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Abstract: Low-energy electrons (Auger electrons) can be produced via the interaction of photons with
gold atoms in gold nanorods (AuNRs). These electrons are similar to those emitted during the decay
of technetium-99m (99mTc), a radioactive nuclide widely used for diagnostics in nuclear medicine.
Auger and internal conversion (IC) electron emitters appropriately targeted to the DNA of tumors cells
may, therefore, represent a new radiotherapeutic approach. 99mTc radiopharmaceuticals, which are
used for diagnosis, could indeed be used in theragnostic fields when loaded on AuNRs and delivered
to a tumor site. This work aims to provide a proof of concept (i) to evaluate AuNRs as carriers
of 99mTc-based radiopharmaceuticals, and (ii) to evaluate the efficacy of Auger electrons emitted
by photon-irradiated AuNRs in inducing radio-induced damage in T98G cells, thus mimicking
the effect of Auger electrons emitted during the decay of 99mTc used in clinical settings. Data are
presented on AuNRs’ chemical characterization (with an aspect ratio of 3.2 and Surface Plasmon
Resonance bands at 520 and 680 nm) and the loading of pharmaceuticals (after 99mTc decay) on their
surface. Spectroscopic characterizations, such as UV-Vis and synchrotron radiation-induced X-ray
photoelectron (SR-XPS) spectroscopies, were performed to investigate the drug–AuNR interaction.
Finally, preliminary radiobiological data on cell killing with AuNRs are presented.

Keywords: gold nanorods; technetium-99m; radiopharmaceuticals; theragnostic; nuclear medicine

1. Introduction

In the last decade, nanomaterials have found success in several fields, such as cos-
metics, textiles, sensors, optoelectronics and medicine [1–4]. In the field of medicine, gold
nanoparticles and gold nanorods (AuNRs) have found wide applications due to their
peculiar chemical and physical features, such as the Localized Surface Plasmon Resonance
(LSPR), which occurs when there is an interaction between a nanomaterial and electromag-
netic radiation of the appropriate wavelength [5,6]. Another important outlook, which
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has favored the use of gold-based nanoparticles in biomedical applications, is their high
biocompatibility. In fact, it is well known in the literature that gold nanoparticles are
stable and biocompatible, even if these general characteristics also depend a lot on the
specific dimension, shape and surface functionalization, and are studied on a case-by-case
basis [7–9]. In particular, cetyltrimethylammonium bromide (CTAB)-functionalized AuNRs
show different degrees of toxicity based on the types of performed tests. For example,
Cornovale et al. found different cell viability for PC-3 cells (human prostate cancer cells)
in free serum and supplemented serum, obtaining a range of 120–80% in viability using
particle concentrations of 0.1–0.5 µg/mL in the substrate, respectively [10]. Guo et al.
studied CTAB-functionalized gold nanoparticles’ cytotoxicity using the MTT test in a range
of human and murine cells, and their study evidenced different results: in the PC-3 cell
line, GR5, GR7, GR8, GR9, GR11 and G12 samples displayed IC50 values of 8.2, 7.8, 8.2,
7.4, 8.5 and 8.0 µg/mL, respectively. In contrast, Au NP-CTAB samples (20 and 60 nm)
caused a higher level of cytotoxicity with IC50 values of 2 and 3.5 µg/mL, respectively [11].
The general low cytotoxicity of AuNRs has largely allowed their implementation in the
diagnostic field, using near-infrared (NIR) imaging, due to their two plasmonic peaks that
are associated with different electron oscillations on the transverse and longitudinal side
of the rod in an energy range in which biological tissues are not active [12–14]. Many
techniques exploit AuNRs in diagnosis, one of which is two-photon luminescence imaging
(TPL), which is capable of going deep and has sub-micron resolution. To go even deeper
into a tissue, photoacoustic tomography (PAT) can be used [15]. The underlying principle
of PAT is the ability of AuNRs to absorb a pulsed laser and emit an acoustic shock wave
due to transient superheating and thermoelastic expansion. Other techniques that have
been developed using AuNRs are optical coherence tomography (OCT), where AuNRs are
used to enhance contrast, and X-ray computed tomography (XCT), where they are used as
contrast agents instead of iodine molecules [16]. It is also well known that AuNRs are used
for drug delivery due to their high surface/volume ratio: the surface can be functionalized
for optimizing the interaction with drugs in view of the specific targets and the therapy
used [17]. One of the main objectives is the fight against tumors. In these cases, it is possible
to exploit the Enhanced Permeability and Retention (EPR) effect, a passive targeting, or
create active targeting systems using surface functionalizations of AuNRs with ligands that
increase their specificity to target cells [18].

