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Abstract. Given an undirected graph, we study the capacitated vertex separator problem
that asks to find a subset of vertices of minimum cardinality, the removal of which induces a
graph having a bounded number of pairwise disconnected shores (subsets of vertices) of
limited cardinality. The problem is of great importance in the analysis and protection of com-
munication or social networks against possible viral attacks and formatrix decomposition al-
gorithms. In this article, we provide a new bilevel interpretation of the problem andmodel it
as a two-player Stackelberg game in which the leader interdicts the vertices (i.e., decides on
the subset of vertices to remove), and the follower solves a combinatorial optimization prob-
lem on the resulting graph. This approach allows us to develop a computational framework
based on an integer programming formulation in the natural space of the variables. Thanks
to this bilevel interpretation, we derive three different families of strengthening inequalities
and show that they can be separated in polynomial time. We also show how to extend these
results to a min-max version of the problem. Our extensive computational study conducted
on available benchmark instances from the literature reveals that our new exact method is
competitive against the state-of-the-art algorithms for the capacitated vertex separator prob-
lem and is able to improve the best-known results for several difficult classes of instances.
The ideas exploited in our framework can also be extended to other vertex/edge deletion/
insertion problems or graph partitioning problems bymodeling them as two-player Stackel-
berg games and solving them through bilevel optimization.

Funding: This work was supported by the Air Force Office of Scientific Research [Grant FA8655-20-1-7019
to E. Malaguti and P. Paronuzzi].

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2021.2110.

Keywords: bilevel optimization • Stackelberg games • graph decomposition • branch-and-cut • Benders decomposition

1. Introduction
Given a graph, we are interested in finding the small-
est subset of its vertices to remove such that the re-
maining graph has a bounded number of pairwise
disconnected shores (subset of vertices) of limited car-
dinality. Formally, we study the following problem:

Definition 1 (Capacitated Vertex Separator Problem).
Given a simple undirected graph G � V,E( ) and two in-
teger values k,b ∈ N,k ≥ 2, the capacitated vertex separator
problem (CVSP) asks for a partition of V into k+ 1 dis-
joint subsets V � V1,V2, : : : ,Vk{ }∪S, where Vi (i � 1, : : : , k)
are denoted as shores and S is denoted as separator such
that v ∈ Vi and w ∈ Vj with i, j ∈ {1, : : : , k}, j > i implying
edge vw ∉ E; the size of each shore is bounded by b; empty
shores are allowed, and the cardinality of S is minimized.

In Figure 1, we give an example graph and provide an
optimal CVSP solution for k � b � 3. The separator is
composed by the gray vertices, that is, the set S � {v8,v9}.
Dashed lines represent the edges that are incident to the
removed vertices. After the removal of S, the graph is
partitioned into three pairwise disconnected shores,
namely V1 � {v1, v2, v7} (first shore), V2 � {v3, v4} (se-
cond shore), andV3 � {v5, v6, v10} (third shore).

Notice that in the definition of the CVSP, the param-
eter k is an upper bound on the number of shores, since
empty shores are allowed. Hence, in some extreme cases
(e.g., complete graphs), it may happen that the removal
of S results in a graph having a single shore that consists
of a connected component of size b (or smaller).1

The CVSP is equivalent to the matrix decomposition
problem studied by Borndörfer et al. (1998). Indeed,
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it can be viewed as the problem of assigning the rows
of a matrix A to k disjoint blocks. The objective is to re-
move a minimum number of rows from A and to as-
sign the remaining rows to the blocks so that (i) each
row is assigned to at most one block, (ii) each block
contains at most b rows, and (iii) no two rows in dif-
ferent blocks have nonzero entries in the same col-
umn. The problems are equivalent by defining a bin-
ary matrix A as having a row for each vertex of G and
a column for each edge of G. Each column has two
nonzero entries at the rows corresponding to the end
points of the associated edge (whereas all other entries
are 0). Conversely, given A, we define a vertex in G
for each row and an edge for each pair of vertices if
there is a column in A with nonzero entries in the cor-
responding rows. The problem is NP-hard, as dis-
cussed by Borndörfer et al. (1998). The matrix decom-
position problem has relevant applications in parallel
computing, namely, in the parallel solution of linear
systems of equations. The number of shores k corre-
sponds to the number of parallel machines on which
the subsystems of equations are solved. At the same
time, the bound b guarantees that the workload as-
signed to each of the machines is balanced.

Another relevant CVSP application (in which k �
|V|) concerns the protection of communication or so-
cial networks against viral attacks. We assume that
the decision maker has resources to vaccinate/protect
some vertices in the network, without knowing at
which vertex the attack will take place. Such situations
are commonly analyzed in epidemic control (Tao et al.
2006) or in preventing the spread of fake news in so-
cial networks (see the work of Baggio et al. 2021 and
further references therein). An attack can suddenly oc-
cur at any vertex of the network, and the virus can
spread from the attacked vertex to its neighbors, as
long as the neighbors are not protected/vaccinated.
To contain the virus, one has to isolate the infected
community from the rest of the network. At the same
time, the maximum number of infected vertices need
to be kept under control. In this context, the vertex
separator found by the CVSP determines the smallest
possible set of “critical” vertices that need to be pro-
tected/vaccinated in order to reduce the network

vulnerability against the viral attack. The obtained
CVSP solution guarantees that the number of poten-
tially infected vertices (corresponding to the largest
connected subgraph of the network once protected
vertices are removed) is bounded by the parameter b.

The CVSP is closely related to another interdiction
problem in which the available resources for network
protection are limited, and the goal is to find a subset
of critical vertices to protect so that the size of the larg-
est connected component in the remaining graph is
minimized (Albert et al. 2000, Shen and Smith 2012).
A (maximal) connected component of an undirected
graph is given by its connected subgraph such that no
path exists between a vertex outside the subgraph and
a vertex belonging to it. More formally, this problem
is defined as follows:

Definition 2 (Minimize the Maximal Connected Com-
ponent Problem). Given a simple undirected graph
G � (V, E) and an integer budget B ∈ N, the maximal
connected component problem (MinMaxC) asks for
finding a subset of vertices S ⊂ V to remove from G
such that |S| ≤ B and such that the number of vertices
of the largest connected component in the remaining
graph is minimized.

We notice that in the MinMaxC, the size of con-
nected components that are strictly smaller than the
largest one does not play any role. In addition, there is
no need to pack the connected components into k
shores. Finally, the MinMaxC is strongly NP-hard
(Shen and Smith 2012). Besides the absence of this
“packing” aspect, another major difference between
the CVSP and the MinMaxC is in the type of objective
function; instead of dealing with a min-max objective
function, in the CVSP we are minimizing the number
of vertices to be removed (i.e., according to the Min-
MaxC terminology of Shen et al. (2012), we are mini-
mizing the budget) while making sure the largest
component in the remaining graph will contain no
more than b vertices. Although the two problems are
different, we demonstrate that, thanks to the bilevel
interpretation of the problem, many ideas developed
for the CVSP can be directly applied to the MinMaxC
as well.

1.1. Notation
Let K denote the set of integers {1, : : : , k}. Given a sim-
ple undirected graph, G � (V,E) for each edge wv ∈ E,
we say that w and v are neighbors. Let N(w) � {v ∈
V|wv ∈ E,w≠ v} denote the neighborhood of w. For each
edge vw ∈ E, we define two arcs, (v, w), (w, v), and A
denotes the set of all of these arcs. Given a vertex
v ∈ V, we indicate by δ−(v) and δ+(v) its subset of in-
coming and outgoing arcs, respectively, from A. A
subset of vertices W ⊂ V is a clique of G if any two ver-
tices of W are neighbors. Given a tree T, we indicate

Figure 1. (Color online) An Example GraphG for the Capaci-
tated Vertex Separator Problem (CVSP), with 10 Vertices and 13
Edges
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by degT(v) the number of edges incident to v in T. Giv-
en a subset of edges, E′ ⊆ E of G, we say that E′ is
spanning G if for every vertex v of G there is at least an
edge in E′ incident with v. GivenW ⊂ V, the subgraph
G[W] � (W,E[W]) is the graph induced by W, which
contains all vertices ofW and all edges E[W] ⊂ E, both
of whose ends belong to W. Given a connected sub-
graph C of G, the vertex set of C is denoted by V (C).
Vectors are denoted in boldface; 0 and 1 denote the
null vector and a vector of 1 entries, respectively.

1.2. Paper Contributions
This article studies a canonical IP formulation for solv-
ing the CVSP in which several new families of valid in-
equalities are derived by exploiting a “bilevel” point
of view. The problem is seen as a two-player Stackel-
berg game in which a leader interdicts the network by
removing some of its vertices, and a follower deter-
mines the maximum connected component in the remain-
ing graph (we refer the interested reader to, for ex-
ample, Baïou and Barahona (2016), Brotcorne et al.
(2008), Casorrán et al. (2019), and Cormican et al.
(1998) for other relevant problems related to Stackel-
berg games). In addition, the leader has to make sure
that the connected components can be packed in at
most k shores, each of the size at most b. We first pro-
vide a basic canonical formulation and show how to
use the value function reformulation of the follower’s
optimization problem to derive new sets of valid in-
equalities. The value function reformulation is con-
vexified in three different manners; the first one adds
penalties for the violation of some constraints in the
objective function, the second one is a Benders refor-
mulation derived from an extended formulation, and the
third one exploits necessary conditions on the number
of vertices to remove in order to disconnect a graph.
Theoretical analysis reveals that Benders inequalities are
dominated by the first family of inequalities, whereas
there is no domination between the second and third.
We show that the new inequalities can be separated at
integer points in polynomial time and explain the details
of an efficient branch-and-cut implementation. We also
show how to extend these results to a min-max version
of the problem. A computational study that is per-
formed on a large set of publicly available benchmark
instances shows that our new exact method is competi-
tive against the state-of-the-art branch-and-price proced-
ure for the CVSP proposed by Bastubbe and
Lübbecke (2020). Moreover, we are able to improve
the best-known results for several difficult classes of
instances and to provide optimal solution values for
60 previously unsolved instances from the literature.

The paper is structured as follows. In the remainder
of this section, we provide an overview of the related lit-
erature and illustrate several optimal solutions for a real-
world social network. In Section 2, we present a compact

integer programming formulation for the CVSP. In
Section 3, we develop our new formulation in the nat-
ural space of the variables obtained through a bilevel
interpretation of the problem. In this section, we pre-
sent several families of valid inequalities whose separ-
ation procedures are presented in Section 4. In Section
5, we discuss how to extend the bilevel interpretation
and the developed inequalities to a min-max version of
the problem. In Section 6, we discuss extensive compu-
tational results comparing a newly developed branch-
and-cut algorithm with the state-of-the-art algorithms
for the CVSP, and we also present results for the con-
sidered min-max version. Finally, in Section 7, we pre-
sent the conclusions of our work and some future lines
of research.

1.3. Literature Review
In this section, we provide a review of the exact algo-
rithms proposed in the CVSP literature, and we pre-
sent closely related problems.

