
Where Did My Variable Go?
Poking Holes in Incomplete Debug Information

Cristian Assaiante
assaiante@diag.uniroma1.it
Sapienza University of Rome

Italy

Daniele Cono D’Elia
delia@diag.uniroma1.it

Sapienza University of Rome
Italy

Giuseppe Antonio Di Luna
diluna@diag.uniroma1.it

Sapienza University of Rome
Italy

Leonardo Querzoni
querzoni@diag.uniroma1.it
Sapienza University of Rome

Italy

ABSTRACT
The availability of debug information for optimized executables can
largely ease crucial tasks such as crash analysis. Source-level debug-
gers use this information to display program state in terms of source
code, allowing users to reason on it even when optimizations alter
program structure extensively. A few recent endeavors have pro-
posed effective methodologies for identifying incorrect instances
of debug information, which can mislead users by presenting them
with an inconsistent program state.

In this work, we identify and study a related important problem:
the completeness of debug information. Unlike correctness issues
for which an unoptimized executable can serve as reference, we
find there is no analogous oracle to deem when the cause behind
an unreported part of program state is an unavoidable effect of
optimization or a compiler implementation defect. In this scenario,
we argue that empirically derived conjectures on the expected
availability of debug information can serve as an effective means
to expose classes of these defects.

We propose three conjectures involving variable values and study
how often synthetic programs compiled with different configura-
tions of the popular gcc and LLVM compilers deviate from them.
We then discuss techniques to pinpoint the optimizations behind
such violations and minimize bug reports accordingly. Our experi-
ments revealed, among others, 24 bugs already confirmed by the
developers of the gcc-gdb and clang-lldb ecosystems.

CCS CONCEPTS
• Software and its engineering→ Compilers; Software mainte-
nance tools.

KEYWORDS
Debuggers, compiler bugs, compiler optimizations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9916-6/23/03. . . $15.00
https://doi.org/10.1145/3575693.3575720

ACM Reference Format:
CristianAssaiante, Daniele ConoD’Elia, GiuseppeAntonioDi Luna, and Leo-
nardo Querzoni. 2023. Where Did My Variable Go? Poking Holes in Incom-
plete Debug Information. In Proceedings of the 28th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’23), March 25–29, 2023, Vancouver, BC, Canada.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3575693.3575720

1 INTRODUCTION
In a seminal work from four decades ago [26], Hennessy described
the emblematic conflict between the application of compiler opti-
mizations and the ability to debug an executable program symbol-
ically, i.e., in terms of its source code representation. While opti-
mizations preserve functional semantics, they can extensively alter
the intermediate computations of a program, potentially leaving
source-level debugging systems unable to correctly report, in terms
of the original code, the current values for several such computa-
tions. The ability to debug optimized code, however, is a necessary
and desirable capability [5].

Using unoptimized code in its place would hardly be an option,
for example, if we consider core dump analysis for executables
deployed in production, logic errors that emerge only in the pres-
ence of optimization (“heisenbugs”: e.g., race conditions and some
memory errors [14, 28]), or programs that face heavy constraints
for running time or memory usage, among others [5].

To cope with the above said conflict, modern compilation sys-
tems have provisions that make each code optimization cooperate
in maintaining and updating debug information during executable
generation [13]. However, maintaining an accurate mapping be-
tween source-level constructs and assembly instructions is an in-
herently difficult task [8], leaving compiler architects with the
potential to introduce bugs at each step of the process. Two recent
works [13, 30] have shown how to build reliable tools that expose
many of such bugs, specifically when incorrect debug information
is generated. Both works share the commonality of using an unopti-
mized instance of a program to expose incorrect debug information
in one or more optimized counterparts, building on the implicit as-
sumption that (well-tested) unoptimized compiler settings generate
an accurate reference for differential analysis.

The completeness problem. In this work, we bring our attention
to a different kind of problem: identifying when an (optimized)
executable contains insufficient debug information for a symbolic

935

https://orcid.org/0000-0001-7705-0434
https://orcid.org/0000-0003-4358-976X
https://orcid.org/0000-0002-7150-0972
https://orcid.org/0000-0002-8711-4216
https://doi.org/10.1145/3575693.3575720
https://doi.org/10.1145/3575693.3575720
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575693.3575720&domain=pdf&date_stamp=2023-01-30

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna, and LeonardoQuerzoni

inspection of the state at a given program point because of im-
plementation defects of the compiler. We will refer to it as the
completeness problem for debug information. Intuitively, in mature
compilation systems, this problem affects optimized code only [30].

Unlike correctness problems, using unoptimized compiler set-
tings as reference is not a possibility: as we discuss in Section 2,
some optimizations may irreversibly alter the intermediate compu-
tations of a program, for instance by altering the sequence in which
some source-level statements are executed, by merging or optimiz-
ing away variable instances, or by clobbering storage locations to
optimize register allocation, among others. Therefore, a discrepancy
in the visibility of some program construct when debugging an
optimized executable versus its unoptimized counterpart does not
necessarily give away an implementation defect in the compiler,
since many of these effects can be prohibitive or even impossible
to account for when engineering a compiler [2, 11].

However, we can move our attention to identifying cases when
the assembly-level representation and the already-emitted debug
information would allow for a symbolic inspection of specific pro-
gram state elements but the compiler did not emit sufficient debug
information for that. In the following, we report a code fragment
from a confirmed bug that we found for gcc [22]. Our tests revealed
that, even with -O1 or -Og optimization, variable j appears as opti-
mized out when the program accesses the global array b. Due to its
zero value, gcc constant-folds (j)*k to zero and j does not need to
be part of the state of the optimized program. However, optimizing
compilers can model such kind of constants with specific DWARF
attributes, making the value of j available when a debugger steps
on a line where j is visible in the source. For this variable, gcc
emits a DWARF debug information entry that lacks both value and
location information.
1 int b[10][2];

2 int main() {

3 int i = 0, j, k;

4 for (; i < 10; i++) {

5 j = k = 0;

6 for (; k < 1; k++)

7 a = b[i][(j)*k];

8 }

9 }

Interestingly, when we moved the assignment to j before the
main loop, the compiled assembly stayed the same but the variable
value became visible. Our bug report saw the prompt attention of
the gcc developers, with internal discussions that brought to light a
scenario that the current design of gcc is unable to handle directly.

Our approach. In this work, we present a compiler-agnostic
methodology for identifying implementation defects in compilation
toolchains that lead to incomplete debug information generation.

As there is no reliable oracle for differential analysis of this
completeness problem, we propose to rely on empirically derived
conjectures based on the expected availability of debug informa-
tion at particular program points. In particular, we identify cases
where the availability of debug information for a specific program
construct can be conjectured from the visibility of other program
constructs that depend on it.

We present three examples of conjectures involving, respectively,
call argument values, the lifetime of a live variable, and the data

dependencies of a variable assignment expression. We then show
how to generate synthetic programs suitable for testing one or more
conjectures and how to build tools that can help pinpoint which
compiler optimizations are likely behind the found violations.

We extensively test the optimization levels of several versions
of the clang and gcc compilers, ultimately exposing about 38 im-
plementation defects in their trunk version. The tests resulted in
24 already confirmed bugs: alongside clang (11) and gcc (10) bugs,
some violations came from bugs in the lldb (1) and gdb (2) debuggers
that we used for analyzing the respective generated executables.

We complement these experiments with a preliminary quan-
titative study on the availability of variable values in optimized
synthetic programs, using clang and gcc releases selected quite far
in time. The results suggest that developer efforts are indeed im-
proving user debugging experience and that solutions like ours can
facilitate that: for one bug fixed by the gcc developers, we measure
a substantial improvement at -O1 for the studied metric that closed
half of the gap with the debugger-friendly -Og.

Contributions. In summary, this paper provides:
• a preliminary quantitative study on debug information gen-
erated by different clang and gcc configurations;

• three instances of conjectures for exposing classes of debug
information loss due to implementation defects;

• an open-source1 automated pipeline for testing compilers
for these conjectures and triaging any found violations;

• an experimental evaluation of the approach on different
optimization levels and versions of clang and gcc.

2 MOTIVATION AND CURRENT ISSUES
In this section, we introduce basic concepts behind the completeness
problem studied in this paper and present a preliminary quantitative
study on how clang and gcc versions selected quite far in time retain
debug information.

Preliminaries. Optimizing compilers can deeply alter the inter-
mediate computations of a program portion, preserving semantic
equivalence only for its externally visible effects (e.g., their outputs
on completion). Intuitively, this conflicts with the desirable ability to
debug an optimized program in terms of its source representation.

Compilation systems try to track and account for such changes
by maintaining and updating debug information during executable
generation. In the UNIX realm, debug information is eventually
attached to the output executable using dedicated sections. Some
compilers may produce instead a separate file, as with Visual Studio
on Windows. DWARF is a general debug information format that
is most commonly used (but not exclusively) with ELF files.

Formats like DWARF allow an optimizing compiler to instruct
a source-level debugger tool on how the source code relates to
instructions and data of the executable at hand. Therefore, these
debuggers become able to display, among others, if the current
assembly instruction corresponds to some source line and what are
the values of the source-level variables visible in the current scope.