In this context, the field of nuclear medicine is studying with interest the use of drug
delivery systems based on radioisotopes that emit short-range charged particles, instead
of common drugs; these radioisotopes could be an added value to common used therapy
because they are able to deliver a therapeutic dose of ionizing radiation to a tumor, causing
cellular damage due to their interaction with biological macromolecules [19]. Increasing
the dose delivered to a tumor mass while simultaneously decreasing the dose delivered to
healthy tissues is still a major challenge in radiotherapy, although several strategies have
been proposed. Furthermore, if the radioisotope used is also a gamma emitter, it can be
used in medical diagnostic procedures (e.g., scintigraphy), and in this way, it is possible to
have a theragnostic system that improves personalized therapy [20].

Several new radiopharmaceuticals have been prepared in recent years due to the
discovery of kits called “shake and bake”, which are very easy to use and optimize to
ensure that the desired complex has a high labeling yield and stability. Indeed, these new
drugs are influenced by several factors: the amount of reducing agent and ligand, pH and
temperature. In addition, since the beginning of the 21st century, there has been significant
growing interest in the field of so-called nanomedicine with the use of nanomaterials
labeled with radionuclides and used for both diagnostic and therapeutic purposes [21].

Among different radionuclides, technetium 99m (99mTc), a gamma emitter, is widely
used for diagnostic purposes in nuclear medicine, and several complexes labeled with it are
available in clinical practice [22]. 99mTc, during its nuclear decay, also emits Auger electrons
(AEs), most of which has a low energy (<25 keV) and can traverse tissues for very short
distances on the order of a few micrometers, resulting in a high Linear Energy Transfer
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(LET) between 1 and 23 keV/µm, which is very effective for producing clustered damage
in the DNA and/or sensitive targets (e.g., cell membrane) of cancer cells. These types of
damage are difficult to repair and generally lead to cell death [23]. The high lethality of AEs
emitted near the nucleus is evident when observing their Relative Biological Effectiveness
(RBE, defined as the ratio of the effectiveness of the radiation under investigation compared
to X-rays or gamma rays used as the reference radiation); for AE radionuclides emitted
from 99mTc in rat thyroid PC Cl3 cells, and assuming a cellular or nuclear target for dose
calculation, the RBE increased from 0.75 to 2.18 [24]. Therefore, AEs emitted from 99mTc
nuclear decay at the cellular level lead to a dense deposition of ionizing energy that is
associated with increased radiobiological efficiency. If they are appropriately targeted
to the DNA of tumor cells, they may represent an interesting new radiotherapy system:
99mTc loaded AuNRs, delivered to the tumor site, colud indeed be used as a theragnostic
radiopharmaceutical [25,26]. Similar to those emitted by the decay of 99mTc, low-energy
electrons (i.e., Auger electrons) are also produced by the interaction of photons with gold in
AuNRs at energies below 1 MeV [27], thus providing a possible synergistic therapeutic effect
on tumors if the therapeutic system is used in combination with conventional radiotherapy.

