matched edges.

A celebrated result in online matching by Karp, Vazirani, and Vazirani [16] shows that in the unweighted
setting, a simple randomized strategy, called Ranking, achieves a competitive ratio of e/(e − 1), and this
is optimal. This result extends to the setting where the vertices on the offline side are weighted and the
objective is to maximize the sum of the weights of the matched vertices. Although the original algorithm for
this problem, Perturbed-Greedy [1], was designed for non-strategic settings, online matching problems
have also been studied in the presence of strategic agents [e.g., 19, 23, 9]. This is not a mere theoretical exercise:
online matching is used in many situations where the parties involved are interested in misreporting their
true valuations to obtain a better outcome: e.g., combinatorial and ad-auctions, kidney exchange, school-
student matching, and house allocation. In the presence of strategic agents, an agent’s value is her private
information, and is not directly available to the mechanism designer. The main challenge here is to design
incentive-compatible or truthful mechanisms which, besides finding a good matching, also ensure that it is in
the agents’ best interest to report their true values. In addition to making decisions regarding the matching
itself, such mechanisms can also charge some payment from the agents in order to incentivize them to
truthfully report their values. Here, each agent strives to maximize her quasi-linear utility, which is defined
as the value she obtains from her assigned item, minus the payment she has to make.

In almost all previous studies, the agents are represented by the vertices in the online side, while the items
they are competing over are available offline. In many natural Internet applications, e.g., selling advertising
opportunities via repeated auctions, the agents are fixed and observe a stream of items arriving online. This
motivates the study of a reversed online matching problem, where the offline side is strategic on her value and
on her set of desired items that arrive online. This particular variant has been considered thus far only in very
restricted settings [6, 7]. This is not a coincidence: when agents are present throughout the entire matching
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deterministic randomized

prompt
2 e/(e − 1)

(Theorem 1) (Theorem 2)

(a) Myopic agents

deterministic randomized

tardy
2 e/(e − 1)

(Theorem 3) (Theorem 3)

prompt
≥ ν Ω(log ν/ log log ν)

(Theorem 4) (Theorem 5)

(b) Non-myopic agents
with public graph edges

deterministic randomized

tardy equiv. to prompt equiv. to prompt

prompt
≤ ν O(log ν)

(Theorem 6) (Theorem 7)

(c) Non-myopic agents
with private graph edges

Table 1: Summary of our results, with ν = min(m, n), where n is the number of agents and m the number of items.

process, many new manipulation opportunities arise, and incentivizing truthful behavior is significantly more
challenging. Indeed, the online nature of the problem forces any mechanism to repeatedly make irrevocable
decisions upon the arrival of goods, lacking knowledge about future opportunities that might arise to the
participating agents. The agents — possibly aware of those future opportunities — may strategize to gain
benefits in the future, challenging standard tools that have been applied in cases where agents arrive online.

Our work provides a systematic analysis of this scenario, and gives (almost) tight competitive ratios under
a rich combination of natural assumptions. We study this problem along different dimensions, as follows.
First, we consider two types of agents — myopic and non-myopic — that are characterized by the different
information they have on the instance. Myopic agents make strategic considerations that are limited to the
current time step, without looking forward into the future (see, e.g., Deng, Panigrahi and Zhang [7]), whereas
non-myopic agents optimize across multiple time steps, using the up-front knowledge of the underlying
(online) graph. The assumption of myopic agents clearly eradicates some of the difficulties of designing
(almost tight) online mechanisms with offline strategic agents thus allowing to derive efficient mechanisms
from known online matching algorithms, e.g., from Aggarwal et al. [1]. Second, we consider two types of
private information. In the first scenario we consider, an agent’s private information consists of her private
value for her desired items, but the set of desired items is publicly known. In the second scenario, both the
value and the set of desired items are private information.

Notably, in both cases the graph structure is revealed to the mechanism step-by-step, upon the arrival of
every item. Finally, we distinguish between prompt and tardy mechanisms. Both types of mechanisms make
allocation decisions immediately. However, they differ in the time at which they make payment decisions.
Prompt mechanisms make payment decisions immediately upon allocation, while tardy mechanism may delay
payment decisions to the end of the entire process.

1.1 Our Results and Techniques

We conduct a systematic study of online bipartite matching with online items and offline agents, in a variety
of scenarios and we provide (almost) tight bounds for the settings of interest, as summarized in Table 1.

Myopic agents. We start by investigating the simpler setting of myopic agents. These agents care only
about their instantaneous utility, and do not strategize over the future. As such, we only consider prompt
mechanisms for this type of agents. Exploiting the myopic nature of the agents, it is not difficult to turn the
best (non-truthful) algorithms into (truthful) mechanisms. In particular, we construct a deterministic prompt
mechanism based on the greedy matching algorithm that is guaranteed to achieve at least a half of the optimal
welfare. We also give a randomized prompt mechanism based on the algorithm for weighted online matching
[1], which is e/(e−1)-competitive. This shows that the transition from non-strategic agents to strategic myopic
agents does not lead to a deterioration in efficiency guarantees. Notably, for the special case we study, our
bounds for myopic online matching improve vastly over those obtained by Deng, Panigrahi and Zhang [7]
for general XOS valuations. The results for myopic agents are presented in Table 1(a).

Non-myopic agents with public graph edges. Next we consider non-myopic agents who can strategize about
their values but not about their desired items: upon the arrival of an item, the set of agents interested in it is
revealed (no strategizing involved), but the agent values are reported by the agents themselves. This variant
is single-parameter, for which Myerson’s lemma applies [22]. We prove that, if the mechanism is allowed to
wait until the end of the online phase to set prices (i.e., tardy mechanism), then it is possible to achieve
the same bounds as in the myopic case, subject to showing that the Greedy and Perturbed-Greedy
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algorithms induce a certain form of global monotonicity. For prompt mechanisms, in contrast, we establish
strong impossibility results. For deterministic mechanisms, we prove a ν = min(m, n) competitive lower
bound, where n and m denote the number of agents and items, respectively. This sharp deterioration from
tardy to prompt mechanisms occurs since in order to prevent buyers from strategizing over future rounds,
the prices must be non-decreasing. Tardy mechanisms circumvent this by assigning payments to agents in
the end of the entire process. A matching ν upper bound is inherited from the more general case of private
graph edges, presented below. For randomized prompt mechanisms we establish an Ω(log ν/ log log ν) lower
bound, using Yao’s Minimax principle. Starting from a carefully designed distribution of problem instances
with exponentially increasing agent valuations, we employ a primal-dual approach together with our previous
observations on the behavior of deterministic truthful mechanisms to bound the achievable competitive ratio.
An almost matching upper bound is inherited from randomized non-myopic prompt mechanisms with private
graph edges. The results for non-myopic agents with public graph edges are presented in Table 1(b).

