
RESEARCH ARTICLE

A novel computational strategy for defining

the minimal protein molecular surface

representation

Greta GrassmannID
1, Mattia Miotto2, Lorenzo Di Rienzo2, Giorgio Gosti2,

Giancarlo Ruocco2,3, Edoardo MilanettiID
2,3*

1 Università di Bologna, Bologna, Italy, 2 Center for Life Nano & Neuroscience, Italian Institute of Technology,

Rome, Italy, 3 Department of Physics, Sapienza University, Rome, Italy

* edoardo.milanetti@uniroma1.it

Abstract

Most proteins perform their biological function by interacting with one or more molecular

partners. In this respect, characterizing local features of the molecular surface, that can

potentially be involved in the interaction with other molecules, represents a step forward in

the investigation of the mechanisms of recognition and binding between molecules. Predic-

tive methods often rely on extensive samplings of molecular patches with the aim to identify

hot spots on the surface. In this framework, analysis of large proteins and/or many molecular

dynamics frames is often unfeasible due to the high computational cost. Thus, finding opti-

mal ways to reduce the number of points to be sampled maintaining the biological informa-

tion (including the surface shape) carried by the molecular surface is pivotal. In this

perspective, we here present a new theoretical and computational algorithm with the aim of

defining a set of molecular surfaces composed of points not uniformly distributed in space,

in such a way as to maximize the information of the overall shape of the molecule by mini-

mizing the number of total points. We test our procedure’s ability in recognizing hot-spots by

describing the local shape properties of portions of molecular surfaces through a recently

developed method based on the formalism of 2D Zernike polynomials. The results of this

work show the ability of the proposed algorithm to preserve the key information of the molec-

ular surface using a reduced number of points compared to the complete surface, where all

points of the surface are used for the description. In fact, the methodology shows a signifi-

cant gain of the information stored in the sampling procedure compared to uniform random

sampling.

Introduction

Interactions between biomolecules play a fundamental role for most cellular processes, from

DNA replication to protein degradation [1–3]. Since it has been estimated that over 80% of

proteins operate in molecular complexes [4], many computational approaches have been

developed for investigating and/or predicting protein–protein interactions (PPIs) in
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physiology and pathology [5–10]. In this scenario, the shape complementarity between inter-

acting regions plays a fundamental role because at short distances, it dictates the stabilizing

role exerted by van der Waals interactions: thus, the shape of local surface regions has a key

role in predicting the ability of a protein to bind its molecular partner [11]. From this point of

view, the definition of the molecular surface plays an important role [12–17]. Many algorithms

have been designed in order to build the molecular surface at different resolution scales part-

ner [18], typically considering a probe radius up to 5 Å, which is approximately the size of a

large solvent molecule. The variation in the size of the probe molecule affects the level of detail

of the molecular surface [12] as much as the density of points used in its representation.

Computational methods that aim at the identification of hot-spots and/or binding regions

often perform extensive samplings of molecular surface portions, or patches [8, 19, 20]. Intui-

tively, the more the surface is sampled the more the reaching for hot-spot is accurate. Similarly,

the higher the number of different points used to represent the surface the higher the level of

detail of the molecular shape.

However, time and computational costs limit both the resolution of the surface and the

number of patches that can be sampled, especially for large protein complexes and/or in anal-

yses that involve a big set of surfaces, like for example molecular dynamics data. Although sev-

eral methods have been developed over the past decades to optimize the computational

calculation of any molecular surface, the search for optimal techniques still remains a chal-

lenge today [21–23].

Here, we present a new method for reducing the molecular surface, maximizing the overall

information of the protein shape, and minimizing, in principle, the number of total surface

points. The basic idea of the proposed new algorithm is the selection of molecular surface

points according to the local roughness (that is the degree of complexity of shape of each sur-

face region): increasing the sampling in high roughness regions and decreasing the sampling

in the more flat ones. In particular, we define a sampling probability that depends on the local

roughness of the surface. We discuss the performance of the algorithm as a function of several

parameters, evaluating the ability of the algorithm to describe locally portions of the surface in

comparison to uniform random sampling. In order to evaluate the ability of the reduced

molecular surface to capture the information of the complete surface, we define a descriptor

based on the local characterization of the molecular surface patch shape. Indeed, to evaluate

the resulting representation of the surface, we compare the shape similarity between a portion

of the surface obtained from the complete surface of the protein and the same portion of the

surface obtained via our algorithm.

