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Abstract
Merging beliefs depends on the relative reliability of their sources. When this is
information is absent, assuming equal reliability is unwarranted. The solution proposed
in this article is that every reliability profile is possible, and only what holds according
to all of them is accepted. Alternatively, one source is completely reliable, but which
one is not specified. These two casesmotivate two existing forms ofmerging:maxcons-
based merging and disjunctive merging.

Keywords Belief merging · Knowledge representation · Nonmonotonic reasoning ·
Artificial intelligence

1 Introduction

Most of the literature on belief merging concerns sources of the information of equal
reliability (Chopra et al. 2006; Everaere et al. 2010a; Konieczny and Pino Pérez 2011;
Lin and Mendelzon 1999). Such a scenario occurs, but not especially often. Two
identical temperature sensors produce readings that are equally likely to be close to
the actual value, but a difference inmade, age, or position changes their reliability. Two
experts hardly have the very same knowledge, experience and ability. The reliability
of two databases on a certain area may depend on factors that are unknown when
merging them.

Merging under equal and unequal reliability are two scenarios, but a third exists:
absent reliability. Most previous work in belief merging is about the first (Chopra et al.
2006; Everaere et al. 2010a, 2020; Haret et al. 2020; Konieczny and Pino Pérez 2011,
2002a; Lin andMendelzon 1999); some is about the second (Cholvy 1998; Konieczny
et al. 2004; Lin 1996; Revesz 1997); this one is about the third.

The difference between equal and absent reliability is clear when its implications
on some examples are shown.
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Example Equal reliability Absent reliability

Two experts They have the very same
knowledge, experience and
ability

They differ in knowledge,
experience and ability, but how
much of these they possess is
unknown

Two sensors They are of the same kind and are
in the same condition
(temperature sensors located
next to each other, distance
sensors with the same
orientation)

They are of different kind, or are
in different conditions, and
which one is more reliable in
the current situation is not
known

Two databases They cover the very same
domain, and are equally likely
to be correct

They cover different domains, so
that a certain piece of
information may have been
crucial to one but a detail in the
second

The assumption of equal reliability is quite strong in the example of the two experts;
rather, there may be some reason to believe one more than the other; not knowing
who, this scenario falls in the case of absent reliability. For the two sensors and the
two databases equal reliability is not unlikely, but so is absent reliability.

If reliability is absent, can it be assumed equal?
When merging preferences, yes. When merging beliefs, no.

Merging preferences (List 2013; Lang 2004; Mata Díaz and Pino Pérez 2017) aims
at obtaining a result that best reflects the collective opinion of a group. A common
premise is that all members of the group have the same weight on the final decision,
as formalized by the condition of anonymity. In lack of information telling otherwise,
equal weights are a valid assumption.

A technical example shows why not when merging beliefs instead. Three scenarios
are possible: A, B and C ; two sources of information rank their unlikeliness on a
scale from 0 to 3, with 0 being the most likely and 3 the least (unlikeliness scales are
common in belief revision (Darwiche and Pearl 1997; Katsuno and Mendelzon 1991;
Rott 2006), in spite of likeliness being more intuitive). The first source grades A as the
most unlikely scenario, the second as the most likely; numerically, unlikeliness are 3
and 0. Both sources grade B as kind of likely (1), and C in the opposite way of A (0
and 3).

Scenario Unlikeliness according Unlikeliness according
to the first source to the second source

A 3 0
B 1 1
C 0 3

123



Synthese (2022) 200 :286 Page 3 of 42 286

Two different cases are considered: in the first case, the first source is twice as
reliable as the second; in the second, no reliability information is present.

If the first source is twice as reliable as the first, the overall unlikeliness of the three
scenarios are 2 · 3 + 0 = 6, 2 · 1 + 1 = 3 and 2 · 0 + 3 = 3. The minimum is 3: the
least unlikely scenarios are B and C .

Scenario Unlikeliness according Unlikeliness according
to the first source, weighted to the second source, weighed

A 2 · 3 0
B 2 · 1 1
C 2 · 0 3

If some fact x holds in B but not in C , its truth is uncertain since it differs in the
two most likely scenarios.

The second considered case is when reliability information is absent. The table of
overall unlikeliness can no longer be computed since it requires not only the unlike-
liness of the scenarios according to the sources but also the reliability of the sources.
A tempting solution is: “since the relative reliability of the sources is absent, it is
assumed equal”. This allows to compute the table again, this time with multipliers 1
and 1.

Scenario Unlikeliness according Unlikeliness according
to the first source, weighted to the second source, weighed

A 3 0
B 1 1
C 0 3

The most likely scenario is now B, and B only: its overall unlikeliness 2 beats those
of A and of C , both 3. If the fact x holds in B but not in C , it is deemed true.

The two cases differ both in their initial information and in their conclusions. In the
first case, reliability information is present, and x is not concluded. In the second case,
reliability information is absent, but x is concluded. Starting from more information
leads to less information.

Knowing that x is true is more information than not knowing the value of x . That the
first source is twice as reliable as the second is more information than an unspecified
relative reliability.

Information is not just different. It is strictly more in one case than in the other:
knowing that the first source is twice more reliable than the second is strictly more
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information than no given reliability; knowing that x is true is strictlymore information
than not knowing it. The case starting from strictly more information ends up with
strictly less information.

This example is inspired by the “penny z” of Popper (1959, pp. 425–426): a coin
is initially assumed fair in lack of information indicating otherwise; adding the con-
firmation of fairness does not change its probability of falling heads or tails. In the
interpretation of probability as degree of belief (Hájek 2012), the probabilities are the
epistemic state. Adding information should alter the epistemic state, but the addition
of fairness (which is new information) changes nothing.

This example was used by Popper against the subjective interpretation of prob-
abilities, but relies on the principle of indifference: events of unknown probability
are assumed equally probable (Keynes 1921; Shackel 2007). The Bertrand paradox
(Bertrand 1889; Keynes 1921; Shackel 2007) shows it is problematic; the coin exam-
ple by Popper (1959) shows another contradictory aspect of it (Gärdenfors and Sahlin
1982).

The belief merging version of the principle of indifference is the assumption of
equal reliability in lack of information about the relative reliability of the sources. In
the subjective interpretation of probability, the probability of an event is the degree of
belief in that event happening (Hájek 2012); in belief merging, the weight of a source
is the likeliness of the formulae it provides being true, or at least close to truth (Cholvy
1998; Darwiche and Marquis 2004; Konieczny et al. 2004; Lin 1996; Revesz 1997).
The event “formula F is true in the real world” provides a qualitative connection of
probability with merging. The principle of indifference translates into the assumption
of equal reliability.

The probability version of sources of unknown reliability is the lack of knowledge
of the probability of events. Economists distinguish between risk (known probability)
and Knightian uncertainty (unknown probability) (Nishimura and Ozaki 2007). An
often-used example is the urn containing twenty yellow balls and forty balls of another
color, whichmay be either blue or green; these forty balls are either all blue or all green,
but which of the two is not known. This scenario involves both risk (the probability of
yellow or not yellow is known) and Knightian uncertainty (the presence of blue balls
is unknown).