Non-myopic agents with private graph edges. We finally consider non-myopic agents when both valuations
and the set of desired items are private information. For deterministic prompt mechanisms, the ν lower
bound from the case of public graph edges applies. Moreover, we show that in the case of private edges,
every deterministic truthful mechanism is essentially prompt. Thus, tardy mechanisms for this case retain
the ν lower bound, exhibiting a large gap between tardy mechanisms for public vs. private edges. We then
provide a prompt truthful deterministic mechanism that is ν-competitive, matching the lower bound. For
randomized prompt truthful mechanisms, the Ω(log ν/ log log ν) lower bound from the case of public edges
applies. This lower bound extends to tardy randomized mechanisms as well, since these are probability
distributions over deterministic mechanisms and, as stated above, all deterministic truthful mechanisms
for private edges are prompt. On the positive side, we provide a randomized prompt truthful mechanism
that gives an almost matching competitive ratio of O(log ν). This algorithm is based on an explore-exploit
approach specifically tailored to our case.

Ex-post vs. ex-ante truthfulness. Finally, we explore the notion of ex-ante truthfulness, as opposed to ex-
post truthfulness, where agent’s true declarations maximize their expected utility instead of their utility
in any realization of the random choices of the mechanism. Clearly, ex-post truthfulness implies ex-ante
truthfulness. In the setting with myopic buyers, we only need to consider ex-post truthfulness as we obtain
tight approximation in this stronger model that closes the problem also for the ex-ante analogue. In the
setting of non-myopic buyers, we show that the additional hardness introduced by truthfulness cannot be
fully attributed to the fact that we require ex-post truthfulness. Specifically, we establish a lower bound of
2 for the competitive ratio of ex-ante truthful mechanisms for this setting (even with respect to randomized
tardy ones), exhibiting a gap from the corresponding e/(e − 1) upper bound for myopic buyers. Our proof
utilizes an instance for which we establish lower bounds on the expected utility of various types of agents.
We then employ these to show a contradiction to the mechanism’s correctness.

Remark. Throughout the paper, we assume that weights are assigned to vertices (agents) rather than edges.
Indeed, it is well known that for the more general case of edge weights, even the algorithmic problem is
hopeless (see, e.g., Appendix G of [1]). In addition, one may wonder why we do not study the case of non-
myopic agents with public valuations but private edges. The reason is that in the case of public valuations,
it is easy to see that agents cannot benefit from misreporting their edges, implying that Greedy and
Perturbed-Greedy are inherently truthful.

1.2 Related Work

Karp Vazirani and Vazirani [16] introduced the online matching problem, and studied it under one-sided
bipartite arrivals. They observe that the trivial 1/2-competitive greedy algorithm (which matches any arriving
vertex to an arbitrary unmatched neighbor, if one exists) is optimal among deterministic algorithms for this
problem. They also provide a groundbreaking and elegant randomized algorithm for this problem, called
Ranking, which achieves an optimal e/(e−1) competitive ratio. The work of Karp Vazirani and Vazirani [16]
was extended to vertex weighted settings by Aggarwal et al. [1], who give an optimal e/(e− 1)-competitive,
randomized algorithm using random perturbations of weights by appropriate multiplicative factors. The same
bound has been re-proven over the years [5, 8, 12, 10]. Various extensions of one sided online matching and
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its economic applications (e.g., display ads) have been widely studied over the years, see e.g. the excellent
survey of Mehta [20] for further reference. Online matching has also been studied under edge and general
vertex arrivals, as well as in different stochastic settings (see e.g., [17, 18, 11, 15, 13, 14]).

An important generalization of assignment problems in the form of matchings are combinatorial auctions,
where buyers can obtain a subset of the available items, instead of just one. Combinatorial auctions with
offline strategic buyers and online items has been recently studied by [7] for submodular and XOS valuations
in the case of myopic buyers - considered also in this work - and in the less constrained setting of items that
must not be irrevocably assigned at time of arrival. Deng, Panigrahi and Zhang [7] show (for myopic buyers)
a sharp separation between submodular valuations, which admit a logarithmic competitive ratio, and XOS
valuations, for which a polynomial lower bound is proven. In our work, we prove tight constant bounds for
myopic buyers in the important special case of a unit-demand matching setting.

Cole, Dobzinski and Fleischer [6] formally introduced the notions of prompt and tardy mechanism, after
observing the severe negative aspects of many existing (tardy) methods. They study prompt trutfhul mecha-
nisms for an online problem that is related to ours, but with some restrictions: while agents can be thought as
being on the offline side of the graph, their items of interest are restricted to correspond to form an interval
over the online steps (which corresponds to the interval buyers are present). Further, agents report their
departure time (which can be public/private) once they arrive, and their arrival time is public knowledge.
Their work is probably closest to ours in spirit, presenting e.g. a logarithmic-competitive, prompt mechanism
for the above, less general variant of our problem with private departures. The notions of tardy and prompt
mechanisms have since been adopted in the literature, see e.g. [3, 26]. The model of offline agents and on-
line items has been the subject of extensive investigation in economic theory in dynamic mechanism design.
Despite this obvious relation to our setting, there are fundamental differences (see for example [21, 2, 4]). In
dynamic mechanism design, a strategic buyer learns her valuations at time of arrival of each item. Opposed
to our setting, priors on agents’ valuations for each online item are usually known beforehand. Finally, in our
matching setting the agents’ valuations can assume only two values, vi and 0, and we consider unit demand
buyers instead of additive valuation agents as it is customary in dynamic mechanism design.

2 Preliminaries

We are given a bipartite graph G = (B, I; E), where B is a set of n vertices, corresponding to buyers, I is
a set of m vertices, corresponding to items, and E ⊆ B × I is the set of edges. As aready mentioned, we
denote with ν the smallest between the number of buyers n and the items m. The set of buyers is known
beforehand, while the items arrive one by one in some unknown, possibly adversarial order. Without loss of
generality assume that item j arrives at time j. Each buyer i has two pieces of private information: the set
of items she is interested in, and her value vi if she gets at least one of them (the value for other items is
0). Upon the arrival of a new item, every buyer declares if she is interested in the current item and, if yes,
her value. Let bi,j denote the bid of buyer i for item j (with the convention that bi,j = 0 if buyer i is not
interested in item j). Without loss of generality, we may assume that buyers cannot change their declared
valuation after they have declared it once4, i.e. every nonzero bid of the same buyer is the same value bi,
and that every buyer is assigned at most one item.