In order to study the gain of the proposed algorithm in terms of information preserved in

the reduced version of the molecular surface, we compare the description of the complete sur-

face also with random sampling, which represents the approach of trivial reduction of each

molecular surface by decreasing, without criteria, the density of the number of points in space.

While part of the information concerning the interaction is encoded in various chemical

features, it has already been discussed how the shape of local surface regions has a key role in

predicting a protein ability to bind its molecular partner [11, 24]. This is at the core of the

development of the 2D Zernike polynomial expansion [8] as a method to find the protein-pro-

tein binding regions. This method could in principle be adapted to other properties (such as

electrostatics or hydrophobicity) besides curvature since they can be described with numerical

values that can be assigned to each surface point [25, 26], and the Zernike expansion can be

applied to any function. Nonetheless, in this work the algorithm is used to maximize the infor-

mation concerning only the overall shape of the molecule. More specifically, the method is

based on the description of each portion of the molecular surface by expanding the well-

exposed molecular surface patches in terms of 2D Zernike polynomials, in order to be able to
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measure the geometrical similarity or complementarity between interacting proteins, with a

lower computational cost than its 3D version [27–32].

We show that our proposed sampling reduces the number of considered points, minimiz-

ing the loss of information about the protein surface shape. To propose a generically valid set

of parameters, we estimate the optimal sets for 70 proteins and compute their average values,

which are: β = 0, γ = 4, δ = 5. By comparing the percentage of points sampled with each sur-

face’s best set and with these average values, we show that these last ones mostly results in a

number of points close to those selected with the specific optimal parameters.

Finally, to test the general validity of our method in a biologically relevant case (i.e. the pro-

tein-protein interaction), we study a subset of protein complexes among the ones used in [8]

and evaluate the performance of the Zernike-based method in recognising the interacting

regions of protein structures. In particular, we analyze the ability of the proposed method to

characterize binding sites of these protein complexes, the structure of which has been experi-

mentally resolved. For this purpose, we select the interacting regions of four protein surfaces

and sample them with our proposed algorithm.

By analyzing how the total and sampled points distribute in the two-dimensional principal

components (PCs) of the space spanned by the vectors of the Zernike invariants associated to

each surface patch, we show that the subsets of points sampled using the best parameters’ set

fully cover the same portion of the essential space occupied by the whole bunch of surface

points.

Materials and methods

Protein structure and computation of the molecular surfaces

The protein used in the first part of this work is TDP-43, residues 209-269 (PDB id: 4bs2).

The protein was equilibrated using GROMACS 2019.3 [33], and is going to be called A1 in

the following discussion. For the optimization and testing of the parameters’ selection we

used 70 proteins complexes experimentally solved in complex in X-ray crystallography, taken

from [8].

The solvent-accessible surfaces are calculated with DMS [34], with a density of 5 points per

Å2 and a water probe radius of 1.4 Å. For each surface point, we calculated the unit normal vec-

tor with the flag −n.

Zernike 2D procedure

The molecular surface we obtain with DMS is represented by a set of points in the three-

dimensional space. The first step of the 2D Zernike algorithm is to select from the surface a

patch S, defined as the set of surface points included in a spherical region having radius Rzernike

= 6 Å and centered on one point of the surface. The points not directly connected to that

region of the surface (for example coming from a protuberance included in the sphere) are

removed. Once the patch has been selected, the mean vector of the normal vectors of the patch

points is computed and oriented along the z-axis. Thus, given a point C on the z-axis, the angle

θ is defined as the largest angle between the z-axis and a secant connecting C to any point of

the surface S. C is then set so that θ = 45˚ and each surface point is labeled with its distance r
from C. As a next step, a square grid that associates each pixel with the mean r value calculated

on the points inside it is built. The gap of pixels where no point of the surface has been pro-

jected are filled by using the average value of the surrounding pixels.