Terminology. In the remainder of the paper, we say that a debug-
ger can step on a source line when debug information contains

1The code is available at https://github.com/cristianassaiante/incomplete-debuginfo.

936

https://github.com/cristianassaiante/incomplete-debuginfo

Where Did My Variable Go? Poking Holes in Incomplete Debug Information ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0

0.1

0.2

0.3

0.4

0.5

0.6

v5 v7 v9 v11 trunk

(clang)

Og
O2

O3
Os

Line Coverage (clang)

0

0.1

0.2

0.3

0.4

0.5

0.6

v4 v6 v8 v10 trunk

(gcc)

O1
O2

O3
Og

Os

Line Coverage (gcc)

0.5

0.6

0.7

0.8

0.9

1

v5 v7 v9 v11 trunk

(clang)

Og
O2

O3
Os

Availability of Variables (clan

0.5

0.6

0.7

0.8

0.9

1

v4 v6 v8 v10 trunk

(gcc)

O1
O2

O3
Og

Os

Availability of Variables (gcc)

0

0.1

0.2

0.3

0.4

0.5

v5 v7 v9 v11 trunk

(clang)

Og
O2

O3
Os

Product of Metrics (clang)

0

0.1

0.2

0.3

0.4

0.5

v4 v6 v8 v10 trunk

(gcc)

O1
O2

O3
Og

Os

Product of Metrics (gcc)

Figure 1: Statistics on debug information collected for 5K testing programs over different compiler versions.

location information for one or more (e.g., think of loop unrolling)
assembly instructions mapped to that line. We say that a variable
is visible at a line when a debugger can step on the line and the
local frame shown by debugger information includes the variable.
We say that a variable is available at a line when it is visible and
its current value can be displayed. In fact, the value of a variable
may have been clobbered by optimizations (optimized-out case) or,
more generally, debug information reports the variable but misses
its current location.

Incomplete program state. An inevitable effect of optimization
is that a debugger may often present the user only with a partial
view of the program state, compared to what the user would expect
by looking at the source code. Generally speaking, some heavy-
duty optimizations significantly alter the working of a program,
changing the order of statements or altering the values of variables.

Some of these changes would require explicit logging or com-
pensation machinery to undo the effects of optimization and allow
for a faithful representation of the program state [11]. The run-time
overheads that logging would introduce and the prohibitive com-
plexity behind engineering a compensation machinery lead modern
compilers not to follow this path. However, there are also changes
whose effects would not require either approach to be accounted
for, but compilers fail to capture them because of implementation
defects, leading to an incomplete presentation of program state
when debugging.

The reasons behind such defects may be different: from pub-
lic developer discussions following on our reports, we can name:
unanticipated interactions between multiple optimizations, lack of
internal design provisions for specific patterns, absence in the cur-
rent DWARF specification of constructs to capture specific patterns
in a straightforward manner, and regressions induced by handling
code added for other patterns. Such defects mainly arise in the
compilation systems, but we found also cases where their reference

debugger tools process the emitted debug information incorrectly.
As there are currently no automated testing methodologies to ex-
pose issues of this kind, their identification currently hinges mainly
on a “proactive awareness” of compiler architects, when developing
an optimization, of how and where such issues may occur.

Quantitative study. We conducted a preliminary study on the
debug information that different versions of the two most popular
compilation systems, namely clang and gcc, generate for a pool
of testing programs at different optimization levels. We generate
5000 subjects2 with a compiler fuzzing tool [43] and measure in a
debugger how many source-code lines can be stepped on and how
many variables are visible at each stepped line.

We consider as optimization levels -O1, -O2, -O3, the “debugger-
friendly” -Og, and -Os that reduces program size. We leave out -Oz
as not all versions support it. For clang only, -O1 and -Og are aliases
for the optimizer, therefore we report data only for -Og. We select
versions quite far in time: we choose releases 4.8, 6.5, 8.4, and 10.3
plus trunk version 500d3f0 for gcc and releases 5.0, 7.0, 9.0, and
11.1 plus trunk version c2c977c for clang. We compile the code for
the x86_64 architecture and use gdb 11.2 and lldb 13.0 to study the
programs dynamically.

Compared to a static DWARF information inspection, testing
in a debugger lets us remove noise effects from unreachable code
and avoid reimplementing the (normally) well-tested native logic of
debuggers when parsing DWARF information for line and variable
visibility. We compile each program also at -O0 in the respective
compiler version and compute these two metrics (as global average)
by debugging each optimized executable instance:

• line coverage: the ratio of unique source lines that the
debugger can step on compared to its -O0 counterpart;

2The metrics we study here reached a plateau around this pool size.

937

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna, and LeonardoQuerzoni

• availability of variables: the average ratio of available
variables (i.e., shown with value) compared to its -O0 coun-
terpart for the individual source lines that can be stepped on
in both program instances when debugging.

These two metrics capture altogether the two kinds of debug in-
formation loss that are possible: those that are inescapable conse-
quences of optimization and those that come from implementation
defects. As we mentioned earlier in the paper, there is currently no
oracle to reliably determine to which category a lost line or vari-
able belongs to. However, these two metrics allow us to showcase
the gaps existing between optimization levels and how these gaps
evolve along with compiler development. Especially when we com-
bine them, we can speculate that most improvements come from
optimizer enhancements that lead to more program state being
tracked. Figure 1 shows the results collected for all versions and
optimization levels.

If we look at line coverage, we can see that -Og preserves signif-
icantly more lines than any other level for both clang and gcc. This
is true also across versions, with the exception of the latest versions
of clang. By manual analysis of their compiled programs, we found
that clang recently enabled more aggressive optimizations that
avoid generating code for some loops already at -O1/-Og. For clang,
we also observe that the size reduction heuristics of -Os indirectly
favor the possibility of stepping on more lines, since preventing
some inlining or unrolling choices denies later optimization oppor-
tunities that, in turn, cause more debug information loss. Finally,
we notice that gcc at -O3 “drops” more lines than -O2 (whereas
with clang they yield nearly identical results) and that their gap
with -O1 widens when comparing the 6.5 and 8.4 releases.

If we look at availability of variables, we spot interesting
trends on the optimization levels of each compiler. Beware this
metric does not account for line visibility, hence it should not be
used instead to compare different optimization levels, as they entail
very different line ratios (e.g., if a level covers many fewer lines, a
higher availability-of-variables value may be misleading). For clang,
we observe an apparent regression between major releases 5.0 and
7.0 for -Og and -Os, which we speculate comes from aggressive
transformations added to the pipeline; then, all optimization levels
see their values increase following release 7.0, especially the most
aggressive ones. For gcc, since release 8.0 we observe that the
results for -O1 and -Og tend to improve, while the other levels see
a regression on that specific version (for 8.0 we can observe an
analogous regression also for the other metric).

To compare the availability of variables between optimization
levels, we can factor in the line coverage and compute their product.
For gcc, it now becomes apparent how -Og and, to a good extent,
-O1 retain debug information for significantly more variables per
stepped program point. For clang, we observe similar trends until
the latest releases which, as we mentioned above, enabled even for
-Og more aggressive optimizations that remove code.

Takeaways. The improvements across releases for individual op-
timization levels appear indicative of the efforts that developers
try to put in preserving increasingly more debug information in
the operation of an optimizer. When new optimizations are added
to a level, though, a regression may be inevitable. Looking at the
combined product metric, gcc seems to preserve substantially more

information than clang at the -Og and -O1 levels, while the dif-
ference is modest at other levels. We also learned that different
compilation systems may make different choices on retaining de-
bug information (or even generating assembly code) for different
source lines. We hope the preliminary evidence we collected can
foster in-depth studies, for example, on the effects of individual
transformations introduced or enabled across compiler releases.

On a different note, while one can test how later compiler ver-
sions generate supposedly faster code for each program, the same
may not be done for debug information. Our metrics only describe
how a compiler version fares compared to the (virtually unattain-
able) results of the unoptimized reference. Unfortunately, the state
of the art offers no empirical means to test, in ever-evolving compi-
lation systems, when some debug information becomes unavailable
as an inevitable consequence of an introduced optimization or be-
cause of newly added or latent implementation defects.

However, identifying and fixing such defects can even have a posi-
tive ripple effect. Later in the paper, we discuss a bug that we iden-
tified in gcc with our methodology: as the component impacted
multiple optimizations, fixing it closed half of the gap between -O1
and -Og in the availability-of-variables metric.

3 PROPOSED APPROACH
In this section, we outline our proposal for identifying implemen-
tation defects in optimizing compilers behind incomplete debug
information. After discussing why a conjecture-based approach
can be effective for this task and what properties such a conjecture
should have, we propose three possible conjecture embodiments,
also detailing examples of confirmed bugs we found with them.

3.1 Rationale and Desired Properties
The idea of checking for properties, invariants, and similars at pro-
gram points with specific characteristics has been successfully ex-
plored over the years in several software testing scenarios (e.g., [15,
17, 40]). In recent efforts on testing debug information [13, 30], an
unoptimized program instance serves as reference for checking the
correctness of presented values and other stack frame elements.