In this work, AuNRs were chosen as the drug delivery system (DDS) by exploiting
their ease of synthesis and the possibility of subsequent surface engineering, as well as
the presence of plasmonic absorption. This work is intended to be a proof of concept
(i) to evaluate these new synthesized AuNRs as carriers of radiopharmaceuticals based
on 99mTc, and (ii) to evaluate the effectiveness of Auger electrons emitted by photon-
irradiated AuNRs in inducing radio-induced damage at the cellular level, thus mimicking
the effect of Auger electrons emitted during the decay of 99mTc used in clinical settings.
Preliminary data are presented on the chemical characterization of AuNRs (with typical
Surface Plasmon Resonance bands in the visible range and an aspect ratio (A.R.) = 3.2) and
the loading of radiopharmaceuticals based on long-lived 99Tc. Working with the decayed
radiopharmaceutical has allowed us, on the one hand, to work with a compound already
in use and with all the excipients present in the commercial compound, while, on the other
hand, not having the safety limits imposed by a radioactive compound, thereby optimizing
the chemical characterization and loading studies on AuNRs. To study the drug–AuNR
interaction, spectroscopic characterizations, such as UV-Vis, Fourier-transform infrared
(FTIR) and synchrotron radiation-induced X-ray photoelectron (SR-XPS) spectroscopies
were performed. Finally, preliminary radiobiological data on cell killing with AuNRs are
presented.

2. Materials and Methods
2.1. Materials for AuNR Synthesis and Conjugation

Cetyltrimethylammonium bromide (CTAB) (C19H42BrN, ≥97% Merck, Rahway, NJ,
USA), tetrachoroauric (III) acid trihydrate (HAuCl4·3H2O, ≥99.9% Sigma-Aldrich, St.
Louis, MO, USA), sodium borohydrate (NaBH4, 99.99% Aldrich, St. Louis, MO, USA),
silver nitrate (AgNO3 99.9%, Aldrich), L-ascorbic acid (C6H8O6, AA, 99% Sigma, St. Louis,
MO, USA) and bidistilled H2O were used as received.

99mTc-sestaMIBI (chemical structure reported in Scheme 1) was chosen as the radio-
pharmaceutical: it is a methoxyisobutylisonitrile (MIBI) with an isonitrile group which
together form a complex with 99mTc. The labeling procedure was performed according
to the manufacturer’s instructions (STAMICIS®, Curium Pharma, London, UK). The la-
beling procedure required the reconstitution of the vial with 3 mL (11.1 GBq) of fresh
99mTcO4, which was eluted from a 99Mo/99mTc generator (Ultratechnekow FW, Curium
Pharma). The vial was heated to 100 ◦C and incubated at room temperature for 15 min.
The percentage of radiochemical purity (%RP) was assessed using an aluminum oxide
strip (Agilent Technologies, Santa Clara, CA, USA) and ethanol as the eluent system, and it
was analyzed via autoradiochromatography (Cyclone Plus®, Perkin Elmer, Waltham, MA,
USA). The OptiQuant® image analysis software was used to evaluate the %RP. After the
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quality control, 99mTc-sestaMIBI was stored at 4 ◦C until completed decay. After the decay,
long-lived 99Tc-sestaMIBI was used for loading on AuNRs.
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2.2. Characterizations