Such a 2D function can now be expanded on the basis of the Zernike polynomials.
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Indeed, each function of two variables f(r, ψ) defined in polar coordinates inside the region

of the unitary circle (r< 1) can be decomposed in the Zernike basis as

f ðr;cÞ ¼
X1

n0¼0

Xn0

m¼0

cn0mZn0mðr;cÞ; ð1Þ

with

cn0m ¼
n0 þ 1

p

Z 1

0

dr r
Z 2p

0

dcZ�n0mðr;cÞf ðr;cÞ ð2Þ

and

Zn0m ¼ Rn0mðrÞeimc: ð3Þ

cn0m are the expansion coefficients, while the complex functions Zn0m(r, ψ) are the Zernike poly-

nomials. The radial part Rn0m is given by

Rn0mðrÞ ¼
X

n0 � m
2

k¼0

ð� 1Þ
k
ðn0 � kÞ!

k!
n0 þm

2
� k

� �

!
n0 � m

2
� k

� �

!

: ð4Þ

Since for each couple of polynomials, it is true that

hZn0mjZn00m0 i ¼
p

n0 þ 1
dn0n00dmm0 ; ð5Þ

the complete set of polynomials forms a basis, and knowing the set of complex coefficients cn0m
allows for a univocal reconstruction of the original patch.

The norm of each coefficient zn0m = |cn0m| constitutes one of the Zernike invariant

descriptors.

Similarity evaluation

Once a patch is represented in terms of its Zernike descriptors, the shape relation between that

patch and another one can be simply measured as the Euclidean distance between the invari-

ant vectors. The relative orientation of the patches before the projection in the unitary circle

must be considered. In fact, if we search for similar regions we must compare patches that

have the same orientation once projected in the 2D plane, i.e. the solvent-exposed part of the

surface must be oriented in the same verse for both patches, for example along the positive z-

axis. On the other hand, if we are looking for complementarity (as for searching the binding

regions in a complex) the patches have to be oriented in opposite verses.

Identification of the binding regions and principal component analysis

For each of the 70 protein complexes sampled from [8] and reported in Table 2, the binding

regions between the couples of proteins were defined as the sets of surface points whose dis-

tance with respect to the partner was lower than 3 Å. Finally, for each set, we compute its geo-

metrical center and then consider as binding region the patch with radius 6 Å centered on it.

From each point of the identified binding regions, we evaluated the set of Zernike invari-

ants and performed a principal component analysis (PCA) in which the starting matrix con-

sisted of 121 columns (the number of invariants) and a number of rows equal to the number of

points of the patch.
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Results

The proposed method consists of a sampling suitably designed for selecting with greater prob-

ability surface points belonging to regions of high roughness. Indeed, when choosing where to

select the patches, a compromise between a too sparse sampling (which would loose some

regions of the surface) and a too dense one (which would add no information and would

instead increase the computational time) must be found.

To this end, we define a function used for sampling the original surface: we use a method

based on the 2D formalism of the Zernike polynomials to evaluate the ability of the algorithm

to correctly approximate local regions of molecular surfaces with respect to a uniform random

sampling. In the following Sections, we describe in detail the designed algorithm, the method

we used as test based on the 2D Zernike formalism, and the results obtained by varying the

parameters.

For an in-depth study of the proposed algorithm we consider different cases of application

to a single surface (namely a fragment of TDP-43 that we are going to call A1). As a next step,

to make this method applicable to a variety of surfaces, we apply it on a set of 70 protein sur-

faces. For each surface we test different parameters’ combinations, selecting the best ones. This

allows us to propose a set of mean parameters to be used for any given protein.

New roughness-dependent sampling

To begin with, we numerically represent the molecular surface with a set of N points in the 3D

space (the discretization of the surface). For each point i, we evaluate the exiting normal vector,

�vi, to the surface, originating from i. Next, we evaluate the local roughness of the molecular

surface by looking at the relative orientation of the normal vectors with respect to each point i.
To do so, starting from each point i, we define a patch including all the surface points

within a sphere of radius Rpatch centered on the point i. We calculate the roughness of each

patch as the mean of the cosines of the angles formed by the normal vectors associated to each

of the np points of the patch and the average normal vector:

Ri ¼
1

np

Xnp

j¼1

cosðyijÞ ð6Þ

with cosðyijÞ ¼
�vi ��vj
j�vi jj�vjj

and �vi ¼ 1

np

P
j�vj. Fig 1A shows the molecular surface for a case-of-study

protein, TDP-43 (PDB id: 4BS2) residues 209-296, colored according to the local roughness.