This urn suggests a way to deal with the problem in belief merging. The probability
of drawing a yellow ball is always one third, but assuming the same for blue and green
is as if the urn contained twenty balls for each color. This is acceptable for a single
drawn, but not in general. The probability of drawing two balls of the same color
(putting the first ball back in the urn) under the assumption of equal probability is 1

3
instead of 1

3
1
3 + 2

3
2
3 . The first value is obtained by selecting from the nine possible

outcomes of probability 1
9 each (random first ball and random second ball) only the

three where the balls have the same color: 3 1
9 = 1

3 . The second value can be obtained
by considering the second drawn not independent of the first, but also by calculating
the probability under the assumption of forty blue balls: the probability of the two
balls being both yellow is 1

3
1
3 , that of being both blue is 2

3
2
3 . Importantly, the very

same value is obtained for forty green balls instead. Not only this probability holds in
both cases, it resists the addition of information. It holds even if it is later discovered
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that the urn is made in a factory that normally produces forty green balls, and the blue
ball version is a rare collector’s edition.

In terms of belief merging, two sources of unspecified reliability may be equally
reliable, or one may be more reliable than the other. All cases are considered, and
only what holds in all of them is taken. This is analogous to reasoning from multiple
probability distributions (Halpern and Tuttle 1993).

How does this solution work in the example of the three scenarios A, B and C
respectively ranked [3, 0], [1, 1] and [0, 3]? Scenario A is preferred if the second
source is much more reliable than the first, scenario B if they are equally reliable and
scenario C if the first is much more reliable than the second. If reliability information
is absent, none of the three scenarios can be considered more likely than the others. If
the first source is much more reliable than the second, scenario A is much less likely
than the others. More information (the relative reliability of the sources) leads to more
information (from all three scenarios to only B and C).

A result in this article is that the disjunction of all maxcons (Ammoura et al. 2015;
Baral et al. 1992; Benferhat et al. 1997; Brewka 1989; Dubois et al. 2016; Grant
and Hunter 2011; Konieczny and Pino Pérez 2011) is the result of merging formulae
of unknown reliability using the drastic distance. This result invalidates the view that
maxcons are unsuitable for merging since they do not take into account the distribution
of information (Konieczny 2000; Konieczny and Pino Pérez 2011). This may be the
case under equal or otherwise specified reliability, but maxcons do exactly what they
should when reliability information is absent.

Another result is a motivation for disjunctive merging, the kind that only selects
models of the formulae (Everaere et al. 2010a; Liberatore and Schaerf 1998). It results
from assuming that one of the sources is completely reliable, but which one is not
specified.

Technically, merging is defined by selecting the models at a minimal weighted
distance from the formulae provided by the sources. The drastic and the Hamming
distances are considered as two relevant examples. After Sect. 2 fixes the formal
language used and other notions related to merging, Sect. 3 defines merging when
reliability is completely or partially absent; this definition is based on the concept
of weighted distance between models and formulae. Sect. 4 shows results about a
property of models that makes them relevant to merging. Sect. 5 and Sect. 6 analyze
the case of the drastic and the Hamming distance. Sect. 7 shows which postulates
are satisfied, while Sect. 8 concentrates on a specific condition of merging. Sect. 9
considers alternative ways of merging: sum of powers, leximax and leximin. Sect. 10
briefly considers the case of sources providing more than one formula. Sect. 11
discusses the results obtained in this article. An appendix contains all proofs of
theorems and lemmas.

2 Preliminaries

The formulae in this article are propositional over a finite alphabet. Models are rep-
resented by the set of literals they satisfy; for example, I = {a,¬b, c} is the model
assigning false to b and true to a and c. The notation I |� F indicates that the model
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I satisfies the formula F . The same symbol is also used to indicate that all models of
a set satisfy the formula; for example, {I , J } |� F tells that both I and J satisfy F .
The set of all models that satisfy a formula F is denoted mod (F).

The formulae to merge are denoted F1, . . . , Fm ; a single other formula μ contains
all integrity constrains—what is known for certainty. Contrary tomost previous studies
in belief merging, the formulae to be merged are not assumed equally reliable, nor
they are assumed to have a certain relative reliability either. The aim of merging is to
draw as many conclusions as possible.

Merging is formalized by a function from μ and F1, . . . , Fm to something that
represents information. In this article, this function produces the propositional inter-
pretations thatmodel the scenarios that are considered possible as the result ofmerging.
In other words, the codomain of this function is the set of all sets of propositional mod-
els over the given alphabet. As an example,merging x∧z and y∧¬z under the integrity
constraint x ∧ y may result in two scenarios considered possible: one where x , y and
z are all true and another where x and y are true while z is false; the result of the
function is the set of the two models {x, y, z} and {x, y,¬z}.
Definition 1 A merging operator is a function Δ from propositional formulae μ and
F1, . . . , Fm to sets of propositional models that satisfy μ.

The most general situation is when the reliability of the formulae is absent. Other
cases are: the formulae are equally reliable; one is much more reliable than the others;
none is so (this case was suggested by a referee). These three cases are the implicit
assumptions of respectively the usual definition ofmerging, of disjunctivemerging and
of merging by majority. Unless otherwise specified, merging with absent reliability
means that no reliability information is present at all, not even qualitatively like in the
case of no formula being much more reliable than the others.

Merging is often based on a distance measure between models. This is a function
from pairs of models to non-negative integers. If I and J are two models, d(I , J ) is
a non-negative integer that tells how much they differ. This integer is zero if I and J
coincide, otherwise it is greater than zero.

Two intuitive and commonly used distances are the drastic and the Hamming dis-
tance. The drastic distance is defined by dd(I , J ) = 0 if I = J and dd(I , J ) = 1
otherwise. The Hamming distance dh(I , J ) is the number of literals assigned different
truth values by I and J ; for example, dh({a,¬b, c}, {¬a,¬b,¬c}) = 2, since the
two models differ on a and c. Other distances can be defined; they are assumed to
satisfy d(I , I ) = 0 and d(I , J ) > 0 if I �= J .

3 Merge by weights

In this article, merging is done by minimizing the weighted distance of the models
obeying the integrity constraints from the formulae to be merged. The integrity con-
straints are denotedμ, the formulae to bemerged F1, . . . , Fm . This is the basic settings
for belief merging, where each source provides exactly one formula Fi ; the case of
multiple formulae is considered in a following section. Formulae μ and F1, . . . , Fm
are propositional over a finite alphabet.
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Merging is based on the distance betweenmodels, denoted by d(I , J ). Two intuitive
and commonly used distances are the drastic and the Hamming distance, defined in
the previous section. Distance extends from models to formulae: regardless of which
distance is used, d(I , F) is the minimal value of d(I , J ) for every J |� F . It further
extends from a formula to a list of them: the distance between a model and a list of
formulae is the array of integers d(I , F1, . . . , Fm) = [d(I , F1), . . . , d(I , Fm)].

Merging by weighted distance was the historically first way of integrating formulae
coming from sources of different reliability (Revesz 1997). Given a vector of positive
integers W = [w1, . . . , wm], the weighted distance of a model I from the formulae
F1, . . . , Fm is W · d(I , F1, . . . , Fm), where the dot stands as usual for the scalar
product:

[w1, . . . , wm] · d(I , F1, . . . , Fm) =
∑

1≤i≤m

wi d(I , Fi )

This product defines a single integer telling the aggregated distance from I to the
formulae Fi , weighted by the relative reliability of each as represented by the integer
wi . Merging selects themodels satisfying the integrity constraintsμ that haveminimal
weighted distance from the formulae.