Unfortunately, for the many reasons we discussed in Section 2,
at the moment there is instead no reliable oracle that may tell when
(or where) a given piece of program state should be visible when
debugging an optimized executable instance of that program.

However, for specific code constructs and patterns, the expected
presence of debug information may become predictable as we factor
in reasoning and experience about what compilers can or cannot
do over them. For example, we know that an optimizing compiler
cannot alter the values for arguments involved in a call to an ex-
ternal function, otherwise program semantics could be affected.
Therefore, if a program variable appears as a call argument to such
a function, one would expect debug information to correctly track
its value where the call happens, making the variable available.

Conjectures of this kind can be drawn from experience in com-
piler construction and practical observations. As with likely in-
variants [39], we consider them empirically-derived conjectures; in
the remainder of the paper, we will often refer to them simply as
“conjectures” for brevity.

938

Where Did My Variable Go? Poking Holes in Incomplete Debug Information ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

To be used in systematic compiler testing, an effective type of
conjecture may aim for the following properties:

• be verifiable in terms of source-language constructs;
• rely on general compiler construction concepts;
• avoid making assumptions on specific sequences of optimiza-
tions that are being applied to a program.

These properties would allow embodiments of our approach to build
on existing tools (e.g., using source-level debuggers for dynamic
checking of conjectures) and to benefit from synergies with well-
tested methodologies (e.g., to synthesize testing code that stresses
optimizers).

In this work, we opt for compiler-agnostic conjectures. As sys-
tematic testing for incomplete debug information is, in effect, an
unprecedented task, this choice may help us expose (possibly long-
standing) issues in multiple compilers without risks of overfitting
the approach around the working of a specific optimizer. The three
conjectures we present next turned out to be very effective in prac-
tice in exposing implementation defects on the two most popular
C/C++ compilation systems to date (Section 5).

The focus of our conjectures will be available variables, specif-
ically when compiler implementation defects lead a variable to
inadvertently appear as optimized-out or to not be reported at all in
the current frame during debugging. We prioritize this dimension
as it intuitively impacts user debugging experience by presenting
them with a partial representation of the true program state.

3.2 Conjecture 1: Visibility of Call Argument
Sources

To present our first conjecture, we use as running example a con-
firmed bug that we reported for the InstructionCombining peep-
hole optimization of clang [32]:

1 static short a = 4;

2 void b(int c) {

3 short v1 = 0;

4 int v2, v3 = 2, v4 = 9, v5 = 5,

5 v6 = 5, v7 = (v2 = a) == 0 & c;

6 foo(v1, v2, v3, v4, v5, v6, v7);

7 }

8 int main () {

9 b(a);

10 a = 0;

11 }

In this example, when debugging the binary that gcc generates
with -O3 optimization, variable v2 does not appear among the
variables visible in the frame at the call to the external function
foo. However, the optimizer is aware of the variable’s use when
the code passes it by copy to foo, as it emits code to materialize
the associated value (4 from the assignment v2=a) as argument for
the call: we consider this an implementation defect. The developers
identified a loss of debug information that could be avoided when
simplifying the & operation. In general, we can identify violations
of this kind by checking for:

Conjecture 1: When a program variable appears as an argument for a
call to an opaque function, the variable should be visible along with its
value when stepping on the source line containing the call.

By opaque function, we mean that the optimizer does not have
knowledge of the target and its effects: therefore, it cannot optimize
away the variable or alter its value as a result of inter-procedural
analyses [11, 30]. For instance, if a loop induction variable is used
as argument, the optimizer cannot canonicalize it or reverse the
loop, as the semantics of the programmay be altered (e.g., the target
function may use it to index volatile memory). A function defined in
a different compilation unit is the most obvious example of opaque
function, but other constructs are also possible: for example, think
of indirect calls with varying targets.

In the defects we reported, we found several optimizations that
led a variable to be entirely missing from the shown frame (like
above), but also others that cause it to appear as optimized out; the
first scenario was prevalent.

3.3 Conjecture 2: Availability of Constituents
For our second conjecture, we discuss a program that exposed two
related bugs [35] in the LoopStrengthReduce (LSR) optimization
of clang, which optimizes uses of loop induction variables:

1 int a[2][4][4] = {{{1, 2, 3, 4}, ...}, ...};

2 unsigned short b[4] = {1, 2, 3, 4};

3 int main (void) {

4 int i, j, k;

5 for (i = 0; i < 2; i++)

6 for (j = 0; j < 4; j++)

7 for (k = 0; k < 4; k++)

8 c = a[i][j][k];

9 for (i = 0; i < 4; i++)

10 c = b[i];

11 return 0;

12 }

The program writes to a volatile global variable and reads from
two global arrays, using one or more loop induction variables to
index such arrays. The nature of memory here restricts the work
of optimizers, as they have to preserve the visibility of each update.
Variable i operates as the induction variable for the outermost loop
and for the subsequent loop.When stepping on the two lines that up-
date variable c, we found that i is visible at both with -O2/-O3, only
at the secondwith -O1/Og/Oz, and only at the first with -Os. The de-
velopers confirmed that the provisions that LSR has to “salvage” (in
clang jargon) debug information were insufficient for this program.

Our second conjecture involves the data dependencies of an
assignment: we reason on what variables we expect to be available
with their value when stepping on the source line of the assignment.

In general, though, the attentive reader may argue that for an
expression like v1=v2+v3*v4, an optimizer is free to generate code
that, for instance, computes the result by reusing the storage lo-
cation of one or more expression constituents if the reminder of
the program does not use them (i.e., a variable become dead). The
absence of debug information to display their value may thus be
just an inevitable effect of optimization. Therefore, we propose to
focus on assignments with specific properties:

Conjecture 2: When stepping on a source-code line that assigns a value to
global storage through a non-simplifiable expression, we expect a variable
𝑥 taking part in the value computation to be visible at that line if (i) 𝑥 is a
constant or (ii) optimizations cannot alter the value of 𝑥 and the program
may use 𝑥 later.

939

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna, and LeonardoQuerzoni

The conjecture comes with three choices. First, we rule out triv-
ially simplifiable expressions, such as v1=v2&0, where not all con-
stituents are necessary for the result.

Second, we focus on lines that assign to global storage: when a
debugger can step on one, it will happen on instructions that are
about to make the change visible externally. This may not be the
case for local variables, for which the value computation may not
take place (we discuss such a case for Conjecture 3) or may not
reflect the source-level semantics due to optimizations that alter
the value (then a compiler may even opt for hiding it [42]).

Third, for the variables taking part in the value computation, we
check the visibility only of those that either hold constant values
(therefore trivial to track in debug information) or that the opti-
mizer should leave untouched (e.g., loop induction variables used to
reference a location from global memory as in the example above).

For variables of the first type, by constant we include variables as-
signed with a numeric or string literal or that take the address of an-
other variable. For variables of the second kind, we can check their
downstream uses (e.g., liveness [11]) in the program to be confident
that an optimizer cannot reuse their storage during value computa-
tion (or we could be dealing with valid optimized-out cases).

3.4 Conjecture 3: Decaying Visibility of a
Variable

For our last conjecture, we discuss a confirmed gcc bug [18] for its
tree-based sparse conditional constant propagation (-ftree-ccp):

1 int b = 0;

2 void foo(int *d) { a = 0; }

3 int main() {

4 int *v1 = &b;

5 int **v2 = &v1;

6 f: if (a)

7 goto f;

8 *v2 = v1;

9 foo(*v2);

10 }

Interestingly, the bug surfaces only when compiling the code
with the debugger-friendly -Og optimization level, while the miss-
ing variable value is available at more aggressive levels. The bug
involves variable v1: its value is displayed as optimized-out since
its assignment, only to become visible when reaching the function
call to foo. This behavior is counter-intuitive: the visibility of a
variable is expected to only degrade in the remainder of its lifetime
(e.g., from available to optimized-out) because the optimizer may
claim for its storage, if any.

The analysis of the bug revealed that all optimization levels lead
main to no longer have instructions that assign the two variables.
In optimization levels other than -Og, the first assembly instruction
for main becomes a load from global variable a that is hoisted out
of the if-goto loop, whereas -Og does not host it and the emitted
DWARF range information for v1 make its value available only
well after the loop. In general, we can look for violations of this
kind by checking for the following:

Conjecture 3: When a function assigns to a local variable and a subse-
quent source line can be stepped on, the availability of the variable value
can only remain the same or worsen in the remainder of the program.

For this conjecture, special attention can be devoted to reassign-
ments of a variable value at different program locations, which are
the only behavior allowed to “refresh” the visibility of a variable
and can be treated as different variable instances.

3.5 Discussion
The three provided examples of conjectures are meant to capture
recurrent patterns and constructs in the code generation and debug-
ging practice in ways that are amenable to automated verification
and simple to reason about.