Being a mean of cosines, the roughness ranges from zero to one (see Fig 1B). When the consid-

ered patch is plane, the mean value of the cosine between the normal vectors of each point i of

the surface and the mean normal vector of that patch, Ri, is close to one, while lower values of

Ri indicate rougher patches.

Then, we associate to each point j in the patch centered on a point i, the probability to be

accepted for the sampling, defined as:

pðjÞ ¼ að1 � RiÞ
b

ri;j
Rpatch

 !gð1þRiÞþd

; ð7Þ

where ri,j is the distance of the point j from the center i, and α, β, γ and δ are parameters that

can be optimized to yield different sampling scenarios.

For instance, when β = 0, γ = 0, and δ = 0, we obtain a uniform random extraction, whose

total number of points depends on α: this parameter determines the fraction (over all the sur-

face’s points) of considered points.

PLOS ONE A computational strategy for defining the minimal protein molecular surface representation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266004 April 14, 2022 5 / 17

https://doi.org/10.1371/journal.pone.0266004


In general, when a patch i has a high roughness, more points are needed to describe it. On

the other hand when it is more plane we need fewer points, and indeed ð1 � RiÞ becomes

smaller. Finally, the center of a patch is always selected, but then to capture the surface’s irregu-

larities we can use as centers for the Zernike patches the points further away from it, i.e. the

ones with a high value of ri,j. By elevating this term to the ð1þRiÞ we are changing the distri-

bution of sampled points in each patch as a function of that patch roughness.

Selection of the sampling parameters

Here, we describe the method used to determine how effectively, starting from a sampling

(determined by the combination of the parameters α, β, γ, and δ), we can describe the original

surface.

1. For each combination of these four parameters, we sample from the original total surface a

number nS of points and we define a new surface determined by these nS points. Then, we

extract from the original total surface again nS points, but this time with a uniform distribu-

tion (or random extraction).

2. We select from the total surface ntest points, and define around each of them a region with

radius R = 6 Å.

Fig 1. Local roughness of the patches. A) Discretized representation of a molecular surface of the TDP-43 fragment

209-269 (PDB id: 4BS2). Each point of the surface is coloured according to the local roughness value, Ri. B)

Distribution of the roughness Ri found for each point i of the considered surface.

https://doi.org/10.1371/journal.pone.0266004.g001
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3. Next, we associate to each one of these points, j, three vectors: ztot(j), zS(j) and zR(j). ztot(j)
contains the Zernike descriptors that describe that patch as defined by all the total points

included in it, zS(j) describes the patch as defined by the sampled points included in it and

zR(j) describes the patch as defined by the included randomly extracted points.

4. For each of the ntest patches we compute the distances Zt−S(j) = ztot(j) − zS(j) and Zt−R(j) =

ztot(j) − zR(J). We average all the obtained Zt−S(j) and Zt−R(j), and obtain respectively the

values Zt−S and Zt−R. Since we are considering the description given by all the original

points as our “ideal”, for a good sampling we expect the value of Zt−S to be small, and in par-

ticular smaller than Zt−R.

5. Finally, we compute the difference d = Zt−R − Zt−S. The best sampling for a surface should

result in the maximization of d.

Our main objective is to describe the original surface as precisely as possible with a mini-

mum number of points.

Selection starting from a pre-determined nS
By varying the four parameters we can observe a wide range of nS. Fig 2 shows an example of

how this number changes for changing combinations of parameters. Table 1 shows, for each

arbitrarily determined range of nS, the combination of parameters that results in the sampling

with the highest d.

Selection in the limit cases

Similarly, we can fix a priori the values of some of the parameters to study some particular

forms of the sampling distribution p(j).
In the following we analyze three peculiar cases:

1. No dependency on the roughness: when β = 0 and γ = 0, p(j) does not depend on Ri, but

only on the distance between the center of the considered patch and the considered point.

2. No dependency on the distance from the patch center: when γ = 0 and δ = 0, p(j) depends

only on Ri.