Δd,W
μ (F1, . . . , Fm) = {I |� μ | W · d(I , F1, . . . , Fm) is minimal}

This function depends on two parameters: amodel-to-model distance d and a vector
of weights W = [w1, . . . , wm].

Fixed weights are used when the relative reliability of the sources is given. Weights
W = [1, . . . , 1] make the scalar product the same as a sum, and weighted merge the
same as the usual operators based on the sum of the drastic and Hamming distances.
In the notation by Konieczny and Pino Pérez (2011):

Δdd,[1,...,1] = ΔdD,Σ

Δdh,[1,...,1] = Δdh ,Σ

The dh distance was first used in belief revision by Dalal (1988); for this reason,
it is sometimes called “Dalal distance”. Revesz (1993, 1997) used it with weights
for belief merging, followed by Lin (1996) and Lin and Mendelzon (1999). Weights
reflect the reliability of the sources: the distance from a formula of high weight affects
the total more than the distance from a formula of low weight.

When reliability is absent, all possible weight vectors are considered. The set of all
weight vectors of positive integers is the focus of this article:

W∃ = {[w1, . . . , wm] | wi ∈ N, wi > 0}

Nevertheless, other sets ofweight vectors are considered. In some scenarios a source
is correct; the others only provide refining information. For example, a cardiologist,
a pulmonologist and an allergist may have contrasting opinions about the state of a
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patient; if the symptoms are caused by a heart disease then the cardiologist is likely to
be right on everything, for example on the reason of the breathing problems, even if
that contradicts the pulmonologist and the allergist; their opinion only provide some
additional insight. In the same way, if the symptoms are caused by an allergy, the
allergist is likely right on everything. The same for the pulmonologist. In these cases,
one source is totally correct, but which one is unknown.

Wa = {[a, 1, . . . , 1], [1, a, 1, . . . , 1], . . . , [1, . . . , 1, a]}

The value of a for scenarios like that of the three doctors depends on the maximal
possible distance between a model and a formula. For the drastic distance, a = m + 1
suffices, wherem is the number of formulae to be merged. For the Hamming distance,
a = nm + 1, where n is the number of variables. The opposite case is that of no
source deemed much more reliable than the others. It can be formalized by bounding
all weights by a constant.

Finally, merging with fixed weights falls into this generalization as the set compris-
ing a single vector. For example, equal reliability is captured by:

W= = {[1, . . . , 1]}

In all these cases, a set of weights W . represents all possible reliability the sources
are considered to have. Three relevant such sets are W∃, Wa or W=. The set W= is
for equally reliable sources;W∃ is the other extreme: no reliability information on the
sources is present. Every W ∈ W . is an encoding of the reliability of the sources. All
of these are plausible alternatives. Every scenario (every model) that is possible when
merging with some W ∈ W . is possible when merging with W .:

Δd,W .
μ (F1, . . . , Fm) =

⋃

W∈W .

Δd,W
μ (F1, . . . , Fm)

Merging on a set of weights generates all models obtained by merging with one
of these weights. This is different from obtaining a single ordering on the models as
done by Benferhat et al. (2014) to solve the related problem of commensurability that
occurs when the sources themselves assess the reliability of the formulae they provide.

4 Dominance

If a model is farther from every formula than another, the latter is always preferred to
the former regardless of the weights. The second model dominates the first. Despite
the seeming triviality of the concept, a number of relevant results follow:

– if a model has minimal weighted distance for some weights, it is not strictly
dominated by another;

– if the codomain is binary, the converse also holds: a model that is not strictly
dominated by another has minimal weighted distance for some weights;

– for a ternary codomain, there exist two formulae such that their merge does not
include an undominated model;
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Dominance could be defined over models with respect to formulae, but is simpler
to formalize over vectors of integers. It can then be carried over to the distance vectors
of two models.

Definition 2 A vector of integers D dominates another D′, denoted D ≤ D′, if every
element of D is less than or equal to the element of the same index in D′. Strict
dominance is the strict part of this ordering: D < D′ holds if both D ≤ D′ and
D′ � D hold.

The dominance between the distance vectors of two models is the same as the weak
Pareto dominance used in multi-objective decision making (Giagkiozis and Fleming
2014) when the objectives to minimize are the distances between the models and the
formulae.

If the distance vector of a model is strictly dominated by that of another, the first is
never minimal regardless of the weights. This fact holds because weights are strictly
positive.

Lemma 1 For every distance d, vector of weights W ∈ W∃ and model I of μ, if
I ∈ Δd,W

μ (F1, . . . , Fm) then d(J , F1, . . . , Fm) < d(I , F1, . . . , Fm) holds for no
model J of μ.

This result is almost trivial, since merging selects the models that have a minimal
value of the sum of the distances, each multiplied by a positive weight. The converse
does not hold in general, but does in a relevant case: when d(I , Fi ) can only be 0 or
1, or more generally when the codomain of d has size two.

Lemma 2 If the codomain of the distance function d is a subset of cardinality two ofN,
I is a model ofμ, d(I , F1, . . . , Fm) is not strictly dominated by the vector of distances
of any other model of μ, then there exists W such that I ∈ Δd,W

μ (F1, . . . , Fm).

The last two lemmas imply that the minimal models with arbitrary weights W∃
according to a distance of binary codomain are exactly the models whose distance
vectors are not dominated by others. Since dominance is the same as weak Pareto
dominance, these minimal models are exactly the Pareto set (Giagkiozis and Fleming
2014). This is therefore the result of merging, but only when reliability information is
completely absent and the codomain of the distance function is binary.

Theorem 1 If the codomain of the distance d is a subset of cardinality two of N, then
Δ

d,W∃
μ (F1, . . . , Fm) is the set of all models of μ of minimal distance vector according

to the dominance ordering.

The next question is whether this condition holds for every fixed-size codomain, or
whether a codomain of size three is sufficient for making some undominated model
to be excluded from merge. The latter is indeed the case in general. A preliminary
lemma will be useful in the sequel.

Lemma 3 If μ has three models of distance [3, 0], [2, 2] and [0, 3] from F1 and F2,
then Δ

d,W∃
μ (F1, F2) does not contain the model at distance [2, 2].
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This is almost the proof of the claim, but the codomain of the Hamming distance
has size unbounded, not three. However, a slightly different distance function fixes the
problem.

Theorem 2 For some distance d with codomain of size three, there exists I , μ and
F1, . . . , Fm such that I |� μ and I /∈ Δ

d,W∃
μ (F1, . . . , Fm), but d(J , F1, . . . , Fm) <

d(I , F1, . . . , Fm) does not hold for any J |� μ.

5 Drastic distance

Merging with all possible weights and the drastic distance dd generates all models of
all maximal subsets of F1, . . . , Fm that are consistent with μ. This is proved in three
steps:

– dominance with the drastic distance is the same as the containment of the set of
formulae F1, . . . , Fm satisfied by the models;

– the models of the maxcons are the models that are minimal according to that
containment;

– therefore, the models of the maxcons are exactly the undominated models; by the
results in the previous section, they are the models of minimal weighted distance
according to some weights.