The UV-Vis spectra were acquired in H2O by using a quartz cell with a Shimadzu
2401 PC UV-Vis spectrophotometer in a wavelength range between 200 and 800 nm. The
Energy-Dispersive X-ray Analysis (FESEM_EDX) images were acquired using a MIRA3
Tescan instrument (resolution 200 nm, SEM HV 30.0 kV). Nanoparticles dispersed in Milli-Q
water and in the cell culture medium RPMI1640 at the final concentration of 0.1 mg/mL
were characterized by using a Zetasizer Ultra instrument (Malvern Instrument, Malvern,
UK), in order to determine the hydrodynamic diameter (Z-Average) and the polydispersity
index (PDI). The equilibration step at 25 ◦C was set for 2 min. Three determinations were
performed based on 1 mL of sample suspensions. The values of Z-Average and PDI were
determined using the ZS Xplorer Software (Malvern Instruments, UK). AuNR sample
stability and surface charge were assessed based on Zeta-potential measurements. The
measurements were conducted in triplicate with 750 µL of suspensions using an automatic
measurement protocol of Zetasizer Ultra. A Mini Spin Eppendorf centrifuge was used for
the purification of the AuNR samples (13,000 rpm, 15 min, and two times with bidistilled
water). The high-resolution X-ray Photoelectron Spectroscopy (SR-XPS) measurements
were performed in situ using the SuperESCA beamline of the Elettra synchrotron radiation
facility in Trieste, Italy. The experimental chamber is equipped with a 150 mm Phoibos
hemispherical electron energy analyzer (SPECS GmbH), provided with a homemade delay
line detector. The high-resolution core level spectra were measured in the normal emission
configuration while keeping the sample at RT. C1s and N1s core levels were recorded at
550 eV of photon energy while Tc3d and Au4f were measured at 300 eV in order to maximize
the intensity of signals. The overall resolution was always better than 100 meV. For each
spectrum, the binding energy scale was calibrated using the aliphatic C1s component
(285.00 eV) as an internal reference.

2.3. AuNR Synthesis

For AuNRs, a two steps synthesis was used, in analogy with the literature [18]. The
first step was to prepare the seed solution according to the following protocol. In a reaction
flask, 5 mL of CTAB at 0.2 M and 5 mL of HAuCl4 at 0.0005 M were added. The solution
was stirred and degassed with Argon for 3 min, and then 600 µL of NaBH4 at 0.01 M
was added. At this point, a color change was observed (the solution assumed the typical
brownish-yellow coloration), and the solution was left in agitation for 5 min. In the second
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step, the growth solution was added 10 mL of CTAB at 0.2 M, 10 mL of HAuCl4 at 0.001 M,
and 400 µL of AgNO3 at 0.004 M. The solution was stirred and degassed using Argon for
3 min, and then 70 µL of AA at 0.078 M and 24 µL of the seed solution were added. The
solution was left in agitation for 20 min. For purification, the suspension was centrifugated
at 13,000 rpm for 15 min, for two times. The AuNRs that were used for the biological test
were synthesized following the experimental conditions shown in Table 1.

Table 1. Experimental conditions for the synthesis of AuNRs.

CTAB
mL (M)

HAuCl4
mL (M)

AgNO3
µL (M)

AA
µL (M)

Seed
Solution, µL

10 (0.2) 10 (0.001) 400 (0.004) 70 (0.078) 24

2.4. Preparation of Conjugate Nanorods

To evaluate the loading of radiopharmaceutical on AuNRs, two tests were carried out,
which were always performed in triplicate, following the protocol reported here. A total of
4 mL of the long-lived 99Tc-sestaMIBI solution (0.0165 mg/mL) was placed in three vials
with 1 mL of the AuNR solution (1 mg/mL). The solution was left in agitation for 24 h and,
at the end, was centrifugated at 13,000 rpm for 20 min. The conjugate was stored at −20 ◦C,
while the supernatant was used for the loading evaluation. From now on, the decayed,
non-radioactive radiopharmaceutical will be indicated with 99Tc and its conjugate on gold
rods with AuNRs-99Tc.

2.5. Cell Culture

Human glioblastoma multiform cells (T98G cells) were purchased from the European
Collection of Authenticated Cell Cultures (ECACC, UK Health Security Agency). The cells
were grown in monolayer at 37 ◦C in a humidified atmosphere of 95% air and 5% CO2, in
RPMI-1640 medium (Euroclone S.p.A., Pero, Italy) supplemented with 10% fetal bovine
serum (GIBCO®, Life Technologies, Waltham, MA, USA), l mM of glutamine (Euroclone
S.p.A., Italy), and 50 U/dm3 of penicillin and streptomycin (Euroclone S.p.A., Italy) with a
doubling time of 27 h.