To the best of our knowledge, the first exact algo-
rithm for the CVSP, addressed as the matrix decompos-
ition problem, has been proposed by Borndörfer et al.
(1998). An integer programming (IP) formulation is pro-
posed, and a branch-and-cut algorithm, based on poly-
hedral investigations, has been designed. The main
motivation of the study was to verify whether the con-
straint matrix of a linear or integer program can be de-
composed into the so-called bordered block diagonal form
(see also Bergner et al. 2015 for further details). Recent-
ly, an alternative exact algorithm for the CVSP has
been proposed by Bastubbe and Lübbecke (2020). In
this paper, the CVSP has been called the capacitated hy-
pergraph vertex separator problem, and a branch-and-price
algorithm has been designed based on specialized algo-
rithms to solve the pricing problems. In addition, a
branching scheme tailored for the problem is proposed
and enhanced by a number of speed-up techniques. It
is worth mentioning that, even though Bastubbe and
Lübbecke (2020) defined the problem on hypergraphs,
an equivalent problem defined on simple graphs is ob-
tained by replacing each hyperedge with a clique. We
compare the computational performance of this branch-
and-price algorithm with our newly developed branch-
and-cut algorithm in Section 6.

Concerning the MinMaxC, the problem has been in-
troduced by Albert et al. (2000), who proposed a
greedy heuristic in which the vertices are sequentially
removed from the network, starting with those with
the highest degrees. Shen et al. (2012) introduced an
exact approach based on an extended MIP formula-
tion and a family of valid inequalities. A dynamic pro-
gramming procedure that runs in polynomial time on
trees and series-parallel graphs can be found in the
work of Shen and Smith (2012). These authors also
showed that for the problem variant in which each

Furini et al.: The Bilevel Combinatorial Structure of the Capacitated Vertex Separator Problem
Operations Research, 2022, vol. 70, no. 4, pp. 2399–2420, © 2021 INFORMS 2401

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
1.

10
0.

59
.1

94
] 

on
 0

7 
Se

pt
em

be
r 

20
23

, a
t 0

3:
42

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



vertex is associated with a nonnegative weight, and
the goal is to minimize the maximum-weighted con-
nected component in the remaining graph, the prob-
lem becomesNP-hard even on trees.

Another problem related to the CVSP is the k-vertex
cut problem. Formally, a vertex cut is a set of vertices
whose removal disconnects the graph into several con-
nected components. If the number of connected com-
ponents is at least k, this set is called a k-vertex cut.
Given a graph G, a positive weight cv for each vertex
v ∈ V, and an integer k ≥ 2, the k-vertex cut problem
(k-VCP) is to find a k-vertex cut of minimum weight.
The k-VCP has been object of research in recent years,
and we address the interested reader to, for example,
the work of Cornaz et al. (2019), where an exact
branch-and-price algorithm has been proposed. Re-
cently, Furini et al. (2019) proposed a branch-and-cut
algorithm for the k-VCP, exploiting a bilevel point of
view of the problem, which allowed us to derive a val-
id IP formulation in the natural space of the variables
and to beat state-of-the-art results achieved by Cornaz
et al. (2019). One of the main differences between the
k-VCP and the CVSP is that no capacity restriction on
the size of the components is considered in the former
one. In addition, the CVSP imposes an upper bound k
on the number of shores, whereas for the k-VCP the
value k represents the lower bound on the number of
connected components obtained after the vertices be-
longing to the k-vertex cut are removed. For these rea-
sons, the two problems are structurally very different,
and even though they both can be seen through bilevel
lenses, there is no result for the k-VCP that straightfor-
wardly translates into a related result for the CVSP.

Moreover, the optimal solutions of the k-VCP are com-
prised of k connected components that can be very im-
balanced, and hence, they are of little use for the prac-
tical applications that motivate our research.

Finally, the CVSP is also related to the vertex separ-
ator problem (VSP), considered by de Souza and Balas
(2005a, b). In the VSP, we are given an integer b ∈ N

and a cost cv ∈ N associated with each vertex v ∈ V.
The VSP asks for a partition of V into three disjoint
nonempty subsets, V1, V2, and S, where V1 and V2 are
the shores of the separator S such that v ∈ V1 and w ∈ V2

imply edge vw ∉ E, the size of each shore is bounded
by b, and the function Σv∈S cv is minimized. The VSP is
NP-hard even for planar graphs (Fukuyama 2006) or
maximum degree 3 graphs (Bui and Jones 1992), and
it has several applications for different connectivity
problems (we refer the interested reader to Djidjev
(2000), Garg et al. (1999), and Lipton and Tarjan (1979)
and to de Souza and Balas (2005b) for a survey of such
applications); one of the most important ones is re-
lated to the efficient solution of linear systems (Heath
et al. 1991, Lipton and Tarjan 1977).

1.4. Examples of Optimal Solutions
In this section, we depict some examples of optimal
solutions of the CVSP and of the MinMaxC for a clas-
sical social network from the literature. We consider
the instance introduced by Zachary (1977) that con-
sists of a network modeling the interactions of a uni-
versity-based karate club. This network has 34 vertices
and 78 edges, where the vertices represent active
members of the club and the edges represent strong
interactions between the members.

Figure 2. (Color online) Optimal CVSP Solutions: In Part (a) with k � 2 and b � 17, in Part (b) with k � 3 and b � 12, and in Part
(c) with k � 4 and b � 9
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In Figure 2, we report three optimal solutions of the
CVSP with different values for the maximum number
of shores k, that is, k ∈ {2, 3, 4}, and we set b � 
 |V|=k�.
The vertices belonging to the separators are depicted
with gray circle and their incident edges are depicted
with dashed lines. The vertices belonging to the differ-
ent shores are depicted with different colors and dif-
ferent shapes. In Figure 2(a), for k � 2 and b � 17, the
size of the largest connected component is 17, and
there is one more disconnected shore of 13 vertices. In
Figure 2(b), for k � 3 and b � 12, the size of the largest
connected component is 10, and there are three dis-
connected shores with 11, 11, and 8 vertices, respect-
ively. Finally, Figure 2(c), for k � 4 and b � 9, shows
that the size of the largest connected component is 8,
and there are four disconnected shores of size 9, 9, 6,
and 6, respectively. We notice that the size of the opti-
mal separator is the same for b ∈ {12, 17}, whereas it
increases by just one unit for b � 9. This can be attrib-
uted to the small-world effect and scale-free property
of real-world networks (Watts and Strogatz 1998, Tao
et al. 2006), as opposed to regular or randomly gener-
ated networks. These results are in line with the obser-
vations of Albert et al. (2000); in homogeneous net-
works, all vertices have approximately the same
number of links, and hence, they all contribute equally
to the connectivity of the network. However, the
power-low distribution of vertex degrees in scale-free
networks implies that targeting of a relatively small
number of the “most-critical” vertices may significant-
ly reduce the connectivity of the network.

We observe similar effects when solving the Min-
MaxC; three optimal solutions of the MinMaxC with
different budget levels are reported in Figure 3.

We depict with blue diamonds the vertices belong-
ing to the largest connected component and in white
the remaining vertices. For B ∈ {2, 3, 4}, the size of the
largest connected component reduces from 34 to 24,
20, and 10, respectively. Hence, a minimal increase in
the budget B allows for a significant reduction of the
largest connected component. Because of the scale-
free property of such networks, one might be tempt-
ed to apply an intuitive approach in which the most-
connected vertices (i.e., those with the highest degree)
should be removed first, as suggested, for example,
by Albert et al. (2000). However, Figure 3(a) illus-
trates that it is not always true that optimal separators
contain the highest-degree vertices (i.e., the degree of
vertex 2 is only six). Moreover, it has been shown that
a greedy heuristic in which the vertices are removed
based on their degrees can lead to solutions in which
the size of the largest component can be arbitrarily
bad when compared with the value of the optimal so-
lution (Shen et al. 2012).

2. A Compact Integer Programming
Formulation

A first IP formulation for the CVSP has been intro-
duced by Borndörfer et al. (1998), who defined a bin-
ary variable ξiv for each vertex v ∈ V and each integer
i ∈ K � {1, 2, : : : , k}, such that ξiv � 1 if vertex v belongs
to the shore Vi and 0 otherwise. In this formulation,
the vertices that remain unassigned to any of the
shores (i.e., for which ξiv � 0, for all i ∈ K), are the ones
defining the separator S. This is why instead of mini-
mizing the cardinality |S| of the separator, one can
equivalently maximize the number of vertices in the

Figure 3. (Color online) Optimal MinMaxC Solutions: In Part (a) with B � 2, in Part (b) with B � 3, and in Part (c) with B � 4
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shores (i.e., the vertices in ∪i∈KVi), thus obtaining the
following IP formulation:

max
∑
i∈K

∑
v∈V

ξiv (1a)

∑
i∈K

ξiv ≤ 1 v ∈ V (1b)

ξiw + ∑
j∈K\ i{ }

ξjv ≤ 1 i ∈ K, wv ∈ E (1c)

∑
v∈V

ξiv ≤ b i ∈ K (1d)

ξiv ∈ 0, 1{ } i ∈ K, v ∈ V: (1e)

The objective function (1a) maximizes the number of
vertices assigned to the shores of the separator. Con-
straints (1b) impose that each vertex is assigned to at
most one shore, and (1c) imposes that the shores in-
duce pairwise disconnected subgraphs. Constraints
(1d) impose that the capacity of each shore is not ex-
ceeded, that is, the number of vertices assigned to
each shore is not larger than the capacity b. This for-
mulation is known to suffer from symmetries, given
that any permutation of indices {1, : : : ,k} results in the
same feasible (LP-)solution.

Bastubbe and Lübbecke (2020) reformulated this
model by defining an edge clique cover Q of G. An edge
clique cover is a collection Q of cliques of G such that
for each edge wv of E there exists a clique Q ∈Q with
w,v ∈Q. The model is then obtained by introducing a
binary variable ψi

Q for each integer i ∈ K and each cli-
que Q ∈Q such that ψi

Q � 1 if some vertex v ∈Q be-
longs to the shore i and 0 otherwise. Constraints (1b)
and (1c) are then replaced by∑

i∈K
ψi
Q ≤ 1 Q ∈Q, (2a)

ξiv −ψi
Q ≤ 0 i ∈ K, Q ∈Q, v ∈Q: (2b)

Constraints (2a) impose that each clique Q ∈Q is as-
signed to at most one shore, whereas constraints (2b)
impose that the vertices can be assigned to a shore if
and only if they belong to a clique Q ∈Q selected for
the shore.

Borndörfer et al. (1998) strengthened formulation
(1a)–(1e) through several valid inequalities, and
they solved it by means of a tailored branch-and-cut
algorithm. Among the inequalities introduced in their
work, the so-called block-invariant inequalities are inva-
riant under a permutation of the indices of the shores
i ∈ K (called blocks by Borndörfer et al. 1998). These in-
equalities can be expressed for aggregated variables
defined as

zv �
∑
i∈K

ξiv, v ∈ V,

which define whether a vertex v is assigned to a shore
(zv � 1) or is removed from G (zv � 0); that is, it is in

the separator S. In the next section, we present an IP
formulation based on the complement of these varia-
bles and recall some of the block-invariant inequalities
that we exploit to strengthen our formulation.