Maximal consistent subsets (maxcons) have a general definition over lists of sets
of formulae, but what is necessary for this article is only the version with a list of two
sets, the first comprising a single consistent formula μ and the second F1, . . . , Fm .
With this limitation, the (possibly non-maximal) consistent subsets and the maximal
consistent subsets are defined as:

conμ(F1, . . . , Fm) ={S ⊆ {μ, F1, . . . , Fm} | μ ∈ S and S �|� ⊥}
maxconμ(F1, . . . , Fm)={S∈conμ(F1, . . . , Fm) | �S′∈conμ(F1, . . . , Fm) . S⊂S′}

Since μ is consistent, these sets cannot be empty. To establish the correspondence
between models and maxcons, the subset of formulae satisfied by a model is needed.

Definition 3 The set of formulae satisfied by a model I is denoted subsat(I , F1, . . . ,
Fm) = {Fi | I |� Fi }.

The basic brick in the proof construction is that dominance of the drastic distance
vectors is the same as containment of the subsets of formulae satisfied by models.

Lemma 4 For every pair of models I and J and every formulae F1, . . . , Fm, the
following two conditions are equivalent:

dd(I , F1, . . . , Fm) ≤ dd(J , F1, . . . , Fm)

subsat(J , F1, . . . , Fm) ⊆ subsat(I , F1, . . . , Fm)

This lemma links the dominance ordering under dd and the containment of subsat .
The next links the latter with the maxcons.
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Lemma 5 Amodel I ofμ satisfies some element ofmaxconμ(F1, . . . , Fm) if and only
if subsat(I , F1, . . . , Fm) ⊂ subsat(J , F1, . . . , Fm) holds for no model J of μ.

The lemma is the final link of the connection between maxcons and dominance
under the drastic distance.

Theorem 3 For every consistent formulae μ, F1, . . . , Fm, the following equality
holds:

Δdd,W∃
μ (F1, . . . , Fm) =

⋃

S∈maxconμ(F1,...,Fm )

mod(∧S)

Maxcons have been long used in belief revision (Fagin et al. 1983; Baral et al.
1992; Benferhat et al. 1997; Konieczny and Pino Pérez 2011; Ammoura et al. 2015;
Grant and Hunter 2011; Dubois et al. 2016) and nonmonotonic reasoning (Rescher
and Manor 1970; Brewka 1989; Ginsberg 1986). Yet, they are sometimes dismissed
as “unsuitable for merging” because they do not take into account the distribution of
information among the sources (Konieczny 2000; Konieczny and Pino Pérez 2011).
This criticism is grounded in the assumption of equal or given reliability. This theorem
blocks it from extending to absent reliability; maxcons are weighted merge with the
drastic distance when reliability information is completely absent. Not only they are
suitable for merging, they deal with the common situation where the credibility of the
sources cannot be assessed.

An example clarifies why. If reliability information is completely absent, a formula
¬x provided by two sources cannot beat a formula x provided by one source, since
the one source may be much more reliable than the two. Merging by maxcons collects
as many formulae as possible while retaining consistency; each maxcon may come
from the most reliable sources, making the number of formulae itself irrelevant.

This is not the case when some reliability information is present. A source cannot
beat all otherswhen the formulae have comparable reliability, as formalized byweights
bounded by a constant. It also cannot when all formulae have the same reliability. This
difference supports distinguishing absent reliability from equal reliability.

6 Hamming distance

The Hamming distance dh has a codomain of more than two elements. Therefore,
the previous results about binary codomains do not apply. Some existence results are
proved:

– everygiven set of distancevectors is obtainable fromsome formulaeμ, F1, . . . , Fm ;
– for some μ, F, F ′, merging with all possible weight vectors is not equivalent to
merging with subexponentially many weight vectors.

Merging with the Hamming distance does not have a simple equivalent form like
for the drastic distance, which selects the models that are not strictly dominated by
others. The same does not hold in general: a model that is undominated may still be
excluded in the merging. This was proved abstractly by three distance vectors [3, 0],
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[2, 2] e [0, 3]. With the Hamming distance, these distance vectors can be obtained
from concrete formulae. So can every set of distance vectors, actually. This existence
result is analogous to a similar one for maxcons (Liberatore 2015, Lemma 4.6).

Lemma 6 Given an arbitrary set of distance vectors of m elements each, all bounded
by an integer n, for some formulae μ and F1, . . . , Fm over nm variables the vectors
of Hamming distances from the models of μ to F1, . . . , Fm are exactly the given set
of distance vectors.

This theorem allows for an easy way of building counterexamples: rather than
providing d and μ, F1, . . . , Fm that have a certain property, that property is shown
directly on the set of distance vectors. Thismethodwas already used to prove that some
undominated models are not selected by merging, for some distance. In particular, it
shows this being the case for the Hamming distance.

Another application is the proof that exponentially many weight vectors have to
be considered when merging. The definition itself requires all weight vectors to be
taken into account: a model is selected if and only if it is selected by at least one of the
infinitelymanyweight vectors inW∃. The next lemma shows that at least exponentially
many have to be considered. It will be later proved that exponentially many suffice.

Lemma 7 There exist three formulae μ, F, F ′ on an alphabet of six variables such
that every Wr such that Δ

dh,Wr
μ (F, F ′) = Δ

dh,W∃
μ (F, F ′) contains at least two weight

vectors.

This lemma shows a pair of formulae that requires at least two weight vectors.
This technical result has an abstract implication: since each weight vector encodes a
specific way to compare the reliability of the formulae, merging with absent reliability
cannot be reduced to merging with any specific reliability degree of the formulae. This
makes sense, as reliability is not objective, like for example the values of variables, but
subjective, since it is the strength of believing that a formula is true. If merging were
always possible with a single weight vector, that weight vector could be considered
as part of reality rather than beliefs.

The lemma requires two formulae of six variables. The claim actually holds for
three variables, but the proofwould be ad-hoc rather than simply referring to a previous
lemma, and is therefore omitted. The claim does not hold for two variables, as proved
by exhaustive analysis on the four possible models.

The construction in the lemma can be replicated over many distinct alphabets of
six variables each. Each alphabet doubles the number of necessary weight vectors,
leading to exponentiality.

Lemma 8 There exists μ, F1, . . . , Fm such that the size of every Wr for which
Δ

dh,Wr
μ (F, F ′) = Δ

dh,W∃
μ (F, F ′) is exponential in the size of the formulae.

This result relies on an unbounded number of formulae to be merged. With two
formulae, a number of weight vectors linear in the number of variables suffices.
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7 Postulates

Merging with unknownweights depends on the distance function and the set of weight
vectors. Some postulates for belief merging hold for all sets of weights vectors (IC0-
IC2 and IC7), others only for some including W∃ (IC3-IC6), and one does not hold
for W∃ (IC8). Merging with W∃ cannot be expressed as a preorder, not even a partial
one.

Postulates IC0-8 (Konieczny and Pino Pérez 2002a) cannot all hold, since amerging
operator satisfying all of them can be expressed as a selection of models of μ that are
minimal according to some total preorder that depends only on F1, . . . , Fm . Actually,
not even a partial preorder expresses merging with all possible weight vectors.

Theorem 4 No partial preorder ≤ depending on F1 and F2 only is such that
Δ

dh,W∃
μ (F1, F2) = min(mod(μ),≤).