As presented, the conjectures came from progressive refinements
over key ideas originated from a mix of intuition and experience.
The refinements involved restricting the classes of constituents on
which they hold, often based on what we saw in the assembly (i.e.,
the optimizer kept the values in the machine-level state) during
preliminary experiments. We speculate this task should be easier
for compiler developers due to their knowledge of optimization
designs, which may also favor the identification of new properties.

Being empirically derived, the soundness of a conjecture can only
be argued for by drawing from theoretical arguments from compiler
construction, analytical and statistical observations on debugger
traces, and, ultimately, by the feedback that compiler architects and
developers provide for the reported violations. However imperfect
that may sound, we believe that a testing solution for this kind is,
for the time being, an effective and unprecedented way to cope
with the lack of any oracle for systematic differential testing. The
empirical evidence we collect (Section 5) supports this argument,
as we are able to expose bugs that involve heterogeneous compilers
and their optimizations.

Moving away from the properties of Section 3.1—for instance, by
reasoning on the intermediate representation of a compiler—may
be convenient to expose corner cases in the implementation of a
compiler. However, it may require significant expertise in a specific
toolchain and limit reusability across compilation systems. On the
contrary, new compiler-agnostic conjectures could be explored in
future work, even to test multiple debugging dimensions.

On a different note, the attentive reader may point out that both
Conjecture 2 and 3 relate to liveness properties of variables to some
extent. For Conjecture 2, liveness is a shortcut that can be used to
avoid false positives when the optimizer reuses the storage of an
“unalterable” variable for computing the assignment under analysis.
For Conjecture 3, one cannot rely (only) on source-level liveness
analysis as an optimizer may move around statements that do not
depend on the variable under analysis and, more importantly, for
non-constant variables the valuemay remain visible in the debugger
even when its lifetime ends (until the optimizer claims the storage).
In reality, Conjecture 3 reasons on the lifetime of a single variable
in terms of its visibility in a debugging session.

4 IDENTIFYING AND UNDERSTANDING
VIOLATIONS

This section details how we can obtain programs for testing a
compilation system against the conjectures of Section 3, pinpoint
which optimizer components are likely behind a violation, and
minimize the testing program to ease analysis by developers. The
components we developed to this end are publicly available (link

940

Where Did My Variable Go? Poking Holes in Incomplete Debug Information ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

in footnote 1 of Section 1); some may be of independent interest.
Overall, they are made of ~250 Bash/Perl and ~1700 Python LOC.

4.1 Test Subject Generation
Due to the extensive code bases of modern compilation systems,
to spot completeness bugs we seek for sufficiently heterogeneous
test cases that undergo different and multiple optimizations, so that
debug information is affected by their combined effects.

The development of optimizing compilers has benefited over
the years from supporting tools such as regression and torture-test
suites to point out code generation bugs. Lately, generative fuzzing-
style testing tools have been particularly successful in exposing
compiler bugs, as reflected by recent proposals (e.g., [9, 41]) and
studies (e.g., [6, 7]) on correctness testing for code generation.

In light of the proven efficacy of such tools in exercising heteroge-
neous behaviors of an optimizer, we speculate they can be similarly
useful also in introducing (both inadvertent and unavoidable) losses
of debug information during compilation. An analogous speculation
proved effective in debug information correctness testing [13].

We work with the popular Csmith fuzzer [43] to generate pro-
grams to be checked for our conjectures. We configure it to draw
every time from different assortments of 20 options that define
program characteristics. We then reuse identical programs to test
the three conjectures.

Albeit writing special-purpose code generators for single conjec-
tures may be lucrative in some cases, we believe this would contrast
with the generality that we pursue for compilation constructs (Sec-
tion 3.1), which in turnmitigates the risk of inadvertently restricting
the pool of optimizations which an optimizer may draw from.

4.2 Conjecture Violation Checking
We check if a conjecture is violated at a program point by means of
dynamic analysis in one or more debugging tools. For an optimized
executable obtained with a given compiler, we use the native de-
bugger tool for that compiler (lldb for clang, gdb for gcc) to check
whether the expected variable(s) are visible on the currently ana-
lyzed line. This choice lets us test the optimizer and the reference
debugger of a compilation system simultaneously.

When a violation is met, we repeat the test also in a different de-
bugger and in other versions of the same debugger, to expose cases
where complete debug information is present but some bug affects
the native debugger. During test generation and, more extensively,
when validating a violation, we also check whether the program
exhibits undefined behavior using standard tools (i.e., compile-time
checks eventually followed by static analysis in compcert [29]).

For the three conjectures presented in this paper, we find it
typically sufficient to check them only the first time a source line
is met during debugging3. Therefore, we inspect executables using
standard tools (e.g., readelf) to extract what source lines can be
stepped on and run the program in the debugger, configuring the
latter to place a one-time breakpoint on each such line. We then
record a simple trace where, for each line covered by the execution,
we save the identity of the variables visible in the frame of the
function and their displayed value, if any.

For Conjecture 1, we cannot influence the arguments and des-
tinations that Csmith chooses for function calls. Thus, we modify

and recompile its programs by linking an external code module
containing a non-optimizable function [30] (i.e., a stub making a
printf operation on its arguments) and adding a call to it at a
random source line, choosing as arguments for the call a plurality
of the local variables. In the debugger trace, we then check if the
respective variable values are visible at the call. Conjecture 2 and
3 do not require program modifications, therefore we generate a
single debugger trace for analysis.

4.3 Looking for the Culprit Optimization
Depending on the abundance of implementation defects in a system
and the characteristics of the testing programs, current tools for
compiler testing can produce high numbers of tests that require
prioritization techniques for subsequent analyses. This “compiler-
fuzzer taming problem” [7] occurs also with completeness issues
from violated conjectures, as we measure in Section 5.

A recent endeavor on correctness testing of debug informa-
tion [13] proposes to use the bisection method of clang, which
makes the work of the optimizer’s pipeline stop after a controlled
number of iterations and allows for a differential analysis of the
executable. This makes it possible to determine what is the optimiza-
tion transformation that, once applied, makes the information loss
visible4. We adopt this technique for grouping violations exposed
by a specific conjecture on clang-optimized programs.

Unfortunately, the method is not applicable to compilation sys-
tems like gcc that cannot be configured to work incrementally (at
least, not without tweaking its internals). Therefore, we propose a
simple solution that may be of independent interest. We surveyed
the compilation options for gcc implied by each optimization level
and collected all the boolean flags -fno-opt that restrict optimiza-
tion. Given a program and the optimization level at which the
violation was found, we recompile the program for verification by
indicating the same optimization level and one of the -fno-opt
flags, trying each of them separately to see if the violation no longer
occurs. The number of flags to test was 81-151 depending on the
optimization level.

Due to dependencies between optimizations (for example, turn-
ing off inlining prevents other optimizations from happening), our
method sometimes identifies multiple flags. Those can be analyzed
in further combinatorial assortments or be heuristically prioritized
according to experience (as with the inlining example, by giving
inlining-related options a low rank). The method fails only when a
behavior cannot be controlled by flags (as with some -Og internals)
or when more than one optimization should be disabled to make
the violation no longer occur.

4.4 Minimizing a Test Program
A downside of using a generic generational approach to generate
test programs is that the output often consist of hundreds of lines of
code. In particular, the settings that we profitably used for Csmith

3Optimizations like loop unrolling may introduce multiple instances of the same source
line with different completeness properties. However, checking loops in full can be
very time-consuming. During exhaustive early tests, we found similar cases only when
the first loop iteration is peeled—a scenario captured by the proposed criterion.
4Sometimes the root cause may also be an optimization applied early. However, in a
black-box testing, this is the only viable option, leaving the identification of the root
cause to manual analysis.

941

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna, and LeonardoQuerzoni

typically led to 400-500 lines in the C language. Filing lengthy code
in bug reports may take away precious time from (and, unfortu-
nately, discourage) developers in doing a prompt inspection of the
internal work of the optimizer to understand the issue.

We build on C-Reduce, a state-of-the-art solution [38] to test
case reduction for bugs in code generation, and augment it with
machinery to preserve the conjecture violation that we identified
with the techniques of the previous sections. Compared to the
correctness testing work of [13], we add provisions to preserve the
identified culprit optimization, as we observed that the extensive
changes made by C-Reduce can lead to reduced programs where the
conjecture is violated at the same line but a different optimization
is behind it. Preserving the culprit optimization is important as it
maintains the soundness of the by-group prioritization criterion for
bug reporting (Section 4.3) and prevents a more “dominant” buggy
optimization to mask other issues in the optimizer.

At each reduction step, we compile the program two times: one
with the optimization level that made the violation emerge and one
where we also disable the culprit optimization. If the reduction step
preserves the culprit optimization, the violation will not occur in
the second program and the reduction can be accepted.

Finally, we extract the assembly code and the relevant debug
information (e.g., the DWARF DIE data for the involved variables)
for the optimized reduced program compiled with and without the
identified flag. In our experience, the differences between the two
versions have proven helpful to ease and prioritize bug analysis,
especially when the assembly code resulted as unchanged.