3. A Canonical IP Formulation
In this section, we study an IP model for the CVSP that
exploits the complement of the aggregated variables
zv, v ∈ V introduced in the previous section. Our goal
is to provide a “thin” formulation that lives in the nat-
ural space of decision variables, namely those constitut-
ing the objective function. This will allow us to tackle
more challenging (and potentially denser) instances,
using only a linear number of decision variables.

To this end, for each vertex v ∈ V, a binary variable
xv is defined such that xv � 1 if vertex v belongs to the
separator S and 0 otherwise. Given an arbitrary subset
of vertices W ⊆ V, the connected components C in
G[W] can be viewed as items of weight |V(C)|, that is,
the number of vertices in the component. Let σ(W) be
equal to the number of bins of size b needed to pack
the connected components of G[W]. If the size of a
connected component is larger than b, the packing is
not feasible, and we set σ(W) � ∞. The CVSP can be
then modeled as follows:

min
∑
v∈V

xv (3a)

∑
v∈W

xv ≥ 1 W⊆V : σ W( ) > k (3b)

xv ∈ 0, 1{ } v ∈ V, (3c)

where the objective function (3a) minimizes the
number of deleted vertices, that is, the vertices in the
separator S. Constraints (3b), denoted as bin-packing
constraints in the following, guarantee that any vertex
separator S (encoded by x variables) that does not al-
low for “packing” of the connected components of
G[V\S] into k shores of size b has to be discarded. The
bin-packing constraints model the fact that if more
than k bins must be used for a vertex subset W ⊆ V,
the connected components induced by W cannot be
“packed” into the k shores of capacity b, so at least one
vertex in W must belong to the separator. This expo-
nential-size family of constraints has been proposed by
Borndörfer et al. (1998), who showed that their separ-
ation problem corresponds to solving the bin-packing
problem (BPP). The BPP is strongly NP-hard, and we
refer the reader to the work of Delorme et al. (2016) for
a recent survey on the problem.

As a special case, if for a vertex subset W⊆V there
exists a component C in G[W] such that |V(C)| > b
(which can be determined in polynomial time), the so-
lution is infeasible, and hence, at least one vertex from
C must belong to the separator. It is not difficult to see
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that in the latter case, the associated bin-packing con-
straints (3b) are dominated by∑

v∈C
xv ≥ 1, C⊆W : C connected and |V C( )| � b+ 1:

(4)
Nevertheless, constraints (4) are not sufficient to build a
valid formulation unless the value of k is such that the
condition on the maximum number of shores is not
binding (i.e., any solution satisfying constraints (4) also
satisfies constraints (3b)). It is not hard to see that this is
the case for any k ≥ |V|, whatever the value of capacity
b. The following proposition provides a tighter result:

Proposition 1. Any solution satisfying constraints (4) de-
fines a separator S and a graph G[V\S] whose connected
components can be packed into at most k � 2(|V| − 1)=(b+ 1)
bins for odd values of b and k � 2|V|=(b+ 2) bins for even
values of b, respectively.

Proof. Let S be a separator, satisfying constraints (4).
Let us define a BPP instance with bins of capacity b

for packing the connected components of G[V \S] and
such that the number of necessary bins in the largest.
This happens when all (but possibly one) item weights
just exceed b=2, that is:

• the item weights are all equal to b11=2 when b is
odd; and

• all of the item weights but one are b=211, and one
is possibly b=2, when b is even.

We can now compute the overall weight that is
packed in the two cases and set it equal to the residual
number of vertices |V| − |S|:

b+ 1
2

k � |V| − |S| if b is odd;

b
2
+ 1

( )
k− 1( ) + b

2
� |V| − |S| if b is even:

Because at least one vertex must be removed in a non-
trivial instance of the CVSP, we can impose |S| � 1,
and the result follows. w

Besides its sparsity, another major advantage of
model (3) compared with the formulation (1) from Sec-
tion 2 is that we get rid of the symmetries (i.e., the de-
generacy caused by index permutations). This comes at
a cost of having an NP-hard procedure to check feasi-
bility of any integer point of the branch-and-cut tree.

To (partially) overcome this difficulty, in the remain-
der of this section we propose new valid inequalities in
the space of x variables that can be used to enhance this
basic model and whose separation can be performed in
polynomial time. To derive these inequalities, we ap-
proach the problem from a bilevel perspective.

3.1. A Bilevel Interpretation of the Problem
Bilevel optimization has recently attracted a lot of at-
tention from the research community, not only

because of its relevance for the real-world applications
but also because of the recent advancements in the de-
velopment of off-the-shelf MILP solvers. The latter
ones are the major driving force for the methods of
computational optimization to be pushed to the next
frontiers (Dempe and Zemkoho 2013, Fischetti et al.
2017, Lozano and Smith 2017, Tahernejad et al. 2020,
Kleinert et al. 2020). We propose a novel way of inter-
preting the CVSP as a defender-attacker game. Such
problems are typically solved using the tools and
methods of bilevel optimization (Borrero et al. 2019,
Fischetti et al. 2019, Baggio et al. 2021). Our ideas
based on bilevel optimization allow us to improve the
modeling power and understanding of the CVSP.

The CVSP can be viewed as a two-player Stackelberg
game, that is, a game where players take decisions se-
quentially and are denoted as a leader (i.e., defender)
and a follower (i.e., attacker). In the first step, the leader
“interdicts” the follower by deleting (i.e., protecting,
vaccinating) some vertices from the graph. In the fol-
lowing step, the follower determines a maximum con-
nected component in the remaining graph. Hence, from
the perspective of the leader, the problem is to find the
smallest subset of vertices to delete from G so that the
size of the optimal follower solution (i.e., the number of
vertices in the maximum connected component in the
remaining graph) is at most b. For binding values of k
(cf. Proposition 1), we are interested in finding at most
k shores; hence, the leader solution must additionally
satisfy the bin-packing constraints (3b).

Independently on the value of k, using the value func-
tion reformulation for the follower, we can impose the
following condition:

U x( ) ≤ b, (5)

where U(x) denotes the optimal solution value of the
follower subproblem for a given vector x. In general,
the value function U(x) does not need to be convex.
Hence, one possible way to deal with the problem and
to derive a single-level problem reformulation is to try
to convexify the value function. In the following, we
discuss two possible ways to convexify this function
and derive valid inequalities.

3.1.1. Convexification by Penalization: Component In-
equalities. Given a binary realization of the leader var-
iables x ∗, we denote by V(x ∗) ⊂ V the subset of inter-
dicted vertices and by G ∗ the interdicted graph, which is
the subgraph of G induced by V\V(x ∗). The value
U(x ∗) can be calculated in O(|E|) time by simply re-
moving the vertices v ∈ V(x ∗) and searching for the
largest connected component in the resulting graph
G ∗. Nevertheless, because our next goal is to use the
value function reformulation to derive valid linear
constraints in the x space, in the following we are pro-
viding a sparse IP formulation for finding U(x ∗).
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In this follower’s subproblem, for each vertex v ∈ V, a
binary variable yv is defined such that yv � 1 if vertex
v belongs to a maximum connected component and 0
otherwise, recalling that a maximum connected com-
ponent has to be determined in the interdicted graph.
The follower IP formulation reads

U x ∗( ) �max
∑
v∈V

yv (6a)

yv ≤ 1− x ∗
v v ∈ V (6b)∑

u∈F
yu ≥ yw + yv − 1 wv ∉ E,F ∈ Fwv (6c)

yv ∈ 0, 1{ } v ∈ V: (6d)

The objective function (6a) maximizes the number of the
selected vertices. Constraints (6b) ensure that the inter-
dicted vertices cannot be selected. Constraints (6c) im-
pose that the optimal follower solutions correspond to
connected components (in the interdicted graph G ∗).
Given a nonadjacent pair of distinct vertices w,v ∈ V, a
set F ⊂ V is called v-w-separator if and only if removing F
from G disconnects w from v. These constraints are then
defined with respect to the collection Fwv of all of the
(minimal) w-v-separators for each pair of vertices wv ∉ E.
More precisely, constraints (6c) impose that if a pair of
vertices w and v (wu ∉ E) is selected, at least one vertex
in each F ∈ Fwv must be selected as well (see, e.g., the
work of Fischetti et al. 2017 for further details).

We aim at finding a reformulation of the follower’s
subproblem whose feasible space does not depend on
x ∗, with an adapted objective function, so that for any
choice of x ∗, the two problems provide the same opti-
mal solution. In our setting, we apply convexification by
penalization, as it is done, for example, by Brown et al.
(2006), Cormican et al. (1998), and Fischetti et al. (2019).
The major goal is to remove interdiction constraints
(6b) from the follower’s subproblem and to introduce
penalty terms Mvx ∗

vyv in the objective function instead
so that the existence of the optimal follower solution
satisfying yvx ∗

v � 0 is guaranteed. The reformulation can
be obtained as stated in the following observation.

Observation 1. The follower subproblem can be re-
stated as

U x ∗( ) � max
∑
v∈V

yv −
∑
v∈V

Mv x ∗
v yv : (6c), (6d)

{ }
(7)

where Mv are sufficiently large values that guarantee
that yv � 0 whenever x ∗

v � 1.

With the above observation and a proper choice of
multipliersMv, v ∈ V, the value function U(x) becomes
a piece-wise convex function defined as

U x( ) �max
y ∗∈Y

∑
v∈V

y ∗
v −

∑
v∈V

Mv y ∗
v xv,

where Y denotes all feasible points of the follower
subproblem defined by constraints (6c) and (6d).

Therefore, y ∗ is the indicator vector of the vertex sets
V(C), C ∈ C, where C is the collection of the connected
subgraphs of G.

Hence, constraint (5) can now be replaced by the
following family of inequalities:∑

v∈V C( )
1 −Mvxv( ) ≤ b, C ∈ C: (8)

The new constraints (8) have been obtained by replac-
ing in (5) the expression of U(x) by the objective func-
tion of (7). They can be equivalently restated as∑

v∈V C( )
Mvxv ≥ |V C( )| − b C ∈ C, (9)

imposing that, for each connected subgraph C of G,
the sum of the Mv coefficients associated with the in-
terdicted vertices is greater than or equal to the car-
dinality of the vertex set of C, denoted as V(C), minus
the capacity b.

A straightforward tightening of the coefficients gives∑
v∈V

min |V C( )| − b , Mv
{ }

xv ≥ |V C( )| − b C ∈ C:

(10)

In order to obtain a tight formulation, the values of
Mv should be as small as possible. Finding the tightest
possible coefficients Mv is a nontrivial task, and the
existing literature on bilevel optimization provides
recipes for their calculation under some very specific
assumptions related to the follower’s subproblem. For
example, Wood (2010) and Brown et al. (2006) assume
that the follower’s subproblem is a linear program,
whereas Fischetti et al. (2019) provide a more general
result for the discrete and continuous follower’s sub-
problems satisfying the downward monotonicity pro-
perty. Other results can be found for the case in which
the follower solves a graph optimization problem that
satisfies vertex- or edge-hereditary property (see Furi-
ni et al. 2019). Unfortunately, none of these assump-
tions are satisfied by the follower’s subproblem de-
fined in (6). In the following, we discuss how to
derive tight inequalities for this nontrivial situation.