3. Steepest sampling function: when β = 1 and γ = 0 p(j) has the fastest variation as a function

of δ. In this situation the best sampling (given these fixed parameters) should be clearly

distinguishable.

Fig 3 shows the analyses accomplished in each of the three limit cases. The first useful infor-

mation is how the number of selected points changes according to the parameters value,

because this is a first indication of the performance of that sampling function. Then we can

optimize the non-fixed parameters, by looking for the maximization of d. Once the best

parameters combination has been detected for each case, the differences between the three sit-

uations can be better appreciated by looking at what happens for different roughness of the

patches. Fig 3 shows for each case the box plot of ZR
t� S and ZR

t� R, divided according to the

roughness of the patches they describe. ZR
t� S and ZR

t� R are defined by averaging Zt−S(j) and Zt
−R(j) only on the points whose Rj falls in a specific interval. The considered patches are

extracted (according to their roughness) from the points obtained with the best sampling, in

each limit case, of the considered surface.
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Selection without restriction

When there is no restriction on the number of sampled points or on the parameters’ values,

we can fix α = 1, since it is a multiplicative parameter that causes no variation of the distribu-

tion of sampled points between patches with different roughness values. When α< 1 we are

removing from each patch the same percentage of points, so if we have no requirements about

the final nS, this uniform removal of points can be avoided.

Consequently, we are interested in finding the combination of β, γ, and δ that results in the

highest d. While it is true that a good sampling should result in a high d combined with a low

nS, the weights that these two components should have in an optimization function will change

according to the application and cannot be generalized.

Fig 2. Sampled points fractions for varying parameters. Percentage of surface points that are sampled by varying α, β, γ and δ. These plots were obtained after the

sampling of the surface of A1.

https://doi.org/10.1371/journal.pone.0266004.g002
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Table 1. Best sampling for each range of selected points (nS).

Range of the sampled points α β γ δ d Zt−S

2.63%–12.34% 0.4 0.2 10.0 10.0 1.61 7.36

12.34%–22.05% 1.0 0.4 10.0 6.0 1.98 6.39

22.05%–31.76% 1.0 0.2 6.0 10.0 2.31 5.85

31.76%–41.47% 1.0 0.0 6.0 4.0 2.46 4.97

41.47%–51.18% 1.0 0.0 6.0 0.0 2.69 4.10

51.18%–60.89% 1.0 0.0 2.0 4.0 2.24 3.24

60.89%–70.60% 1.0 0.2 0.0 4.0 1.70 2.53

70.60%–80.30% 1.0 0.0 2.0 0.0 0.18 1.38

80.30%–90.01% 1.0 0.0 0.0 2.0 -0.14 0.81

90.01%–99.73% 1.0 0.2 0.0 0.0 -0.01 0.27

https://doi.org/10.1371/journal.pone.0266004.t001

Fig 3. Analysis of the limit cases of the sampling function. A) Results obtained when there is no dependency on Ri. B) Results obtained when there is no

dependency on the distance from the patch center. C) Results obtained with the steepest sampling function. The first column shows the percentage of surface points

that are sampled for varying parameters. The second one depicts d for varying parameters; these plots are obtained with an interpolation of the effectively computed

values, that -when not set to zero or one- are all the combinations of α = [0.1, 0.2, 0.4, 0.6, 0.8, 1], β = [0, 0.2, 0.4, 0.6, 0.8, 1], γ = [0, 2, 4, 6, 8, 10] and δ = [0, 2, 4, 6, 8,

10]. The last column shows, for the best parameters combination in each limit case, the box plot for different mean Ri of ZR
t� S (in red) and ZR

t� R (in blue). These plots

refer again to the application of this sampling method to the surface of A1.

https://doi.org/10.1371/journal.pone.0266004.g003
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Fig 4 shows how the best parameters combination is selected: for each β we individuate the

best values for γ and δ, then to determine β we select among these pairings the one correspond-

ing to the absolute highest d. Once the best parameters combination has been detected, we can

better understand what exactly makes the sampling better than a random extraction from the

total surface of the same number of points. Fig 5 shows for example the box plot of ZR
t� S and

ZR
t� R divided according to the roughness of the patches they describe. As expected, we can see

that plane patches (whose Ri tends to one) are reconstructed nearly equally with the sampling

and the random extraction, whereas for increasing roughness (Ri approaching zero) the sam-

pling results in Zernike vectors much closer to the ones obtained from the total surface, com-

pared to the random case. That said, it must be remembered that with the sampling we are

concentrating the nS points on the roughest zones. This means that with the sampling the

plane patches are described with fewer points than in the random case: the improvement for

the rough patches comes from a better surface reconstruction, while for plane patches it

derives from the fact that a smaller number of points is used to reach the same reconstruction.