A consequence of this theorem is that merging with all possible weight vectors W∃
does not satisfy all postulates, since that would imply that merging could be expressed
by a preorder. Some postulates are not satisfied. Others are.

Some postulates hold for every set of weight vectors, others only for some. Some
postulates hold only if the distance function satisfies the triangle inequality, others
hold even if d(I , F) is not defined in terms of a distance among models d(I , J ). The
latter requires d(I , F) ∈ N and d(I , F) = 0 if and only if I |� F . In the following
summary, this case is described as “a model-formula distance”. In this section, E
is sometimes used in place of F1, . . . , Fm following the notation by Konieczny and
Pino Pérez (2011). This simplifies some formulae.

IC0 Δd,W .
μ (E) ⊆ mod(μ)

holds for every model-formula distance and non-empty set of weight vectors
IC1 if μ is consistent, then Δμ(E) is not empty

holds for every model-formula distance and non-empty set of weight vectors
IC2 if

∧
E is consistent with μ, then Δd,W .

μ (E) = mod(μ) ∩ mod(
∧

E)

holds for every model-formula distance and non-empty set of weight vectors
IC3 if E1 ≡ E2 and μ1 ≡ μ2, then Δd,W .

μ1
(E1) = Δd,W .

μ2
(E2)

holds for every model-formula distance and non-empty set of weight vectors
that contains every permutation of every vector it contains (W∃ has this property,
as well as Wa for every a ∈ N with a > 0.

IC4 if F1 |� μ and F2 |� μ then Δd,W .
μ (F1, F2) ∩ mod(F1) is not empty if and

only if Δd,W .
μ (F1, F2) ∩ mod(F2) is not empty.

holds ifW . contains every permutation of every vector it contains and d satisfies
the triangle inequality: d(I , K ) + d(K , J ) ≥ d(I , J ) (both dd and dh have
this property); if any of these two conditions do not hold, a counterexample
shows that the postulate does not hold

IC5 Δd,W .′
μ (F1, . . . , Fk) ∩ Δd,W .′′

μ (Fk+1, . . . , Fm) ⊆ Δd,W .
μ (F1, . . . , Fm)

requires W . to be the Cartesian product of two sets of weight vectors W .′ and
W .′′ whose vectors have size k and m − k, respectively

IC6 if Δd,W .′
μ (F1, . . . , Fk) ∩ Δd,W .′′

μ (Fk+1, . . . , Fm) is not empty, it contains
Δd,W .

μ (F1, . . . , Fm)
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requires W . to be the Cartesian product of two sets of weight vectors W .′ and
W .′′ whose vectors have size k and m − k, respectively

IC7 mod(μ′) ∩ Δd,W .
μ (E) ⊆ Δ

d,W .
μ∧μ′(E)

holds for every model-formula distance and non-empty set of weight vectors
IC8 if mod(μ′) ∩ Δd,W .

μ (E) is not empty, then Δ
d,W .
μ∧μ′(E) ⊆ Δd,W .

μ (E)

does not hold for the Hamming distance dh and the set of all weight vectors
W∃

The formal proofs of these claims follow. First, postulates IC0, IC1, IC2 and IC7
hold for every non-empty set of weight vectors W . and model-formula distance.

Lemma 9 For every model-formula distance d and non-empty set of weight vectors
W ., the merging operator Δd,W . satisfies postulates IC0, IC1, IC2 and IC7.

Postulate IC3 includes the case where the order of the formulae is changed. This
affects the weight vectors: they must be allowed to change their internal order accord-
ingly.

Lemma 10 If W . contains every permutation of every vector it contains, then IC3
holds. For some set of weight vectors that does not include a permutation of one of its
elements, IC3 does not hold.

These lemmas do not require d(I , F) to be defined in terms of a distance between
models d(I , J ). The next one does, and additionally needs the triangle inequality.

Lemma 11 If W . contains every permutation of every vector it contains and d satisfies
the triangle inequality ∀I , J , K .d(I , K ) + d(K , J ) ≥ d(I , J ), then IC4 holds. For
some set of weight vectors that does not include a permutation of one of its elements
IC4 does not hold. The same for some distance not satisfying the triangle inequality.

Since W∃ is symmetric and both dd and dh satisfy the triangle inequality, Postu-
late IC4 holds in these two cases. Actually, for W∃ the distance does not matter, and
Δ

d,W∃
μ (F1, . . . , Fm) always contains some models of every Fi that is consistent with

μ. If the maximal value of the distance from F1 and from F2 is k, the weight vectors
[k + 1, 1] and [1, k + 1] suffice. The first guarantees that every model of F1 is always
better than one of ¬F1, no matter how close the second is to F2. The same for the
second weight vector.

This lemma shows an effect of the triangle inequality on belief merging. It is a quite
natural requirement and is obeyed by both the drastic and the Hamming distance,
but is mostly useless in belief merging (Konieczny and Pino Pérez 2011). Besides
proving that a certain merging operator satisfies an additional postulate (Konieczny
andPinoPérez 2002a), so far it only seemed to affect the infinite-alphabet case (Chacón
and Pino Pérez 2006) and the application of belief revision to case-based reasoning
(Cojan and Lieber 2012).

Postulates IC5 and IC6 require special care even to be formulated. Informally,
they tell that merging F1, . . . , Fk, Fk+1, . . . , Fm is the same as merging F1, . . . , Fk ,
merging Fk+1, . . . , Fm and then conjoining the two results if they do not conflict. This
is simple to express if no weights are involved, otherwise each of these three mergings
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is defined over its set of weights. If these are unrelated, like [1, . . . , 1, 1 . . . , 1] for the
overall merge and [10, 1, . . . , 1] and [1, . . . , 10] for merging the two parts, the three
results cannot be expected to be coherent.

This is why Postulates IC5 and IC6 cannot be said to be obeyed plain and simple.
Rather, they are satisfied only when the sets of weights are related in the appropriate
way.

Lemma 12 If Δd,W .′
μ (F1, . . . , Fk) ∩ Δd,W .′′

μ (Fk+1, . . . , Fm) is not empty, it coincides

with Δd,W .
μ (F1, . . . , Fm), where W . is the Cartesian product of W .′ and W .′′ (postu-

lates IC5 and IC6).

IC8 does not hold. The following counterexample shows that for the Hamming
distance dh and the set of all weight vectors W∃.

Theorem 5 There exist μ, μ′, F1 and F2 such that mod(μ′) ∩ Δ
dh,W∃
μ (F1, F2) is not

empty but Δ
dh,W∃
μ∧μ′ (F1, F2) � Δ

dh,W∃
μ (F1, F2).

This counterexample completes the analysis of the basic postulates IC0-IC8. Two
additional ones exist: majority and arbitration. The first tells that a formula repeated
enough times is entailed by the result of merging; the second was initially defined as
the irrelevance of the number of repetitions, and has a newer definition that is difficult
to summarize in words.

Majority does not hold with W∃. Not that it should. No matter how many times
a formula is repeated, regardless of how many sources supports it, its negation may
come from a single source that is more reliable than all the others together. When
reliability is uncertain, this case has to be taken into account. It is not even uncommon
in practice: many commonly held belief are in fact false.