Given a tree T with |V(T)| > b, let compT(v) denote
the cardinality of the vertex set of a largest connected
component obtained after removing v.

Proposition 2. Let C ∈ C be a tree T, and then Formula-
tion (7) is correct if we choose

Mv � |V C( )| − compT v( ): (11)

Proof. The value of Mv exactly models the reduction of
the objective value of the follower subproblem (7) when
a single vertex v is interdicted. When more than one
vertex is interdicted, the overall reduction of the
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objective value is overestimated, still guaranteeing that
the optimal follower solution satisfies yvx ∗

v � 0. w

In the general case, that is, when C is a generic con-
nected subgraph from C with |V(C)| > b, the above-men-
tioned constraints remain valid when imposed for a
tree of C, and hence, they can be imposed for any span-
ning tree T of C. We have the following result:

Proposition 3. Let C be a connected subgraph of G with
|V(C)| > b, and let T (C) be the set of all spanning trees of
C; then the following component inequalities,∑
v∈V C( )

|V C( )| − compT v( )
( )

xv ≥ |V C( )| − b T ∈ T C( ),

(12)

are valid for model (3).

Proof. By contradiction, assume there exists a graph
G̃, an instance of the CVSP, and an associated feasible
solution ~x that violates one of the inequalities (12).
Hence, there exists in G̃ a tree T̃ spanning noninter-
dicted vertices according to ~x and for which (12) is
violated. This means that T̃ is spanning a connected
subgraph of G̃ of noninterdicted vertices having car-
dinality larger than b, contradicting the assumption
that ~x is feasible. w

Notice that the component inequalities can be tight-
ened by taking the minimum of the coefficient next to
each variable and the right-hand side, as in (10).

3.1.2. Convexification By Dualization: Benders Inequal-
ities. In this section, we show how to model the follo-
wers’ subproblem as a linear program. For each couple
of vertices v, l ∈ V, we define a nonnegative continuous
variable σvl ≤ 1 that takes value one if vertices v and l
belong to the same component. Furthermore, we intro-
duce an additional continuous variable λ that repre-
sents the size of the largest component in the inter-
dicted graph G ∗. Using these variables, U(x ∗) can be
determined using the following compact LP formula-
tion (see also the work of Shen et al. 2012):

U x ∗( ) � min
λ≥0, 0≤σ≤1

λ (13a)

λ ≥ ∑
v∈V

σvl l ∈ V (13b)

x ∗
w + x ∗

v ≥ σvl − σwl v,w( ) ∈ A, l ∈ V (13c)
σll ≥ 1 l ∈ V: (13d)

Constraints (13d) impose that each vertex belongs to
its own component. Constraints (13c) guarantee that if
two neighboring vertices, v and w, are not interdicted,
and v is connected to l in G ∗, then w must be con-
nected to l as well. For a pair of vertices vw ∈ E, if x ∗

w �

1 or x ∗
v � 1, the corresponding constraints (13c) are de-

activated. In constraints (13b), the right-hand side rep-
resents an upper bound on the size of the connected
component in G ∗ containing vertex l. Accordingly,
constraints (13b) impose that λ is greater than or equal
to the maximum of Σv∈Vσvl over all l ∈ V.

The following proposition guarantees the validity
of the model to compute U(x ∗).
Proposition 4. Given a binary realization of the leader varia-
bles x ∗, there exists an optimal solution to (13) in which
σ̃vl � 1 if and only if node v and node l belong to the same com-
ponent in the interdicted graph G ∗, and σ̃vl � 0 otherwise.

Proof. We first observe that the solution σ̃ is feasible
for (13) and accordingly the optimal solution value

λ ∗ ≤maxl∈V
{
Σv∈V σ̃vl

}
. Consider any feasible solution σ̃

satisfying constraints (13c) and (13d). Let l be a nonin-
terdicted vertex in G ∗; σ̂ll � 1 and, due to (13c) for all
the noninterdicted neighbors v ∈N(l)\V(x ∗), we have
σ̂vl � 1. By repeating this argument for each v ∈N(l)\
V(x ∗), we conclude that σ̂vl � 1 for all v belonging to the
connected component of l in G ∗. From constraint (13b),

we then have λ ∗ ≥maxl∈V
{
Σv∈V σ̂vl

}
. This proves that

the solution σ̃ is optimal. Similar arguments have been
used by Shen et al. (2012), proposition 2. w

The following Corollary allows us to strengthen for-
mulation (3) by using the additional σ variables.

Corollary 1. The following set of constraints is valid for
model (3):∑

v∈V
σvl≤ b l ∈ V (14a)

xw + xv ≥ σvl − σwl v,w( ) ∈ A, l ∈ V (14b)

σll ≥ 1 l ∈ V (14c)

σvw ≥ 0 v,w ∈ V: (14d)

Proof. The meaning of the σ variables is the same as
in model (13), and constraints (14a) ensure that the
size of any connected component in the interdicted
graph G ∗ does not exceed the capacity b. w

To the best of our knowledge, the extended formu-
lation, obtained by adding constraints (14) to (3), is
new and has not been considered in the previous lit-
erature. Because our major motivation is to study the
IP models in the natural space of x, our next goal is to
project out σ variables from this model. This can be
done in a Benders fashion by dualizing the function
U(x) defined in (13).

By associating nonnegative dual variables α, β, and γ
to the constraints (13b), (13c), and (13d), respectively,
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and by dropping the redundant constraints σ ≤ 1, we
get the following dual LP:

U x ∗( ) � max
α,β,γ( )≥0

∑
l∈V

γl −
∑
vw∈A

βlvw x ∗
v + x ∗

w
( )( )

(15a)

∑
wv∈δ− v( )

βlwv −
∑

vw∈δ+ v( )
βlvw ≤ αl v, l ∈ V,v≠ l (15b)

∑
wv∈δ− v( )

βlwv −
∑

vw∈δ+ v( )
βlvw ≤ αl − γl v, l ∈ V,v � l (15c)

∑
l∈V

αl � 1: (15d)

The following Proposition provides the Benders refor-
mulation of model (3) extended by (14).

Proposition 5. Constraints (14) can be equivalently replaced
by the following family of Benders feasibility inequalities:∑

l∈V

(
γ̃l −

∑
vw∈A

β̃
l
vw xv + xw( )

)
≤ b (16)

where (α̃, β̃, γ̃) represent the extreme points of the dual
polyhedron defined by (15b)–(15d).

Proof. The proof follows from LP duality theory. We
point out that Benders inequalities (16) correspond to
normalized and aggregated Benders feasibility cuts derived
by the standard projection of σ variables from the mod-
el (3)+(14). To see why this is the case, observe that the
relaxed Benders master problem consists of model (3),
whereas the Benders subproblem consists of checking
the feasibility of constraints (14) for any given solution
x ∗ of the master. By Farkas Lemma, the system (14) is
infeasible if the following LP is unbounded (observe
that the Benders subproblem is separable by l):

Dl x ∗( ) � max
α,β,γ( )≥0 γl − bαl −

∑
vw∈A

βlvw x ∗
v + x ∗

w
( )

(17a)

∑
wv∈δ− v( )

βlwv −
∑

vw∈δ+ v( )
βlvw ≤ αl v, l ∈ V,v≠ l (17b)

∑
wv∈δ− v( )

βlwv −
∑

vw∈δ+ v( )
βlvw ≤ αl − γl v, l ∈ V,v � l (17c)

For a binary solution x ∗, let Cl be the connected com-
ponent in the interdicted graph containing l. The opti-
mal solution of this LP corresponds to a single-com-
modity flow in which αl units are sent from l to all
other vertices from V(Cl). The flow is sent along a
spanning tree T rooted at l of Cl, and each value βlvw
counts the total amount of flow carried along the arc
(v,w) of that tree. Hence, γl � |V(Cl)| · αl, and the value
of the optimal solution is (|V(Cl)| − b)αl. The problem
is unbounded if |V(Cl)| > b, and the standard Benders
feasibility cut (associated to the l-th subproblem) reads

γ̃l − b α̃l −
∑
vw∈A

β̃
l
vw xv + xw( ) ≤ 0

where (α̃, β̃, γ̃) corresponds to an extreme ray from
the dual cone defined by (17b)–(17c), along with the

nonnegativity constraints. It is now not difficult to see
that our Benders inequalities (16) correspond to latter
cuts after aggregating all |V| subproblems and adding
a normalization hyperplane (15d). w

Similarly, given an interdicted graph G ∗, the dual
model (15) represents a single-commodity flow for-
mulation imposed for each “root” l ∈ V. For a con-
nected component C in G ∗, a vertex l is chosen as a
root, and αl units of flow are sent from l to every other
vertex v ∈ V(C). Thereby, the value γl contains the to-
tal amount of flow sent from l plus αl (which is exactly
the size of C, assuming αl � 1). Because we are looking
for a distribution of the values of αl among the verti-
ces of G, and we penalize each arc (v,w) whose end
vertices are interdicted (cf. the 2nd term in the object-
ive function), an optimal solution of problem (15) is
obtained by choosing the largest component in the in-
terdicted graph, arbitrarily picking one of its vertices l
as a root and setting αl � 1. Hence, instead of detecting
Benders inequalities using a black-box LP formula-
tion, based on the above arguments we can use a com-
binatorial procedure to detect following subfamily of
inequalities (16).

Proposition 6. Let C be a connected subgraph of G with
|V(C)| > b, and let T (C) be the set of all spanning trees of
C, and assume that one unit of flow is sent from a chosen
root l ∈ V(C) to all other v ∈ V(C),v≠ l along the edges of
T. Let alv be the sum of flows sent into the vertex v and out
of v. Then, the following Benders inequalities∑

v∈V C( )
alvxv ≥ |V C( )| − b T ∈ T C( ), l ∈ V C( ) (18)

are valid for model (3).

Proof. We first observe that inequalities (16) can be re-
written as ∑

l∈V

∑
vw∈A

β̃
l
vw xv + xw( ) ≥

∑
l∈V

γ̃l − b: (19)

Following the discussion from above, we then choose
a root l ∈ V(C), calculate the coefficients β̃l

, and set

alv �
∑

vw∈δ+ v( )∪δ− v( )
β̃
l
vw:

Recall that the value of γ̃l is |V(C)| for the chosen l and
that all β̃

l′
and γ̃l′ are zero for l′ ≠ l. w

Notice that the Benders inequalities (18) can be
tightened as in (10).

