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control

Giulia Stefania,∗, Maurizio De Angelisa, Ugo Andreausa,

aDepartment of Structural and Geotechnical Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy

ct

paper, the effect of the presence of (existing or newly added) deformable and dissipative obstacles (bumpe
nonlinear dynamic response of a single-degree-of-freedom system, is investigated via parametric numeric
s. Through the study of possible response scenarios which can occur by varying the bumpers’ parameters (i.
ition, the stiffness, and the damping, respectively) it is observed that the presence of the bumpers is not alwa
able compared to the free flight condition. By properly selecting the bumpers’ parameters it is possible
the occurrence of impacts with beneficial effects. Furthermore, a relationship between the stiffness and t
g parameters of the bumpers, which allows to minimize the maximum value of the mass acceleration in prima
ce condition, is identified and discussed. Although this study is inspired by the practical problem of lar
tal displacements in base-isolated structures, it has a transversal nature with respect to different disciplina
Consequently, the results obtained in this work can be extended also to further applications related to vibr
dynamics.

ds: vibro-impact dynamics; deformable and dissipative bumpers; nonlinear scenarios; nonlinear vibration
; isolation; parametric numerical study.

oduction

mic isolation represents one of the most applied, reliable, and effective, passive control strategies to mitiga
amic response of both new and existing structures [1–6], bridges [7–14], strategic facilities [15, 16], nonstru
mponents and equipment [17–26], works of art [27–29].
mically isolated structures, due to the greater flexibility offered by the isolators at the base, are expect
rience large horizontal displacements relative to the ground, especially under near-fault (NF) earthquak
erized by long-period pulses [3, 4, 30]. These large displacements, on the one hand, can seriously damage t
n system by exceeding its limit deformation, on the other, can lead to pounding with surrounding moat walls
t structures if the available seismic gap size is not sufficient. Potential pounding can produce detrimental effe
ffectiveness of seismic isolation and can lead to consequences which range from local slight nonstructural
structural damage or even collapse [31–35]. The existence of high spikes in the acceleration response,
ondence of the floors where pounding occurs, and whose amplitude is influenced by impact rigidity, m
oor response spectra and thus the response of vulnerable equipment housed in the buildings [36, 37].
revent the damage of the isolation system and avoid the occurrence of pounding against adjacent structur

izontal displacements can be limited by inserting suitable obstacles, which can be placed at a certain distan
om the structure to be protected (outer pounding [38]) or can be incorporated into the isolation system (inn
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g [38]). In the latter case, the built-in buffer (self-braking) mechanism prevents pounding of the isolat
e with the surrounding structures and limits the possible pounding (if any) to be only within the own body
ator. Restraining rims are used to limit the motion of the double pendulum sliding bearings experimenta
ated by Bao et al. [39]. Harvey et al. [40–42] examined the response of double Rolling isolation system
in which the motion is limited by the bowl lips acting as hard displacement limits. The roll-n-cage (RN
introduced by Ismail et al. [43–45] incorporates isolation, energy dissipation, buffer, and inherent gravi

estoring force mechanisms in a single unit. In all these cases the built-in restrainers are quite rigid and impo
strains on isolator horizontal displacement once a certain limit value is exceeded.
occurrence of impact against the obstacles modifies the response of the isolated system, turning it into

ar vibro-impact system. Vibro-impact systems, even the simplest, exhibit complex nonlinear non-smoo
cs and a wide variety of phenomena (resonances, instabilities, bifurcations, periodic and quasi-periodic t
s, and chaotic regimes) that need to be carefully investigated [46]. There are several scientific works of bo
cal and experimental nature dealing with the nonlinear response of impacting systems. Extremely rich a
x behaviors were observed by Christopher et al. [47] in a multi-degree of freedom structure impacting a rig
osta et al. [48] experimentally and numerically explore the complex dynamics of the mass excited impact o
presented in Wiercigroch et al. [49]. Several interesting behaviors, including period-doubling route to cha
adding cascade, interior and boundary crisis, complete and incomplete chaotic chattering, and different types
tions, were observed by Gritli and Belghith [50] considering a one-degree-of-freedom impact oscillator with
igid constraint. Ing et al. [51] investigated the behavior of a nearly symmetrical piecewise linear oscillator w
constrains, which is a modification of a rig originally designed by Wiercigroch and Sin [52] and examined t

tion scenarios close to grazing. The effect of potential asymmetry in the gap and/or stiffness was also inves
he most complex and interesting behaviors were observed for small clearances, larger forcing amplitude, a
es of the frequency ratio below the natural frequency [52]. The fundamental group of impact motions whi
ur in the response of a two-degree-of-freedom system with a clearance and subjected to harmonic excitati
udied by Luo et al. [53]. Pattern types, occurrence and stability domains and bifurcation characteristics
c motions in a two-degree-of-freedom mechanical impact oscillator with a clearance were investigated by L
4]. Considering single and two degree-of-freedom impact oscillators Yin et al. [55] discussed the phenome
isting attractors and chaotic transitions including crisis.
e of the above mentioned behaviors are undesirable as they can cause adverse effects [56]. The study of t
r of vibro-impact systems, allowing to highlight possible issues associated with the occurrence of impa
fore necessary to identify suitable methods to mitigate and control the response of such systems. Seve
proposed different strategies for the control of unstable orbits, bifurcation, co-existing orbits and chaos bas

study of practical problem involving collisions. By using suitable control strategies or by properly selecti
ameters which characterize the vibro-impact problem, it is possible to guide the behavior of the system,
ertain scenarios and encourage others, and thus exploit the occurrence of impact with beneficial effects. Wa
57] developed a control scheme, named impulsive control method, to stabilize chaotic motions in a class

pact systems, which consists in implementing the pulses just when the impact occurs. Lenci and Rega [5
d to reduce the region of chaotic response of an inverted pendulum with rigid unilateral constraints subject

riodic excitation by suitably adjusting the shape of the excitation. The control of multi-stability in a vibr
capsule system driven by a harmonic excitation was addressed by Liu and Páez Chávez [59]. The propos
feedback controller converts the multi-stable capsule system to a bistable one. A position feedback cont

, suitable for dealing with chaos control and coexisting attractors, was applied by Liu et al. [60] for enhanci
irable forward and backward capsule motion. Basins of attraction were used to investigate the possibility
ng between coexisting attractors by using the proposed control method. Gritli and Belghith [50, 61] propos
feedback control law to control chaos exhibited by a SDOF impact mechanical oscillator with a single rig
e. A state-feedback controller was designed by Turki et al. [62, 63] to stabilize a 1-DoF, periodically force
mechanical oscillator subject to asymmetric two-sided rigid end-stops. Considering two periodically forc
ors that can interact via soft impacts, Brzeski et al. [64] showed that with properly selection of the system
ters, such as the gap between the systems or/and the phase shift of external excitation, it is possible to decrea
ber of coexisting solutions via discontinuous coupling. The results of the analysis carried out by Sun et

owed that by properly designing the dynamic parameters of viscoelastic end-stops, the nonlinear vibration
nonlinear suspension system at primary resonance can be effectively suppressed and the jump phenome
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eliminated for both hardening and softening primary isolators. Furthermore, the end-stop can effective
enuate the absolute acceleration response for a hardening primary isolator, while more damping is need
uate that for a softening primary isolator. A two-sided damping constraint control strategy was proposed
al. [66] to improve the performance of the quasi-zero stiffness (QZS) isolator [67]. The proposed cont
h can largely lower the isolation frequency while enhancing the effectiveness of isolation in high frequenc
venting the severity of end-stop impacts. Based on the analysis of two-parameter bifurcations and basins
n, the authors found that the key issue to realize such control objective, is the suppression of period-3 solutio
xist with the desired period-1 orbits.
s paper is part of a research work carried out by the authors and inspired by the practical problem of excessi
ements in base isolated structures. The research concerns the numerical and experimental investigation of t
e of a vibro-impact single-degree-of-freedom (SDOF) system limited by two-sided deformable and dissipati
es (bumpers) under harmonic base excitation [38, 68–73]. The study concerns the isolation at the base
es and equipment. The reference isolation system is the one that uses the support of High Damping Rubb
s (indicated with the acronym HDRB), the mechanical characteristics of which can be found in [5, 74] w

damping, but other devices can also be considered, such as friction pendulums, elastoplastic sliding bearin
far as bumpers are concerned, we refer to those made of rubber, whose dissipative capacity depend on t
nd, while the stiffness depends not only on the compound but also on the shape of the bumper itself; t

ed values of stiffness and damping of the bumpers used in this work refer to the papers [69–71]. The materi
hich the damper and the bumpers are constituted are each made with its own compound and therefore ea

own damping, which is partly hysteretic and partly viscous. In this work the dissipative behavior of t
and the bumpers is modeled by means of an equivalent linear viscous model. Most of previous (experimen

oretical) studies focused on the nonlinear behavior (scenarios, resonances, . . . ) exhibited by the vibro-impa
varying selected parameters [68–73]. In the theoretical-numerical study presented in [68] the authors outlin
e scenarios within the system response. This study guided subsequent experimental laboratory campaig
ted on a small-scale physical model of the system using the shaking table [69–71]. The study of the scenari
bsequently resumed and extended, both numerically and experimentally, in [72]. The scenarios observ
entally were characterized and were reproduced numerically showing a good agreement with the experimen
Further numerical investigations highlighted the existence of more complex and varied behaviors for ga
than those considered in the experimental tests [72, 73]. The experimental and numerical study present
compared to the others, dealt with vibration control. The authors highlighted the existence of suitable pa

pers and gaps that allow to reach a trade-off between two conflicting objectives, namely control of excessi
ements and control of excessive accelerations. This goal can be achieved combining small gaps with qu
able bumpers.
s work represents a deepening and an extension of the study presented in [38]. The aim of the paper is to
e, through numerical parametric analyses, the effect of the presence of the obstacles (existing or newly adde
esponse of the system under harmonic base excitation, compared to the free flight condition, that is witho

es. Compared to previous works by the authors [72, 73, 75], here the study of the response scenarios whi
ur by varying the bumpers’ parameters (namely, position, stiffness, and damping, respectively) is directed
n control. In particular, the possibility to exploit the occurrence of impact with beneficial effects, by prope
g the bumpers’ parameters, is investigated. Firstly, the effect of forcing frequency and damping factor on t
e of a viscously damped SDOF system excited by a harmonic base acceleration will be analyzed through tran
lity and displacement response factor curves in free flight condition (i.e without obstacles). Then, the presen
cles will require the effect of dimensionless parameters, namely gap, stiffness, and damping of the obstacles

n into account as well and will be studied through parametric numerical analyses, by employing a suitable a
model and keeping fixed the damping factor of the isolation damper; for several appropriately selected valu
nsionless gap, the response of the system will be studied by varying the dimensionless stiffness of the bumpe
ping their dimensionless damping fixed. The bumpers decrease - almost always - the displacement, whil
nately - the impact increases the acceleration. The conflicting objectives are precisely to reduce displaceme
paying a high price in terms of increased acceleration. The purpose of the work is the optimal design, that is

the displacement without excessively increasing the acceleration, reaching an acceptable trade-off. The stu
esponse scenarios which can occur by varying the bumpers’ parameters (specifically, gap and stiffness, a
fixed the damping of damper and bumpers) is directed at vibration control, while at the same time wanting