Many commonly held beliefs are in fact false: Napoleon was short (Dunan 1963);
diamonds had been typical gemstones for engagement rings since a long time (Epstein
1982) the red telephone is a telephone line, and one of its end is in the White House
(Clavin 2013); meteorites are always hot when they reach the Earth’s surface; flower-
ing sunflowers turn to follow the sun (only the gems do); the Nazis issued an ultimatum
before the Ardeatine massacre (something even witnesses of the time believe) (Maz-
zoni 2003, p. 155); fans in closed rooms kill people (many people in Korea believed
this). A page on Wikipedia lists more than a hundred of commonly believed facts that
are in fact false (Wikipedia 2017b). The material was enough for a 26-episodes TV
show (Wikipedia 2017a).

A view of belief merging is that it formalizes the process of information aggrega-
tion by human agents. The above scenarios indicate that unanimity is often a driving
mechanism of believing: hearing and reading many times that Napoleon was short
leads to believing he was without questioning. Yet, unanimity is not majority. A single
person with a funny haircut on TV may at least cast a doubt.

All of this shows that nomatter howmany times a fact is repeated,whenno reliability
information is present, it may still be falsified by a single reliable source. This is what
the following theorem formally proves.

Theorem 6 There exists F1, F2 such that Δ
d,W∃
true (F1, F2, . . . , F2) � mod(F2), where

F2 is repeated an arbitrary number of times.

123



286 Page 16 of 42 Synthese (2022) 200 :286

Majority does not hold in the most unconstrained case W∃ where weights are
arbitrary. This does not mean that majority never applies. It means that it does not
apply when no information about the reliability of the sources is present. In many
other cases, it applies. When sources are considered equally reliable, it applies. It
holds for W= = {[1, . . . , 1]}, which formalizes exactly this situation. The opera-
tor Δ

d,W=
μ (F1, . . . , Fm) coincides with the operator Δd,Σ

μ (F1, . . . , Fm) defined by
Konieczny and Pino Pérez (2011), which satisfies majority (Konieczny and Pino Pérez
2002a).

Where is the boundary between majority and non-majority operators? The majority
condition tells that no source is arbitrarilymore reliable than theothers. Since reliability
is formalized by weights, it tells that no weight is arbitrarily large.

Theorem 7 If all weights in the vectors in W . are lower than a constant and d is an
arbitrary distance, for every μ and F1, . . . , Fo, Fo+1, . . . , Fm, there exists n such
that Δd,W .

μ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm)⊆Δd,W .
μ (Fo+1, . . . , Fm),

where the formulae from Fo+1 to Fm are repeated n times.

Weights bounded by a constant indicate that no source is ever considered arbitrarily
more reliable than the others. This is a relevant case. So it is the case where a source
may be much more reliable than the others, as motivated above by the example of the
commonly believed facts that are in fact false and previously by the example of the
three doctors.

Arbitration was initially defined as the opposite condition of irrelevance of the
number of repetitions (Konieczny and Pino Pèrez 1998; Meyer 2001). This property
holds for W∃. The following theorem proves an equivalent formulation of it.

Lemma 13 For every μ, F1, . . . , Fm it holds:

Δd,W∃
μ (F1, . . . , Fm) = Δd,W∃

μ (F1, . . . , Fm, Fm)

A newer version of the arbitration postulate is expressed in terms of the preorder
between models as: if I <F1 J , I <F2 J ′ and J ≡F1,F2 J ′ then I <F1,F2 J .
As proved by Theorem 4, merging with absent reliability cannot be expressed as a
preorder, total or otherwise. The expression of the postulate in terms of formulae is
even more convoluted, and is not clear whether it makes sense when merging is not
expressible in terms of a preorder.

8 One reliable source

The case of one reliable, unspecified source is captured by the set of weightsWa when
the number a is large enough: more than the maximal distance between a model and
the formulae. For these weight vectors, a single source may take over all other ones.
Such a situation is not unlikely in practice, as exemplified by the scenario of the three
doctors: the one specialized in the field of the actual illness is almost certainly right,
but the actual illness is debated. Another example is that of the facts commonly held
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true, where the opinion of a real expert may confute them regardless of how many
people believe them.

The assumption of one reliable source gives rise and motivates a condition already
in the literature: the disjunctive property. Technically, merging by the weight vectors
Wa with a sufficiently large a ensures the disjunctive property. Conceptually, the
disjunctive property formalizes the assumption of one reliable source.

The disjunctive property was defined on two formulae as Postulate 7 by Liberatore
and Schaerf (1998) and later generalized to an arbitrary number of formulae with
integrity constraints by Everaere et al. (2010a). In terms of models, it has a simple and
intuitive expression. Every model is a possible state of the world; merging only selects
the ones that at least one of the sources considers possible. In formulae, a model I is
in the result of merging only if I |� Fi for at least one of the merged formulae Fi .
Since I must also satisfy the integrity constraints μ, this requirement is lifted when
none of the formulae Fi is consistent with μ.

Definition 4 A merging operator Δ is disjunctive if it satisfies the disjunctive prop-
erty: Δμ(F1, . . . , Fm) ⊆ mod(F1 ∨ · · · ∨ Fm) holds if at least one of the formulae
F1, . . . , Fm is consistent with μ.

This condition is not satisfied by Δdh,W= . As a result, is not satisfied by Δdh,W∃

either, since W= ⊂ W∃.
The disjunctive property fails in the case of equal reliability (formalized by W=)

and completely absent reliability information (formalized by W∃). This is one part
of the claim that the disjunctive property is a formalization of the assumption of one
reliable source. The other is that it succeeds when one unspecified source is much
more reliable than the others, formalized by Wa with a large value of a.

Definition 5 (Liberatore and Schaerf 1998)
Merging by closest pairs of models is defined from the ordering between pairs of

models 〈I , J 〉 ≤dh 〈I ′, J ′〉 if and only if dh(I , J ) ≤ dh(I ′, J ′) by selecting the
models in all minimal pairs:
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F1ΔDF2 = {I , J | 〈I , J 〉 ∈ min({〈K , L〉 | K ∈ mod(F1),

L ∈ mod(F2)},≤dh)}

This definition is framed in the general framework of merging with the set of
weights Wn+1 = {[1, n + 1], [n + 1, 1]}, the specific form of Wa when a is the
number of variables increased by one and merging is between two formulae. Since n
is the maximal value of the Hamming distance, this set Wa characterizes exactly the
assumption that one of the two formulae is reliable, but no information about which
is present. This assumption leads to merging by closest pairs of models.

Theorem 8 For every pair of satisfiable formulae F1 and F2 over an alphabet of n
variables, it holds F1ΔDF2 = Δ

dh,Wn+1
true (F1, F2).

A disjunctive operator on m formulae is obtained similarly when all formulae are
consistent and the integrity constraints are void: μ = true.

Theorem 9 For every distance d bounded by k, if F1, . . . , Fm are satisfiable then
Δ

d,Wkm
true (F1, . . . , Fm) is a disjunctive merging operator.

The weight vectors in these theorems provide an alternative view of the disjunctive
property. Rather than being a principle by itself, it is a formalization of the assumption
that a single source is fully reliable, but which one is not specified. What the other
sources tell is kept into account, but not as much as contradicting the reliable source.
In terms of formulae, the other formulae help in selecting some of the models of the
reliable formula, but do not drive the choice outside the set of these models. The result
of this selection is always a group of these models, a subset of the models of the
reliable formula. However, which formula is reliable is not specified. It may be every
one of them. For each one, merging may only select some of its models. Overall, only
the models of the formulae can be in the result of merging.