The flasks containing asynchronous non-confluent cells were gently rinsed with 10 mL
of calcium and magnesium-free D-PBS (GIBCO®, Life Technologies, Waltham, MA, USA),
and then detached using 1 mL of 1:1 v/v solution of 0.25% trypsin and 1 × 10−3 M EDTA.
Trypsin was neutralized using a few mL of the fresh culture medium, and the cell solution
was counted (using a Coulter Counter Z2 serie, Beckmann, Kristiansand, Norway). The
T98G cells employed for the experiments were seeded on T-25 flasks at a concentration of
8 × 103 cells/cm2 at 48 h before the experiment. At 24 h before the experiment, the cell
culture medium was removed and replaced with a fresh medium or a medium containing
AuNRs, at two different concentrations (0.1 µg/mL and 0.5 µg/mL), and placed in the
incubator. On the day of the experiment, the cell culture medium was removed, and every
flask was replaced with the fresh medium 1 h before irradiation. Some of the flasks were
irradiated with doses of 1 Gy and 4 Gy. Then, the cells were detached from all flasks,
counted and, through a series of successive dilutions, seeded in appropriate numbers in 4
Petri dishes at a final volume of 5 mL, as shown in Table 2.
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Table 2. Experimental conditions utilized for the colony-forming assay.

Sample Dose (Gy) AuNRs (µg/mL) Cells Plated

CN - - 400

0.1 µg/mL - 0.1 400

0.5 µg/mL - 0.5 400

1 Gy 1 - 400

4 Gy 4 - 1000

1a 1 0.1 900

2a 1 0.5 2000

3a 4 0.1 3000

4a 4 0.5 4000
Legend: CN: control, i.e., cells not treated; 0.1 µg/mL and 0.5 µg/mL: the AuNR concentration tested; 1 Gy and
4 Gy: the radiation dose used; 1a–4a: the combination treatment.

2.6. Irradiation

Irradiation with gamma rays (E = 0.662 MeV) was performed at the Istituto Superiore
di Sanita’ (ISS, Rome, Italy) with doses of 1 Gy and 4 Gy at a dose rate of 0.6 Gy/min
using a 137Cs source (Gammacell 40, Nordion Inc., Ottawa, ON, Canada). The doses were
selected based on previous data [24]. All irradiations were performed at room temperature.

2.7. Colony-Forming Assay

To study the cytotoxic effect of AuNRs on T98G cells (in terms of reproductive cell
death), the colony-forming assay developed by Puck and Marcus was used [28]. The assay
allows the assessment of classical clonogenic survival. Briefly, after the treatment (i.e., with
pristine AuNRs, upon γ-ray irradiation only and in combination), the cells were trypsinized,
counted and plated into four 6 cm Petri dishes at the appropriate concentration to score the
number of colonies ranging from 300 to 600 for each dose, as shown in Table 2. After about
12 days of growth at 37 ◦C under 5% CO2 and 95% humidity, the colonies were stained
with crystal violet (Figure S1 in Supplementary Materials). Colonies exceeding 50 cells
were scored manually and represented surviving cells. The average colony count for the
four Petri dishes was used to calculate plating efficiency (PE), which was defined as the
number of colonies counted/number of cells plated. For each experiment, cell-surviving
fractions (SF) were calculated as the ratio between the PE measured in the investigated
sample and the measured PE of the corresponding control. All significance was calculated
using Student’s-t-test.

3. Results
3.1. AuNR Synthesis and Loading Studies

The choice of AuNRs as a drug carrier is strategic because it allows us to combine
the high stability and biocompatibility of gold with the anisotropic form, which allows
a versatile engineering possibility [6]. Furthermore, AuNRs possess specific plasmonic
properties, presenting two plasmonic peaks in the visible and/or near-infrared spectral
range.