5 EXPERIMENTAL RESULTS
In this section, we discuss the experimental findings that we col-
lected by applying our approach to multiple configurations of the
clang and gcc compilers. In particular:

(1) we study how often recent compiler versions generate code
that violates any of our three conjectures;

(2) we investigate whether the conjectures can expose defects
in heterogeneous components of an optimizer;

(3) we describe both common and peculiar traits of the bugs
that we reported to compiler developers;

(4) extending the study of Section 2, we analyze a selection of
compiler versions retrospectively.

Methodology. We run our tests on a server equipped with an
Intel Xeon E5-2699 CPU, 256 GB of RAM, Linux OpenNebula3,
kernel 4.4.0, with modest background activity. We generate 1000
test programs and use them to check the three conjectures across
different compiler configurations. Details on the used compiler
versions and optimization levels are provided in the next sections.
As reference debugger tools, we use gdb 11.2 and lldb 13.0 (latest
stable versions) as done for the study of Section 2.

5.1 Violations in Latest Compiler Versions
As the first dimension of our study, we tested the latest trunk ver-
sions at evaluation time—500d3f0 for gcc and c2c977c for clang—
against our conjectures, generating executables for an x86_64 ma-
chine at optimization levels -Og, -O1, -O2, -O3, -Os, and -Oz. As -O1
and -Og are currently identical in clang, we report only -Og for it.

Table 1: Conjecture violations in clang (left) & gcc (right).

Level C1 C2 C3 C1 C2 C3
Og 71 553 75 10 34 115
O1 - - - 168 67 28
O2 51 455 43 227 131 2
O3 51 350 39 215 97 1
Os 73 471 52 233 141 1
Oz 74 463 78 221 135 1
unique 84 885 121 282 227 134

69

2

1

91

14

165

15
195

239

1
0

3

5

3

253

Og
O2

O3
Os

Figure 2: Unique violations for all conjectures (clang).

36 215

8
45

27

107

65

9

1

0

0
20

3

132
122

2
00

0

1 0
1

13

3

1

1

0

1

2

12

Og

O1

O2

O3

Os

Figure 3: Unique violations for all conjectures (gcc).

Table 1 reports statistics on the violations found on optimized
instances of the 1000 test programs. We treat violations that happen
at different program lines as distinct. When a violation occurs at
multiple optimization levels, we count it once in the last table row.

Between compilers, a conjecture may expose very different a-
mounts of unique violations. For example, we observe way more
violations for Conjecture 2 in clang than in gcc (3.9x as many) while
the opposite holds for Conjecture 1 (3.36x more in gcc), while for
Conjecture 3 the numbers are similar. However, violations can occur
with a significantly different frequency among optimization levels.

For example, Conjecture 1 has very few violations in gcc with
-Og optimization (just 10), whereas their number increases signifi-
cantly at other levels (up to 223 at -Os). In clang, instead, the more
aggressive -O2 and -O3 levels handle call arguments better than
other optimization levels. We found that the optimizations that are
applied at, e.g., -Og are replaced at higher levels by more aggressive
ones that, fortunately, preserve debug information better.

The clang LSR optimization bug analyzed for Conjecture 2 in Sec-
tion 3.3 impacts code generation frequently often, as loop induction
variables are often used to index memory in Csmith programs (and
in real-world code). We will resume its discussion in Section 5.4.

942

Where Did My Variable Go? Poking Holes in Incomplete Debug Information ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 2: Triaged optimizations (top-5 only). Conjectures 1, 2,
and 3 are ordered vertically. (*) means after inlining.

gcc (our method) clang (opt-bisect-limit)
toplevel-reorder 57 Inliner 50
ipa-sra 24 LSR 12
tree-ccp 17 X86 DAG->DAG InstrSel 9
tree-vrp 15 SimplifyCFG 9
tree-{fre; pta} 11 LoopUnroll 1
toplevel-reorder (*) 16 LSR 454
schedule-insns2 (*) 12 InstCombine 85
tree-dse (*) 8 IPSCCP 53
tree-ch 8 Merge contiguous icmps 5
tree-{loop-ivcanon; vrp} 7 Canon. Freeze Instr 5
ipa-pure-const 20 InstCombine 18
tree-ccp 11 X86 DAG->DAG InstrSel 17
tree-dce 9 SROA 15
tree-fre 4 Machine InstrScheduler 11
ipa-refer.-addressable (*) 3 PostOrderFunctionAttrs 11

For Conjecture 3, we partially relate the very few violations at
higher optimization levels in gcc to the drop in line ratio metric we
observed in Section 2, meaning that for lifetime inspection we can
step on many fewer lines.

Finally, to put numbers in perspective, for the three conjectures
we found no violations in (951, 680, 869) out of 1000 programs for
clang and (846, 842, 864) for gcc.

Doing multiple optimization levels in parallel (one per core),
each program was generated and tested for one conjecture in ~30s,
with no substantial variations per compiler or conjecture. Testing
the 1000 programs for 3 conjectures took ~2.5 hours per compiler.

5.2 Heterogeneity of Violations
To study if our methods can stress heterogeneous components of an
optimizer, we first study how the violations of the previous section
map to the optimization levels where they occur.

Figure 2 and Figure 3 feature Venn diagrams for clang and gcc,
respectively, that plot how each unique violation reproduces at one
or more optimization levels. Each counter placed at an intersection
between sets represents the number of unique violations that re-
produce at those optimization levels only. To keep the visualization
readable, we leave out and defer the discussion of the violations that
occur (also) at -Oz. We plot violations cumulatively as we found no
notable per-conjecture trends.

For clang, out of 1056 unique violations, about a fourth (253)
occur at all optimization levels, 195 only at -Og and 239 only at -Og
and -Os. While many transformations are shared, others activate
instead only for some levels.

For gcc, out of 638 unique violations, very few (12) occur at all
levels, 122 only at -Og, 65 only at -O1, but even more interestingly
132 at all levels except -Og and 107 at all levels but -O1 and -Og.
These trends are almost anti-symmetric with what we observed in
clang and may be explained in different ways, including substantial
differences5 in what optimizations each level applies.

For violations occurring only at -Oz, which optimizes for size
more aggressively than -Os, we found (6, 6, 22) of them in clang
and (0, 5, 0) in gcc for the three conjectures.

5For our triaging method we identified 81, 94, 138, 151, and 131 boolean flags that
impact optimization in O{g,1,2,3,s}, respectively.

Table 3: Reported issues and their current status.

Tracker ID System Bug status Conjecture DWARF analysis

49546 clang Confirmed C1 Missing DIE
49580 clang Confirmed C1 Missing DIE
49769 clang Confirmed C1 Hollow DIE
49973 clang Confirmed C1 Hollow DIE
49975 clang Confirmed C1 Hollow DIE
51780 clang Confirmed C1 Missing DIE
55101 clang Unconfirmed C1 Hollow DIE
55115 clang Confirmed C1 Missing DIE
55123 clang Unconfirmed C1 Hollow DIE
53855a clang Fixed by trunk* C2 Hollow DIE
53855b clang Confirmed C2 Hollow DIE
54611 clang Unconfirmed C2 Incomplete DIE
54757 clang Unconfirmed C2 Hollow DIE
54763 clang Unconfirmed C2 Incomplete DIE
50286 clang Confirmed C3 Incomplete DIE
54796 clang Confirmed C3 Incomplete DIE

104549 gcc Unconfirmed C1 Incorrect DIE
105007 gcc Confirmed C1 Hollow DIE
105158 gcc Fixed C1 Hollow DIE
105176 gcc Unconfirmed C1 Incomplete DIE
105179 gcc Unconfirmed C1 Incomplete DIE
105239 gcc Unconfirmed C1 Incomplete DIE
105248 gcc Confirmed C1 Hollow DIE
105261 gcc Confirmed C1 Hollow DIE
104891 gcc Unconfirmed C2 Incomplete DIE
105036 gcc Unconfirmed C2 Incorrect DIE
105108 gcc Confirmed C2 Hollow DIE
105145 gcc Confirmed C2 Hollow DIE
105161 gcc Confirmed C2 Hollow DIE
105249 gcc Unconfirmed C2 Incorrect DIE
104938 gcc Confirmed C3 Incomplete DIE
105124 gcc Confirmed C3 Incomplete DIE
105159 gcc Unconfirmed C3 Hollow DIE
105194 gcc Fixed C3 Incomplete DIE
105389 gcc Unconfirmed C3 Incomplete DIE

28987 gdb Confirmed C1 -
29060 gdb Confirmed C1 -

50076 lldb Confirmed C1 -

Moving on, we grouped all the found violations using the tech-
niques presented in Section 4.3. Table 2 shows the five transforma-
tions that we identified as most frequently behind the violations.
We see that transformations involving instruction scheduling (as
anticipated already in [1]), strength reduction, and loops recur-
rently violate multiple conjectures. In gcc, we note that tree-based
optimizations done in its GIMPLE framework also occur frequently.
We found a total of 31 distinct clang passes (8, 20, and 22 for the
three conjectures) and 271 unique boolean flags and combinations
thereof for gcc (68, 178, 49) in all tests6.