3.2. Another Bilevel Point of View: Degree
Inequalities

Let C ∈ C be a connected subgraph of G such that
|V(C)| > b. The minimum number q(C) of components
into which C has to fall apart, so that each resulting
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component contains no more than b vertices, is giv-
en as

q C( ) �
⌈ |V C( )| −∑

v∈V C( )xv
b

⌉
: (20)

Hence, from an alternative bilevel perspective, we
could see this as a Stackleberg game; the leader inter-
dicts some vertices, and, for each connected subgraph
C such that |V(C)| > b, the follower calculates the num-
ber of connected components in the interdicted graph.
If the number of components is smaller than q(C),
then the solution of the leader is infeasible. Let WC(x)
be the number of connected components of subgraph
C in the interdicted graph. The latter condition can be
imposed as the following constraint:

WC x( ) ≥ q C( ) C ∈ C, |V C( )| > b:

In Furini et al. (2019; equation (24)), we showed that the
condition for a generic graph G � (V,E) to be partitioned
into at least κ nonempty components by interdicting
vertices can be expressed by the following exponential
family of inequalities:∑

uv∈E S( )
1− xu − xv( ) ≤ |V| −∑

v∈V
xv − κ S ∈ S, (21)

where S denotes the set of all cycle-free spanning sub-
graphs of G, S is one such subgraph, E(S) is its edge set,
and κ ≥ 2. Hence, we can derive a new family of valid
inequalities for the CVSP by applying this result to any
connected subgraph C ∈ C with |V(C)| > b and by re-
placing in (21) the constant term κ with (20). In add-
ition, we restrict ourselves to spanning trees T ∈ T (C):∑

uv∈E T( )
1−xu−xv( )≤|V T( )|− ∑

v∈V T( )
xv

−
⌈|V T( )|−∑v∈V T( )xv

b

⌉
T∈T C( ):

(22)

After removing the rounding and using |E(T)| � |V(T)|
−1, we obtain the following result:

Proposition 7. Let C be a connected subgraph of G with
|V(C)| > b, and let T (C) be the set of all spanning trees of
C, and then the following degree inequalities,∑

v∈V T( )
b degT v( )−1
( )+1

[ ]
xv≥|V T( )|−b T∈T C( ), (23)

are valid for model (3).

Notice that, according to Furini et al. (2019, propos-
ition 6), constraints (21) should be imposed for each
acyclic spanning subgraph of C. In the context of the
current paper, however, it is correct to consider only
spanning trees of C, because if there is a disconnected
acyclic spanning subgraph (i.e., a forest) violating the
constraint, we would add the corresponding con-
straint for each tree of the forest as well. Furthermore,
for (23), the right-hand side is always positive, and all
coefficients next to the vertices are nonnegative so
that the constraints can be tightened as in (10).

3.3. Comparison Between Component, Degree,
and Benders Inequalities

By comparing component inequalities (12) and degree
inequalities (23), we observe that the latter are ob-
tained by selecting a tree T spanning C and by setting

Mv � b degT v( ) − 1
( )+ 1, v ∈ V T( ):

Despite the fact that both families of inequalities
are associated with trees, where each vertex v in the
selected tree appears with a coefficient Mv, the val-
ues of these coefficients differ in the two cases. An
example given in Figure 4(a) for b � 2 shows that,
when these inequalities are imposed for the same
C ∈ C, the two inequalities do not dominate each
other (notice that the inequalities are always tight-
ened as in (10) when possible). For the given ex-
ample, the component inequality and, respectively,
the degree inequality are given as:

x1 + 3x2 + 4x3 + 3x4 + x5 + x6 + x7 ≥ 5
x1 + 5x2 + 3x3 + 5x4 + x5 + x6 + x7 ≥ 5:

For this example, the Benders inequalities (with the root
being any nonleaf vertex, e.g., l � v2) are dominated by
component and degree inequalities and read as

x1 + 5x2 + 5x3 + 5x4 + x5 + x6 + x7 ≥ 5:

However, another example depicted in Figure 4(b) for
b � 3 shows a case where, when imposed for the same
C ∈ C, Benders inequalities dominate degree inequal-
ities. The Benders inequality (with the root l � v3) and,
respectively, the degree inequality are

x1 + 3x2 + 5x3 + x4 + x5 + x6 + x7 + x8 ≥ 5
x1 + 4x2 + 5x3 + x4 + x5 + x6 + x7 + x8 ≥ 5:

Figure 4. Two Examples Demonstrating Relationships Between Studied Inequalities: a) b � 2, b) b � 3
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From the two reported examples, we can conclude
that in general there is no dominance between Bend-
ers inequalities and degree inequalities when imposed
for the same C ∈ C.

The following proposition determines the relative
strength of the Benders inequalities (18) with respect
to the component inequalities (12):

Proposition 8. For a given connected subgraph C and its
spanning tree T ∈ T (C), Benders inequalities (18) are do-
minated by the component inequalities (12).

Proof. We prove this result by showing that, for each
vertex v ∈ V(T), the coefficient av in the Benders in-
equality is not smaller than the coefficient Mv in the
component inequality. Let |V(T)| � ρ. When v is a leaf,
it is trivial. If v is the root l, av � ρ− 1, whereas
Mv ≤ ρ− 1. If v is neither the root l nor a leaf, by re-
moving v we partition T in deg(v) components: a com-
ponent containing l and deg(v) − 1 components not
containing l. Let these components include κ vertices
in total. We have av � 2κ+ 1. If the largest component
of T after removing v is the one including l, Mv �
ρ− (ρ− (κ+ 1)) � κ+ 1, and hence, av >Mv. If the larg-
est component of T after removing v does not include
l, let p ≤ κ be its cardinality; we have Mv � ρ− p. Hav-
ingMv > av would imply ρ > 2κ+ 1+ p. But this would
imply that the component including l has cardinality
ρ− κ− 1 > 2κ+ 1+ p− κ− 1 � κ+ p, which is a contra-
diction since we assumed that the largest component
has cardinality p. w

3.4. Cover Inequalities
These inequalities exploit the concept of connectivity.
Let W⊆V be a subset such that the induced subgraph
G[W] is r-vertex-connected (i.e., at least r vertices have
to be removed to disconnect W) and |W| > b. Then, the
following inequalities, which can be derived from the
corresponding block-invariant inequalities proposed
by Borndörfer et al. (1998), are valid∑

v∈W
xv ≥min

{
|W| − b , r

}
: (24)

This exponential-size family of constraints is referred
to as cover inequalities in the remainder of this paper.

3.5. Star Inequalities
Additional sets of valid inequalities, derived from the
corresponding block-invariant inequalities proposed by
Borndörfer et al. (1998), can be exploited in order to
strengthen the formulations of the previous sections. The
following polynomial-size family of constraints is re-
ferred to as star inequalities in the remainder of this paper:∑
w∈N v( )

xw ≥ |N v( )| + 1 − b
( )

1 − xv( ) v ∈ V, |N v( )| ≥ b:

(25)

Constraint (25) imposes that for each vertex v ∈ V hav-
ing a degree larger than or equal to the capacity, if ver-
tex v is not interdicted, then at least |N(v)| + 1− b of its
adjacent vertices have to be interdicted. After some re-
writing, it is not difficult to see that the star inequalities
are a special case of the tightened version of the compo-
nent inequalities (12) imposed for the stars centered at
v ∈ V, with |N(v)| ≥ b. Furthermore, for the sufficiently
large value of r (r > |N(v)| − b), we notice that cover in-
equalities (24) dominate star inequalities. Indeed, by
setting W �N(v)∪{v}, the cover inequality is reduced
to Σv∈N(v)xv ≥ |N(v)| + 1− b, which dominates (25).

3.6. Precedence Constraints
Finally, we can impose some precedence conditions
between the interdiction of the vertices, as in Borndör-
fer et al. (1998). When the neighborhood of a vertex w
is strictly included in the neighborhood of a vertex v,
we can impose that the vertex w can be interdicted
only if vertex v is interdicted. Indeed, any feasible so-
lution where xw � 1 and xv � 0 can be transformed to a
feasible solution of the same cost where xw � 0 and
xv � 1. These precedence conditions can be stated as

xw ≤ xv v,w ∈ V, N w( )\ v{ } ⊂ N v( )\ w{ }: (26)

In addition, when two vertices share the same neigh-
borhood, we can impose an order in the interdiction
of the two vertices. In this case, we remove the sym-
metries with constraints (27) by imposing that the ver-
tex with the lowest index can be interdicted only after
the vertex with the largest index is interdicted. These
additional precedence conditions are stated as

xw ≤ xv v,w ∈ V, w < v, N(w)\ v{ } � N v( )\{w}:
(27)

These two polynomial-size families of constraints are
referred to as precedence constraints in the remainder of
this paper. Observe that at least one optimal solution
exists that satisfies these constraints, whereas many
(equivalent) feasible solutions can be cut off by impos-
ing (26) and (27).

4. Separation Routines
This section describes separation strategies for the
presented inequalities. All inequalities we propose
(with the exception of cover inequalities) are given for
a specific tree associated with a connected component.
Trees are constructed during the detection of con-
nected components, which can be performed by
depth-first search (DFS) or breadth-first search (BFS).
By construction, trees obtained through BFS define in-
equalities where one vertex (having a large degree) re-
ceives a large coefficient, and the other vertices receive
a small coefficient. After tightening, these constraints
tend to be computationally more effective than the
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corresponding constraints where the initial trees are
detected by DFS.

4.1. Separation of Degree Inequalities
Given an integer solution x ∗, the separation problem
is reduced to finding a connected subgraph C of the
interdicted graph G ∗ such that |V(C)| > b, yielding a
violation |V(C)| − b of constraints (23). The most vio-
lated inequality is obtained by choosing the (element-
wise) maximal subgraph C. However, our inequalities
(23) are not associated with connected subgraphs but
with subtrees contained in the subgraphs, whose
number can be exponential in the size of each
subgraph.

So, during the separation procedure, a tree for each
connected subgraph of the interdicted graph that ex-
ceeds the capacity is built bymeans of a BFS, where the
edges are processed in an arbitrary order. As soon as
the size of the tree under construction is larger than b,
and for each edge later on added to the tree, an in-
equality is defined and included in the formulation. So
at the end of the procedure, for each connected sub-
graph C (of the interdicted graph) that exceeds the cap-
acity b, |V(C)| − b inequalities of type (23) are added to
themodel.

Observation 2. For integer solutions, the exact separ-
ation of degree inequalities (23) can be performed in
polynomial time.

Given a fractional solution x ∗, after rewriting (23),
we can see that checking whether a violated constraint
exists is equivalent to finding a subtree T that maxi-
mizes the following function

∑
vw∈E T( )

1− x ∗
v − x ∗

w
( )− ∑

v∈V T( )
1− x ∗

v
( )

1− 1
b

( )
: (28)

If the obtained value is positive, a violated constraint
(23) is added to the model. The above separation prob-
lem can be formulated as the following IP:

max
∑
v∈V

wv yv −
∑
vw∈E

wvw zvw : z, y( ) is a subtree of G
{ }

(29)

with wvw � x ∗
v + x ∗

w, vw ∈ E and wv � 1
b+ (1− 1

b)x ∗
v, v ∈ V.

This problem can be seen as an instance of the prize-
collecting Steiner tree problem (PCSTP). To solve it,
one can use an IP, a specialized algorithm for the
PCSTP (see, e.g., the one proposed by Leitner et al.
2018), or a heuristic procedure.