3
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e conflicting objective that the displacement be lower compared to the free flight condition. In particular, t
lity to exploit the occurrence of impact with beneficial effects, by properly selecting the bumpers’ paramete
tigated.
paper is organized as follows. In Sect. 2 the numerical model and the governing equations are presente
3 preliminary considerations on control are made; the results of the numerical simulations are discussed

; the mechanical justification of the condition corresponding to the minimum peak acceleration is given
finally, the main conclusions and further developments of the work are drawn in Sect. 6.

el and equations of motion

study was carried out considering a single-degree-of-freedom (SDOF) system (Fig. 1), composed of a ma
lighted in green) and an isolation damper (D, highlighted in blue), with two-sided deformable and dissipati
s (highlighted in red), denoted as right bumper (BR) and left bumper (BL) respectively. The bumpers a
trically positioned on both sides of the mass at an initial distance (initial gap) G0 j ( j = R, L). The damper (
led by a linear elastic element, with stiffness K, and a linear viscous dashpot, with damping coefficient
d in parallel. The two bumpers are massless and, as the damper, they are modeled by a linear elastic eleme
ffness K j ( j = R, L), and a linear viscous dashpot, with damping coefficient C j ( j = R, L), arranged in parall
tem is subjected to a harmonic base acceleration At(t) = AG sin Ωt, characterized by amplitude AG and circu
cy Ω. The relative displacements of the damper and of the bumpers with respect to the ground are denoted
j ( j = R, L) respectively.

Fig. 1. Model of the SDOF system with two-sided bumpers.

attempt a more general description of the problem, the equations of motion are written in dimensionle
introducing the following characteristic quantities [73]: the natural circular frequency of the SDOF syste

K/M, the maximum relative displacement u∗ = ustRd,max and the maximum force F∗ = Mω2u∗ in the SDO
in free flight (without obstacles) resonance condition. Rd,max(ξ) = 1/(2ξ

√
1 − ξ2) is the maximum value

amic amplification factor Rd(ξ, β) (Table A.1), defined as the ratio between the amplitude of the dynam
ement to the static displacement ust = MAG/K.
following dimensionless quantities were subsequently defined: the dimensionless time τ = ωt, the dimensio

ative displacements of the mass q = u/u∗ and of the bumpers q j = u j/u∗ ( j = R, L), the damping ratio of t
ystem ξ = C/(2Mω), the dimensionless amplitude of the base excitation aG = 2ξ

√
1 − ξ2, the frequency ra

ω and the dimensionless gap δ0 j = G0 j/u∗ ( j = R, L). Based on the adopted normalization, for 0 ≤ δ0 j <
s beats and deforms the j-th bumper, whereas the mass will be in free flight condition (no impact) for δ0 j ≥
the generic dimensionless force f was denoted as f = F/F∗, where F is its physical value.

virtue of the above-mentioned dimensionless quantities, the equations of motion of the system can be writt

4
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ollowing dimensionless form:

q′′(τ) + 2ξq′(τ) + q(τ) + f j(τ) · ψ1

[
δ j(τ)

]
· ψ2

[
f j(τ)

]
= −aG sin βτ (1

fi(τ) = 0 (1

re it is assumed that whether j = L in Eq. (1a), then i = R in Eq. (1b), or whether j = R in Eq. (1a), then i =

1b); in other words, Eq. (1a) governs the motion of the mass in contact with the j−th bumper, while Eq. (1
he free evolution of the i−th bumper; therefore, if the mass is in contact with the right bumper, hence j =

L, vice-versa if the mass is in contact with the left bumper, hence j = L and i = R.
q. (1a) the apex (′) denotes differentiation with respect to the dimensionless time τ and the Heaviside functio
1, 2) are defined as follows:

Contact ψ1

[
δ j(τ)

]
=


0, δ j(τ) > 0
1, δ j(τ) = 0

(2

eparation ψ2

[
f j(τ)

]
=


0, fR(τ) ≤ 0 or fL(τ) ≥ 0
1, fR(τ) > 0 or fL(τ) < 0

(2

re f j(τ) = 2ξγ jq′j(τ) + λ jq j(τ) ( j = R, L) is the normalized contact force occurring during the contact peri
e j-th bumper, γ j = C j/C ( j = R, L) is the ratio between the viscous damping coefficient of the j-th bump
t of the damper and λ j = K j/K ( j = R, L) is the ratio between the stiffness of the j-th bumper and that of t
. δ j(τ) = δ0 j + ∆q j(τ) ( j = R, L), where ∆qR(τ) = qR(τ) − q(τ) and ∆qL(τ) = q(τ) − qL(τ), is the clearan
n. The latter represents the distance, at each time instant, between the mass and the j-th bumper. When t
in contact with the j-th bumper δ j(τ) = 0, otherwise δ j(τ) > 0.
pite the relative simplicity of the model, in which both the bumpers and the damper have been modeled w
n-Voigt model, the system is however strongly nonlinear, due to the presence of clearance, the unilate
ins and the occurrence of impact that causes abrupt changes of stiffness and damping at the contact time.
owing the model shown in Fig. 1 will be denoted as Simplified Nonlinear Model (SNM).
his study two equal bumpers symmetrically arranged on the two sides of the mass were considered. Cons
, λR = λL = λ, γR = γL = γ and δ0R = δ0L = δ0.
equations of motion (Eqs. (1a)-(1b)) were numerically solved using the central difference method [76], i

ted with a Matlab code. As concerns the identification of the period in which impact occurs, this was do
ws. The beginning of the contact phase between the mass and the j-th bumper was identified based on t
f the clearance function δ j(τ) ( j = R, L), as illustrated in Eq. (2a). Impact occurs when δ j(τ) = 0. Regardi
the evaluation of the time instant of detachment, this was made based on the value of the contact force f j

L), as illustrated in Eq. (2b). This choice was motivated by the necessity to overcome one of the drawbacks
vin-Voigt model, when used to model the contact, that is the existence of attracting forces after the restituti
77–80]. Since this does not make sense from a physical point of view, in this study the change of sign of t
force was assumed as indicator of the end of the contact phase.

iminary considerations

his section some preliminary considerations on the influence of the involved parameters on the system
(acceleration and displacement) are made, referring to both the situations without and with bumpers. The
rations represent the starting point of the subsequent analyses.

thout obstacles
he absence of obstacles (free flight condition, FF) the response of a viscously damped SDOF system excited
nic base acceleration is influenced by the forcing frequency and the damping. The effect of these paramete
bsolute acceleration and relative displacement response of the system can be seen by observing the trend
smissibility and the displacement response factor curves as a function of the frequency ratio β and for seve
of the damping ratio ξ. In this study, consistently with the normalization adopted in the governing equatio

5
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), both the transmissibility and the displacement response factor were redefined, compared to the classic
on [81]. In particular, in both cases, the normalization was made with respect to the maximum respon
ance condition. The analytical expressions of the transmissibility and the displacement response factor

, and denoted as TR(ξ, β) and R(ξ, β) respectively, are reported in the lower part of Table A.1 (new definitio
per part of the same table refers to the classical definition. In Fig. 2, the trends of both TR(ξ, β) (Fig. 2a) a
(Fig. 2b) are plotted as a function of β and for different values of the damping ratio ξ (different colors). T
ss of the line increases with ξ.

f β. Concerning the transmissibility TR(ξ, β) (Fig. 2a), due to the adopted normalization, the assumed val
0 (highlighted with colored squares) increases with ξ (Table A.1). Increasing β, the transmitted accelerati

es until a maximum is reached for β = βRa (Table A.1), highlighted with colored dots. Due to the adopt
ization the maximum value is equal to unity regardless of damping. By further increasing the frequency ra
, β) starts to decrease and tends to zero as β→ ∞. The maximum transmitted acceleration becomes lower th
nd acceleration, that is TR(ξ, β) ≤ TR(ξ, 0), regardless of ξ, for β ≥ √2 (to the right of the colored triangle

uently, referring to the transmissibility, this frequency value (β =
√

2) divides the frequency interval in tw

or β <
√

2 the amplitude of the absolute acceleration transmitted to the mass is greater than the amplitude
round acceleration, that is TR(ξ, β) > TR(ξ, 0).

or β >
√

2 the amplitude of the absolute acceleration transmitted to the mass is lower than the amplitude
round acceleration, that is TR(ξ, β) < TR(ξ, 0).

arding the displacement response factor R(ξ, β) (Fig. 2b), similar considerations apply with some differenc
umed value for β = 0 (highlighted with colored squares) increases with ξ if 0 < ξ ≤ √2/2. For

√
2/2 ≤ ξ <

, R(ξ, 0) = 1. The maximum, equal to one due to the adopted normalization, occurs for β = βRd (Table A.1).