A mechanism M is composed of an allocation scheme and a payment scheme. Upon the arrival of every
item, and based on buyer bids, the mechanism decides immediately and irrevocably to either assign the new
item to some buyer who has not been assigned an item yet, or leave it unassigned forever. Thus, the resulting
allocation is a matching in G: every buyer receives at most one item, and every item is allocated to at most
one buyer. We denote by µ the induced matching, so that µj denotes the buyer to whom item j is assigned
(we assume that an item j can only be assigned to a buyer who declares interested in j). If j is unassigned,
we write µj = ∅. We also write µ−1

i to denote the item assigned to buyer i, with the convention that µ−1
i = ∅

if i is left unassigned. The allocation is computed online; i.e., µj is determined using only the bids on items
up to j. In addition to the allocation, the mechanism decides how much each buyer should pay. A payment
scheme is denoted by p, where pi denotes the non-negative payment of buyer i. We distinguish between two
types of payment schemes, according to the time at which the mechanism determines the payment. A tardy
mechanism is one where the payment vector p is computed in the end of the process. A prompt mechanism is

4 Mechanisms can “punish” such behavior by discarding the buyer from further consideration
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one where the payment pi of every buyer i is determined upon the assignment of buyer i (i.e., upon the arrival
of item µ−1

i ). The mechanism’s objective is to maximize the social welfare of the allocation µ, which is the
sum of the buyer values for their assigned items. The social welfare is given by SW(µ) =

∑

i∈B vi · I(i,µ−1
i

)∈E .

Note that a mechanism can also be randomized, so that its allocation is a distribution over matchings. In
case of a randomized mechanism, we measure its efficiency by the expected social welfare. We say that a
mechanism gives an α approximation, or is α-competitive (where α ≥ 1), if its (expected) social welfare
is at least an 1/α fraction of the welfare of a maximum weight matching. That is, µ is α-competitive if
OPT = SW(µ⋆) ≤ α · E [SW(µ)] , where µ⋆ is the maximum weight matching in G.

A bidding strategy Bi for buyer i is a sequence of bids bi,j that specifies, every time a new item j arrives,
whether to declare interest in it and which value to report. The bid Bi might depend on the bids of the other
agents, the actions of the mechanism, and the knowledge the buyers have on the sequence of items. Recall
that once an agent declares a positive valuation bi,j = bi > 0 for some item j, she cannot change her value
thereafter; namely, all bids for future items j′ can take the value of either bi or 0. Let B denote the profile
of buyer bidding strategies, and B−i denote the profile of all buyer strategies excluding buyer i. We assume
that every buyer has a quasi-linear utility function: ui(M,Bi,B−i) = vi · I(i,µ−1

i
)∈E − pi.

A buyer is called myopic if upon the arrival of every item j, she cares only about maximizing her
utility in that round, without considering its effect on future rounds. I.e., upon the arrival of item j, she
maximizes the utility function ui,j = vi · I(µj=i, (i,j)∈E)−pi. We consider myopic agents only in the context of
prompt mechanisms, where the price pi is determined immediately. We study the following ex-post notion of
truthfulness: (i) A mechanism for myopic agents is truthful if it is always in the best interest of a myopic buyer
to declare her value truthfully. (ii) A mechanism for non-myopic agents is truthful if an agent maximizes
her utility for every realization of the mechanism by declaring her value truthfully. Finally, we only consider
mechanisms that are ex-post individually rational, meaning that all agents (myopic or not) have non-negative
utility, for every realization of the mechanism.

3 Truthful Mechanisms for Myopic Buyers

In this section we study myopic buyers and we show that for this class of agents it is possible to make strategy
proof the best (non-truthful) algorithms [16]. In particular, we construct a deterministic prompt mechanism
that is guaranteed to achieve at least half of the welfare of the best offline matching, and a randomized
prompt mechanism that is (in expectation) e/(e− 1)-competitive with the best offline matching.

We start describing our deterministic mechanism HonestGreedy, that mimics the classical Greedy

algorithm for online weighted matching in a way that is robust to strategic bidding. Every time a new item
arrives, HonestGreedy runs a second price auction [25] to allocate it between the remaining (interested)
buyers. Since the buyers are myopic, every time a new item arrives, they behave like if it was the last: clearly
there is no point in lying about being interested in an item. Moreover, the truthfulness in each step (as well
as the individual rationality) is guaranteed by the well-known properties of the second price auction. Note
that the mechanism sets the price for item i immediately, so it is prompt. The analysis of the approximation
guarantee is also quite simple: the allocation output by HonestGreedy is the same one that the standard
Greedy algorithm would have computed. It is well known that Greedy is 2-competitive with respect to
the best offline matching (see, e.g., Appendix B of [1]), and that this approximation is tight in the class of
deterministic algorithms [16]. We summarize these observations in the following theorem.

Theorem 1. The deterministic prompt mechanism HonestGreedy is truthful for myopic agents and guar-
antees a 2 approximation to the best offline matching. The approximation is tight even for (non-truthful)
deterministic algorithms.

We complement this deterministic 2-competitive, simple mechanism with an optimal, randomized e/(e−
1)−competitive alternative, HonestPerturbedGreedy, based on Perturbed-Greedy of Aggarwal et al. [1].
There, each offline vertex is associated with a random multiplier; then, every time one of the online vertices
arrives, it is matched to the free neighbor with largest multiplier-value product. To protect from the strategic
behavior of agents, HonestPerturbedGreedy declares - before the beginning of the online phase - pub-
licly all random multipliers, and then implements Myerson’s payment rule [22] for every round. For a formal
description we refer to the pseudocode of HonestPerturbedGreedy, where we maintain the convention
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HonestPerturbedGreedy

1: For each buyer i, do
2: Draw xi uniformly at random from [0, 1]
3: Let yi = 1− exi−1

4: Reveal publicly all xi and yi

5: For item j arriving online, do
6: Receive bids for j and let N(j) be the set of agents interested in j
7: Allocate j to i⋆ ∈ arg max{bi · yi | i ∈ N(j)} ⊲ Allocation Rule

8: Charge i⋆ with pi⋆ = max
{

yi

yi⋆
bi | i ∈ N(j) \ {i⋆}

}

⊲ Payment Rule

9: Discard for further consideration i⋆

that the max of an empty set is 0 and thus if N(j) is empty in line 7, then j is discarded and the mechanism
passes to the next item. The properties of HonestPerturbedGreedy are summarized in the following
Theorem, whose formal proof is deferred to the Appendix.

Theorem 2. The randomized prompt mechanism HonestPerturbedGreedy is truthful for myopic agents
and achieves (in expectation) a e/(e− 1) approximation to the best offline matching. The approximation is
tight even for (non-truthful) randomized algorithms.

4 Non-myopic buyers with public graph edges

We now move our attention to a more demanding notion of truthfulness, where agents are assumed to know,
and strategize about, the whole sequence of items arriving. Note that this is a strong information asymmetry
between agents and mechanism, as the latter only discovers the items as they are revealed online and has
no information on the future. As a first step in this challenging model, in this Section we study the case
where agents may only lie on their valuations. Our main focus here is on establishing lower bounds, which
will naturally extend to the case where the edges of the graph are private information.