We propose a heuristic procedure that builds a tree
starting from the edge with the largest weight, where
the weight of an edge is defined according to the con-
tribution of the edge itself and of its end points to (28).
Iteratively, the procedure adds edge-vertex pairs to
the current tree according to an arbitrary order, as

long as edge-vertex pairs with a positive contribution
can be found. The contribution for adding a vertex v
and an edge vw is again defined as in (28). When the
procedure stops, if the tree has a positive weight, then
a violated inequality has been detected.

4.2. Separation of Component Inequalities
For integer solutions, any tree T that is contained in the
interdicted graph and whose vertex set V(T) exceeds
the capacity produces a violation |V(T)| − b of constra-
ints (12). In this case, however, computing the coeffi-
cients of each variable xv, v ∈ T requires us to run a
BFS procedure with vertex v as a root. So, adding an in-
equality for each intermediate tree (i.e., trees that do not
span a maximal connected subgraph) can be time con-
suming. For this reason, when separating inequalities
(12), we only consider a spanning tree for each maximal
subgraph C in the interdicted graph that exceeds the
capacity b. In this case as well, the tree is built according
to an arbitrary order of the vertices in V(C).
Observation 3. For integer solutions, the exact separ-
ation of component inequalities (12) can be performed
in polynomial time.

No separation is performed for fractional solutions,
for which a well-defined associated optimization prob-
lem is lacking. Although it is always possible to define
the separation problem by means of a MIP, the use of
a general-purpose solver for solving the latter would
be inefficient when embedded within a branch-and-
cut scheme.

4.3. Separation of Benders Inequalities
Benders inequalities are separated for integer solu-
tions, as discussed in Section 3.1.2; for each connected
component C of the interdicted graph whose vertex
set V(C) exceeds the capacity, a vertex of maximum
degree l is chosen as a root (this choice produces low-
er values of the coefficients in the Benders inequality).
A spanning tree rooted at l is constructed by BFS (as
this choice produces lower values of the coefficients in
the Benders inequality), where vertices are sorted ac-
cording to an arbitrary order, and the corresponding
Benders inequality is defined.

Observation 4. For integer solutions, the exact separ-
ation of Benders inequalities (18) can be performed in
O(|E|) time. Fractional solutions of the master problem
can be separated in polynomial time by solving the as-
sociated LP (15).

4.4. Separation of Cover Inequalities
Given a connected subgraph C of the interdicted graph
with |V(C)| > b, inequalities (24) impose either to dis-
connect the set (by removing at least r vertices, when
the component is r-connected) or to remove a number
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of vertices to reduce the cardinality of the vertex set
to b. Because for each connected subgraph r ≥ 1, if
there exists a violated inequality (24), then there is one
with r � 1. For integer solutions it is hence enough to
find a connected subgraph C of the interdicted graph
with |V(C)| > b.

Observation 5. For integer solutions, the exact separ-
ation of cover inequalities (24) can be performed in
O(|E|) time.

However, in order to separate strong inequalities,
we have to increase the value of r and to search for
r-connected components of cardinality b+ r. There are
different options for computing the vertex-connectivity
r of a connected subgraph:

1. The vertex-connectivity r of a connected subgraphC
can be obtained in polynomial time by maximum-flow
computations. Even though this procedure runs in poly-
nomial time, it can be time consuming in dense graphs.

2. Borndörfer et al. (1998) proposed a greedy proced-
ure to possibly detect biconnected components and so
to derive inequalities (24) with r � 2.

3. Computing biconnected components in a con-
nected undirected graph can be performed in linear
time with the sequential algorithm proposed by Hop-
croft and Tarjan (1973) during the execution of a DFS.

This procedure can be used to detect whether a
component is (at least) biconnected and to derive in-
equalities (24) with r � 2.

4.5. Separation of Bin-Packing Inequalities
Inequalities (3b) are separated for integer solutions
only. Given an integer solution x ∗ and the associated
interdicted graph G ∗, defined by the set of interdicted
vertices V(x ∗), the bin-packing problem instance asso-
ciated with the connected components of the latter
graph is defined and solved. If the optimal solution to
the bin-packing problem uses more than k bins, an in-
equality (3b) is defined forW � V\V(x ∗).
Observation 6. The exact separation of bin-packing in-
equalities (3b) isNP-hard.

5. Extension to the MinMaxC
Although not the main focus of this paper, in this sec-
tion we discuss how to extend some of the developed
ideas to the solution of the MinMaxC (Shen et al.
2012), that is, the problem of disconnecting a graph
G � (V,E) by deleting a subset of no more than B < |V|
vertices, while minimizing the maximum cardinality
of a connected component in the residual graph. No-
tice that Shen et al. (2012) considered a second object-
ive; among all equivalent solutions, the second object-
ive is to minimize the number of deleted vertices. In
order to properly consider this hierarchy of objectives,
a lexicographic optimization approach is advisable.

However, this would move the analysis far from the
scope of the present paper, which is to investigate
how to disconnect a graph by vertex removal, and
hence, we do not consider the second objective.

A first compact formulation of the MinMaxC is ob-
tained by adapting the compact model (1a)–(1e) pre-
sented in Section 2, where in addition to the binary
variables ξiv taking value 1 if vertex v belongs to the
shore Vi, a continuous variable λ denotes the cardinal-
ity of the largest component. The model reads

min λ (30a)

λ ≥∑
v∈V

ξiv i ∈ K (30b)

|V| −∑
i∈K

∑
v∈V

ξiv ≤ B (30c)

(1b) − (1c)
ξiv ∈ 0, 1{ } i ∈ K, v ∈ V, (30d)

where K � {1, : : : , |V| −B} is the index set of possible
shores, constraint (30b) imposes that λ is at least the
cardinality of each (and hence, of the largest) shore,
and constraint (30c) imposes the budget constraint.
The model can be strengthened by introducing extra
variables and by replacing (1b)–(1c) with clique in-
equalities (2a)–(2b), as explained in Section 2.

An alternative compact model is the one considered
by Shen et al. (2012), which we adapt for completeness
to the notation and variables of the present paper. The
model considers interdiction variables xv, v ∈ V and
the σ variables (introduced in Section 3.1.2) and reads

min
x∈ 0,1{ }|V|

λ (31a)

∑
v∈V

xv ≤ B (31b)

(13b) − (13d):

5.1. Extension of the Bilevel Approach
By considering the usual binary interdiction variables
xv for v ∈ V, the leader problem in the space of x varia-
bles reads

min λ (32a)∑
v∈V

xv ≤ B (32b)

U x( ) ≤ λ (32c)

xv ∈ 0, 1{ } v ∈ V, (32d)

whereU(x) denotes the optimal solution value of the fol-
lower subproblem for a given vector x. By a derivation
equivalent to the one in Section 3.1, we have that
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constraint (32c), for each connected subgraphC ofGwith
|V(C)| > b, can be replaced by the following inequalities:∑
v∈V(C)

(
|V(C)| − compT(v)

)
xv ≥ |V C( )| −λ T ∈ T C( ),

(33)

where T (C) is the set of all spanning trees of C. These
inequalities for the MinMaxC are the counterparts of
inequalities (12).

Similarly, a derivation equivalent to the one in Sec-
tion 3.1.2 allows us to write Benders inequalities that
are the counterparts of (18).

Observation 7. We remark that, among the inequal-
ities discussed in this paper, only component inequal-
ities, Benders inequalities, and the precedence condi-
tions can be extended to the MinMaxC while keeping
linear formulations. Indeed:

• degree inequalities remain valid at the cost of intro-
ducing nonlinearities;

• cover inequalities are not valid, since they are de-
fined for each subset of vertices whose cardinality vio-
lates the capacity b, which is substituted by a variable
(λ) in the MinMaxC;

• star inequalities are not valid, since they are de-
fined for each vertex with a degree greater or equal to
the capacity b, which is substituted by a variable (λ) in
the MinMaxC.

6. Computational Results
In this section, we present the results of the computa-
tional experiments with the aim of assessing the per-
formance of the mathematical models described in the
previous sections. We implemented a branch-and-cut
framework based on formulation (3), strengthened by
constraints (4) for appropriate k, which has a polyno-
mial number of variables and an exponential number
of constraints, namely, the bin-packing inequalities
(3b) and their feasibility counterpart (4). Although
correct, this formulation asks to solve a NP-hard
problem to check feasibility of any integer point of the
branch-and-cut tree. Hence, this basic model is en-
hanced by four different families of constraints for
which we have developed polynomial separation al-
gorithms for integer points: (i) component inequalities
(12), (ii) degree inequalities (23), (iii) Benders inequal-
ities (18), and (iv) cover inequalities (24).

The first goal of this computational section is to as-
sess the relative computational performance of each
family of inequalities and their computational inter-
action when embedded in a branch-and-cut algorithm.
Based on the results of these experiments, which are
presented in Section 6.1, the best (and hence, default)
configuration of our newly developed branch-and-cut
algorithm is determined. The latter is then used in a se-
cond set of experiments (cf. Section 6.2) in which the

performance of the branch-and-cut algorithm is com-
pared with the state-of-the-art exact methods for the
CVSP present in the literature.

6.1. Benchmark Instances
We tested the same four sets of benchmark instances
considered by Bastubbe and Lübbecke (2020). The first
two sets of graphs are obtained frommatrix decompos-
ition problems, as discussed in Section 1. The consid-
ered matrices are the constraint matrices of several Net-
lib (Gay 1985) and MIPLIB (Koch et al. 2011) instances.
There are 55 graphs constituting the Netlib data
set, with the number of vertices ranging from 51 to 500.
The MIPLIB data set contains 37 graphs, whose
number of vertices ranges from 19 to 490.2 The other
two sets are 40 instances from the second DIMACS
challenge (Johnson and Trick 1996) and 50 Random
graphs representing hypergraphs generated by Bas-
tubbe and Lübbecke (2020). For the DIMACS set, the
number of vertices ranges from 23 to 496, whereas for
the Random set, the number of vertices ranges from
68 to 164. Because Bastubbe and Lübbecke (2020) con-
sidered hypergraphs, we adapted the latter instances to
our case by defining a clique for each hyperedge. In
summary, our computational study is conducted on a
set of 182 graphs with different structures and den-
sities; the exact number of vertices and edges of these
graphs are reported in the tables provided in the
Appendix.

As far as the values of k (maximum number of sho-
res) and b (maximum capacity of each shore) are con-
cerned, we borrow the same setting used by Bastubbe
and Lübbecke (2020), in which k ∈ {4, 8, 12, 16,
24, 32, 64, 218, 256} and b � |V|=k
 �. In our analysis, we
do not consider instances for which the value of b
equals to 1, because, in these cases, the problem re-
duces to the maximum stable set problem. The values
of k are clustered into three major categories: (i)
small→ k ∈ {4, 8, 12}, (ii) medium→ k ∈ {16, 24, 32},
and (iii) large→ k ∈ {64, 128, 256}. In summary, using
nine different values of k and 182 graphs, we obtained
a testbed of 1,397 different instances. In the remainder
of this article, aggregated results for small, medium,
and large values of k are reported (whereas the detailed
results can be found in the appendix).