) Transmissibility TR and (b) displacement response factor R for several values of the damping ratio ξ (new definition). The thickness
creases with ξ.

f ξ. As concerns the effect of the damping ratio ξ, it reduces the amplitude of motion at all excitation f
s, particularly in the neighborhood of the resonance. From Fig. 2b, it can be observed that, as ξ increas
ξ <

√
2/2), while the maximum value of the response in resonance condition (colored dot), always equ

oves to the left, the other points of the curve move upwards both to the left and to the right of the resonan
/2 ≤ ξ < 1, instead, the maximum value of R(ξ, β) is obtained for β = 0 (colored square). Referring to t
ssibility (Fig. 2a), damping produces opposite effects depending on whether β <

√
2 or β >

√
2. In particul√

2 the increase in the damping ratio ξ reduces the maximum transmitted acceleration, whereas for β >
√

ping ratio ξ increases the transmitted acceleration. Comparing Figs. 2a and b, it can be observed that for sm
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f the damping ratio ξ in the neighborhood of the resonance the curves of TR and R are close, both in terms
m values and resonant frequencies.
se preliminary considerations give us indications on how, by acting on the damping and frequency ratios
it is possible to mitigate the system response (acceleration and/or displacement) in the absence of obstacl
cular, the mitigation of the system response can be achieved in two ways: by increasing β for the transmitt
ation to be less than the ground acceleration (isolation), or by increasing the dissipative capability (increasi
duce the dynamic amplification in resonance condition. In the first case the attention is directed towards t
cy interval β >

√
2, in which, theoretically, it would be preferable not to have damping; in the second ca

, the attention is directed towards the frequency interval β <
√

2 in which the effect of damping is beneficial

th obstacles
presence of obstacles (existing or newly added) increases the number of parameters that influence the system
e. In addition to the frequency ratio β and the damping ratio ξ, also the effect of the gap δ0 and of t
ical properties of the obstacles (λ and γ) must be considered.
a given value of the dimensionless gap δ0, it is possible to preliminary identify the frequency interval

mpact surely will occur, based on geometric considerations, as illustrated in [73]. The limits of this frequen
, denoted as β1 and β2 respectively (with β1 < β2), can be determined analytically by solving, for each ξ −
equation R(ξ, β) = δ0, that is by finding the intersections between the curve representative of the displaceme

cation factor R(ξ, β), corresponding to the selected ξ value, and the horizontal line δ0 = constant, as shown
or ξ = 0.1. In this figure, β1 and β2 are represented with red and blue dots respectively for some δ0 valu
ntal dashed lines), and the frequency interval β1 ≤ β ≤ β2 is highlighted, for each δ0, with thick horizon
lines.
roots of equation R(ξ, β) = δ0 (Table A.1) have the following expressions:

for 0 < ξ <
√

2/2 :



β1(ξ, δ0) =

√
1 − 2ξ2 − 2ξ

δ0

√
(δ2

0 − 1)(ξ2 − 1) (3

β2(ξ, δ0) =

√
1 − 2ξ2 +

2ξ
δ0

√
(δ2

0 − 1)(ξ2 − 1) (3

for
√

2/2 ≤ ξ < 1 :



β1(ξ, δ0) =

√
1 − 2ξ2 − 1

δ0

√
1 + (2ξδ0)2(ξ2 − 1) (4

β2(ξ, δ0) =

√
1 − 2ξ2 +

1
δ0

√
1 + (2ξδ0)2(ξ2 − 1) (4

a given ξ value (i.e. ξ = 0.1), different situations may occur depending on the dimensionless gap δ0. F
, that is in free flight (FF) condition, the two roots coincide (β1 = β2 = βRd) and thus impact never occu
β value. On the contrary, for δ0 = 0, that is when the bumpers are initially in contact with the mass, t

n R(ξ, β) = 0 does not admit roots (Eqs. (3a)-(3b)), and consequently impact occurs for each β value. T
0 < δ0 < 1 can be divided into two sub-ranges through the value δ∗0 = 2ξ

√
1 − ξ2 (δ∗0 ' 0.199 for ξ = 0.

< δ0 < 1 (for example δ0 = 0.6) the two roots β1 and β2 are both non null and different from each other, w
d and β2 > βRd. They diverge as δ0 decreases until, for δ0 = δ∗0, β1 becomes zero, meaning that impact occu
starting from β = 0. For 0 < δ0 < δ∗0 (for example δ0 = 0.1), the equation R(ξ, β) = δ0 admits only o
(β2) which increases as δ0 decreases. Also in this case, impact occurs immediately starting from β = 0. It

oting that impact can occur also outside the frequency range β1 ≤ β ≤ β2, depending on the nonlinear behav
ystem, the values of the parameters and the initial conditions, as it will be shown in the following sections.
introduction of the obstacles changes the response of the system, which will be influenced not only by

ut also by the parameters which characterize the obstacles (position and mechanical properties). Prelimina
rations can already be made based on the position of the obstacle δ0 (geometrical condition). The respon
further modified considering also the mechanical (stiffness and damping) properties of the obstacles (λ and

7



Journal Pre-proof

Fig. 3. D ues
(horizont

Based o nd282

γ) on th ed283

out num he284

displac285

4. Num286

The on287

the dyn el288

describ289

The he290

one tha al291

charact ng292

ξ = 0.1 w293

the resp294

To se295

quantiti ter296

δ0 varie ss297

(pre-co nd298

pre-def in299

the case ed300

rigid. T on301

the vibr se302

for γ = s a303

real situ d.304

The =305

∆α/∆α on306

of the c 0.307

The ab βτ308

and the i,309

i = α, q te310

of each on311

(∆qB), te312

values o ch313
 Jo
ur

na
l P

re
-p

ro
of

ynamic amplification factor R for ξ = 0.1 (thick black curve) with the location of β1 (red dots) and β2 (blue dots) for some δ0 val
al dashed lines) [73]. For β1 < β < β2 (thick horizontal yellow lines) impact surely occurs for geometric reasons.

n these preliminary considerations, it is of interest to investigate the effect of obstacles’ parameters (δ0, λ a
e system response, to identify possible scenarios and make some reasoning on control. The study is carri
erically assuming a fixed value of the damping ratio ξ = 0.1. The curves of the transmissibility TR and of t

ement response factor R, corresponding to ξ = 0.1, will be taken as reference curves in the next.

erical investigations

effect of the introduction of deformable and dissipative obstacles (bumpers), placed at a certain distance,
amic response of a SDOF system, was studied through parametric numerical analyses, considering the mod
ed in Sect. 2 (SNM) subjected to a stepwise forward and backward sine sweep base excitation.
study concerns the isolation at the base of structures and equipment. The reference isolation system is t

t uses the support of High Damping Rubber Bearings (indicated with the acronym HDRB), the mechanic
eristics of which can be found in [5, 74] with 10 − 15% damping. The analyses were conducted by assumi
by way of example and fixing the dissipative capability of the bumpers (γ = 5). In this section it is shown ho
onse of the system varies through the introduction of the obstacles, if compared to the free flight condition.

this aim, the evolution of the forward and backward Pseudo-Resonance-Curves (PRCs) of selected respon
es is traced in terms of the stiffness ratio λ. The response quantities were suitably normalized. The parame
s between 1 in the case of no impact (free flight) and 0 in the case of a bumper positioned adjacent to the ma
ntact); in other works by the authors the case of δ0 < 0 was also considered, i.e. the bumper is pre-stressed a
ormed [75], the parameter λ varies between 0 in the case of zero stiffness (i.e. damping constraint) and 100
of very high stiffness compared to that of the isolated system, which produces an impact that can be consider

he parameter γ is chosen equal to 5 because it represents the value identified in the dynamic experimentation
ating table conducted on the isolation damper and on a real bumper [69–71]; it also represents an example ca
constant. The damping value, γ, constant, characteristic of the constrained optimization Eq. (6), represent
ation, as the damping of the rubber bumpers depends on the compound and can be considered known or fixe
selected response quantities are: the normalized excursion of the absolute acceleration of the mass ηa

0, the normalized excursion of the relative displacement of the mass ηd = ∆q/∆q0, the normalized excursi
ontact force ηF = ∆ fB/∆α0 and the normalized excursion of the deformation of the bumpers ηB = ∆qB/∆q
solute acceleration of the mass α(τ) is given by the sum of the acceleration of the ground at(τ) = aG sin
relative acceleration between the mass and the ground q′′(τ), that is α(τ) = at(τ) + q′′(τ). The excursion (∆
, fB, qB) was calculated as the difference between the maximum and minimum values recorded at steady sta
sub-frequency range. To calculate the excursion of the contact force (∆ fB) and of the bumpers’ deformati

both the bumpers have been considered. ∆ fB and ∆qB were calculated as the sum of the maximum absolu
f the contact forces and of the deformations of the two bumpers respectively, recorded at steady state of ea

8
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quency range. The normalization was made with respect to the free flight condition. In particular, ∆α0 and ∆

the maximum excursion of the absolute acceleration and of the relative displacement of the mass respective
flight resonant condition. In addition to these response quantities, also some considerations regarding t
t frequency of the acceleration βR and the excursion of the static displacement of the mass ηd,st will be mad
ting from the free flight (FF) condition (δ0 = 1), the investigated δ0 values were chosen based on the co
ons made in Sect. 3, involving vibration isolation and the parameters β1, β2, δ∗0, etc. First, the gap interv
≤ 1 was divided, through the value δ∗0 ' 0.199, into two sub-ranges, namely δ∗0 ≤ δ0 ≤ 1 and 0 ≤ δ0 <
guish the situations in which the equation R(ξ, β) = δ0 admits two or one roots. Subsequently, inside the
-ranges, some δ0 values were selected. Referring to the sub-range δ∗0 ≤ δ0 ≤ 1, the following values of t

ionless gap were selected: δ0 = 1, δ0 = 0.7, δ0 = 0.4 and δ0 = δ∗0. As concerns the sub-range 0 ≤ δ0 < δ∗0,
to the limit value δ0 = 0, the values of dimensionless gap at which β2 =

√
2 and β2 = 2, that is δ0 ' 0.19

d also as δ0c) and δ0 ' 0.066 respectively, were considered.

sults

he following figures (Figs. 4-8) the thick black curves represent the PRCs of ηa and ηd in free flight con
). The other curves represent the forward (solid lines) and backward (dashed lines) PRCs corresponding

ing values (increasing thickness of the lines) of λ between 0.1 and 100 (the latter assumed conventionally
ntative of the impact against a rigid obstacle and denoted as λmax). Only the curves corresponding to some
nside this range (namely λ = 0.1, 1, 10, 50, 100) were represented to make the figures more readable.
concerns the symbols, the black dots identify the primary resonance condition for all the investigated λ valu
ose for which the PRCs are not shown). The yellow squares represent the values of ηa and ηd for β = 0. T
mbols identify the boundaries of the frequency interval in which, for the considered value of δ0, impact w
ccur, based on purely geometric considerations (β1 ≤ β ≤ β2, Sect. 3.2). In particular, the cyan diamo

onds to β1 (lower limit of the “geometric” impact range) while the cyan circle corresponds to β2 (upper lim
geometric” impact range). The green triangle was used to represent the β value (denoted as βc) such that, f
he maximum absolute acceleration of the mass is lower than the ground acceleration (ηa < ηa|β=0).

ally, the vertical arrows identify the jumps.

ght (δ0 = 1). For δ0 = 1 impact does not occur for any β value (β1 = β2 = βRd ' 0.99) regardless of
e amplitude of the gap is equal to the maximum displacement of the mass in resonance condition. Sin
dopted model (SNM), both the bumpers and the damper were modeled through a linear spring in paral
linear viscous dashpot (Kelvin-Voigt model), the corresponding PRCs of ηa and ηd, represented with thi
urves in Figs. 4-8 (FF), coincide with the curves representative of the transmissibility TR and the displaceme
e factor R for ξ = 0.1 (Fig. 2). Due to the considered small value of damping ratio ξ, the PRCs of ηa and ηd
ht condition are close to each other. Forward and backward curves overlap, without jumps or hysteresis, a
leration becomes lower than the ground acceleration for β >

√
2.