4.1 Tardy truthful mechanisms

When the graph edges are public knowledge, we can turn once again to using the algorithmic approaches
outlined in the previous Section, i.e. Greedy and Perturbed-Greedy. Now that agents cannot strate-
gically withhold or misreport the existence of edges, a tardy truthful mechanism can use the whole graph
structure (but of course still not the reported value bi) when computing the price charged from any buyer i.
The prompt, round-wise payment rules from our considerations on myopic buyers, however, do not guarantee
non-myopic truthfulness. What remains to prove therefore is that these algorithms can be augmented by a
different (tardy) payment rule to be made truthful. This is formally done in two steps in the Appendix: first,
it is established that the allocations produced are monotone, and then Myerson’s Lemma is employed on the
whole algorithm. All in all, we obtain the following Theorem.

Theorem 3. There exists a deterministic, respectively randomized, tardy mechanism that is truthful for non-
myopic agents with public graph edges and guarantees a 2, resp. e/(e− 1), approximation to the best offline
matching. The approximation is tight even for (non-truthful) deterministic, resp. randomized, algorithms.

A last observation: while the allocation computed by the mechanisms we just described are analogue
to the ones computed by HonestGreedy and HonestPerturbedGreedy, the payments are different!
We are still using Myerson’s Lemma, but the critical prices5 are clearly different, as they are computed
considering the whole run of the algorithm. To see this, consider the following example. There are two
buyers, b1 and b2, and two items i1 and i2. b1 is interested in both the items and has a value of 1, while
b2 only cares about i1, with a value of 0.9. Assume also for the sake of simplicy that the perturbations y1

5 The critical price paid by an agent is the smallest bid that would have still resulted in an item being allocated to
the agent. See Appendix for a formal definition
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and y2 of Perturbed-Greedy are both 1. Both versions of Perturbed-Greedy would only allocate i1

to b1, but at two different prices: the mechanism for myopic agents would charge 0.9, while the tardy one
for non-myopic agents would wait the end of the second round and charge 0.

4.2 Prompt deterministic truthful mechanisms

When mechanisms are required to be prompt, the problem becomes much harder despite the fact that each
agent’s private information is just a single value. This is due to the online nature of the problem versus
the possibly universal knowledge of the buyers, as outlined in the introduction. We first concentrate on
deterministic prompt truthful mechanisms, and prove that the scope of these is indeed quite limited.

Definition 1 (critical item property). We say that a deterministic mechanism satisfies the critical item
property if and only if for every buyer i, there exists some j ∈ I such that for any reported value bi of i, the
mechanism assigns i with item j, or none at all. Note that j may depend on the edges of the graph, and on
the values of other buyers.

Lemma 1. Prompt deterministic truthful mechanisms for the problem with public graph edges satisfy the
critical item property.

Proof. For the sake of contradiction, assume that there is a buyer i who gets item j1 at price p1 if she reports
a value β1 and gets item j2 at price p2 if she reports a value β2. Without loss of generality, let j1 < j2. By
truthfulness, the mechanism must give item j1 to buyer i if she reports a value ≥ p1 (as far as the mechanism
knows, i might not like items after j1, and she would have incentive to lie and report β1 if she is not given j1).
Thus, we have p2 ≤ β2 < p1, where the first inequality comes from individual rationality. But now, buyer i
has incentive to report β2, in order to get j2 and pay p2 which is less than p1.

Theorem 4. Any prompt deterministic truthful mechanism for the problem with public graph edges has
competitive ratio of at most ν = min(m, n).

Proof. Consider an instance with n buyers with value 1 that are all interested in the first item. If there is
a buyer i, who will never get item 1 no matter what she reports, then we change the instance so that i has
an arbitrary large value and is only interested in item 1, in which case i will get nothing and the mechanism
does not even approximate the optimal social welfare. Conversely, if there is no such buyer, then the critical
item property states that no other item can be allocated, which gives an approximation ratio of min(m, n).

4.3 Prompt randomized truthful mechanisms

Somewhat surprisingly, the previous section has revealed a very large gap between tardy and prompt deter-
ministic mechanisms, when the topology of the graph is public knowledge: while tardy mechanisms can be
implemented for free, i.e., maintaining the efficiency guarantees of (non-strategic) combinatorial algorithms,
for prompt mechanisms the story is different. After showing that deterministic mechanisms cannot achieve
anything better than ν, we now turn our focus towards impossibility results for randomized mechanisms. We
utilize a well-known property of randomized truthful mechanisms, which (by definition) make truthful re-
ports utility-maximizing for any outcome of a mechanism’s random decisions, even in hindsight: this implies
that they are in fact lotteries over deterministic truthful mechanisms, which in turn satisfy the characterizing
properties shown in the previous section.

Theorem 5. Any prompt randomized truthful mechanism for the problem with public graph edges has com-
petitive ratio of at least Ω(log ν/ log log ν).

Proof. Fix any prompt randomized ex-post truthful mechanism for public graph edges. We are going to argue
by Yao’s principle [27] that its competitive ratio is at least Ω(log ν/ log log ν). This holds due to the upcoming
Lemma 2, which shows that there exists a distribution over instances, such that the optimal solutions have
expected welfare Ω(log n), and a best-possible deterministic mechanismM, since it satisfies the critical item
property, outputs solutions with expected value O(log log n).
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Buyers/items of type 3:
expected number
= n · β3 = 9 · 1/7

Buyers/items of type 2:
expected number
= n · β2 = 9 · 2/7

Buyers/items of type 1:
expected number
= n · β3 = 9 · 4/7

1

2

3

4

5

6

7

8

9

22 1 3 1/β3 = 7/1

99 2 3 1/β3 = 7/1

11 3 2 1/β2 = 7/2

33 4 2 1/β2 = 7/2

55 5 2 1/β2 = 7/2

44 6 1 1/β1 = 7/4

66 7 1 1/β1 = 7/4

77 8 1 1/β1 = 7/4

88 9 1 1/β1 = 7/4

i σ(i) t(i) value vi

Fig. 1: The instance from Lemma 2 with k = 3 and n = 9. Items are ordered (from top to bottom) according to their
arrival times, and buyers are ordered (from top to bottom) according to σ (sort by decreasing types, breaking ties
with indices). Preferences of buyers are given by the edges of the graph.

Lemma 2. There is a distribution over instances with n buyers and n items, for which optimal solutions
have expected value Ω(n log n), whereas any deterministic mechanism satisfying the critical item property
outputs solutions whose expected value is O(n log log n).