6.2. Computational Environment
All of the reported experiments are performed on a
computer equipped with an i7 processor clocked at
3.20 GHz and 64 GB of RAM under the Linux operat-
ing system. We use the CPLEX 12.7.1 MIP framework
to implement our branch-and-cut algorithms and to
solve the compact formulations for which we report
the results. CPLEX is run in single-threaded mode, and
all CPLEX parameters are set to their default values. A
time limit of 30 minutes is set for each tested instance.
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6.3. Determining the Best Configuration of the
Branch-and-Cut Algorithm

As previously discussed, a basic valid formulation for
the CVSP is given by (3a)–(4). Each one of the four fam-
ilies of inequalities, the component inequalities (12), the
degree inequalities (23), the Benders inequalities (18),
and the cover inequalities (24), can be used to enhance
this basic model. These families of inequalities are com-
posed by an exponential number of constraints, and
thus they are separated within the branching tree for
integer solutions. In addition, they can be separated for
fractional solutions in order to strengthen the dual
bounds and (potentially) improve the computational
convergence. In the following, we report results for the
following branch-and-cut configurations:

• C: the branch-and-cut separating the component in-
equalities (12), tightened as in (10), for integer solutions;

• D: the branch-and-cut separating the degree in-
equalities (23), tightened as in (10), for integer solutions;

• B: the branch-and-cut separating the Benders in-
equalities (18), tightened as in (10), for integer solutions;

• CV: the branch-and-cut separating the cover in-
equalities (24) for integer solutions, via the detection of
biconnected components. Among the three separation
procedures given in Section 4.4, after extensive prelim-
inary computational tests, we determined that the best-
performing way is via the application of the algorithm
proposed by Hopcroft and Tarjan (1973).

Concerning the separation of fractional points for
(12), this is not performed because we could not iden-
tify a well-defined associated optimization problem
(see Section 4.2). Regarding the constraints (23), we
tested the separation of fractional points either in an
exact or heuristic fashion. Although improvements
were obtained for some specific instances, on average
the computational performance was worsened; add-
itional computational effort was needed to solve the
LP relaxation at the branching nodes because of a
large number of violated cuts detected. Therefore, we

do not report the results for this particular setting.
Similar considerations apply to the separation at frac-
tional points of (18), which can be performed by solv-
ing a LP, and (24), which was performed by means of
the greedy procedure proposed by Borndörfer et al.
(1998). Also in these cases, the average computational
performance was worsened.

In all of the configurations of the branch-and-cut al-
gorithm, bin-packing inequalities (3b) are separated at
integer points only when no other violated inequalities
have been detected. This guarantees that the resulting
connected components in the interdicted graph can be
packed into k shores of capacity b. The associated bin-
packing instances were not challenging, and hence, a
standard MIP formulation for the bin-packing problem
was used, with CPLEX as the off-the-shelf solver. In-
deed, the performance of our configurations was not
affected by the efficiency of the latter separation pro-
cedure, which is why we refrained from developing a
tailored algorithm for the bin-packing problem.

In Sections 3.5 and 3.6, we presented two additional
families of inequalities that are polynomial in number:
(i) the stars inequalities (25) and (ii) the precedence con-
straints (26) and (27). Thanks to extensive preliminary
experiments, we observed that these inequalities are
useful to strengthen the formulation and to speed up
the computational convergence. For this reason, they
are always included into our models.

In Table 1, we present the results of the computa-
tional experiments performed with the previously dis-
cussed configurations of the branch-and-cut algorithm.
Specifically, we report the performance of five differ-
ent configurations: C, D, B, and CV, that is, the four
basic variants separating the component inequalities,
degree inequalities, Benders inequalities, and cover
inequalities for integer solutions, respectively. In add-
ition, we report the performance ofC + CV, which cor-
responds to the separation of the component inequal-
ities and of the cover inequalities for each integer

Table 1. Performance Comparison for Different Configurations of Our Branch-and-Cut
Algorithm

k C D B CV C+CV

small Opt. (out of 546) 294 226 258 219 305
Avg time 66.52 89.38 74.72 78.92 85.12
Avg nodes 87,355 12,375 70,370 29,922 75,221

medium Opt. (out of 540) 382 354 363 356 386
Avg time 54.37 47.18 47.33 32.97 45.03
Avg nodes 83,435 21,368 65,391 32,864 54,991

large Opt. (out of 311) 249 248 249 248 249
Avg time 35.72 33.08 40.71 29.41 36.70
Avg nodes 77,583 74,830 79,778 71,280 75,227

Total opt. (out of 1397) 925 828 870 823 940
Avg time 53.21 54.47 53.55 44.13 55.83
Avg nodes 83,106 34,926 70,985 43,658 66,915
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solution. Indeed, whereas the first three families of in-
equalities have the same structure (i.e., are all associ-
ated with trees of the graph G), the latter family is
structurally different. Hence, we tried to combine
cover inequalities with the other inequalities, and we
report the results for the best configuration, that is, C
+ CV. Table 1 is horizontally divided in four sections,
the first three reporting aggregated results for the three
classes of instances by the choice of parameter k, that is,
small → k ∈ {4, 8, 12}, medium → k ∈ {16, 24, 32},
and large → k ∈ {64, 128, 256}. These three sections
report, for each configuration of the branch-and-cut al-
gorithm, the total number of instances solved to pro-
ven optimality (rows “Opt”), the average computing
time in seconds (rows “Avg time”), and the average
number of nodes explored by the branching tree (rows
“Avg nodes”). The values “Avg time” and “Avg
nodes” are computed over the instances solved to opti-
mality by the respective method. Finally, the fourth
section of the table reports the same information for
the entire set of the 1,397 instances. All of the averages
are computed separately for each configuration by
considering only the instances solved to proven opti-
mality by that configuration.

As far as the comparison of the four basic variants (C,
D, B, and CV) is concerned, from the table it emerges
that with 925 instances solved to proven optimality,C is
the best configuration, followed by B, which is able to
solve 870 instances, D, which is able to solve 828 instan-
ces, and CV, which only solves 823 instances. A similar
pattern can also be seen for the three different categories
of values for k. The number of instances solved to pro-
ven optimality and the computational times suggest
that the class small is the hardest to solve for all of
our branch-and-cut algorithms.

Separating both the component and the cover in-
equalities pays off in terms of the number of instances
solved to proven optimality; precisely, C + CV is able
to solve 940 instances (15 more than C alone). The
average number of branch-and-bound nodes suggests
that CV explores on average fewer nodes than C, es-
pecially for small values of k. By combining the two
families of inequalities, on average the number of ex-
plored nodes is reduced compared with C alone.

6.4. Comparison with State-of-the-Art
Solution Methods

In this section, we compare the performances of our
best branch-and-cut configuration identified in the pre-
vious section (i.e., the configuration C + CV), with the
state-of-the-art exact methods available in the literature
for the CVSP:

• BP: the branch-and-price algorithm proposed by
Bastubbe and Lübbecke (2020), and

• Cplex: the direct solution of the compact model
(1a), (1d)–(2b) via CPLEX, a state-of-the-art commercial
MIP solver.

For these tests, we used the same testbed of 1,397 in-
stances proposed by Bastubbe and Lübbecke (2020)
and described in the previous section. We recall that,
in our analysis, we do not consider instances for
which the value of b results equal to 1 and that a time
limit of 30 minutes is set for each run as for the experi-
ments reported by Bastubbe and Lübbecke (2020). The
results of BP are directly borrowed from the tables re-
ported by these authors in their work (the perform-
ance of our machine is comparable with the machine
used for their experiments, which is equipped with a
i7 processor clocked at 3.40 GHz).

The information reported in Table 2 summarizes the
results of this second set of tests. The table follows the
same structure given in Table 1, but in addition to the dis-
aggregation concerning the category of k, we also report
disaggregated information for each class of instances. All
of the averages are computed separately for eachmethod
by considering only the instances solved to proven opti-
mality by that method. We discuss now the results for
each class of instances separately.

Table 2. Performance Comparison Between Cplex, BP,
and Our Best Branch-and-Cut Algorithm (C + CV)

Class k Cplex BP C+CV

DIMACS small Opt. (out of 120) 73 59 66
Avg time 213.87 164.37 45.57

medium Opt. (out of 117) 47 70 75
Avg time 382.73 114.47 29.82

large Opt. (out of 59) 4 35 41
Avg time 601.75 19.19 72.58

Total Opt. (out of 296) 124 164 182
Avg time 290.39 112.09 45.17

MIPLIB small Opt. (out of 111) 47 23 45
Avg time 179.34 147.41 22.99

medium Opt. (out of 108) 22 43 45
Avg time 278.15 186.35 2.83

large Opt. (out of 84) 4 43 48
Avg time 180.73 182.70 95.31

Total opt. (out of 303) 73 109 138
Avg time 209.19 176.70 41.57

Netlib small Opt. (out of 165) 133 114 122
Avg time 103.29 182.35 36.34

medium Opt. (out of 165) 91 141 134
Avg time 301.08 66.15 30.52

large Opt. (out of 106) 13 96 98
Avg time 589.42 40.33 15.95

Total opt. (out of 436) 237 351 354
Avg time 205.90 96.83 28.49

Random small Opt. (out of 150) 106 110 72
Avg time 247.72 276.42 242.86

medium Opt. (out of 150) 60 150 132
Avg time 554.37 43.92 82.78

large Opt. (out of 62) 2 62 62
Avg time 1281.65 0.97 0.39

Total opt. (out of 362) 168 322 266
Avg time 369.55 115.07 106.91
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For 296 DIMACS instances, Cplex is able to
solve 124 instances, BP 164 instances, and 182 instan-
ces. For 303 MIPLIB instances, Cplex is able to
solve 73 instances, BP 109 instances, and C+CV 138
instances. For 436 Netlib instances, Cplex is
able to solve 237 instances, BP 351 instances, and
C+CV 354 instances. For the 362 Random instances,
Cplex is able to solve 168 instances, BP 322 instan-
ces, and C+CV 266 instances.

Summarizing, in terms of the number of instances
solved, our branch-and-cut algorithm C+CV outper-
forms bothCplex andBP for theDIMACS andMI-
PLIB classes of instances, and it has a performance
comparable with that ofBP for theNetlib instances,
whereas it is outperformed by BP for the Random in-
stances. For the category small of the k values, Cplex
instead remains the best option. This is because of the
small number of variables of the compact formulation,
which linearly depends on k. For medium and large val-
ues of k, Cplex is largely dominated by BP and
C+CV, which improve their performance for increasing
values of k, thus showing a complementary perform-
ance with respect toCplex. In particular,C+CV is the
best option for all classes of instanceswhen k is large.