This mechanism interprets the principle of indifference in belief merging in the
right way: rather than assuming that all sources are equally reliable, one of them is
taken as completely right, but this is done for each of them in turn. Indifference is
realized by symmetry, not equality.

Many interesting operators are not disjunctive (Konieczny and Pino Pérez 2011;
Everaere et al. 2010a). An operator may not be disjuncive because it interprets the
principle of indifference in a different way, or because it does not follow the principle
of indifference at all. Indifference is not a universal rule. It is the formalization of the
absence of reliability information. When the credibility of the sources are given, or
is believed to be equal or comparable, the principle of indifference does not apply.
Forcing it on all operators would be a gross mistake.

9 Other aggregator functions

Merging selects models of minimal sum of weighted distances. The sum was histor-
ically the first way of combining distances. Others were later invented. Few of the
properties studied in this article change when switching to other mechanisms: sum of
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powers, leximax and leximin ordering (Konieczny and Pino Pérez 2011). Themain dif-
ferences are that leximax produces all undominatedmodels even if the codomain of the
distance function is not binary and that leximin produces the models of maximal-size
maxcons instead of all maxcons when using the drastic distance.

9.1 Merging by sum of powers

Instead of adding the weighted distances, merging by sum of powers adds their
weighted powers (Konieczny and Pino Pérez 2002b). The power could be the square
(power 2) or an arbitrary positive integer n. The ordering between twoweighted vector
distances is:

[v1, . . . , vm] <n [u1, . . . , um] iff
∑

1≤i≤m

wiv
n
i <

∑

1≤i≤m

wi u
n
i

This order defines merging by a single weight vector:

Δd,W ,Σn

μ (F1, . . . , Fm) = {I ∈ mod(μ) | �J ∈ mod(μ).

W · d(I , F1, . . . , Fm) <n W · d(J , F1, . . . , Fm)}

Merging by a set of weight vectors is the union of merging by each:

Δd,W .,Σn

μ (F1, . . . , Fm) =
⋃

W∈W .

Δd,W ,Σn

μ (F1, . . . , Fm)

Given any distance function d, the function defined by d ′(I , Fi ) = d(I , Fi )n is
also a distance function. It is binary if and only if d is binary. Therefore, all results
involving arbitrary distance functions or arbitrary binary distance functions carry over
from merging by sum to merging by sum of powers:

Lemma 1: merging only produces models that are not strictly dominated by others;
Theorem 1: if the distance function has binary codomain, merging produces exactly

the models that are not strictly dominated by others;
Theorem 3: merging by the drastic distance produces the union of the models of all

maxcons.

The latter holds because dd is binary, which implies that d ′(I , Fi ) = dd(I , Fi )n

is binary as well. Therefore, merging produces exactly the undominated models. This
is the same as the result of merging by the drastic distance without powering the
distances. The latter is proved by Theorem 3 to be the union of the models of all
maxcons.

The results requiring specific values may not carry over when powering the dis-
tances. For example, the proof of Theorem 2 involves three models with vector
distances [3, 0], [2, 2] and [0, 3], where the second is not dominated by the others
but is not in the result of merging. This is not the case when squaring the distances,
as [4, 4] is less than [9, 0] and [0, 9]. Yet, this lost property is found in the distance
vectors [4, 0], [3, 3] and [0, 4].
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Theorem 10 For some distance d with codomain of size three, there exists I , μ

and F1, . . . , Fm such that I |� μ and I /∈ Δ
d,W∃,Σ2

μ (F1, . . . , Fm) hold, but
d(J , F1, . . . , Fm) < d(I , F1, . . . , Fm) does not hold for any J |� μ.

The preconditions of this theorem are satisfied by the Hamming distance, since
this distance produces every possible set of distance vectors by Theorem 6. As a
result, merging by squared distances may not generate some models of μ that are not
dominated by others.

9.2 Leximaxmerging

The leximaxordering is the lexicographic order between twovectors sorted in descend-
ing order (Konieczny and Pino Pérez 2002a). The vectors W · d(I , F1, . . . , Fm) are
sorted so that each element is less than or equal to the previous, and compared accord-
ing to the lexicographic order. Theminimal models form the result of leximaxmerging
with a single weight vector Δd,W ,leximax

μ (F1, . . . , Fm). The result of merging with a
set of weight vectors Δd,W .,leximax

μ (F1, . . . , Fm) is the union of merging with each.
The dominance ordering is maintained when sorting vectors in descending order.

If the first vector is less than or equal to the second, it remains so after sorting both.

Lemma 14 If v = [v1, . . . , vm] and u = [u1, . . . , um] are two vectors of integers such
that vi ≤ ui holds for every index i , the same holds for the result of sorting v and u
in descending order.

This result only proves that the ordering before sorting implies that after. The
following results require the ordering to be strict. This case is covered by the following
lemma.

Lemma 15 If v = [v1, . . . , vm] and u = [u1, . . . , um] are two vectors of integers such
that vi ≤ ui holds for every index i and vi < ui for some index i , the same holds for
the result of sorting v and u in descending order.

This result allows extending Lemma 1 to leximax merging: it does not generate any
model dominated by another.

Lemma 16 For every distance d, vector of weights W ∈ W∃ and model I , if I ∈
Δd,W ,leximax

μ (F1, . . . , Fm) then d(J , F1, . . . , Fm) < d(I , F1, . . . , Fm) holds for no
model J of μ.

Leximax merging generates exactly the undominated models. This is analogous to
Lemma 2, but does not require the codomain of the distance function to be binary.

Lemma 17 If I is a model of μ and d(I , F1, . . . , Fm) is not strictly dominated by
the vector of distances of any other model of μ, then there exists W such that
I ∈ Δd,W ,leximax

μ (F1, . . . , Fm).

Combining the last two results: leximax merging generates exactly the models of
μ that are not dominated by others. This links leximax to maxcons.
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Theorem 11 For every consistent formulae μ, F1, . . . , Fm, the following equality
holds:

Δd,W∃,leximax
μ (F1, . . . , Fm) =

⋃

S∈maxconμ(F1,...,Fm )

mod (∧S)

9.3 Leximinmerging

The leximin ordering is similar to the leximax ordering, but sorts vectors in ascending
order instead of descending (Everaere et al. 2010a). Leximin merging generates the
minimal weighted vectors Δd,W ,leximin

μ (F1, . . . , Fm) according to this ordering. The
union of these for all W ∈ W . defines Δd,W .,leximin

μ (F1, . . . , Fm).
A model dominated by another is not selected by leximin merging. Its distance

vector is greater than that of the other. This propertyweathersmultiplying eachdistance
by the same weight. It also weathers sorting the two vectors in descending order by
Lemma 15. It again weathers inverting the order of the two vectors. Therefore, the
dominated model is greater than another in the leximin order, and is therefore not
selected by leximin merging.

The converse is however not the case even if the distance function has binary
codomain. Yet, maxcons are still related to leximin merging with the drastic distance.