Proof. Let k ≥ 1 be a parameter, which corresponds to the number of types of buyers, and let β1 > · · · >
βk > 0 be the probabilities of each type (β1 + · · ·+βk = 1). Consider the following distribution over instances,
with n buyers and n items. Each buyer i draws independently a type t(i) ∈ {1, . . . , k} with probability βt(i),
and we set her value to vi = 1/βt(i). Then, we sort buyers by decreasing t(i), breaking ties using indices, and
call σ(i) ∈ {1, . . . , n} the rank of buyer i in this ordering. We decide that buyer i is interested in all items up
to the σ(i)-th one. To visualize this procedure, we refer to Figure 1. It is easy to find the optimal allocation:
it consists in assigning each buyer of rank σ(i) the σ(i)-th item, in a perfect matching. Thus the expected
optimal social welfare is equal to

E [OPT] =

n∑

i=1

k∑

t=1

βt · 1/βt = n · k.

We now define the type s(j) = t(σ−1(j)) of an item j as the type of the j-th buyer in the ordering σ, which
corresponds to the type of its buyer in the abovementioned optimal matching. Observe that of each type,
there are as many items as buyers, and that buyer i cannot be allocated an item j of type s(j) < t(i). For
each buyer i and for all types t ≤ s, let xi

s,t be the probability (over the randomness of the types of all buyers

except i) that i gets an item of type s, conditioning on the fact that i has type t. Let xs,t =
∑

i xi
s,t/n, that

is, the average probability that a type t buyer will be assigned a type s item. The expected social welfare of
our deterministic mechanism is equal to

E [SW(µ)] =

n∑

i=1

k∑

t=1

βt · 1/βt ·
k∑

s=t

xi
s,t = n

k∑

t=1

k∑

s=t

xs,t.

In expectation, the mechanism sells
∑

i

∑s
t=1 βt · x

i
s,t items of type s. Because there are equally many items

and buyers of each type, the expected number of items of type s is βs ·n. Thus, we have the linear constraint

∀1 ≤ s ≤ k,

s∑

t=1

βt · xs,t ≤ βs.
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max

k∑

t=1

k∑

s=t

xs,t (P)

s.t. xs,t ≤ ys
∑s

t=1βt · xs,t ≤ βs
∑k

s=1ys ≤ α

xs,t, ys ≥ 0

min α · w +

k∑

s=1

βs · vs (D)

s.t. us,t + βt · vs ≥ 1

w ≥
∑t

s=1us,t

us,t, vs, w ≥ 0

We are now going to use the critical item property. Fix a buyer i, and condition on the types of all buyers
except her. We show that there exists an item j(i) ∈ {1, . . . , n}, such that for every type t(i), either i gets
item j(i), or she gets nothing. Denote as It the instance given by the fixed types of all buyers except i,
together with buyer i who has type t. Using the critical item property with instance I1, where i instead is of
type 1 (meaning that i is interested in maximally many items), there is an item j(i) such that buyer i either
gets j(i) or nothing. From the perspective of the mechanism, any other instance It (defined analogously) is
identical to instance I1 up to the point when i stops being interested in items. At this point, if buyer i has
already been allocated an item, then it must be j(i). Otherwise, she will not get anything.

Now that j(i) is well-defined (and only depends on types of other buyers), let yi
s be the probability (over

the randomness of the types of all buyers except i) that there exists some type t such that if t is the type
of i, then item j(i) has type s. Let ys =

∑

i yi
s/n. Because buyer i can only get item j(i), and because j(i)

is independent from t(i), we have xi
s,t ≤ yi

s. Thus, summing over all buyers, we have the linear constraint
xs,t ≤ ys, for all 1 ≤ t ≤ s ≤ k. Finally, conditioning on the types of all buyers expect i, we show that there
is only a small number of types that j(i) can take. Recall that s(j(i)) = t(σ−1(j(i))), that is, the type of
item j(i) is by definition the type of the j(i)-th buyer in the ordering σ, where σ was obtained by sorting
buyers in decreasing order of type. Consider the ordering induced by σ after excluding buyer i, and denote i1

and i2 the buyers of rank j(i)− 1 and j(i). In the original ordering σ, either i comes before i1 (in which case
s(j(i)) = t(i1)), or i comes after i2 (in which case s(j(i)) = t(i2)), or i comes between i1 and i2 (in which case
s(j(i)) = t(i)). In any case, t(i1) ≥ s(j(i)) ≥ t(i2). This shows that there are at most 2+z possible values for
s(j(i)), where z denotes the number of types not seen among other buyers. By a standard computation, the

expected value of z is smaller than
∑k

t=1(1 − βt)
n−1. Recall that ys denotes the average probability over i

that there exists a type for i which can make j(i) have type s, where the randomness is over the instance
without i. Since for every fixed such instance, j(i) can only possibly take two of the types seen in buyers
except i, for any fixed i, it holds

k∑

s=1

yi
s ≤ α where α = 2 +

k∑

t=1

(1− βt)
n−1,

and therefore, the same holds also on average, i.e. for the ys. Thus, averaging over possible types for the
other buyers, and summing over i, we have the linear constraint

∑k
s=1 ys ≤ α. If we choose n = 1 + 2k and

βt = 2−t/(1− 2−k), we have

k∑

t=1

(1 − βt)
n−1 ≤

k∑

t=1

e−2k−t/(1−2−k) ≤
+∞∑

t=0

e−2t

≤ 1,

and thus α ≤ 3. To conclude the proof, we use the linear constraints obtained to define a linear program
(P) whose objective function is the expected value of the social welfare obtained by a deterministic truthful
mechanism. We want to show that the objective function of our linear program is at most O(n log k). To
this end, Lemma 3 builds a solution for the dual linear program (D), whose value is an upper bound on the
value of the primal linear program (for convenience, the objective function is divided by n).

Lemma 3. Consider the linear program (P), parameterized by α > 0 and β1 > · · · > βk > 0. If βt =
2−t/(1− 2−k) for all 1 ≤ t ≤ k, then the dual (B) has a feasible solution of value O(α log k).
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Proof. Set δ = ⌈log2 k⌉, then following solution of the dual is feasible and yields the desired objective value:
w = δ, vs = 0 if s < δ and 2s−δ otherwise, while the us,t are defined as:

∀1 ≤ t ≤ s ≤ k, us,t =







1 if s < δ
1− 2s−δ−t if 0 ≤ s− δ ≤ t
0 otherwise

5 Non-myopic buyers with private graph edges

Next, we move on to the (harder) case where the graph edges are private information of the agents. The
additional hardness, interestingly, severely affects the competitive guarantees only for deterministic truthful
mechanisms. Similarly to before, we begin by characterizing these, and then move on to results for randomized
mechanisms.

5.1 Deterministic truthful mechanisms

In the previous section we assumed that the agents could not misreport their interest in items, thus reducing
the problem to a single-parameter one. We now lift this assumption, and investigate the effect on the
competitive ratio of determistic truthful mechanisms. We show that deterministic truthful mechanisms can
always be implemented in a prompt manner. Then, we give matching upper and lower bounds on the best
approximation ratio for the social welfare.