Finally, Fig 6 shows an example of how the surface is described when all its points are con-

sidered versus when only some subsets -including increasing number of points- are selected,

with the sampling or randomly. When a small subset of points is used to reconstruct the sur-

face, the difference between the sampling or a random extraction of the same number of points

is clearly distinguishable. The more points are considered, the more the two selections become

similar.

Optimization of the sampling parameters selection

To make this sampling method of general utility, we identify the best combination of parame-

ters for different cases. Our aim is to provide the user with a list of possible sets of parameters

averaged over a large set of different proteins. In particular, we selected 70 protein-protein

Fig 4. Selection of the absolute best sampling parameters. A) d as a function of varying values of γ and δ. Each plot is obtained with a fixed value for β, and for all

the plots the same fixed value of α = 1.0 is used. The colouring is given by the d value. The plotted surfaces are obtained with an interpolation of the effectively

computed values, that were obtained with all the possible combination, for each β value, of γ = [0, 2, 4, 6, 8, 10] and δ = [0, 2, 4, 6, 8, 10]. B) For each plot on the left,

the point corresponding to the highest d is selected. The colouring is given by the β value (as described by the color-bar). The plotted surface is obtained from the

interpolation of these points, and shows, for all the δ-γ combinations the value of β that will result in the best sampling. The maximum of this surface (red points)

corresponds to the best sampling parameters.

https://doi.org/10.1371/journal.pone.0266004.g004
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complexes from [8] and for each of them only a single protein structure is considered for this

analysis.

Here, we report for each parameter the mean and standard error over the mean: β = 0.026

±0.019, γ = 0.026±0.019 and δ = 0.026±0.019. Interestingly, the β parameter appears to be com-

patible with zero. Finally, we compare the sampling obtained with the optimal parameters and

the one with the average parameters. The results are shown in Table 2.

Looking at the difference between the percentage of sampled points in the optimal and

averaged case (fifth column in Table 2) it seems that the latter is in many case a good approxi-

mation of the former. We note that since the sampling best parameters depend on the geome-

try of the surface, the optimal solution could be to associate the optimal set of parameters to

each class of proteins, even if we expect it to be a not trivial relationship worth of future

investigations.

Fig 5. Comparison between the best sampling and the random selection of points for patches with different roughness. A) On the left, an example of how a rough

patch is represented with all the points in the surface (whole patch), with only the points resulting from the sampling (sampled points) and with randomly extracted

points (random points). On the right, the same three representation cases for a plane patch. B) In red, the box plot for different ranges of patches’ roughness of ZR
t� S. In

blue, the box plot for different ranges of patches’ roughness of ZR
t� R. This is in the case of a sampling with parameters α = 1, β = 0, γ = 6 and δ = 0, whose combination

results in the highest value of d for the A1 surface.

https://doi.org/10.1371/journal.pone.0266004.g005

PLOS ONE A computational strategy for defining the minimal protein molecular surface representation

PLOS ONE | https://doi.org/10.1371/journal.pone.0266004 April 14, 2022 11 / 17

https://doi.org/10.1371/journal.pone.0266004.g005
https://doi.org/10.1371/journal.pone.0266004


Focus on protein-protein binding regions

The proposed sampling method is in principle applicable to any molecular surface, for exam-

ple for the study of protein-protein interactions. In this case, to be of practical utility, the pro-

cedure should be able to characterize the binding regions of protein complexes efficiently and

with a low computational cost, for evaluating the binding properties. To test whether our pro-

posed algorithm gives a set of points which optimizes the information of the local geometry of

the interacting regions, we look at the preservation of information in terms of Zernike vectors.