In this work, AuNR synthesis was performed in accordance with recent literature [29]
and consisted of two steps. In the first step, Au3+ was reduced by NaBH4 in the presence of
CTAB, and a brownish-yellow solution, i.e., the seed solution, was obtained. In the second
step, which concerned the growth of nanorods, the reduction of gold by ascorbic acid was
initiated, and this allowed the conversion of gold from Au3+ to Au1+ and then to Au0. The
AuNR spectrum in water (Figure 1a) shows the two typical plasmon bands at 520–680 nm,
confirming the nanodimension of the material. FESEM EDX studies were performed, and
average sizes of 39 ± 5 nm and 11 ± 2 nm and the respective A.R. = 3.2 were observed
(Figure 1b).
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Moreover, DLS studies were performed in water and in the cell culture medium
RPMI1640. These data, presented in Table S1 in Supplementary Materials, show high values
of PDI mainly due to the non-spherical shape of the particles, which leads to its incorrect
determination and an overestimation of the hydrodynamic diameter. The differences
observed between the AuNR characterization data obtained via the DLS and SEM analyses
are related to the shape of nanoparticles and the different physical phenomena used
to determine size distribution. SEM measures the true diameter, while DLS measures
hydrodynamic diameter, leading to misleading results for non-spherical particles [30].
Both AuNRs and AuNRs-99Tc showed negative surface charge, and when AuNRs were
suspended in the cell culture medium, the Zeta-potential values increased, suggesting
adsorption of the protein corona. The AuNRs’ stability was checked over time using UV-vis
and DLS studies up to one month after their synthesis, confirming their dimension and
polydispersity. For evaluating drug loading on the AuNR surface, a calibration curve was
performed (y = 55.409x and R2 = 0.999, as reported in Figure S2 in Supplementary Materials)
using different concentrations of the drug [31]. The protocol for loading 99Tc-sestaMIBI onto
the rods’ surface was investigated via the simple contact between the radiopharmaceutical
solution and the suspension of AuNRs for 24 h under stirring at room temperature. The
obtained loading efficiency was η (%) = 5 ± 2%, which corresponds to 0.0033 mg of the
drug for 1 mg of AuNRs.

3.2. Synchrotron Radiation-Induced X-ray Photoelectron Spectral (SR-XPS) Studies

SR-XPS measurements were performed on AuNRs-99Tc in order to ascertain the suc-
cessful loading of the radiopharmaceutical onto AuNRs and to obtain a better insight into
the stability of the 99Tc molecular structure upon conjugation to the surface of AuNRs. For
comparison, SR-XPS measurements were also carried out on 99Tc. The SR-XPS spectra were
acquired at the C1s, N1s and Tc3d core levels and, for the 99Tc-sestaMIBI-AuNRs sample,
at the Au4f core level as well. Complete SR-XPS data analysis results (binding energy (BE),
full width-half maximum (FWHM), and atomic percentages and proposed assignments
for all measured signal components) are summarized in Table S2 in Supplementary Mate-
rials. All signals appeared composite, and by applying a peak fitting procedure, several
spectral components were individuated and assigned, based on a comparison with the
literature [32], to the specific elements in the respective chemical groups. As shown in
Figure 2, the measured spectra for the C1s and N1s core levels confirm the stability of
the 99Tc molecular structure, and for the AuNRs-99Tc system, the presence of CTAB, as
expected by the nanorods’ chemical composition.
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Figure 2. SR-XPS spectra: C1s (a,b), N1s (c,d) and Tc3d (e,f) of decayed and non-radioactive ra-
diopharmaceutical 99Tc and its conjugate on gold rods, AuNRs-99Tc. SR-XPS Au4f spectrum of
AuNRs-99Tc (g).