Lemma 4. Tardy deterministic truthful mechanisms for the problem with private graph edges satisfy the
critical item property (see Definition 1).

Proof. For the sake of contradiction, assume that there is a buyer i who gets item j1 at price p1 if she reports
a value β1, and gets item j2 at price p2 if she reports a value β2. Without loss of generality, we assume that
j1 < j2. First, we argue that p1 = p2. Indeed, if p1 > p2 then i with value β1 has incentives to lie and report
β2; whereas if p1 < p2 then i with value β2 has incentives to lie and report β1. Second, we slightly change
the instance, such that buyer i has value β2 and is not interested in items after j. When allocating j, the
mechanism has not seen any difference with the original instance, hence i has incentives to lie and report β1

to get j, then lie and pretend she was interested in subsequent items to make sure she is charged p1.

Lemma 5. Tardy deterministic truthful mechanisms for the problem with private graph edges are prompt.

Proof. Assume that our mechanism assigns an item j to a buyer i, who reports a value bi. Using Lemma 4,
the mechanism satisfies the critical item property, and j is the only item which can be assigned to i. Let π
be the minimum value that i could have reported and still be assigned j. By truthfulness, i must be charged
exactly π. Indeed, if she is charged p > π then i with value bi has incentives to lie and report π; whereas if
she is charged p < π then i with value p would have incentives to lie and report bi. Now, observe that when
the mechanism assigns j to i, it can retrospectively compute π, which proves that the mechanism is prompt.

Theorem 6. There exists a deterministic truthful mechanism that achieves an ν = min(m, n) approximation
of the offline optimum. This result is tight in the class of deterministic truthful mechanisms, when graph edges
are private.

Proof. We start with presenting the positive result. Consider the simple mechanism which only assigns an
item to a buyer if she has the highest value seen so far (breaking ties arbitrarily), charging her the second
highest value seen so far. It is immediate to verify that this is a deterministic truthful mechanism with an
approximation ratio of ν = min(m, n). For the tightness of the result, Lemma 5 shows that deterministic
tardy mechanisms are in fact prompt, thus the lower bound from Theorem 5 (where graph edges are public)
applies to this setting.



Truthful Matching with Online Items and Offline Agents 11

5.2 Randomized truthful mechanisms

Recall that randomized (ex-post) truthful mechanisms are lotteries over deterministic truthful mechanisms,
which in turn satisfy the characterizing properties we obtain for the deterministic case. The proof of our
lower bound in Theorem 8 was based on this fact. First, we give a short argument why it also applies to
mechanisms for private edges, even when they are tardy. Then, we provide an (almost) matching upper
bound, namely a prompt randomized truthful logarithmic approximation.

Corollary 1. The Ω(log n/ log log n) lower bound of Theorem 5 holds also for the case of private edges, even
for tardy mechanisms.

Proof. Fix all random decisions of an ex-post truthful randomized mechanism. This yields a deterministic
algorithm, that together with the original mechanism’s payment scheme yields a (tardy) mechanism. This
mechanism is deterministic, and truthful due to the definition of truthfulness. Also, such a mechanism fulfills
the critical item property (Lemma 4), and can even be made prompt (Lemma 5). With this, we can follow
the original proof of the lower bound.

We state now our prompt mechanism for the problem with private edges, and prove its ratio to almost
match our lower bound.

Explore-Exploit Mechanism

1: Initialization:
2: Set p← 0 and draw k ← Unif({0, 1, . . . , ⌈log2 n⌉})
3: For each buyer i, draw type ti ← Unif({Explore, Exploit}).

4: When an item arrives:
5: Buyers report if they are interested in the item.
6: For each buyer i of type ti = Explore who is interested in the item, do
7: Set p← max(p, vi/2k)

8: Sell the item at price p to a buyer i of type ti = Exploit, who is interested
9: in the item and does not yet has an item, chosen arbitrarily (e.g. lowest index).

Theorem 7. The Explore-Exploit Mechanism is truthful, and computes a O(log n) approximation to
the optimal social welfare.

Proof. Buyers of type Explore will not get any item, and thus have no incentive to lie. Buyers of type Exploit
only need to say if they are interested to buy an item at a given price. Because prices are non-decreasing,
they have no incentives to misreport their value or their interest in an item. For each item j, we define xj

as the maximum value seen among buyers interested in items up to j.

∀j ∈ I, xj = max{vi with i ∈ B such that ∃j′ ≤ j, (i, j′) ∈ E}

For the sake of analysis, we look at a maximum weight matching µ ⊆ E, having a total value of OP T . Each
edge (i, j) ∈ µ from the optimal solution is assigned to a bucket ℓ(i,j) = ⌈log2(xj/vi)⌉ ∈ N. Then for each
ℓ ∈ N we define OP Tℓ as the total weight of the restriction of the optimal solution to bucket ℓ.

OP T =
∑

ℓ≥0

OP Tℓ where ∀ℓ ≥ 0, OP Tℓ =
∑

(i,j)∈µ

vi · Iℓ(i,j)=ℓ

Let V be maximum value among buyers who are interested in at least one item. By optimality of µ, the
corresponding buyer must be given an item, and thus OP T0 ≥ V . Now observe that for each (i, j) ∈ µ such
that ℓ(i,j) > ⌈log2 n⌉, we have vi < xj/n ≤ V/n ≤ OP T0/n. Thus, the sum of OP Tℓ for ℓ > ⌈log2 n⌉ is
smaller than OP T0. Therefore, buckets 0, 1, . . . , ⌈log2 n⌉ contain at least half of OP T , that is

OP T

2
≤

⌈log2 n⌉
∑

ℓ=0

OP Tℓ
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For all ℓ ∈ {0, 1 . . . , ⌈log2 n⌉}, we will now show that if k = ℓ then the Explore-Exploit Mechanism

gives a solution of expected cost at least Ω(OP Tℓ). Then we will conclude the proof using the law of total
probability: summing over k shows that the Explore-Exploit Mechanism computes a solution of expected
cost at least Ω(OP T/ log n). First, assume that k = 0. For each edge (i, j) ∈ µ in bucket ℓ(i,j) = 0, then i
is the best buyer seen so far. With probability 1/4, buyer i has type Exploit and the second best buyer has
type Explore. In that case, the Explore-Exploit Mechanism gives buyer i an item (either j or one of
the previous items). Using linearity of expectation, the Explore-Exploit Mechanism outputs a solution
of expected value at least OP T0/4. Second, assume that k = ℓ with ℓ ∈ {1, . . . , ⌈log2 n⌉}. This case requires
an amortized analysis: for each buyer i, denote Xi the random variable equal to vi if i gets an item and 0
otherwise; and for each item j, denote Yj the random variable equal to the value of the buyer to whom j
is assigned, and 0 if j is unassigned. Notice that the Explore-Exploit Mechanism outputs a solution of
value =

∑

i∈B Xi =
∑

j∈I Yj . Let (i, j) ∈ µ be an edge from bucket ℓ(i,j) = ℓ. We are going to show that

E[Xi + 4Yj | k = ℓ and ti = Exploit] ≥ vi.