7. For δ0 = 0.7 (Fig. 4), impact can occur since β1 (cyan diamond) and β2 (cyan circle) (Eqs. (3a)-(3b)) a
fferent from zero, with β1 < βRd and β2 > βRd. In addition to the frequency range in which impact sure
due to geometric considerations (β1 ≤ β ≤ β2), the nonlinear behavior of the system causes the occurrence
even outside this range.

to the hardening caused by the impact, compared to the free flight condition (FF, black curve), the PR
the right, and the bending becomes more pronounced as the stiffness ratio λ increases. Exceeded a certa

f λ, which will be denoted as λH, the system exhibits jump phenomena (highlighted with arrows), leading
earance of a hysteresis region between the jumps. The jump phenomena and the hysteresis are observable
s of both ηa (Fig. 4a), ηd (Fig. 4b), ηF (Fig. 4c) and ηB (Fig. 4d). For the selected value of the dimensionle
' 2.2. As it can be seen from Fig. 4, the frequency value at which the upward jump (blue dashed arro
decreasing the forcing frequency (backward sweep), is the same for each λ value and corresponds to β2. O
trary, the downward jump (blue solid arrow) occurs, increasing the forcing frequency (forward sweep), a
cy value, in the following denoted as β3, which increases with λ. Consequently, β2 and β3 give a measure
nt of the hysteresis region in terms of frequency. As λ increases, this frequency range increases.

9
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ofections of the PRCs for ξ = 0.1, γ = 5, δ0 = 0.7 and for several values of the stiffness ratio λ (0 < λ ≤ 100): (a) ηa; (b) ηd; (c) ηF;

lack curves in (a) and (b) represent the free flight (FF) condition, the red curves identify the PRCs corresponding to the λ value at wh
ope of the maximum values of the acceleration shows a minimum (λ = λopt), while the blue curves represent the PRCs corresponding
values of λ (the thickness of the line increases with λ). The black dots identify the primary resonance condition. In (a) and (b) the yell
ndicate the values of ηa and ηd for β = 0; the cyan symbols represent the location of β1 (cyan diamond) and β2 (cyan circle). Finally
een triangle identifies the βc value, for all the considered values of λ, such that ηa < ηa |β=0 for β > βc (thick horizontal green line).

he frequency range corresponding to the hysteresis (β2 < β < β3), for each β value, and depending on the init
ns, it is possible to observe two steady-state stable solutions, corresponding respectively to large-amplitu
pact) and small-amplitude (without impact) oscillations. Actually, there would be also a third unstable s

that could not be obtained with the used methodology. At the hysteresis region, making a comparison w
flight condition at the same frequency, the introduction of the obstacle can be counter-productive (occurren
ct), depending on the initial conditions. It can lead to an increase not only of accelerations, but also of d
ents, or, at best, the response does not change (absence of impact). Therefore, the introduction of the obstac
t always reduce the displacements compared to the free flight condition, as one would expect. Based on the
rations, the hysteresis, if possible, should be avoided (choosing λ < λH).
arding the primary resonance (highlighted with black dots), it moves to the right, that is it occurs for increasi
f β, as the stiffness ratio λ increases. As concerns the acceleration (Fig. 4a) the maximum value in resonan
n (denoted as η∗a), starting from the free flight condition (black curve) and increasing λ, first increases, th

es showing a minimum and subsequently starts to grow again, tending to an almost vertical asymptote for lar
f stiffness ratio. For each λ value, the maximum value of ηa is always greater than that corresponding to t
ht condition (η∗a > 1). The introduction of the obstacle, on the contrary, always reduces the peak value of t

on of relative displacement (η∗d < 1), and the extent of the reduction increases with λ (Fig. 4b). No changes
ursion of the static displacement (highlighted with a yellow square) are observed. As concerns the bumpe
e contact force and the deformation are null in the absence of impact. When impact occurs, the values of t
force at resonance (black dots in Fig. 4c) show a trend with the stiffness ratio similar to that of the maximu

of the acceleration, with the occurrence of a minimum. The deformation of the bumpers (Fig. 4d), instea
all for the selected δ0 value, always decreases with λ.

m Fig. 4, it can be also noted that, for the considered combination of parameters (ξ, γ and δ0) and for 0 < λ
occurrence of impact modifies the response of the system only for β <

√
2, keeping unaltered the frequen

f interest for the isolation in the linear case, that is β >
√

2.
ally, by looking at the PRCs of ηa (Fig. 4a), it is possible to identify a value of stiffness ratio (denoted as λo
ch the envelope of the maximum values of ηa shows a minimum (min[η∗a]), although it is, in any case, η∗a >
considered value of δ0, this occurs for λopt ' 2 (thick red curve). In this condition, the resonance occurs f
.05 and since λopt ' 2 < λH, no hysteresis is observed. Furthermore, for all the considered values of λ, t
ation transmitted to the mass becomes smaller than the ground acceleration for β >

√
2 (that is βc =

√
2, gre

). In Fig. 4a this frequency range was highlighted with a horizontal green thick line.
he condition corresponding to the minimum peak value of ηa (λ = λopt), also a reduction of the peak value
tive displacement of the mass, compared to the free flight condition, was noticed (red curve in Fig. 4b). On t
nd, no reduction of the static displacement was observed.

comparing the PRC corresponding to λopt (thick red curve) and the PRC in free flight condition (thick bla
t the same frequency (for β1 ≤ β ≤ β2), it can be noted that, in the condition corresponding to the minimu

10
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lue of the acceleration, while the acceleration is always greater than the free flight condition, the displaceme
neral lower, except for frequency values slightly lower than β2, at which the red curve appears to be above t
ne.

4. By reducing the dimensionless gap, always remaining in the range δ∗0 < δ0 < 1, the amplitude of t
cy interval in which impact occurs increases (Fig. 5, for δ0 = 0.4). Compared to the previous case (δ0 = 0
it is possible to identify a value of the stiffness ratio (denoted as λc < λmax), beyond which the occurren
ct modifies the response of the system, compared to the free flight condition, also for β >

√
2. For δ0 = 0

urs for λc ' 14. For λ > λc the transmitted acceleration becomes lower than the ground acceleration after t
ard jump, which occurs for increasing values of β as λ increases. Consequently, compared to the linear ca
ation frequency range decreases.

ections of the PRCs for ξ = 0.1, γ = 5, δ0 = 0.4 and for several values of the stiffness ratio λ (0 < λ ≤ 100): (a) ηa; (b) ηd; (c) ηF;
lack curves in (a) and (b) represent the free flight (FF) condition, the red curves identify the PRCs corresponding to the λ value at wh

ope of the maximum values of the acceleration shows a minimum (λ = λopt), while the blue curves represent the PRCs corresponding
values of λ (the thickness of the line increases with λ). The black dots identify the primary resonance condition. In (a) and (b) the yell
ndicate the values of ηa and ηd for β = 0; the cyan symbols represent the location of β1 (cyan diamond) and β2 (cyan circle). Finally
een triangle identifies the βc value, for λ = λopt, such that ηa < ηa |β=0 for β > βc (thick horizontal green line). The vertical gray ba
hlights the frequency interval in which the PRC of ηa corresponding to λ = λopt (red curve) is below the PRC corresponding to the f
dition (FF, black curve).

pared to the scenarios observed for δ0 = 0.7 (Fig. 4), for δ0 = 0.4, increasing the stiffness ratio, seconda
ces in the low frequency range appear and become gradually evident, affecting increasingly larger frequen
At these secondary resonances, particularly evident in the PRCs of ηa (Fig. 5a) and ηF (Fig. 5c), periodic a
eriodic responses can be observed, and the acceleration of the mass appears to be always greater compared
flight condition.

concerns the values of the response in resonance condition (black dots), similar considerations apply to tho
r δ0 = 0.7. Also in this case the envelope of the maximum values of the acceleration, in resonance conditio

a minimum for λopt ' 1. Since λopt is slightly lower than λH ' 1.2, no hysteresis occurs. Furthermo
referring to λopt (thick red curve), it can be observed that the maximum value of the acceleration in resonan
n, which occurs for βR ' 1.12, is close to the value corresponding to the free flight condition (η∗a ' 1). We c
efore the possibility of reducing the maximum value of the acceleration compared to the free flight conditio
the presence of impact, by further reducing the dimensionless gap. Furthermore, since λopt < λc, the respon
ystem is not altered for β >

√
2 (βc =

√
2, green triangle in Fig. 5a).

ally, by comparing the PRC of ηa (Fig. 5a) corresponding to λopt (thick red curve) and the PRC in free flig
n (thick black curve) at the same frequency (for β1 ≤ β ≤ β2), it can be noted that there is a frequency ran
hted with a vertical gray band) in which, despite the occurrence of impact, the acceleration is lower than
flight condition.