Finally, performance profiles depicted in Figures 5
and 6 give a graphical representation of the relative
performance of the three compared methods, that is,
C+CV, BP, and Cplex. In Figure 5, the instances are

gathered by class of instances, that is, Netlib, MI-
PLIB, DIMACS, and Random. In Figure 6, the in-
stances are gathered by values of k, that is, small, me-
dium, and large. As proposed by Dolan and Moré
(2002), let s be any solution method; for each value of τ
in the horizontal axis, the vertical axis ρs(τ) gives the
percentage of instances for which the computing time
of method s was not larger than τ times the time of the
best-performing method. Notice that these values may
sum up to a value larger than 100% if more than one al-
gorithm is classified as the fastest for a specific instance
(because of ties in the computing time), and they may
sum up to a value smaller than 100% if there are instan-
ces that have not been solved by any method. All com-
puting times smaller than 0.1 seconds were scaled to
0.1, which is the granularity of the profile. This way we
avoid comparisons between tiny values, which would
produce inaccurate conclusions. The curves originate
from a point denoting the percentage of instances for
which the corresponding algorithm is the fastest, and
at the right end of the chart, they show the percentage
of instances solved within time limit. The best-perform-
ing algorithm is graphically represented by the curve
in the upper part of the respective figure. The horizon-
tal axis is represented in logarithmic scale.

From Figure 5, it emerges that C+CV is the fastest
exact method for around 60% of the DIMACS instan-
ces, whereas this is the case for the BP and Cplex

Figure 5. (Color online) Performance Profiles by Class of Instances:DIMACS,MIPLIB,Netlib, andRandom
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for only ≈10% of instances. Even by allowing larger
computing times, C+CV outperforms BP and
Cplex on this class of instances. For the MIPLIB
instances, C+CV is the fastest exact method for ap-
proximately 35% of the instances, whereas this is true
for BP (resp., Cplex) for approximately 25% (resp.,
approximately 10%) of the instances. By allowing larg-
er computing times, C+CV outperforms BP and
Cplex also on this class of instances. For the Net-
lib instances, C+CV is the fastest exact method for
70% of the instances, whereas this is true for BP (resp.,
Cplex) for less than 30% (resp., less than 10%) of the
instances. Even by allowing larger computing times,
the fraction of instances solved by C+CV is slightly
larger than that of instances solved by BP. For the
Random instances, BP is the fastest method for more
than 50% of the instances, followed by C+CV (less
than 40%) and Cplex (around 10%). BP is the best
method for this class of instances. From Figure 5, it
also emerges that the hardest set of instances are the
MIPLIB ones, since only less than 50% of these in-
stances can be solved to proven optimality by the best-
performing method. Instead, more than 60% of the
DIMACS, around 80% of the Netlib, and more

than 90% of the Random instances, respectively, can
be solved by the best exact method.

Figure 6, where instances are gathered by values of k,
confirms that the hardest instances are the ones of cat-
egory small, for which more than 60% of the instances
can be solved to proven optimality by the best-considered
exact method. C+CV is the fastest method for around
40% of the instances, whereas for BP and Cplex this
is true for around 20% of the instances. However, by al-
lowing larger computing times, Cplex is the best-
performing method for this class. The situation is
slightly improved for the category medium, where
more than 70% of the instances can be solved to proven
optimality by C+CV and BP. C+CV is the fastest
method for around 55% of the instances, BP is the fast-
est for around 35% of the instances, and Cplex is
completely outperformed. For large computing times,
C+CV and BP have a similar performance. As far as
the category large is concerned, approximately 80% of
these instances can be solved by C+CV, which is also
the fastest method for almost 60% of these instances,
whereas this is true for BP for around 35% of the in-
stances, and Cplex is completely outperformed.
C+CV is the best-performingmethod for this class.

Figure 6. (Color online) Performance Profiles by Values of k:small→ k ∈ {4,8, 12},medium→ k ∈ {16, 24, 32}, andlarge
→ k ∈ {64,128, 256}
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6.5. Computational Experiments on the MinMaxC
We conclude the section with a concise analysis of the
computational results obtained for the MinMaxC. As
discussed in Section 5, this is a closely related problem
to the CVSP.

6.5.1. Benchmark Instances. For this problem, we
considered the same classes of instances (DIMACS,
Netlib, MIPLIB, and Random) described in
the previous section. We fix the value of the budget B
(i.e., the maximum number of vertices that can be re-
moved) as a percentage of the number of vertices.
More precisely, for each instance, we considered B �

p|V|� with p ∈ {0:05,0:1, 0:2}. This way, we obtained a
testbed of 564 different instances. We also generated
another set of 15 random instances (as described by
Shen et al. 2012): five 20-, five 30-, and five 40-vertex
instances. In this case, we tested all of the different val-
ues of B considered by Shen et al. (2012).

The computational environment is the same as de-
scribed in the previous section. Also, in this case, a
time limit of 30 minutes is set.

6.5.2. Performance Comparison. We compare the
computational results obtained with the following ex-
act methods:

1. CPX: the direct solution of compact model (30)
where (1b) and (1c) are replaced by (2a) and (2b);

2.SIG: the direct solution of compact model (31).
3. CC: the branch-and-cut algorithm based on for-

mulation (32a), (32b), (32d), and component inequal-
ities (33);

We do not report results of the tests performed on
the instances generated as described by Shen et al.
(2012), because these instances turned out to be very
easy for state-of-the-art MIP solvers (all of these in-
stances are solved in short computing time by CPX).
In addition, we do not report results for a branch-and-
cut algorithm based on a formulation exploiting Bend-
ers inequalities, because the previous analysis showed
that component inequalities lead to computationally
more effective formulations.

Table 3 summarizes the results on the set of instan-
ces of classes DIMACS, Netlib, MIPLIB, and
Random. We aggregated the results according to
three different ranges of the number of vertices of the
instances (up to 100 vertices, between 100 and 200 ver-
tices, and more than 200 vertices). The first column of
the table indicates the range, and the second column
reports the percentage p of the vertices that can be re-
moved. Then, for each solution method, we report the
number of instances solved to optimality within the
time limit (rows “Opt.”) and the average time in sec-
onds (rows “Avg time”, computed over instances that
are solved to optimality by the respective method) for
each range and for each p. In the last two rows,

we also report for each method the total number of
solved instances and the average time.

These results show that CPX outperforms CC and
SIG on small instances having up to 100 vertices. In-
deed, CPX is able to solve 115 out of the 153 instances
in range [−, 100], whereas CC solves 106 instances and
SIG solves 100 instances. On the other hand, as soon
as the number of vertices increases, our branch-and-cut
algorithm improves its performance, whereas CPX
and SIG drastically get the worst results due to the in-
creasing number of variables in the associated formula-
tions. More precisely, out of the 207 instances in the
range (100,200], CC is able to solve 111 instances, CPX
solves 35 instances, and SIG solves 33 instances. Out
of the 186 instances in the range (200,−], CC is able to
solve 73 instances, CPX solves 11 instances, and SIG
solves 31 instances. For the last two ranges, we also ob-
served that in many cases CPX and SIG failed be-
cause CPLEX does not even have the capability to load
the MIP model due to the huge size of the latter. Over-
all, our branch-and-cut algorithm CC turns out to be
the best method both in terms of solved instances (290
out of 564) and in terms of computational speed.

7. Conclusions
In this article, we studied the capacitated vertex separ-
ator problem in which a subset of vertices of minimum
cardinality has to be removed from a given graph so
that the size of each connected component in the re-
maining graph is bounded by b, and all components
can be packed into k shores, each one containing no

Table 3. Performance Comparison Between CC, CPX,
and SIG on Instances of DIMACS, Netlib,
MIPLIB, and Random Classes

|V| p CPX SIG CC

[−, 100] 0.05 Opt. (out of 51) 45 39 45
Avg time 260.04 385.65 19.10

0.1 Opt. (out of 51) 38 31 32
Avg time 326.14 315.92 138.77

0.2 Opt. (out of 51) 32 30 29
Avg time 485.52 303.77 85.27

(100, 200] 0.05 Opt. (out of 69) 15 11 44
Avg time 798.00 409.03 135.92

0.1 Opt. (out of 69) 11 10 36
Avg time 905.83 445.88 144.22

0.2 Opt. (out of 69) 9 12 31
Avg time 899.18 203.88 58.88

(200,−] 0.05 Opt. (out of 62) 1 8 25
Avg time 329.95 386.94 47.26

0.1 Opt. (out of 62) 2 8 24
Avg time 154.17 81.69 117.67

0.2 Opt. (out of 62) 8 15 24
Avg time 222.06 105.86 114.73

Total opt. (out of 564) 161 164 290
Avg time 447.66 309.08 94.93
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more than b vertices. For this hard problem with appli-
cations in network protection against the spread of a
virus, detection of critical nodes in social and commu-
nication networks, networks analysis, and matrix de-
composition, extended formulations have been well
studied in the previous literature, but very little is
known about solving the problem using a canonical IP
formulation. The major drawback of the canonical IP
formulation is that it requires solving an (NP-hard)
bin-packing problem in order to verify the feasibility of
a solution. To improve the computational efficiency of
the underlying IP formulation, we proposed three new
families of valid inequalities that have been derived
from the perspective of a two-player sequential game
in which a leader removes the vertices, and a follower
solves another combinatorial optimization problem that
(partially) guarantees the feasibility of the solution. The
effects of the introduced inequalities on the basic IP for-
mulation have been studied from both the theoretical
and computational perspectives. In addition, we also
showed how to extend some of the developed ideas to
tackle a related min-max problem, where, given a max-
imum number of vertices to remove, the objective is to
minimize the cardinality of the largest connected com-
ponent in the residual graph.

On a large benchmark set of the instances available
in the current literature, we demonstrated that our
new branch-and-cut approach is competitive with the
state-of-the-art branch-and-price algorithm and a com-
pact formulation proposed by Bastubbe and Lübbecke
(2020). In particular, our approach computationally
outperformed the branch-and-price algorithm from
Bastubbe and Lübbecke (2020) for large values of the
number of shores k and for structured graphs from
various applications, whereas the latter had a better
performance for random graphs and average values of
the k parameter. Our computational analysis revealed
that exact approaches for the capacitated vertex separ-
ator problem can tackle graphs with up to 500 vertices.
Solving the problem for graphs with thousands of ver-
tices is a relevant open problem for which heuristic
and approximate methods should be considered as an
interesting stream of research. The computational ana-
lysis has been further extended to the related min-max
problem, where a variant of our new branch-and-cut
algorithm outperformed two compact formulations.

Finally, we hope that this article raises the aware-
ness on the importance and merit of bilevel optimiza-
tion for solving difficult combinatorial optimization
problems by modeling them as two-player Stackel-
berg games. Many vertex/edge deletion/insertion
problems or graph partitioning problems could benefit
from this new modeling paradigm. The same is true for
problems that ask for finding the most central or most
critical vertices/edges with respect to various centrality
measures.
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Endnotes
1 In case a single connected component results from the removal of
S, the latter is not strictly a separator of G, which is defined as a sub-
set of vertices, the removal of which disconnects the graph. How-
ever, with a slight abuse of notation, we still call it a separator in the
remainder of the paper.
2 The constraint matrices determining these graphs have been pre-
solved and reduced by SCIP 3.2.0, with default settings by Bastubbe
and Lübbecke (2020).
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