In more detail, the intensity increment observed for the C1s component at 285.0 eV of
BE (C-C) in AuNRs-99Tc, with respect to the analogous signal in pristine 99Tc, is associated
with the aliphatic tail of CTAB (Figure 2a,b); an analogous effect is observed for the
N1s spectral features associated with amine-like N (Figure 2c,d) with respect to the peak
component assigned to the C≡N groups. On the other hand, the intensity of the third peak
in the C1s spectra (287.3 eV for BE), arising due to the C-O groups of the -OMe moieties
of 99Tc, decreases in the AuNRs-99Tc sample, as expected. The C1s peaks at higher B.E.
assigned to C=O (about 288 eV) and COOH (290 eV) reveal the presence of impurities,
which are always observed in the samples prepared in air via deposition from aqueous
solutions. To further prove the effectiveness of the 99mTc-sestaMIBI conjugation to the
AuNR surface, Au4f and Tc3d signals were analyzed. For Au4f (Figure 2g), a single spin–
orbit pair is observed, with the main Au4f7/2 component being centered at 85.04 eV, as
expected for gold atoms at the AuNRs surface interacting with ligands [33]. Finally, the
reproducibility of Tc3d spectral position and shape [34,35] fully confirms the effectiveness
of the loading process (Figure 2e,f).

3.3. Biological Studies

To evaluate the cytotoxic effect of AuNRs, alone or in combination with gamma ray
(γ-ray) irradiation, the cellular reproductive death in T98G cells was studied using the
colony-forming assay. Figure 3a shows that the SF of the samples treated only with AuNRs,
in the concentration range of 0.1–1 µg/mL, decreases as the concentration increases, as
expected based on a comparison with the literature [36–39]. For subsequent experiments
with the combined treatment (i.e., AuNRs and γ-ray irradiation), we arbitrarily chose
0.1 µg/mL and 0.5 µg/mL because the former shows no toxicity whereas the latter reduces
SF by approximately 50%. The results are shown in Figure 3b, along with the results of the
samples treated with γ-rays only. In particular, the latter are consistent with the literature
data [40–43].
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Figure 3. Bar plot for the results of the SF obtained from the colony-forming assay in glioblastoma
T98G cells. Panel (a) shows the SF after treatment with different AuNR concentrations (yellow
histograms). Panel (b) shows the SF after different treatments: blue histograms (only γ-rays),
yellow histograms (only AuNRs), and green histograms (γ-rays + AuNrs). All results are significant
compared to the control with a p value of <0.01, except for 0.1 µg/mL in panel (b). Significance
was calculated using Student’s t-test. The error bar represents the standard error of the mean (SEM)
obtained from at least 3 independent experiments for each condition used.

In this analysis, all samples were normalized to the same control, (untreated cells—CN).
Overall, it can be seen that the SF decreases as the dose and concentration of AuNRs increase
(Figure 3b). In the samples with the combined treatment (i.e., AuNRs and γ-ray irradiation),
the SF decreases at the same dose as the concentration of AuNRs increases, with an overall
trend that appears to be linear. The decrease observed in the SF of the samples tested with the
combined treatment can be due to three factors: the damage induced by γ-ray irradiation, the
cytotoxicity of AuNRs, and the radiation damage due to the emission of Auger electrons from
the irradiated gold.

To better understand which of the three factors most strongly affected cell survival
in these samples, a more detailed analysis was conducted. The SF was calculated by
considering the samples treated only with γ-rays as the control first (Figure 4a), and
considering the samples treated only with AuNRs as the control afterward (Figure 4b).
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Figure 4. Bar plot of the SF obtained after normalizing to the dose used (a) or normalizing to the
AuNR concentration (b). Significant difference with respect to the control was calculated using an
ANOVA test (** p < 0.01). The error bar represents the propagation of the error.

In the former case (panel a), a similar decrease in the SF is observed for both doses as
the AuNR concentration increases, but the decrease is significant with respect to the control
only for the concentration of 0.5 µg/mL. The obtained data show that the observed effect
is attributable to the presence of AuNRs and Auger electron emission from the irradiated
gold.