. Moving to the value of the dimensionless gap δ0 = δ∗0 = 2ξ
√

1 − ξ2 ' 0.199 (Fig. 6), a limit condition
in which the impact already occurs for β = 0 (since β1 = 0). In the low frequency range secondary resonanc

rent type compared to those observed for δ0 = 0.4, appear and become gradually evident, affecting increasing
requency ranges as λ increases. In the condition corresponding to the minimum value of the acceleration
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ce (min [η∗a], thick red curve), which occurs for λopt ' 1, no hysteresis is observed (λopt < λH ' 1.8). Sin
ondition βc =

√
2 (λopt < λc ' 2), the response of the system is not altered for β >

√
2, compared to the fr

ondition. Furthermore, the maximum value of the acceleration, which occurs for βR ' 1.22, is lower than t
orresponding to the free flight condition (η∗a < 1). Finally, always for λ = λopt (thick red curve), it can be not
mpared to δ0 = 0.4, the amplitude of the frequency range (highlighted with a vertical gray band) in whic
the occurrence of impact, the acceleration is lower than in the free flight condition, has increased.

ections of the PRCs for ξ = 0.1, γ = 5, δ0 = δ∗0 ' 0.199 and for several values of the stiffness ratio λ (0 < λ ≤ 100): (a) ηa; (b)
) ηB. The black curves in (a) and (b) represent the free flight (FF) condition, the red curves identify the PRCs corresponding to th
hich the envelope of the maximum values of the acceleration shows a minimum (λ = λopt), while the blue curves represent the PR

ding to the other values of λ (the thickness of the line increases with λ). The black dots identify the primary resonance condition. In
e yellow squares indicate the values of ηa and ηd for β = 0; the cyan symbols represent the location of β1 (cyan diamond) and β2 (cy

or this value of δ0 it is β1 = 0 and, consequently, the cyan diamond is superimposed to the yellow square. Finally, in (a) the green trian
the βc value, for λ = λopt, such that ηa < ηa |β=0 for β > βc (thick horizontal green line). The vertical gray band in (a) highlights
interval in which the PRC of ηa corresponding to λ = λopt (red curve) is below the PRC corresponding to the free flight condition (

ve).

c. By further reducing the gap, the condition in which β2 =
√

2 is reached. Due to the considered dampi
the value of dimensionless gap at which this condition occurs, calculated using Eq. (3b) and denoted as δ0c,
lower than δ∗0 (δ0c ' 0.1915). The corresponding PRCs are similar to those shown in Fig. 6 and consequen
the considerations made for δ0 = δ∗0 (Fig. 6) apply also in this case. However, some differences should

hted. Since now 0 < δ0c < δ∗0, the equation R(ξ, β) = δ0c admits only one solution (β2, cyan circle) and impa
already starting from β = 0. Compared to δ0 = δ∗0, the increase in λ causes a slight decrease also of t
isplacement. Finally, for this value of the dimensionless gap λH ' λc ' 1.8 and the minimum value of t
ation in resonance occurs again for λopt ' 1. In this condition η∗a < 1, no hysteresis occurs (λ < λH) and, sin
=
√

2 (λopt < λc), the response of the system is not altered for β >
√

2, compared to the free flight conditio

066. Let us now consider the value of the dimensionless gap at which β2 = 2, that is δ0 ' 0.066 (Fig. 7).
alue, as λ increases, more complex behaviors appear in the low frequency range. Different types of seconda
ces (with left hysteresis or of non-regular type), of a different nature from those observed for greater valu
ppear and become gradually evident, affecting increasingly larger frequency ranges as λ increases. At the
ry resonances, more evident in the PRCs of ηa (Fig. 7a) and ηF (Fig. 7c), both periodic, quasi-periodic a
aotic solutions can be observed. Furthermore, always at the secondary resonances, the number of impa

n the mass and each bumper, per forcing cycle, is found to increase as β decreases and, for a given β value,
ses.
his δ0 value, the reduction of the static displacement with increasing λ, already observed for δ0 = δ0c, is mo
(yellow squares in Fig. 7b). Compared to δ0c, since in this case β2 = 2 >

√
2, the occurrence of impa

s, in any case and regardless of λ (with 0 < λ ≤ 100), the response of the system also for β >
√

2, compar
ree flight condition. The extent of the frequency range affected by such changes does not vary if λ < λH ' 4
teresis), whereas it becomes gradually larger as λ increases beyond λH.
minimum value of the acceleration in resonance condition occurs for λopt ' 1. In this condition, sin
λH no hysteresis occurs and furthermore βc ' 1.9. At resonance, which occurs for βR ' 1.32, η∗a < 1 an
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ofctions of the PRCs for ξ = 0.1, γ = 5, δ0 ' 0.066 (value of δ0 so that β2 = 2) and for several values of the stiffness ratio λ (0 < λ ≤ 10

) ηd; (c) ηF; (d) ηB. The black curves in (a) and (b) represent the free flight (FF) condition, the red curves identify the PRCs correspond
alue at which the envelope of the maximum values of the acceleration shows a minimum (λ = λopt), while the blue curves represent
responding to the other values of λ (the thickness of the line increases with λ). The black dots identify the primary resonance conditi
(b) the yellow squares indicate the values of ηa and ηd for β = 0. The cyan circles represent the location of β2. Finally, in (a) the gr

dentifies the βc value, for λ = λopt, such that ηa < ηa |β=0 for β > βc (thick horizontal green line). The vertical gray band in (a) highlig
ency interval in which the PRC of ηa corresponding to λ = λopt (red curve) is below the PRC corresponding to the free flight condit
k curve).

ion to a substantial reduction of the peak value of acceleration, a noticeable reduction of both the peak val
isplacement and the static displacement is observed. Compared to the previous considered δ0 values, t
de of the frequency range in which, despite the occurrence of impact, the acceleration is lower than in the fr
ondition (vertical gray band in Fig. 7a) is increased. However, also the amplitude of the frequency range
he displacement in presence of impact is greater than in the free flight is increased (Fig. 7b).

ections of the PRCs for ξ = 0.1, γ = 5, δ0 = 0 and for several values of the stiffness ratio λ (0 < λ ≤ 100): (a) ηa; (b) ηd; (c) ηF; (d)
curves in (a) and (b) represent the free flight (FF) condition, the red curves identify the PRCs corresponding to the λ value at which

of the maximum values of the acceleration shows a minimum (λ = λopt), while the blue curves represent the PRCs corresponding to
ues of λ (the thickness of the line increases with λ). The black dots identify the primary resonance condition. In (a) and (b) the yell
ndicate the values of ηa and ηd for β = 0. Finally, in (a) the green triangle identifies the βc value, for λ = λopt, such that ηa < ηa |
c (thick horizontal green line). The vertical gray band in (a) highlights the frequency interval in which the PRC of ηa corresponding
red curve) is below the PRC corresponding to the free flight condition (FF, black curve).

When the bumpers are initially positioned in contact with the mass (δ0 = 0) the situation returns to be qu
, as shown in Fig. 8, although impact occurs for each β value (Sect. 3.2). Due to the occurrence of impact, t
r of the system is still nonlinear [72], although the PRCs do not show neither jump phenomena nor hysteres
creases, the primary resonance moves to higher frequency values, up to about 10 for λ = λmax = 100. T
nce of impact modifies, in any case and regardless of λ (with 0 < λ ≤ 100), the response of the system for ea
and the PRCs, once exceeded the resonance (black dots), tend to the curve corresponding to the free flig
n (thick black curve) for β → ∞. This happens also in the condition corresponding to the minimum pe

f the acceleration (λ = λopt, thick red curve), which still occurs for λopt ' 1. In this condition, compared to t
ht condition, significant reductions of both the peak value of acceleration, the peak value of the displaceme
static displacement of the mass, are observed. For λ = λopt (thick red curve), the primary resonance occurs f
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2 and the acceleration of the mass becomes lower than that of the ground for β > βc ' 2.3.

scussion

study of the evolution of the PRCs with the stiffness ratio λ, for fixed values of both the damping ratios ξ a
e dimensionless gap δ0, allowed to investigate the influence of δ0, λ and β on the system (mass and bumpe
e. Based on the obtained results, some preliminary conclusions can be drawn.

os. Starting from the free flight condition (δ0 = 1) and reducing the gap, gradually more complex scenari
served, characterized by the occurrence of a primary hysteresis, secondary resonances of different types
frequency range, periodic, quasi-periodic and chaotic responses, multiple impacts, to mention a few. Some
enarios do not go in the desired direction thinking of control. However, by properly selecting the bumpe
ters, it would be possible to guide the system response to reach specific objectives.

cy ranges. Starting from δ0 = 1 and decreasing δ0, the amplitude of the frequency interval in which impa
ely occur, due only to geometric considerations (β1 ≤ β ≤ β2, Sect. 3.2), increases. In Fig. 9, the thick bla
presents the PRC of ηd in free flight (FF) condition. For each δ0 value (right vertical axis), the extremes of t
cy interval β1 ≤ β ≤ β2 are given by the intersections between this PRC and the horizontal line δ0 = consta
considered system and parameters, impact does not occur for β < β1 (on the left of the ascending branch
k black curve in Fig. 9), with β1 becoming zero when δ0 reaches the value δ∗0 ' 0.199. Furthermore, due
ening caused by the impact, when λ > λH (occurrence of hysteresis), where λH depends on δ0, impact c

lso for β2 < β < β3. β3 denotes the frequency value at which, during the forward sweep (increasing forci
cy), the downward jump occurs. In Fig. 9 the blue curves represent the locus of the β3 values for differe
s ratios (the thickness of the lines increases with λ).

RC of ηd in free flight condition for ξ = 0.1 (FF, black curve) together with the envelopes of the downward jump frequencies (β3, b
r γ = 5 and several λ values. The thickness of the line increases with λ.

he two limit cases, namely δ0 = 1 (free flight condition, absence of impact) and δ0 = 0 (bumpers initially
with the mass, occurrence of impact for each β value) hysteresis never occurs, regardless of λ. For 0 < δ0 <
orizontal line δ0 = constant intersects one of the blue curves, it means that for that pair δ0 − λ the jum
enon, and thus the hysteresis, will occur. The amplitude of the frequency range associated with the hystere
< β3, between the descending branch of the black curve and one of the blue curves) increases, for a given
s λ increases (increasing thickness of the blue line) and, for a given λ value, as δ0 decreases.
m the same figure, it is also possible to see if, for the considered values of δ0 and λ, due to the occurrence
the response of the system will be modified, compared to the free flight condition, also for β >

√
2 (to the rig

ertical dashed line). It depends on the value of β3. Three gap ranges can be identified. For δ0 > 0.67 (abo
er horizontal green line) the occurrence of impact will modify the response of the system only in the frequen
<
√

2, for each considered λ value, with 0 < λ ≤ 100, since β3 is always lower than
√

2 (all the blue curv
e left of the vertical dashed line β =

√
2). It is worth noting that the threshold value of the dimensionless g
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67 depends on the maximum value of the stiffness ratio considered in the analysis (λmax = 100 in this stud
creases as λmax increases. For δ0 < δ0c (below the lower horizontal green line), where δ0c ' 0.1915 is the val
imensionless gap at which β2 =

√
2, the response will be modified in any case, regardless of λ, not only f√

2, but also for β >
√

2. The extent of the frequency range beyond
√

2, affected by the occurrence of impa
s gradually larger as λ increases. For δ0c ≤ δ0 ≤ 0.67 (between the two horizontal green lines), the respon
modified also for β >

√
2 only if λ > λc. For each dimensionless gap within this range, the correspondi

e is that associated with the blue curve which, for the considered δ0 value, intersects the vertical dashed li
. It can be observed that λc, starting from λc = λmax = 100 for δ0 ' 0.67, decreases as δ0 decreases.

nce condition. For a given δ0 value, the increase in the stiffness ratio λ causes a gradually more pronounc
of the PRCs, with the increase in the resonant frequency and the occurrence of the jump phenomena and t

sis, for λ > λH(δ0). As concerns the values of the selected response quantities in resonance condition (η∗i , i
B), it was observed that, compared to the free flight condition, the increase in λ causes an increasing reducti
isplacement of the mass and of the deformation of the bumpers, while the acceleration of the mass and t
force, after a first increase, for very small values of λ, decrease, reach a minimum and then start to grow aga
ing the static displacement, it decreases, as λ increases, only if 0 ≤ δ0 < δ

∗
0.