Identifying the culprit transformation took on average 20 min-
utes per program with gcc and 4 with clang (with one core). Test
minimization in C-Reduce took ~1 hour for most violations on both
clang and gcc (with 20 cores).

5.3 Notable Traits of Found Issues
Table 3 shows the 38 issues we reported so far to the developers of
the LLVM (clang+lldb) and GNU (gcc+gdb) ecosystems, resulting in
11 confirmed bugs for clang (8 passes), 10 for gcc (7 transformations),
6Besides a possible higher sparsity of implementation defects across transformations
in gcc, we explain this difference also with the search method: the native incremental
bisection of LLVM halts on the first pass causing a regression whereas we try all the
search space in gcc, exposing cases where distinct parts can cause the same final effect.

943

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna, and LeonardoQuerzoni

1 for lldb, and 2 for gdb, for a total of 24. Other reports (5 for clang
and 9 for gcc) await analysis or determinations. The conjectures
revealed, respectively, 20 (14 confirmed), 11 (5), and 7 (5) issues.

From a debugging experience perspective, the violations are
evenly split between variables marked as optimized out and vari-
ables not visible at all. If we then look at the nature of the affected
variables, about half of the violations involve variables holding a
constant value, that is, coming from an assignment with a literal or
a constant-folded expression (as a result of one or more optimiza-
tions). For such a variable, the optimizer generally avoids storage
allocation in the code but can emit a DWARF DW_AT_const_value
attribute in the DIE of the variable to make it available during
debugging. The remaining violations are evenly split between vari-
ables kept in registers and/or memory and variables for which the
optimizer could avoid storage allocation as they host different con-
stant values at different location ranges7. Missing information in
all said remaining violations could have been encoded using the
DW_AT_location attribute in the associated variable DIEs.

Analyzing the Debug Information Entry (DIE) of a variable can be
helpful to collect further evidence on how the compiler mishandled
it. We can divide the 35 compiler-related issues in four categories:

• Missing DIE (4 issues): the information the debugger ac-
cesses at the program point contains no DIE for the variable;

• Hollow DIE (16 issues): the optimizer is aware of the vari-
able but its DIE shows no location or constant-value infor-
mation (i.e., neither above-discussed attribute is present);

• Incomplete DIE (12 issues): the location definition present
in the DIE of the variable does not cover all the instructions
related to source-level lines where the variable is visible.

• Incorrect DIE (3 issues): the optimizer tracked the vari-
able in full but the debugger cannot display its value due to
incorrect DIE information for the program point(s) involved.

Case Studies. Wediscuss below exemplary bugs for each category,
as well as also one of the reported issues (3) for the debugger tools.
Due to space limitations, analyses of all the issues we found are
provided in the appendix of the full online version of this paper [4].

Missing DIE: Bug 49546 in clang involves an induction variable
j from a for (j=0; j<1; j++) loop passed to an opaque function
called by the loop. After loop rotation, the compiler realizes that
only one iterationwill take place: as a clang developer observed [31],
it should be possible for the optimizer to mark one region of the
function to show j=0 and another j=1 when debugging. However,
debug information is eventually lost for both program points related
to the assignment (due to loop optimization effects for j=1 and for
a bug in the common SimplifyCFG pass for j=0) and so is the DIE.

Hollow DIE: Bug 105108 in gcc involves assigning a variable
with an expression that, among its constituents, includes the return
value a function doing just return 0. At -O1/-Og, the optimizer
can constant-fold the expression thanks to conditional constant
propagation and value range propagation, while at -O2/-O3 inlining
makes the constant-folding trivial. All these optimization levels
eventually produce the same code for the program, but only with
-O1/-Og the DIE misses the DW_AT_const_value attribute [19].

Incomplete DIE: Bug 105179 in gcc involves a variable declared
outside a loop, where the latter in turn assigns and uses the former
twice as call argument: once to a function in the same code module

and once to an opaque one. When compiling at -Og, the variable is
displayed with its value only at the first function call, whereas it
displays at both calls with other optimization levels. We found that
the -fcprop-registers transformation (a copy-propagation pass
to reduce scheduling dependencies) leads to a range for the variable
that does not cover the address of the call, despite the optimizer is
aware of where the variable is stored [23].

Incorrect DIE: Bug 105249 in gcc involves a zero-initialized
induction variable that, when compiling with -Os, is not visible
in the body of a loop for (;i<2;i++) a=b[i]; that manipulates
storage volatile int a; int b[2]; from global memory. We
spotted wrong location information from when the unrolled loop
body undergoes instruction scheduling, which erroneously asso-
ciates the instructions with the DIE of an inlined function called
right after the loop. Even if the DIE for i correctly keeps track of
its value using the DWARF expression stack, the debugger cannot
display it since i is not part of the frame of the inlined function [24].

Debugger tools: Bug 50076 in lldb involves a variable used
as call argument to an opaque function; the call takes place in a
function that the clang compiler inlines into main(). As we found
in our initial violation investigation (Section 4.2), the issue does
not occur when analyzing the executable with gdb. A developer
followed up on our test code [34], noting that lldb may not be
able to show variables that appear only in the abstract origins of
DW_TAG_inlined_subroutine.

Discussion. We find that the issues described above and in the
past sections suggest that debug-related issues are scattered among
the components of an optimizer compiler. Systematic testing ap-
proaches like the one we propose can be helpful for developers,
relieving them from the burden of finding these violations manually.

Some of our reports sparked interesting discussions. In the 105108
Hollow DIE case, the developers of gcc noted that its current design
inevitably loses track of the call to the incriminated function (as
a consequence of detecting it as pure—i.e., side effect-free—and
thus deleting it) unless inlined. They then discussed a potential a
DWARF 6 addition so that the affected function may be expressed
in DWARF bytecode and invoked to recover the result [19]. Re-
port 105145 for gcc [20] brought to the surface a design limitation
in retaining debug information for memory contents involving
address-taken local variables that eventually get stored in registers.
Similar gaps were acknowledged for clang too (for example, in is-
sues 51780 [33] and 55115 [37]). Sometimes, our programs exercised
patterns that existing provisions did not handle properly (e.g., clang
issue 53855 [35], gcc issue 105161 [22], gdb issue 28987 [25]).

Across all reported compiler-related issues, we noted higher
engagement in bugs occurring only at one optimization level, es-
pecially -Og. For the 14 unconfirmed bugs, at the time of writing
none has been rejected and 5 have received a preliminary answer;
some have seen only the addition in the bug tracker of a tag for the
involved component and/or have been referenced in other reports.
Among all reported issues, we noted reaction times varying from
same-day confirmation to a 2-week-or-longer wait. Besides possi-
bly different levels of interest among developers, their workload
may have been a factor too, as it happened with one acknowledged
hiatus case. We found instead no evidence relating the (current)
7This can occur often with heavy-duty loop transformations enabled by unrolling.

944

Where Did My Variable Go? Poking Holes in Incomplete Debug Information ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 4: Number of conjectures violated by a test program on different gcc versions. The 1000 programs are arranged as 25 per
row. The color code is as follows: 0 conjectures, 1 conjecture, 2 conjectures, 3 conjectures.

lack of a follow-up on a report to the technicalities behind the
issue described. As for the already patched bugs, we noted that
they involved extending or changing how a specific transformation
moves debug metadata during basic block manipulations. On the
other hand, outstanding bugs involving infrastructure limitations
or requiring synchronized changes in multiple components may
possibly just need longer to be addressed.

Ultimately, we found the developers reaction promising and re-
ceived rather valuable feedback back. Future practical research may
possibly focus on optimizing the reporting activity by providing
additional context for speeding up bug analysis: for example, by
tracking what parts of the affected transformations are exercised
by the test program (e.g., leveraging the infrastructure released by
the authors of [16]) or by trying to generate multiple variants of it.

5.4 Regression Study
For bug 105158 that we reported for gcc [21], a developer wrote a
patch that we use in the following to discuss the potential benefits
of our testing. Albeit one cannot generalize from a single experi-
ence, we find the results we are about to present quite suggestive.
Table 4 shows how the number of unique violations for the three
conjectures are affected by a single change.

The cleanup_tree_cfg helper is shared by many transforma-
tions in gcc. A violation of the first conjecture exposed the flaw.
After the patch, the violations for it drop by 63.5% (from 282 to
131), followed by some improvements for the two other conjec-
tures (5.2% and 5.9%). Being a helper, the unique (combinations
of) transformations behind the fixed violations were 68. For the
availability-of-variables metric from the study of Section 2, the
value moved up from 0.8562 to 0.8633 for -O1, bridging almost half
of the gap with -Og (0.8758).

While all our clang bugs await fixing, we study a concurrent
partial fix that its developers wrote for LSR (Section 3.3). We use a

Table 4: Number of violations across compiler versions.

gcc4 gcc8 trunk patched clang5 clang9 trunk trunk*
C1 277 180 282 131 30 10 84 70
C2 1259 962 227 215 1498 1297 885 518
C3 168 134 134 126 329 196 121 124

later commit 796b84d, dubbed trunk* in Table 4 and focus only the
violations from Section 5.1 that we traced back to LSR. We observe
an 80.4% reduction for them (from 454 to 89), which hopefully will
be further improved after our feedback (Section 3.3).