To do so, we select the interacting regions of four protein surfaces, which are randomly

selected from the dataset reported in [8], and define them as a set of vectors. Each vector corre-

sponds to a point i of the interacting molecular surface and is composed of the Zernike coeffi-

cients obtained by centering the patch on that point. Next, we select only a subset of the points

belonging to the interacting surfaces, in agreement with the proposed sampling algorithm,

Fig 6. Visualization of the 3D surfaces reconstruction. A) 3D reconstruction of the A1 surface from all its surface points. B) The three columns depict the

reconstruction of the same surface, with an increasing sampling density. In each column, the first row shows the reconstruction with a subset of the original

points selected with the sampling, whereas the second row shows the reconstruction with a subset that counts the same number of points selected with the

sampling, but in this case randomly extracted.

https://doi.org/10.1371/journal.pone.0266004.g006
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according to different parameters sets (having fixed α = 1 since in this case we have no interest

in a uniform restriction of the number of selected points). We then perform a Principal Com-

ponents Analysis (PCA) of the Zernike vectors associated to each binding site, in order to com-

pact the information into the essential space composed of the first two principal components

(whose explained variances are 0.54 0.57, 0.51 and 0.64). Fig 7 shows the surface points belong-

ing to the binding site (in blue) and the subset selected by the algorithm with the optimal

Table 2. Comparison between the best and the average set of parameters for 70 proteins.

PDB code Chain β γ δ Sampled points Missed points PDB code Chain β γ δ Sampled points Missed points