Contour maps of: (a) η∗a; (b) η∗d; (c) η∗F; (d) η∗B; (e) βR; (f) ηd,st for ξ = 0.1, γ = 5, 0 < λ ≤ 100 and 0 ≤ δ0 ≤ 1. The solid black cu
s the contour level corresponding to a unit value of η∗a . The dashed red, dotted blue and dash-dotted green curves represent the val
H and λc respectively, for each δ0 value. Meaning of the shaded regions: light gray: η∗a < 1 (between the solid black curve and th
ht blue: no hysteresis (to the left of the dotted blue curve); light green: no erosion of the isolation frequency range β >

√
2 (above

ed green curve). The black diagonal hatch highlights the region of the λ − δ0 plane in which the three shaded areas overlap.

extending the range of investigation to other values of the dimensionless gap, for 0 ≤ δ0 ≤ 1 and 0 < λ ≤ 10
assuming ξ = 0.1 and γ = 5, the contour maps shown in Fig. 10 have been obtained. In particular, Figur

15



Journal Pre-proof

10a-d s ss522

(η∗a), th ∗
B)523

respect he524

static d of525

the sele526

Fro he527

obstacl or528

large va ue529

of the a ur530

line cor 1531

respect532

For of533

the acc is534

represe he535

introdu ht536

conditio537

The e,538

the jum ns.539

To the l d),540

wherea er541

occurs, it542

starts to ve543

is alway ue544

of the a545

Fin r a546

given δ ht547

conditio ve548

the occ on549

was hig be550

affected en551

curve a he552

occurre tal553

dashed o554

horizon if555

λ > λc556

The λc557

(dash-d be558

observe ng559

to it, η∗a ge560

β >
√

2 ed561

areas ex ck562

diagona rly563

attractiv re564

the imp565

As ys566

lower th λ567

increas es568

tend to569

The he570

acceler η∗F571

increas572
 Jo
ur

na
l P

re
-p

ro
of

how the contour maps of the maximum values of the excursion of the absolute acceleration of the ma
e relative displacement of the mass (η∗d), the contact force (η∗F) and the deformation of the bumpers (η
ively. Figs. 10e,f, instead, correspond to the resonant frequency of the acceleration βR and the excursion of t
isplacement ηd,st respectively. The use of logarithmic scale for the λ axis allows to see better the evolution
cted quantities in the range of small stiffness ratios.
m Fig. 10a it can be observed that, in most cases (λ − δ0 pairs), the occurrence of the impact against t
es causes an increase of the peak value of the acceleration compared to the free flight condition (η∗a > 1). F
lues of λ, η∗a can reach values up to 5. However, for small values of λ (λ < 20) and for δ0 < 0.4, the peak val
cceleration, despite the occurrence of impact, can be lower than in free flight condition (η∗a < 1). The conto
responding to η∗a = 1 (solid black curve) divides the λ − δ0 plane in two regions in which η∗a > 1 and η∗a <
ively. The latter was highlighted with a light gray background.
each δ0 value, it is possible to identify the value of λ at which the envelope of the maximum values

eleration shows a minimum. The locus of the λ values corresponding to this condition (denoted as λopt)
nted with a dashed red curve. By focusing the attention on the range 0 ≤ δ0 ≤ 0.4 at which, through t
ction of the obstacles, it is possible to obtain a reduction of the acceleration, compared to the free flig
n (η∗a < 1), it can be observed that the minimum occurs for λopt ' 1, regardless of δ0.
dotted blue curve represents the locus of the values of λ, denoted as λH, beyond which, for a given δ0 valu
p phenomena, and thus the primary hysteresis, occur. This curve divides the λ − δ0 plane into two regio
eft of the dashed blue curve no hysteresis occurs (this region was highlighted with a light blue backgroun
s to the right there will be the hysteresis. While in the two limit cases (δ0 = 1 and δ0 = 0), the hysteresis nev
for 0 < δ0 < 1, λH decreases as δ0 decreases, reaching the lower values (λH ' 1.4) for 0.3 < δ0 < 0.5, then
increase again as δ0 further decreases. It can be noted that, for each δ0 value, λopt < λH (the dashed red cur
s to the left of the dotted blue curve), meaning that in the condition corresponding to the minimum peak val

cceleration of the mass (λ = λopt), the hysteresis never occurs.
ally, the dash-dotted green curve represents the locus of the values of λ, denoted as λc, beyond which, fo
0 value, the occurrence of impact causes a modification of the system response, compared to the free flig
n, also for β >

√
2. This curve divides the λ − δ0 plane into two regions. Above the dash-dotted green cur

urrence of impact will modify the response of the system only in the frequency range β <
√

2 (this regi
hlighted with a light green background), whereas below the curve also the frequency range β >

√
2 will

. For δ0 > 0.67 (upper horizontal dashed line), since there are no intersections between the dash-dotted gre
nd the horizontal line δ0 = constant (meaning that λc > λmax = 100), the response will be modified, due to t
nce of impact, only in the frequency range β <

√
2. On the contrary, for δ0 < δ0c ' 0.1915 (lower horizon

line) the response will be modified also for β >
√

2 regardless of λ. For δ0c ≤ δ0 < 0.67 (between the tw
tal dashed lines), the isolation frequency range will be reduced, compared to the free flight condition, only
(on the right of the dash-dotted green curve).

curves corresponding to η∗a = 1 (solid black curve), λopt (dashed red curve), λH (dotted blue curve) and
otted green curve), together with the shaded regions, were reported in all the contour maps in Fig. 10. It can
d that there is a portion of the λ − δ0 plane that remains white. This means that, for the λ − δ0 pairs belongi
> 1, the hysteresis occurs and furthermore the impact causes an erosion of the isolation frequency ran

, compared to the linear case (absence of obstacles). Then there are regions in which only one of the shad
ists. Finally, for the other λ − δ0 pairs, two or all the shaded regions can overlap. In particular, the bla
l hatch highlights the portion of the λ − δ0 plane where all the three shaded areas overlap. This is particula
e because, for a λ − δ0 pair inside this region, not only η∗a < 1 but also no hysteresis occurs and furthermo
act does not reduce the isolation frequency range compared to the linear case.
concerns the peak value of the excursion of the relative displacement of the mass (η∗d, Fig. 10b), it is alwa
an in the free flight condition (η∗d < 1). It decreases as δ0 decreases, for a given λ value, and decreases as

es, for a given δ0 value. In the latter case, the extent of the reduction decreases as λ increases (the contour lin
become horizontal).
contour map of the peak value of the excursion of the contact force (η∗F, Fig. 10c) is quite similar to that of t

ation. η∗F increases with λ, for a given δ0 value. For a given value of λ, for example λ = 10, as δ0 decreases,
es, reaches a maximum and then starts to decrease.
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concerns the peak value of the excursion of the deformation of the bumpers (η∗B, Fig. 10d), it decreases w
given δ0 value, becoming particularly small for large values of the stiffness ratio. For a given value of λ, f

e λ = 10, as δ0 decreases, η∗B increases, reaches a maximum and then starts to decrease.
concerns the resonant frequency of the acceleration (βR, Fig. 10e) it varies between 0.99 and about 10, and t
values are reached for quite small dimensionless gaps and large values of the stiffness ratio. It increases w
given δ0 value, and it increases as δ0 decreases, for a given λ value.

ally, regarding the excursion of the static displacement of the mass ηd,st, Fig. 10f shows that for δ∗0 ≤ δ0 ≤ 1
equal to 0.199 independently of δ0 and λ. On the contrary, for 0 ≤ δ0 < δ∗0 the static displacement decreas

ecreases, for a given λ value, and as λ increases, for a given δ0 value. In the latter case, the extent of t
n decreases as λ increases (the contour lines tend to become horizontal).

e λ = λopt. Let us now focus the attention on the condition corresponding, for each δ0 value, to the minimu
f the acceleration of the mass in resonance condition. Let us make a section of the contour maps shown
along the dashed red curve. From Fig. 11a it can be observed that, starting from the free flight conditi

) and decreasing δ0, the peak value of the normalized excursion of the absolute acceleration of the mass η∗a (r
starting from a unit value for δ0 = 1 increases, reaches a maximum for δ0 ' 0.8 (η∗a ' 1.27) and then sta
ase, becoming again equal to 1 for δ0 ' 0.4 (vertical dashed line) and lower than 1 for 0 ≤ δ0 < 0.4. T
m value (η∗a ' 0.41) is reached for δ0 = 0.

rends with the dimensionless gap δ0 of: (a) values of the system response η∗i (i = a, d, F, B) at resonance and static displacement of
t, (b) frequency ratios (βR and βc), for ξ = 0.1, γ = 5 and λ = λopt(δ0).

peak value of the normalized excursion of the relative displacement of the mass η∗d (blue curve), starting fro
alue for δ0 = 1, decreases as δ0 decreases, reaching the minimum value (η∗d ' 0.15) for δ0 = 0. As concer
ursion of the static displacement (light blue curve), it does not vary, remaining equal to 2ξ

√
1 − ξ2 ' 0.199

≤ 1, whereas for 0 ≤ δ0 < δ
∗
0, it starts to decrease as δ0 decreases, reaching the value ηd,st ' 0.09 for δ0 = 0

peak value of the normalized excursion of the contact force η∗F (magenta curve), starting from zero for δ0 =

e of impact), increases, reaches a maximum for δ0 ' 0.45 (η∗F ' 0.5) and then starts to decrease, reaching t
∗
F ' 0.28 for δ0 = 0. In the gap range of interest (0 ≤ δ0 ≤ 0.4, highlighted with a light gray band) η∗F decreas
creases. The peak value of the normalized excursion of the deformation of the bumpers η∗B (orange curv
from zero for δ0 = 1 (absence of impact), increases, reaches a maximum for δ0 ' 0.15 (η∗B ' 0.17) and th
decreases, reaching the value η∗B ' η∗d ' 0.15 (the deformation of the bumpers and the displacement of t
e comparable) for δ0 = 0. In the gap range of interest (0 ≤ δ0 ≤ 0.4, highlighted with a light gray band)
a constant value as δ0 decreases.