Table 4 also shows how the violations significantly vary for both
compilers when taking versions far apart in time. Typically, they
decrease for all conjectures, confirming our beliefs from Section 2
on the ongoing improvements in compilation systems. Incidentally,
we note some regressions for Conjecture 3 on trunk*. As a teaser of
how our proposal may help developers track regressions, Figure 4
shows the conjectures violated on the fixed 1000 programs in several
gcc versions (we omit clang for brevity).

6 RELATEDWORKS
Testing of Debug Information. The work of Li et al. [30] is the

first attempt to systematically test the correctness of debug infor-
mation, in particular for variable values. The method generates test
programs for which one can step on specific lines and validate the
values of selected variables—crafted to be unoptimizable—by using
an unoptimized executable instance as oracle.

Di Luna et al. [13] do away with ad-hoc program generation and
identify four general properties (“invariants”) involving different
aspects of the information presented to users (e.g., spurious frames,
out-of-scope variables). We acknowledge implementations similar-
ities with their work, as using debuggers to check behaviors and
compiler fuzzers to generate test programs are choices that turned

945

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna, and LeonardoQuerzoni

out to be effective for us too. The conjectures we propose here are
also similar in the spirit to their invariants. Scientifically, instead,
the works fundamentally differ in the object and in the technique
of the analysis. For the former, [13] validates existing debugging
information whereas we study when absence of information is at-
tributable to bugs. For the latter, [13] can rely on the ground truth
given by -O0, which simplifies the theoretical grounds and makes
validation straightforward; the problem we study comes with no
baseline or oracle and we are the first to spot and present it as such.

More recently, Artuso et al [3] propose neural-based techniques
to identify discrepancies in the mapping between source-level loca-
tions and assembly code in debug information. Again, validation
comes here from the straightforward ground truth given by -O0.

Debugging Optimized Code. Researchers have been aware of the
conflict between the (inevitable) effects of optimizations and the
(desirable) ability to debug a program in terms of its source repre-
sentation for a long time now (e.g., [5, 8, 26]). Some studies have
analyzed classes of optimizations that make variables endangered
(i.e., their run-time value may be inconsistent with the source-
level value expected at a breakpoint [2]) and proposed techniques
(e.g., [11, 27, 42]) to reconstruct expected values under specific opti-
mizations. While the restrictive assumptions they make limit their
applicability to mainstream optimizers, in our scenario we may
consider them as a means to recover debug information losses from
unavoidable effects of optimization.

A promising direction could be to turn some of the ideas on their
head to identify, for example, classes of “non-endangered” variables
that one would expect to be available. To some extent, Conjecture 2
already embodies this flavor, as it studies constituents representing
constants or types of unoptimizable values.

7 LIMITATIONS AND FUTUREWORKS
We acknowledge the following limitations and threats to validity.

We make use of dynamic analysis in debuggers to identify viola-
tions: if a program line does not execute or if the debugger mishan-
dles a case, our results are affected. To mitigate this risk, we use a
compiler fuzzer to generate input-independent test programs and
resort to multiple debuggers for validating violations (Section 4.2).
We may also miss violations due to conservative choices in the
checking logic: e.g., by failing to identify a constituent variable
that Conjecture 2 expects to be available. Conservative provisions
mitigate the risk of false positives, whereas more complex analyses
on the source code or the assembly generated for it could allow
us to relax some and hopefully expose more defects. Finally, while
the conjectures proposed and analyzed in this paper are designed
to expose only bug-induced violations, their empirically derived
nature inevitably makes them only “likely correct”.

The presented conjecture examples do not cover the possibility
of stepping on specific lines. In general, two compilers may decide
differently in whether to generate code for a line (Section 2). How-
ever, sometimes, the visibility of a line may imply that code for a
related line exists. We played with control dependencies [10] by
searching for any of the lines that a line is control-dependent on:
while early tests were inconclusive, future work could pick up this
idea. Nonetheless, by making “more” variables available as we seek,

the benefits not only are immediate for user debugging experience,
but also transfer to new lines that may be recovered in other ways.

We would also like to test multiple architectures. We filed one
issue [36] where the violation on x86_64 did not reproduce in clang
on aarch64 due to differences in the backends. Our pipeline can be
readily adapted for systematic multi-architecture testing by using,
for example, the fast user-mode emulation of QEMU for testing
executables for different architectures at once [12].

ACKNOWLEDGMENTS
We are indebted to Davide Italiano for the rich discussions about
identifying the debug information completeness problem and the
technicalities backing Conjecture 1 and 3.We thank our anonymous
reviewers and particularly our shepherd for the rich feedback and
the guidance we received for improving the manuscript.

This work has been partially supported by the IoT-STYLE project
RG12117A7CE68848 and by the SAFE (Self-attentive function em-
beddings for embedded systems) project.

REFERENCES
[1] Ali-Reza Adl-Tabatabai and Thomas Gross. 1993. Detection and Recovery of

Endangered Variables Caused by Instruction Scheduling. In Proc. of the ACM
SIGPLAN 1993 Conference on Programming Language Design and Implementa-
tion (Albuquerque, New Mexico, USA) (PLDI ’93). Association for Computing
Machinery, 13–25. https://doi.org/10.1145/155090.155092

[2] Ali-Reza Adl-Tabatabai and Thomas Gross. 1996. Source-Level Debugging
of Scalar Optimized Code. In Proc. of the ACM SIGPLAN 1996 Conference on
Programming Language Design and Implementation (Philadelphia, Pennsylva-
nia, USA) (PLDI ’96). Association for Computing Machinery, 33–43. https:
//doi.org/10.1145/231379.231388

[3] Fiorella Artuso, Giuseppe Antonio Di Luna, and Leonardo Querzoni. 2022. De-
bugging Debug Information With Neural Networks. IEEE Access 10 (2022),
54136–54148. https://doi.org/10.1109/ACCESS.2022.3176617

[4] Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna, and
Leonardo Querzoni. 2022. Where Did My Variable Go? Poking Holes in In-
complete Debug Information. (2022). https://doi.org/10.48550/ARXIV.2211.09568

[5] Gary Brooks, Gilbert J. Hansen, and Steve Simmons. 1992. A New Approach to
Debugging Optimized Code. In Proc. of the ACM SIGPLAN 1992 Conference on
Programming Language Design and Implementation (San Francisco, California,
USA) (PLDI ’92). Association for Computing Machinery, 1–11. https://doi.org/
10.1145/143095.143108

[6] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An Empirical Comparison of Compiler Testing Techniques. In
Proc. of the 38th International Conference on Software Engineering (Austin, Texas)
(ICSE ’16). Association for Computing Machinery, 180–190. https://doi.org/10.
1145/2884781.2884878

[7] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric
Eide, and John Regehr. 2013. Taming Compiler Fuzzers. In Proc. of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery,
197–208. https://doi.org/10.1145/2491956.2462173

[8] Max Copperman. 1994. Debugging Optimized Code without Being Misled. ACM
Trans. Program. Lang. Syst. 16, 3 (may 1994), 387–427. https://doi.org/10.1145/
177492.177517

[9] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018.
Compiler Fuzzing through Deep Learning. In Proc. of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Amsterdam, Nether-
lands) (ISSTA 2018). Association for Computing Machinery, 95–105. https:
//doi.org/10.1145/3213846.3213848

[10] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. 1991. Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (oct 1991),
451–490. https://doi.org/10.1145/115372.115320

[11] Daniele Cono D’Elia and Camil Demetrescu. 2018. On-Stack Replacement, Dis-
tilled. In Proc. of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for
Computing Machinery, 166–180. https://doi.org/10.1145/3192366.3192396

[12] Daniele Cono D’Elia, Lorenzo Invidia, Federico Palmaro, and Leonardo Querzoni.
2022. Evaluating Dynamic Binary Instrumentation Systems for Conspicuous

946

https://doi.org/10.1145/155090.155092
https://doi.org/10.1145/231379.231388
https://doi.org/10.1145/231379.231388
https://doi.org/10.1109/ACCESS.2022.3176617
https://doi.org/10.48550/ARXIV.2211.09568
https://doi.org/10.1145/143095.143108
https://doi.org/10.1145/143095.143108
https://doi.org/10.1145/2884781.2884878
https://doi.org/10.1145/2884781.2884878
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/177492.177517
https://doi.org/10.1145/177492.177517
https://doi.org/10.1145/3213846.3213848
https://doi.org/10.1145/3213846.3213848
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/3192366.3192396

Where Did My Variable Go? Poking Holes in Incomplete Debug Information ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Features and Artifacts. Digital Threats 3, 2, Article 10 (feb 2022), 13 pages.
https://doi.org/10.1145/3478520

[13] Giuseppe Antonio Di Luna, Davide Italiano, Luca Massarelli, Sebastian Öster-
lund, Cristiano Giuffrida, and Leonardo Querzoni. 2021. Who’s Debugging the
Debuggers? Exposing Debug Information Bugs in Optimized Binaries. In Proc. of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS 2021). Association for
Computing Machinery, 1034–1045. https://doi.org/10.1145/3445814.3446695