We condition on the fact that k = ℓ and ti = Exploit. If buyer i already has an item when item j arrives,
then Xi = vi. Otherwise, the best buyer seen so far has type Explore with probability 1/2, in which case
the Explore-Exploit Mechanism gives item j to a buyer of value ≥ xj/2ℓ ≥ vi/2. Buyer i has type
ti = Exploit with probability 1/2, thus vi ≤ E[2Xi + 8Yj | k = ℓ]. Summing this last inequality over edges
from bucket ℓ shows that the Explore-Exploit Mechanism outputs a solution of expected value at least
OP Tℓ/10.

6 Ex-ante truthfulness

One might wonder if the hardness of truthful mechanisms for our problem is mainly due to the very restrictive
notion of ex-post truthfulness. We state here that also for the much looser ex-ante truthfulness, the setting
of non-myopic buyers separates clearly from the myopic case. The proof can be found in Appendix B.

Theorem 8. There exists no randomized ex-ante truthful mechanism that yields an α-approximation to
the optimal social welfare, for the problem with private edges and any α < 2. This is true even for tardy
mechanisms.

7 Conclusions

We have studied vertex-weighted bipartite online matching with offline agents in various settings, obtaining
an almost-complete picture of the competitive ratios achievable by mechanisms under different truthfulness
notions. Our results encompass that for myopic truthfulness, the bounds of Karp Vazirani and Vazirani [16]
and Aggarwal et al. [1] transfer to the online agents setting. This showcases that the very general myopic
bounds of Deng, Panigrahi and Zhang [7] are far from tight for restricted settings like ours. On the other
hand, we also show that equally near-optimal approximations are impossible under the assumption of classic
truthfulness, even ex-ante; and for ex-post truthfulness our seemingly simple problem already exhibits lower
bounds almost matching the myopic, logarithmic competitive ratio for submodular combinatorial auctions
in Deng, Panigrahi and Zhang [7]. We leave open to what extent this additional hardness (moving from a
tight e/(e− 1) myopic to Ω(log n/ log log n) truthful) already happens when imposing ex-ante truthfulness.
This is an interesting subject of investigation, also for different scenarios than the one of our ≥ 2 lower
bound (private edges). Obtaining according positive or negative results for other variants of online problems
with offline agents poses another natural direction. Besides this, note that our work considers only the
(especially hard) case of adversarial arrival order, warranting the question which improved bounds can be
obtained e.g. for random-order models. We suspect that non-trivial approximations via (ex-post) truthful
mechanisms quickly cease to exist when considering online problems with offline agents that are more general
and challenging than ours. On the other hand, under the myopic assumption, these could exhibit interesting
bounds situated in between our e/(e − 1) and the logarithmic mechanism for submodular combinatorial
auctions [7].
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A Proofs of Theorems 2 and 3

In this section we prove the properties of HonestPerturbedGreedy and of the tardy versions of Greedy

and Perturbed-Greedy presented in the main body. Starting from the guarantees of their non-strategic
counterparts it is immediate to see that the approximation factor claimed are indeed correct. The only
property to show is incentive compatibility. A crucial ingredient to prove incentive compatibility is Myerson’s
Lemma, that we recall here for the sake of completeness. The Lemma has been proved in Myerson’s seminal
paper [22]; here we follow the more modern approach by Roughgarden [24]. Since in this paper we study
unit-demand agents, we restrict to consider only this type of agents.

We start introducing the notion of single-parameter environments. In such environments, there are n
agents and a set X of feasible allocations of items to agents. Each agents is characterized by a private
valuation to get an item and strives to maximize her quasi-linear utility. To familiarize with this notion
consider the model of non-myopic buyers with public graph edges studied in the paper: those agents are
indeed single-parameters, as their valuations is their only private information. At the same time, note that
the “edge compatibility” is implicitly modeled by the following set of feasible allocations of items to agents:
an allocation x ∈ {0, 1}n is feasible if and only if it is corresponds with a matching in the underlying
buyers-items bipartite graph.

As already mentioned in the main body, a mechanism M is characterized by two features: an allocation
x ∈ X and a payment rule p. While the allocation specifies who gets what, the payment rule defines how
much each agent pays. Allocation and payments are functions of the bids; in particular, we use the notation
xi(bi, b−i) ∈ {0, 1} to specify whether the ith agent is allocated an item, given her bid bi and the n− 1 bids
b−i of the other agents. We are ready for the following crucial definition:

Definition 2 (Monotone allocation). An allocation rule x for a single-parameter environment is mono-
tone if for every bidder i and bids b−i by the other bidders, the allocation xi(z, b−i) to i is nondecreasing in
its bid z.

Definition 3 (critical prices). Fix and agent i and bids b−i of the other agents. Then the critical price for
i is defined as the smallest bid zi such that i is allocated an item, if any. Formally, if we use the convention
that the inf of an empty set is 0, we have zi = inf{z |xi(z, b−i) = 1}

Clearly, the critical prices enforce ex-post individual rationality. Myerson showed that they also induce
(ex-post) truthfulness; we report here a version of Lemma 2 of Myerson [22] that is tailored to our problem.

Theorem 9 (Myerson’s Lemma). Fix a single-parameter mechanism. Given any monotone allocation x,
it is possible to compute a payment scheme p such that the resulting mechanism is truthful and individually
rational. In particular, in p, each agents that receives an item pays its critical price and 0 otherwise.

We are now ready to show the two Theorems.

Theorem 2. The randomized prompt mechanism HonestPerturbedGreedy is truthful for myopic agents
and achieves (in expectation) a e/(e− 1) approximation to the best offline matching. The approximation is
tight even for (non-truthful) randomized algorithms.

Proof. We start the proof by arguing that HonestPerturbedGreedy is truthful and individually rational
for myopic agents. First, note that when any item j arrives, there is no point for the buyers still unallocated
to lie about their interest for it: if they are not interested and they bid, they would risk to get j and
lose future opportunity to get allocated to something they are interested in, while if they are interested
they do not want to lose the opportunity (since they have no information on the future, and the prices
charged never exceed their valuations). If we restrict to consider the buyers N(j) interested in item j, we see
that the problem reduces to a single-parameter auction: the agents are myopic and just want to maximize
their utility by getting j at a small price. All yi are public knowledge and non-negative, so our allocation
rule (line 7 of HonestPerturbedGreedy), fixing these values, is clearly monotone (the more an agent i
bids, the more likely she is to exhibit the largest yi · bi). The allocation is therefore implementable using the
Myerson payment rule (line 8 of HonestPerturbedGreedy). We can conclude, by Myerson’s Lemma, that
our mechanism is truthful for myopic buyers. Moreover, it is easy to verify that the payment rule enforces
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individual rationality. Once we have settled the truthfulness, we can assume that all buyers declare their true
bids and thus the allocation output by HonestPerturbedGreedy is the same as Perturbed-Greedy for
any realization of the perturbations xi and inherits the same approximation: HonestPerturbedGreedy

is e/(e− 1)-competitive in expectation.