m Fig. 11b it can be observed that, always for λ = λopt, the resonant frequency ratio βR (black curve), starti
' 0.99 (horizontal dashed line) for δ0 = 1, increases as δ0 decreases, reaching the value βR ' 1.47 for δ0 =

erns the β value beyond which the absolute acceleration of the mass is lower than the ground acceleration (
urve), it is equal to

√
2 if δ0c ≤ δ0 ≤ 1 (the isolation frequency interval is the same as in the linear case), th
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to increase, reaching the value βc ' 2.37 for δ0 = 0. Consequently, for 0 ≤ δ0 < δ0c, as δ0 decreases, t
nce of impact causes a greater reduction of the isolation frequency interval, compared to the linear case.
ed on these considerations, although the reduction of the gap allows to reduce the peak value of the respon
ystem in resonance condition and, for 0 ≤ δ0 < δ

∗
0, also the static displacement, very small values of δ0 invol

asing modification of the system response in the frequency range of interest for the isolation in the linear ca
2). Consequently, it would be preferable not to reach too low values of δ0 in order not to alter, or alter to
extent, the system response for β >

√
2, accepting higher peak values for acceleration, displacement and sta

ement of the mass, contact force and deformation of the bumpers.

onsiderations. By comparing, at the same frequency, the PRCs of ηa and ηd for λ = λopt with those co
ing to the free flight condition, other interesting considerations have emerged. In general, in the conditi
onding to the minimum value of the acceleration in resonance condition (λ = λopt), and for β1 ≤ β ≤ β
lacement is lower compared to the free flight condition, except for a small frequency interval, just befo
re the occurrence of impact causes a slight increase of the displacement. As concerns the acceleration, f
< 0.4, there is a frequency range, within β1 ≤ β ≤ β2 (highlighted in Figs. 5-8 with a vertical gray band),
the acceleration of the mass, despite the occurrence of impact, is lower compared to the free flight conditio
ecreases, the amplitude of this frequency range increases. Consequently, if the comparison with the free flig
n is made at the same frequency, and not referring to the resonance condition, contrary to what one wou
the introduction of the obstacle does not always reduce the displacement and does not always increase t

ation.

hanical justification of the condition corresponding to the minimum peak acceleration

m the results of the parametric analysis, it was observed that, for each investigated δ0 value, and for ξ = 0
5, as λ increases, while the envelopes of the maximum values of the displacement of the mass η∗d and of t

ation of the bumpers η∗B decrease, the envelopes of the peak values of the absolute acceleration of the ma
of the contact force η∗F show a minimum. At this condition (λ = λopt), in addition to the occurrence of t
m of η∗a and η∗F, also a reduction of the peak value of both the relative displacement of the mass and of t
ation of the bumpers was observed. Furthermore, to this is also added the reduction of the static displaceme
δ0 < δ

∗
0.

h reference to the range of δ0 values of greatest interest in this study, that is 0 ≤ δ0 ≤ 0.4, at which it is possib
n a reduction not only of the displacement, but also of the acceleration of the mass, compared to the free flig
n (η∗a < 1), it was found that the minimum peak value of acceleration occurs for λopt ' 1, regardless of
n this observation, the aim of this section is to try to give a mechanical justification to why, for ξ = 0.1 a
unit value of the stiffness ratio λ is preferable to the others.

he following figures, referring, for illustrative purposes, to the value of the dimensionless gap correspondi
2 (δ0 ' 0.066), a comparison between different values of stiffness ratio λ is carried out. In addition to the fr

ondition (FF), three values of λ were considered, namely the one that corresponds, for the selected δ0 valu
inimum of η∗a (λ = λopt = 1), and two other values of λ, one lower and the other greater than 1, respective
< λopt and λ = 5 > λopt.
ig. 12 the comparison between the different λ values is made in terms of force-displacement cycles in re
condition. Figure 12a refers to the mass (inertia force fI vs. relative displacement q of the mass), where

b refers to the bumpers (contact force f j vs. position d j of the bumper, j = R, L). The position of the extrem
umper, measured from the side of the mass at time τ = 0, is related to its deformation q j through the expressi
q j(τ)+δ0 j ( j = R, L). Starting from zero initial condition, the thin lines represent the transient response, wh

les at steady state are highlighted with thicker lines. The gray curve refers to the free flight condition (FF), t
rve to λ = 0.1, the red curve to λ = λopt = 1 and the black curve to λ = 5. The two black dashed vertical lin
nt the initial position of the bumpers (initial gap δ0).
ig. 13 the comparison is made in terms of time histories (first 10 cycles), starting from zero initial conditio
t column (Figs. 13a, d, g) refers to λ = 0.1, the second (Figs. 13b, e, h) to λ = 1 and the third (Figs. 13
λ = 5. In Figs. 13a-c the gray line and the black line represent the position d(τ) of the mass (which
more than its displacement relative to the ground d(τ) = q(τ)) in free flight condition (FF, gray line) and af
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orce-displacement cycles (ξ = 0.1, γ = 5, δ0 ' 0.066) in resonance condition (β = βR(λ)), without obstacles (free flight FF, βR ' 0.
), and for three values of the stiffness ratio, namely λ = 0.1 (βR ' 1.1, blue line), λ = 1 (βR ' 1.32, red line) and λ = 5 (βR ' 1.85, bl
mass; (b) bumpers. Starting from zero initial conditions, the thin lines represent the transient response, while the thick lines highlight
teady state.

oduction of the obstacles (black line). The red and blue lines represent the position of the extremity of t
R) and left (BL) bumper respectively. In Figs. 13d-f the gray line and the black line represent the absolu

ation α(τ) of the mass in free flight condition (FF, gray line) and after the introduction of the obstacles (bla
inally, Figs. 13g-i show the time histories of the contact forces f j(τ) ( j = R, L) between the mass and the rig

line) and left (BL, blue line) bumper, respectively.
m Fig. 12a it can be observed that, compared to the free flight condition (FF, gray curve), the introduction
ly stiffer obstacles (increasing λ), keeping fixed the gap δ0, results in a gradually increasing reduction of t
m displacement of the mass, while the peak value of the inertia force (and thus of the absolute acceleration
s) shows a minimum for λ = 1 (red curve) and then it starts to increase. As concerns the bumpers (Fig. 12
ease in λ causes a reduction of the deformation of the bumpers, while the peak value of the contact force sho
um for λ = 1 and then it starts to increase. Furthermore, it can be noted that, compared to λ = 1 (red cyc
5 (black cycle), for λ = 0.1 (blue cycle), as time goes by, the distance between the mass and the bumpe

radually increases, reaching, at steady state, a value greater than the initial one (δ0,fin ' 0.34 > δ0, represent
e dotted vertical lines in Figs. 12a,b).

it can be seen from Fig. 13a, for λ = 0.1, the mass impacts the bumper before the complete recovery of
ation, causing the impact to occur, for each forcing cycle, for a value of the gap gradually greater than t
ne (horizontal dashed lines), reaching the final value of about 0.34 at the steady state. This behavior is d
elatively large value of the relaxation time of the bumpers, that is the time the bumper needs to complete
its deformation, which depends on its dissipative capabilities. It is defined as:

r j = ω
C j

K j
= 2ξ

γ j

λ j
( j = R, L) (

a fully elastic material (γ j = 0) τr j = 0 ( j = R, L), and so the recovery is instantaneous, whereas a fully visco
l (λ j = 0) τr j → ∞ ( j = R, L) remains deformed after the detachment, without recovering its deformation.
e of both elastic and viscous components, the relaxation time is finite and depends on the dissipative capabil
aterial. For ξ = 0.1, γ = 5 and λ = 0.1 it is τr j = 10 ( j = R, L). The bumper does not have enough tim
letely recover its deformation, and thus to dissipate all the stored energy during the contact, before the ma
it again. Consequently, when impact occurs it has a residual deformation, which causes the actual gap to

than the initial one (δ0).
λ = 5 (Fig. 13c), on the contrary, the bumper quickly recovers the deformation after the detachment from t
r j = 0.2, j = R, L) and it remains, for a certain time, in the undeformed configuration until the mass impacts

λ = 1 (Fig. 13b), instead, the mass impacts the bumper practically at the time instant when it has finish
ing all its deformation. Consequently, the bumper has enough time to recover, and, at the same time, it do
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Time histories of the first ten cycles of the response starting from zero initial conditions, for ξ = 0.1, γ = 5, δ0 ' 0.066. Position
(black line) and the bumpers (red line for the right bumper BR and blue line for the left bumper BL): (a) λ = 0.1, βR ' 1.1; (b) λ =

2; (c) λ = 5, βR ' 1.85. Absolute acceleration of the mass (black line): (d) λ = 0.1, βR ' 1.1; (e) λ = 1, βR ' 1.32; (f) λ = 5, βR ' 1.
orce between the mass and the bumpers (red line for the right bumper BR and blue line for the left bumper BL): (g) λ = 0.1, βR ' 1.1;
' 1.32; (i) λ = 5, βR ' 1.85. In (a)-(f) the gray line represents the response (position and absolute acceleration) of the mass in free fli
ition (without obstacles).