[14] Vijay D’Silva, Mathias Payer, and Dawn Song. 2015. The Correctness-Security
Gap in Compiler Optimization. In 2015 IEEE Security and Privacy Workshops.
73–87. https://doi.org/10.1109/SPW.2015.33

[15] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999.
Dynamically Discovering Likely Program Invariants to Support Program Evo-
lution. In Proc. of the 21st International Conference on Software Engineering (Los
Angeles, California, USA) (ICSE ’99). Association for Computing Machinery,
213–224. https://doi.org/10.1145/302405.302467

[16] Karine Even-Mendoza, Cristian Cadar, and Alastair F. Donaldson. 2022.
CsmithEdge: More Effective Compiler Testing by Handling Undefined Behaviour
Less Conservatively. Empirical Softw. Engg. 27, 6 (nov 2022), 35 pages. https:
//doi.org/10.1007/s10664-022-10146-1

[17] Andrea Fioraldi, Daniele Cono D’Elia, and Davide Balzarotti. 2021. The Use of
Likely Invariants as Feedback for Fuzzers. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2829–2846. https://www.usenix.org/
conference/usenixsecurity21/presentation/fioraldi

[18] gcc bug tracker. 2022. gcc bug ID: 104938. https://gcc.gnu.org/bugzilla/show_
bug.cgi?id=104938.

[19] gcc bug tracker. 2022. gcc bug ID: 105108. https://gcc.gnu.org/bugzilla/show_
bug.cgi?id=105108.

[20] gcc bug tracker. 2022. gcc bug ID: 105145. https://gcc.gnu.org/bugzilla/show_
bug.cgi?id=105145.

[21] gcc bug tracker. 2022. gcc bug ID: 105158. https://gcc.gnu.org/bugzilla/show_
bug.cgi?id=105158.

[22] gcc bug tracker. 2022. gcc bug ID: 105161. https://gcc.gnu.org/bugzilla/show_
bug.cgi?id=105161.

[23] gcc bug tracker. 2022. gcc bug ID: 105179. https://gcc.gnu.org/bugzilla/show_
bug.cgi?id=105179.

[24] gcc bug tracker. 2022. gcc bug ID: 105249. https://gcc.gnu.org/bugzilla/show_
bug.cgi?id=105249.

[25] gdb bug tracker. 2022. gdb bug ID: 28987. https://sourceware.org/bugzilla/show_
bug.cgi?id=28987.

[26] John Hennessy. 1982. Symbolic Debugging of Optimized Code. ACM Trans.
Program. Lang. Syst. 4, 3 (jul 1982), 323–344. https://doi.org/10.1145/357172.
357173

[27] Clara Jaramillo, Rajiv Gupta, and Mary Lou Soffa. 2000. FULLDOC: A Full Report-
ing Debugger for Optimized Code. In Proc. of the 7th International Symposium on
Static Analysis (SAS ’00). Springer-Verlag, 240–259.

[28] Changjiang Jia and W. K. Chan. 2013. Which Compiler Optimization Options
Should I Use for Detecting Data Races in Multithreaded Programs?. In Proc. of
the 8th International Workshop on Automation of Software Test (San Francisco,
California) (AST ’13). IEEE Press, 53–56.

[29] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM
52, 7 (jul 2009), 107–115. https://doi.org/10.1145/1538788.1538814

[30] Yuanbo Li, Shuo Ding, Qirun Zhang, and Davide Italiano. 2020. Debug In-
formation Validation for Optimized Code. In Proc. of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation (London,
UK) (PLDI 2020). Association for Computing Machinery, 1052–1065. https:
//doi.org/10.1145/3385412.3386020

[31] LLVM bug tracker. 2021. clang bug ID: 49546. https://bugs.llvm.org/show_bug.
cgi?id=49546.

[32] LLVM bug tracker. 2021. clang bug ID: 49975. https://bugs.llvm.org/show_bug.
cgi?id=49975.

[33] LLVM bug tracker. 2021. clang bug ID: 51780. https://bugs.llvm.org/show_bug.
cgi?id=51780.

[34] LLVM bug tracker. 2021. lldb bug ID: 50076. https://bugs.llvm.org/show_bug.
cgi?id=50076.

[35] LLVM bug tracker. 2022. clang bug ID: 53855. https://github.com/llvm/llvm-
project/issues/53855.

[36] LLVM bug tracker. 2022. clang bug ID: 54757. https://github.com/llvm/llvm-
project/issues/54757.

[37] LLVM bug tracker. 2022. clang bug ID: 55115. https://github.com/llvm/llvm-
project/issues/55115.

[38] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang.
2012. Test-Case Reduction for C Compiler Bugs. In Proc. of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation (Beijing, China)
(PLDI ’12). Association for Computing Machinery, 335–346. https://doi.org/10.
1145/2254064.2254104

[39] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve. 2013.
Using Likely Invariants for Automated Software Fault Localization. In Proc. of the
Eighteenth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Houston, Texas, USA) (ASPLOS ’13). Association
for Computing Machinery, 139–152. https://doi.org/10.1145/2451116.2451131

[40] David Schuler, Valentin Dallmeier, and Andreas Zeller. 2009. Efficient Mutation
Testing by Checking Invariant Violations. In Proc. of the Eighteenth International
Symposium on Software Testing and Analysis (Chicago, IL, USA) (ISSTA ’09).
Association for Computing Machinery, 69–80. https://doi.org/10.1145/1572272.
1572282

[41] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler Bugs via Live
Code Mutation. In Proc. of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Amsterdam,
Netherlands) (OOPSLA 2016). Association for Computing Machinery, 849–863.
https://doi.org/10.1145/2983990.2984038

[42] Le-Chun Wu, Rajiv Mirani, Harish Patil, Bruce Olsen, and Wen-mei W. Hwu.
1999. A New Framework for Debugging Globally Optimized Code. In Proc.
of the ACM SIGPLAN 1999 Conference on Programming Language Design and
Implementation (Atlanta, Georgia, USA) (PLDI ’99). Association for Computing
Machinery, 181–191. https://doi.org/10.1145/301618.301663

[43] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proc. of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (San Jose, Califor-
nia, USA) (PLDI ’11). Association for Computing Machinery, 283–294. https:
//doi.org/10.1145/1993498.1993532

947

https://doi.org/10.1145/3478520
https://doi.org/10.1145/3445814.3446695
https://doi.org/10.1109/SPW.2015.33
https://doi.org/10.1145/302405.302467
https://doi.org/10.1007/s10664-022-10146-1
https://doi.org/10.1007/s10664-022-10146-1
https://www.usenix.org/conference/usenixsecurity21/presentation/fioraldi
https://www.usenix.org/conference/usenixsecurity21/presentation/fioraldi
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104938
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104938
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105108
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105108
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105145
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105145
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105158
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105158
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105161
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105161
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105179
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105179
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105249
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105249
https://sourceware.org/bugzilla/show_bug.cgi?id=28987
https://sourceware.org/bugzilla/show_bug.cgi?id=28987
https://doi.org/10.1145/357172.357173
https://doi.org/10.1145/357172.357173
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3385412.3386020
https://doi.org/10.1145/3385412.3386020
https://bugs.llvm.org/show_bug.cgi?id=49546
https://bugs.llvm.org/show_bug.cgi?id=49546
https://bugs.llvm.org/show_bug.cgi?id=49975
https://bugs.llvm.org/show_bug.cgi?id=49975
https://bugs.llvm.org/show_bug.cgi?id=51780
https://bugs.llvm.org/show_bug.cgi?id=51780
https://bugs.llvm.org/show_bug.cgi?id=50076
https://bugs.llvm.org/show_bug.cgi?id=50076
https://github.com/llvm/llvm-project/issues/53855
https://github.com/llvm/llvm-project/issues/53855
https://github.com/llvm/llvm-project/issues/54757
https://github.com/llvm/llvm-project/issues/54757
https://github.com/llvm/llvm-project/issues/55115
https://github.com/llvm/llvm-project/issues/55115
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2451116.2451131
https://doi.org/10.1145/1572272.1572282
https://doi.org/10.1145/1572272.1572282
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/301618.301663
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Motivation and Current Issues
	3 Proposed Approach
	3.1 Rationale and Desired Properties
	3.2 Conjecture 1: Visibility of Call Argument Sources
	3.3 Conjecture 2: Availability of Constituents
	3.4 Conjecture 3: Decaying Visibility of a Variable
	3.5 Discussion

	4 Identifying and Understanding Violations
	4.1 Test Subject Generation
	4.2 Conjecture Violation Checking
	4.3 Looking for the Culprit Optimization
	4.4 Minimizing a Test Program

	5 Experimental Results
	5.1 Violations in Latest Compiler Versions
	5.2 Heterogeneity of Violations
	5.3 Notable Traits of Found Issues
	5.4 Regression Study

	6 Related Works
	7 Limitations and Future Works
	Acknowledgments
	References