Theorem 3. There exists a deterministic, respectively randomized, tardy mechanism that is truthful for non-
myopic agents with public graph edges and guarantees a 2, resp. e/(e− 1), approximation to the best offline
matching. The approximation is tight even for (non-truthful) deterministic, resp. randomized, algorithms.

Proof. It is easy to see how the two mechanisms are monotone, thus it is possible to employ directly Myerson’s
Lemma, as the problem is single-parameter (i.e., the only private information of buyer i is the single value
vi). Therefore, Greedy or Perturbed-Greedy (with fixed perturbation factors) together with the critical
payments defined in Myerson’s Lemma result in a truthful mechanism. Note that the greedy algorithm clearly
respects our ex-post notion of truthfulness, since no randomization is involved. For the Perturbed-Greedy

algorithm, this is also true since we fix all random decisions (perturbation) up front, and choose the payment
rule accordingly.

B Proof of Theorem 8

Theorem 8. There exists no randomized ex-ante truthful mechanism that yields an α-approximation to
the optimal social welfare, for the problem with private edges and any α < 2. This is true even for tardy
mechanisms.

Proof. Fix α < 2 and assume mechanism M guarantees an expected approximation ratio of α. Consider
the following problem instance: there are n′ buyers and m = n′ + 1 items. Every item j has exactly one
interested buyer, ij, and all ij have some small value vij

= ǫ > 0. There exist some additional buyers
B1 ⊆ B with different values who are interested only in item 1, and one buyer, i, whom we fix for our
considerations. Note that |B| = n′ + n1, with n1 = |B1|. For n′ large enough, clearly, n′ǫ > maxi′∈B1 vi′

and the contribution of item 1 to the optimum becomes negligible with growing n′. Therefore, for M to
guarantee an α-approximation, there must exist j ∈ {2, . . . , n′ + 1} such that ij is assigned the according
item with probability at least 1

α , or in case item 1 is worth more than ǫ, at least probability 1
α −∆1, where

∆1 arbitrarily small for large n′.
Now, if we choose i = ij, then M will assign item j to ij w.pr. ≥ 1

α −∆1, and charge an expected price
of at most ǫ. The latter is because the price cannot depend on i’s bid due to incentive compatibility, and
it needs to be below i’s value. Assume we replace i’s valuation by some v > ǫ, and call this new buyer i(1).
Since M is ex-ante truthful, still, the exp. utility ui(1) achieved with a truthful report must be at least as
large as when reporting ǫ instead of v, i.e. at least (v − ǫ)( 1

α −∆1) > 1
2 v, which is at least half of v because

α is < 2 and ǫ, ∆1 can be chosen arbitrarily small. We replace i(1) again by a different buyer i = i(2). She
still has valuation v, however, she is now interested in items 1 and j. We consider the first step of M , i.e.
the assignment decision made for item 1. Assuming that v is the largest value bid on item 1, and given the
fact that M has no idea if any additional value will present itself in the later steps, the probability that M
assigns item 1 to i(2) is at least 1

α − ∆2, where ∆2 approaches 0 since the other bids on item 1 might be,
in comparison, too small to matter. Note again that the assignment decision cannot depend on v itself, but
only on the fact that it is the largest value bid on item 1.

We know that i(2) can get utility larger than v
2 by simply reporting type i(1) instead. We also know

that since she is assigned item 1 w.pr. > 1
2 , she is assigned item j w.pr. < 1

2 . This, intuitively, means that
not all of the guaranteed utility is generated by item j, not even if the price of j is always 0 - but some
must be generated because her expected price paid when item 1 is assigned is bounded away from v, i.e.
pi(2) (1) = v−∆3. In fact, the exp. price M charges from i(2) when assigning item 1 cannot be smaller if i(2)

later reports interest in item j, since this would give a buyer of type i(1) incentive to also report interest in
j. Also, the price charged from i(2) when assigning item j cannot be less than 0, and when there is no item
assigned, i(2) is not charged anything (see preliminaries). This implies that, for Pk(i) denoting the assignment
probability of item k to buyer i,

ui(2) = (v − pi(2) (1)) · P1(i(2)) + (v − pi(2)(j)) · Pj(i(2)) = ∆3 · P1(i(2)) + (v − pi(2) (j)) · Pj(i(2)) >
v

2
.
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Otherwise, we would have a contradiction on the utility being larger than v
2 , i.e. it would be beneficial for

i(2) to only report interest in item j. In consequence, it also holds

ui(2) = ∆3 · P1(i(2)) + (v − pi(2) (j)) · Pj(i(2)) ≥ ∆3 · P1(i(2)) + (v − v) · Pj(i(2)) > 0.

This is true because the exp. price when receiving item j can be no more than v , and Pj(i(2)) < 1
2 . Therefore,

there exists some v− < v for which it holds that

ui− (1) = ui(2)(1)− P1(i(2))(v − v−) = (∆3 − (v − v−))P1(i(2))

Here, ui−(1) denotes the utility obtained from being assigned item 1 of some buyer with valuation v− for
item 1, and 0 otherwise, when she reports i(2) as her type. Note that if buyer i− reports value v for item 1
and 0 for all others, she will also obtain ui−(1) from being assigned the first item: the assignment decision
is made before the algorithm can know the difference, and the expected price paid cannot depend on the
buyer’s later reports due to truthfulness.

We use this to show a contradiction to the approximation ratio of M . Assume there exists, in absence of
i(2), such a buyer i− with smaller value v− and utility of u−(1) > 0 when reporting to have value v, who is
interested in purchasing item 1, i.e. i− ∈ B1. Since M is ex-ante truthful, a truthful report for her will also
result in positive expected utility of at least u−(1). As a direct consequence, it holds also that the probability
P1(i−) for assigning item 1 to i− (when she reports truthfully) is lower bounded, in order to achieve above

expected utility, as follows: P1(i−) ≥
u

i− (1)

v−
. Finally, we copy buyer i− at least v−

u
i− (1) + 1 times. If necessary

for tie-breaking, we distort their values a bit. Our conclusions about i(2)’s utility hold once i(2) reports the
largest value for item 1, regardless of other values. This means, if either of our copied v− should decide to
deviate and report to be valued like i(2) instead, they can recover utility ui−(1). As a result, each one of the
copies, when reporting truthfully, has at least the same utility, and therefore an assignment probability of at
least P1(i−). This, in sum, results in a probability of more than 1 for assigning item 1, i.e., a contradiction.
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