ain inactive. For ξ = 0.1 and γ = 5, this value of λ corresponds to an approximately unit value of t
ionless relaxation time (τr j = 1, j = R, L).
m the time histories of the absolute acceleration of the mass (Figs. 13d-f) it is possible to observe the spik
he occurrence of impact. Furthermore, as concerns the amplitude of the acceleration after the introduction
tacle (black curve), it can be noted that for λ = 0.1 (Fig. 13d) it is comparable with that corresponding to t
ht condition, while for the other two values of stiffness ratio, it is lower. In particular, for λ = 1, the reducti
er, as already observed by looking at the force-displacement cycles (Fig. 12a). At the value of the stiffne
rresponding to the minimum of the peak value of the acceleration, also a minimum of the peak value of t
force corresponds, as shown in Fig. 13h.
ed on these considerations, it would seem that, for a given δ0 value, for 0 ≤ δ0 ≤ 0.4, and for ξ = 0.1 and γ =

e stiffness ratio is such that the dimensionless relaxation time is close to unity (τr j ' 1, j = R, L), the maximu
f the acceleration of the mass η∗a reaches a minimum. This is probably due to the fact that the bumpers are fu
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d, meaning with this that they have enough time to recover their deformation by dissipating energy and, on t
nd, they do not remain inactive because impact practically occurs immediately after recovery. Consequent
0.1, γ = 5 and 0 ≤ δ0 ≤ 0.4, the condition τr j ' 1 ( j = R, L) can be reasonably assumed as representative
dition which corresponds to the minimum value of the acceleration of the mass in resonance condition. Th
to reduce the number of parameters which characterize the obstacles (position δ0, and mechanical properties
since two of them (γ and λ) are related to each other through the relationship:

j

j
' 1

2ξ
( j = R, L) (

clusions

is paper, the effect of the presence of deformable and dissipative obstacles (bumpers), existing or newly adde
nonlinear dynamic response of a base excited SDOF system was investigated through numerical paramet
s. The study of the nonlinear dynamic behavior of the system is necessary to get some indications on ho
e the system response to reach specific objectives, albeit conflicting ones. In fact, this study was inspired
tical problem of large horizontal displacements in base-isolated structures, the limitation of which can cau

ed and dangerous increases in the acceleration peak.
selected response quantities are absolute acceleration and relative displacement of the mass, contact force a

ation of the bumpers, resonant frequency of the system, static displacement of the mass.
e general conclusions can be preliminary established:

he parametric study allowed to highlight possible scenarios, characterized by the occurrence of primary hy
resis, secondary resonances of different types in the low frequency range, periodic, quasi-periodic and chao

esponses, multiple impacts, to mention a few, that may be encountered due to the occurrence of impact, varyi
e obstacle’s parameters (position and mechanical properties).

s part of the control, while some of these scenarios (for example jumps and hysteresis, secondary resonanc
t low frequencies, coexistence of multiple solutions) do not go in the desired direction, others are desirab
displacements and acceleration with obstacles smaller than those ones in free flight).

y properly selecting the bumpers’ parameters it is possible to guide the system’s response to reach speci
bjectives, avoiding some undesirable scenarios and encouraging others, and thus exploiting the occurrence

pact with beneficial effects.

fixing the value of the damping factor ξ of the isolation damper and the dissipative capabilities γ of the bumpe
work exemplary values ξ = 10% and γ = 5 were assumed), the results showed that the occurrence of the impa
the bumpers can significantly modify the system response, depending on the values of the dimensionless g
the stiffness ratio, both for β <

√
2 (isolation not effective in the linear behavior) and β >

√
2 (isolati

e in the linear behavior). The value
√

2 is decisive in the case of linear behavior, because it is the separati
etween the frequency interval in which the isolation is not effective (β <

√
2) and the frequency interval

he isolation is effective (β >
√

2).
ile the peak value of the displacement of the mass is always reduced compared to the free flight condition, t
lue of the acceleration in general is increased, except for small values of both the stiffness ratio (0.2 ≤ λ ≤
the optimal value λopt = 1, see the solid black curve in Fig. 10) and the dimensionless gap (0 ≤ δ0 ≤ 0.4, s
), for which the peak acceleration can be lower compared to the free flight condition.

worth noting that, when the comparison with the free flight condition is made at the same frequency, a
paring the values at the primary resonance, there could be a small frequency interval where the occurrence

can cause a slight increase of the displacement, contrary to what is expected. With reference to the exempla
0.1 and γ = 5, and with reference to Figs. 5b-8b, this phenomenon begins at δ0 = 0.4 with 1.2 ≤ β ≤ 1.

), when the red optimality curve (denoted with the symbol λopt) begins to fall below the black curve of fr
F), in the interval in which the control achieved through the impact is beneficial, and arrives at δ0 = 0 w
β ≤ 4 (Fig. 8b); as δ0 decreases, the far right grows little compared to unit value, while the far left go
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. The abovementioned phenomenon of the so called “bouncing” extends both to the right and to the l
β abscissa axis; in the absence of control this phenomenon acquires relevance, while control attenuates
y. Equally, there could be a small frequency interval where the occurrence of impact can cause a decrease
eleration, compared to the absence of obstacles. With reference to Figs. 5a-8a, such an interval starts fro
≤ 1.1 at δ0 = 0.4 (Fig. 5a) and reaches 0 ≤ β ≤ 1.2 at δ0 = 0 (Fig. 8a).
as observed that, for each value of the dimensionless gap, inside the range of interest, it is possible to identify
n preferable to the others at which the envelope of the values of the acceleration in resonance condition sho
um. This occurs, regardless of the dimensionless gap, when the stiffness ratio and the damping ratio, whi

he mechanical properties of the bumpers, are such that the relaxation time τr is about 1. In this condition t
s, on the one hand, have enough time to recover their deformation, after the detachment from the mass,
ing energy and, on the other, they do not remain inactive because impact practically occurs immediately af
y. Consequently, two important conclusions can be drawn, at least limited to the situations explored with t
tric survey carried out here:

or ξ = 0.1, γ = 5 and, the condition τr ' 1 can be reasonably assumed as representative of the conditi
hich corresponds to the minimum value of the acceleration of the mass in resonance condition. In additio
e dimensionless acceleration becomes less than unity in the range 0 ≤ δ0 ≤ 0.4.

his allows to reduce the number of parameters which characterize the obstacles (position δ0, and mechanic
roperties γ and λ), since two of them, namely γ and λ, are related to each other through the relationsh
/λ ' 1/(2ξ).

he condition corresponding to the minimum value of the acceleration in resonance neither jumps nor hystere
nd in addition to the minimum value of the acceleration in resonance condition, also a significant reducti
isplacement was observed. In Fig. 11 left, the dimensionless displacement decreases almost linearly from
f 1 for δ0 = 1 to a value of 0.18 for δ0 = 0. To this is also added the reduction of the dimensionless sta
ement for small gaps; it maintains the constant value 0.2 (' δ∗0) in the range δ∗0 ≤ δ0 ≤ 1 and decreases linea
alue 0.1 in the range 0 ≤ δ0 ≤ δ∗0. The results of Fig. 11 left also showed the trends of the system’s response
ce condition as the dimensionless gap decreases. The dimensionless acceleration first starts from the unita
t δ0 = 1, rises to the value 1.3 for δ0 = 0.8 touching the maximum, drops to 1 for δ0 = 0.4 and reaches t
m value 0.4 for δ0 = 0. The dimensionless displacement starts from the unitary value for δ0 = 1 and decreas
linearly up to the value 0.2 for δ0 = 0. The dimensionless contact force starts from the zero value for δ0 =

the maximum value 0.5 for δ0 = 0.4, and then falls to the value 0.3 for δ0 = 0. The dimensionless sta
ement starts from 0.2 for δ0 = 1, remains constant up to δ0 = 0.2 (' δ∗0), and then goes down almost linea
e value 0.1 for δ0 = 0. Furthermore, the results of Fig. 11 right showed that the resonant frequency ratio sta
e unit value for δ0 = 1, grows almost linearly up to the value 1.25 for δ0 = δ0c = 0.2, and then rises to t
.5 for δ0 = 0 with a slightly greater slope.

ever, very small values of δ0 involve an increasing modification of the system response in the frequency ran
est for the isolation in the linear case (β >

√
2). In fact, up to δ0 ≥ 0.2 = δ0c there is no erosion, being δ

ration value between the effective and non-effective range of the isolation in the linear field. Below the val
.2, the isolation zone begins to be eroded, up to βc = 2.5 for δ0 = 0; therefore, the zone of effectiveness
because it exists only for β values greater than βc = 2.5. For the above reason, that is in order not to alter,
a limited extent, the system response in the effective range of isolation, it would be preferable not to reach t
ues of δ0, accepting slightly higher peak values of the response in terms of acceleration and displacement.
ble suggestion could be to stay below δ0 = 0.4 to have dimensionless acceleration and displacement less th
r example choose δ0 = 0.2, thus obtaining η∗a = 0.8 and η∗d = 0.4.
arding to the future developments of this work, there is the intention to exploit the obtained results to gi
e on the optimal design of the bumpers.
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ix A. Analytical expressions of transmissibility and displacement response factor according to the ne
definition

following Table A.1 provides the analytical expressions of the transmissibility (left column) and of the d
ent response factor (right column), referring to both the classical (upper part) and the new (lower part) defi
n addition, also the analytical expressions and/or the values they assume for β = 0 and in resonance conditio
wn, together with the expressions of the resonant frequency. The given expressions for βRd, Rd,max, and R a
r 0 < ξ <

√
2/2. For

√
2/2 ≤ ξ < 1, no peaks occur for Rd and the maximum response occurs for β = 0 an

ently, Rd,max = 1. It follows that, for
√

2/2 ≤ ξ < 1, R(ξ, β) = 1/
√

(1 − β2)2 + (2ξβ)2 and R(ξ, 0) = 1.

1. Analytical expressions related to the transmissibility and the displacement response factor for a viscously damped SDOF system exci
onic force considering both the classical and the new definitions

Transmissibility Displacement response factor

TRa(ξ, β) =

√
1 + (2ξβ)2

(
1 − β2)2

+ (2ξβ)2
=

√
1 + (2ξβ)2Rd(ξ, β) Rd(ξ, β) =

1√(
1 − β2)2

+ (2ξβ)2

TRa(ξ, 0) = 1 ∀ξ Rd(ξ, 0) = 1 ∀ξ

TRa,max(ξ) =
2
√

2ξ2

√
−1 − 4ξ2 + 8ξ4 +

√
1 + 8ξ2

Rd,max(ξ) =
1

2ξ
√

1 − ξ2

βRa(ξ) =
1
2ξ

√
−1 +

√
1 + 8ξ2 βRd(ξ) =

√
1 − 2ξ2

TR(ξ, β) =
1

2
√

2ξ2

√√√[
1 + (2ξβ)2

] (
−1 − 4ξ2 + 8ξ4 +

√
1 + 8ξ2

)

(
1 − β2)2

+ (2ξβ)2
R(ξ, β) =

2ξ
√

1 − ξ2

√(
1 − β2)2

+ (2ξβ)2

TR(ξ, 0) =

√
−1 − 4ξ2 + 8ξ4 +

√
1 + 8ξ2

2
√

2ξ2
=

1
TRa,max(ξ)

R(ξ, 0) = 2ξ
√

1 − ξ2 =
1

Rd,max(ξ)

TRmax = 1 ∀ξ Rmax = 1 ∀ξ
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 occurrence of impact can significantly modify the response of SDOF systems.

 study of the scenarios is functional to identify suitable control strategies.

 possible to exploit the occurrence of impact with beneficial effects.

nit value of the relaxation time allows to minimize the peak mass acceleration.

y small gaps involve an increasing reduction of the linear isolation frequency range.
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