1E6E A 0 8 2 39 6 2W2X A 0 4 6 42 2%

1GVM E 0 6 2 44% 0% 2WY3 A 0.2 0 8 46% -3%

1GXD A 0 10 0 39% 7% 2XT2 A 0 0 10 47% -3%

1IXS A 0 6 0 47% -4% 2XTS A 0 2 8 44% 0%

1K2E A 0 2 8 46% -1% 2Y79 A 0 10 4 32% 12%

1K4R B 0 2 10 42% 3% 2ZBC F 0 0 8 52% -9%

1KM1 A 0.2 4 0 51% -8% 3AXY B 0 2 10 40% 3%

1LJ2 A 0 4 2 50% -8% 3DAL A 0 10 2 35% 9%

1M27 AB 0 10 10 28% 18% 3DFE A 0 6 6 38% 8%

1MAH A 0 0 10 46% -3% 3DRX B 0 6 0 47% -4%

1MTO C 0.2 4 4 40% 3% 3EPN A 0 2 6 48% -5%

1NVM A 0 6 4 40% 4% 3EUA G 0 0 10 47% -3%

1OPH A 0 4 10 38% 8% 3FBI B 0 6 0 47% -4%

1PZM A 0.2 2 4 46% -6% 3FN2 A 0 2 10 43% 3%

1QGE D 0 6 2 45% 1% 3FYB A 0 8 0 40% 3%

1R4C A 0 10 2 37% 10% 3GJN B 0 0 10 50% -3%

1WDX B 0 6 4 40% 4% 3GOR C 0 8 0 42% 2%

1XOU A 0 4 4 46% -3% 3H35 B 0 2 8 45% -1%

1YVI A 0 6 2 43% 0% 3H3B A 0 2 8 42% 0%

2AEP A 0 6 4 40% 4% 3HKL A 0 2 8 44% 0%

2DJF A 0.2 4 6 40% 7% 3I50 E 0 4 6 43% 2%

2E2P A 0 10 0 37% 7% 3IJM A 0 8 2 36% 6%

2GJ3 A 0 4 8 40% 5% 3IQ2 A 0.2 4 2 46% -2%

2ISJ C 0 2 10 41% 3% 3IUW A 0.2 4 2 48% -1%

2IU9 A 0 6 0 48% -4% 3IVP A 0 2 4 53% -12%

2J98 A 0 4 6 41% 2% 3L0R A 0 0 8 52% -9%

2O42 A 0 8 0 41% 3% 3M65 A 0 2 6 49% -6%

2OZN A 0 6 0 45% -4% 3MKR A 0 6 4 41% 4%

2P10 B 0 2 8 47% -1% 3MQ0 A 0 4 6 42% 1%

2P49 A 0 2 6 50% -4% 3MTS B 0 10 2 32% 10%

2PG1 F 0 2 10 42% 4% 3N0V A 0 6 0 47% -4%

2RU4 A 0.2 8 4 32% 12% 3OL3 A 0 8 0 40% 3%

2V9P G 0 6 6 36% 7% 3R1F A 0 10 4 33% 12%

2VMK A 0 6 0 48% -5% 3RHU A 0 10 2 33% 10%

2VVX A 0 4 6 43% 2% 3TUZ E 0 2 8 47% -1%

For each protein, the “β”, “γ” and “δ” columns report the best combination of parameters. The “Sampled points” column shows the percentage of selected points on the

surface, while the last column “Missed points” displays the percentage of points that are lost (if the value is positive) or added (if it is negative) when the sampling is

performed with the mean parameters β = 0, γ = 4, δ = 5.

https://doi.org/10.1371/journal.pone.0266004.t002
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parameters (in red), for each one of the four surfaces. The fourth column shows the same

points coloured according to their Ri; as expected, the sampling is more dense where the sur-

face is more rough. Next, we compute the percentage of space occupied in the PCs plot by the

selected points compared to that spanned by the total points. The results are shown in the

third column of Fig 7. The optimal parameters samplings (marked in red) correspond to the

situation from which a higher number of sampled points starts conveying less information in

the representation of the binding regions in terms of the Zernike vectors space.

Fig 7. Principal component analysis of the total and sampled points Zernike vectors for four binding regions. For each of the four considered proteins, the

PCA of the Zernike vectors describing the interacting region is performed. The first column shows the projection on the first two PCs of the Zernike vectors of

each point in the patch (in blue) and of the points selected with the optimal sampling (in red), with the respective marginal density distributions. The percentage of

sampled over total points is reported in the legend. The bar plots in the second column show the percentage of points sampled with different sets of parameters; the

bar in the box corresponds to the optimal set. In the third column the percentage of spanned PCs space as a function of the number of sampled points for different

sets of parameters is shown. The last column reports the points in the PCs space colored according to the roughness of the centered patch.

https://doi.org/10.1371/journal.pone.0266004.g007
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Conclusion

In this paper, we present a new sampling method to reduce the number of points needed to

describe a molecular surface. Given the importance of the definition of the molecular surface

for the study of the interactions between molecules, we design a new algorithm to efficiently

select the points of the original surface that minimize the loss of information in terms of

describing the local shape of surface regions, which can potentially interact with a molecular

partner. To test its performance, we use a recently developed method based on 2D Zernike
polynomials, capable of describing the shape properties of portions of molecular surfaces. By

means of Zernike, we verify if the patches centered around the sampled points are indeed the

most representative of the surface. The sampling of these points is determined by Eq 7 and,

when the best parameters are selected, results in a satisfactory reconstruction of the surface

that needs only a subset of the total surface’s points.

To determine how accurate the method is in selecting a subset of surface points, we com-

pare the results of the sampling with what is obtained with a random selection of the same

number of points. This is done in terms of the mean distance between the Zernike vectors that

describe a patch containing all the surface points and the ones that describe the same region,

but containing this time only the points selected with the sampling or randomly.

We presented our novel sampling strategy on a case study of a small protein and then

extended it on a set of 70 proteins, comparing the results coming from the optimal sampling

with those obtained with the average value of the parameters.

Finally, to verify the applicability of our procedure, we showed the sampling ability to char-

acterize binding sites of protein complexes in a set of cases. Thanks to the reduction of the

points that have to be considered, the computational cost of the following analysis on the sur-

faces is reduced. Therefore, the method can be applied to (i) macromolecules composed of a

high number of residues, (ii) the analysis of the molecular surface of frames obtained from

molecular dynamics simulations, and (iii) molecular surfaces calculated at high resolution for

which a high number of points is required for a more detailed description. Moreover, in prin-

ciple the method can be adapted to other properties besides curvature, such as electrostatics or

hydrophobicity, since these are described with numerical values, that can be assigned to each

surface point. This would mean sampling the points maximizing the conservation of different

properties (in addition to morphological ones) and we are working on this, since the Zernike

formalism can be applied to describe any function.
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