In the latter case (panel b), the obtained data show that the SF decreases as the
radiation dose increases, which is significant for all conditions with respect to the control.
Furthermore, a significant decrease in SF is observed for the sample treated with 0.1 µg/mL
or 0.5 µg/mL of AuNRs and irradiated at 4 Gy compared to the sample treated with
0.1 µg/mL or 0.5 µg/mL AuNRs and irradiated at 1 Gy. In this case, by normalizing the
data to the AuNR concentrations used, the obtained results show that the decrease in SF is
attributable to gamma rays and Auger electron emission from the irradiated gold.

The contribution of Auger electrons could be calculated as a first approximation by
subtracting the SF values of the samples in panel b from the SF values of the samples
treated with gamma rays only (see Figure 3b). The results are shown in Table 3.
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Table 3. Contributions of the various components normalized to the radiation dose used.

Sample SF
(see Figure 3b) Sample SF

(see Figure 4b)
Effect of Auger

Electrons

CN 1 ± 0.14 0.1 µg/mL
0.5 µg/mL

1 ± 0.14
1 ± 0.14

-
-

1 Gy 0.81 ± 0.14 0.1 µg/mL + 1 Gy
0.5 µg/mL + 1 Gy

0.71 ± 0.10
0.77 ± 0.11

0.11 ± 0.13
0.05 ± 0.14

4 Gy 0.45 ± 0.14 0.1 µg/mL + 4 Gy
0.5 µg/mL + 4 Gy

0.37 ± 0.05
0.39 ± 0.05

0.08 ± 0.07
0.06 ± 0.07

The obtained results seem to indicate that emission of Auger electrons from the
irradiated gold of AuNRs occurs, although the energy of incident photons is only slightly
higher than the suitable energy, and under our experimental conditions, it seems to be dose
dependent rather than AuNR concentration dependent.

4. Conclusions

In this study, AuNRs were synthesized (A.R. = 3.2), fully characterized and conju-
gated with long-lived 99Tc-sestaMIBI (STAMICIS®), a tumor-seeking radiopharmaceutical
which is currently used in diagnostic imaging. 99Tc was used in the non-radioactive form
after complete decay. The obtained AuNRs were studied as a proof of concept from a
radiobiological point of view to obtain an overall view of theragnostic action. In fact, the
presence of the radiopharmaceutical used in diagnosis could induce the emission of Auger
electrons from AuNRs, which has a therapeutic effect at the diagnostic site. This effect
was explored as a proof of concept through the irradiation of AuNRs with an external γ
source. The cell killing tests were performed on T98G cells. It emerged that in the case
of AuNRs alone without radiation, the lowest concentration of 0.1 µg/mL was not toxic
for the cells, while a concentration of 0.5 µg/mL showed some degree of toxicity. For the
samples treated with both irradiation and AuNRs, the trend of SF appears to be linear: as
the radiation dose and AuNR concentration increase, cell survival decreases. The effect
of the induced AE emission on cell survival does not appear to be predominant. In fact,
from our preliminary data, it appears to be the dose of gamma rays with which the cells
are irradiated that contributes most significantly and in an independent manner from
the concentration of AuNRs used. Further studies are needed to optimize the loading
of this radiopharmaceutical onto AuNRs, and further biological tests, with and without
irradiation, will be necessary to evaluate the mechanism and efficiency of action. However,
these preliminary investigations are fundamental to verify and optimize the loading of
a decayed radiopharmaceutical, thereby minimizing the dangers for operators and the
costs, and, above all, they allow the optimization of the protocols under consideration, by
mimicking the action of radionuclide on gold, in view of the loading of the radioactive
drug, which would lead to the realization of the theragnostic system.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano13131898/s1. Figure S1: Photo images of Petri dishes
containing the colonies, which have been stained with crystal violet and are representative of the
respective biological samples being analyzed; Figure S2: Calibration curve for 99Tc-sestaMIBI in water
(error bar showing the standard deviation is not appreciable); Table S1: Values of Z-Average, PDI and
Zeta potential; Table S2: XPS data collected on the radiopharmaceutical before and after conjugation
to AuNRs.
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