The counterexample is based on three models of distance vectors [1, 1, 0, 0],
[0, 0, 1, 0] and [0, 0, 0, 1]. Multiplying these vectors by the weights [w1, w2, w3, w4]
results in [w1, w2, 0, 0], [0, 0, w3, 0] and [0, 0, 0, w4]. Since all weights are
larger than zero, ordering these vectors produces [0, 0, w1, w2], [0, 0, 0, w3] and
[0, 0, 0, w4] if w1 ≤ w2, otherwise [0, 0, w2, w1], [0, 0, 0, w3] and [0, 0, 0, w4].
Regardless, the first vector is not minimal because both w1 and w2 are larger than
zero.

Model selection is primarily based on the length of the initial string of zeros. The
drastic distance gives zerowhen themodel satisfies the formula. Therefore, the number
of zeros is the number of satisfied formulae. The selected models are therefore those
of the largest-size maxcons.

Theorem 12 For every consistent formulae μ, F1, . . . , Fm, the following equality
holds

Δdd,W∃,lexmin
μ (F1, . . . , Fm) =

⋃

S∈cardconsμ(F1,...,Fm )

mod (∧S)

where

cardconsμ(F1, . . . , Fm)={S∈maxconμ(F1, . . . , Fm) | �S′∈maxconμ(F1, . . . , Fm) . |S|<|S′|}

This theorem implies that leximin merging does not generate all models of all
maxcons. Therefore, it may not produce all undominated models.
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10 Sources providingmultiple formulae

The previous sections are about combining a number of independent formulae. This
is the basic problem of belief merging: each formula comes from a different source;
therefore, their reliabilities are independent. This is formalized by the weights being
unconstrained in the set W∃.

When a source provides more than one formula, each of them is as reliable as its
source. The same mechanism employing the weighted sum of the drastic or Hamming
distance can be used, but the weights are associated to the sources rather than to the
formulae. All formulae from the same source have the same reliability and therefore
the same weight. This condition is close in spirit to the unit partitions by Booth and
Hunter (2018).

Technically, each source is represented by a set of formulae Si . Its reliability is
encoded by a positive integer wi . Given a set {S1, . . . , Sm} of such sources, merging
is done by selecting the minimal models of the integrity constraints μ according to
this evaluation:

v(I ) =
∑

Si

wi

∑

Fi∈Si
d(I , Fi )

This is the DA2 operator (Konieczny et al. 2004) with the sum as intra-source
aggregation and the weighted sum as the inter-source aggregation.

The sum is subject to the problem of manipulation: a source may provide the same
formula multiple times in order to influence the final result (Chopra et al. 2006);
this is a problem especially when merging preferences, but not when merging beliefs
from sources of unspecified reliability. Even if a source provides the same formula a
thousand times, one of the considered alternatives is that the weight of this source is
a thousand times smaller than the others, making such a manipulation ineffective.

The only technical result in this section is that merging with the drastic distance
is not the same as the union of the models of the maxcons. This is proved by the
following sources with μ = true.

S1 = {x, y, z}
S2 = {¬x,¬y}
S3 = {¬x,¬z}

One of the maxcons of {x, y, z,¬x,¬y,¬z} is {x,¬y,¬z}, which is not obtained
when merging with all possible weights. Intuitively, to include the formula x from S1
in the result, that formula needs to count at least twice as much as each formula ¬x
from S2 and S3, but this implies the same for y and z, which excludes ¬y and ¬z.
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Formally, let the weights of the sources be w1, w2, w3. The weighted distances of
some relevant models are:

I = {x,¬y,¬z} v(I ) = w12 + w21 + w31 = w12 + w2 + w3

J = {¬x,¬y,¬z} v(J ) = w13 + w20 + w30 = w13

K = {x, y, z} v(K ) = w10 + w22 + w32 = w22 + w32

In order for I to be minimal, v(I ) must be less than or equal to v(J ) and v(K ):

w12 + w2 + w3 ≤ w13

w12 + w2 + w3 ≤ w22 + w32

This system of inequalities is infeasible. The first implies w2 + w3 ≤ w1, which
makes the right-hand side of the second become less than or equal to w12, while it
should instead be greater than or equal to w12 + w2 + w3, and therefore greater than
w12. This proves that {x,¬y,¬z} is not a minimal model for any weight vector.

A similar example shows that merging does not generate the models of the con-
junctions of the formulae of each source. Let S1 = {x, y} and S2 = {¬x,¬y}. The
only maxcons of {∧S1,∧S2} are x ∧ y and ¬x ∧ ¬y, but merging with all possible
weights selects all four models over x and y, since this is the result when W = [1, 1].

11 Conclusions

Sometimes the information to be merged comes from sources of equal reliability. In
such cases, merging with equal weights is correct. But when no reliability information
on the sources is present, assuming weights equal is unwarranted. The difference is
not only conceptual but also technical. Theorem 4 shows that merging with absent
reliability cannot in general be reduced to a preorder among models, not even a partial
one.

A result emerged in the study of this setting is a motivation for merging by max-
cons (Baral et al. 1992). This mechanism has sometimes been considered unsuitable
for merging because it disregards the distribution of information among sources
(Konieczny 2000; Konieczny and Pino Pérez 2011). Such a distribution is important
when the sources have the same reliability, or more generally their reliability is given.
It is not when reliability information is absent. Theorem 3 shows that merging with
maxcons is the same as merging with the drastic distance in absence of any reliability
assessment on the sources. The number of repetitions of a formula is irrelevant to this
kind of merging—as it should. A formula only occurring once may come from a very
reliable source, while its negation is supported only by unreliable sources. Without
any assumption on the reliability of the sources, this is a situation to take into account.
At the same time, Theorem 3 is limited to merging by the drastic distance. It does not
apply when a finer distance would provide a more informative result of merging.

This article not only backs merging by maxcons, but more generally merging by
the (MI) postulate: the number of repetitions of a formula is irrelevant to merging.
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Of course, there are many cases where this postulate should not hold; when their
reliability is equal, two sources providing a formula give twice the support for it; the
same if no source is arbitrarily more reliable than the others, as formalized by weights
bounded by a constant. But when reliability information is completely absent, every
numeric evaluation is irrelevant, including doubling the support for a formula like in
this case. As already discussed by Meyer (2001), Postulate (MI) may sometimes be
right; it is inconsistent with the other postulates IC0-IC8, but the fault is on them.
While Meyer blames Postulate 4 of merging without integrity constraints (Konieczny
and Pino Pèrez 1998), merging with absent reliability conflicts with IC8.

The most significant outcome of this article is a motivation of choices made in
the past, uncovering the implicit assumptions they are based on: maxcons come from
completely absent reliability information; the disjunctive property comes from the
assumption that one formula is totally reliable, but which one is not specified.

A minor technical contribution of this article is a case for the triangle inequality of
the distance function. This property had only a couple of applications in belief revision
and merging so far (Chacón and Pino Pérez 2006; Cojan and Lieber 2012; Konieczny
and Pino Pérez 2002a), but is generally not required (Konieczny and Pino Pérez 2011).
The new consequence of it shown in this article is that it allows satisfying Postulate IC4
when merging in absence of reliability information.

Most results in this article are onmerging based on theweighted distances ofmodels
from the formulae tomerge. The overall picture does not changemuchwhen switching
to other ways of combining distances like the sum of powers and the leximax and the
leximin ordering.

A comparison with related work follows.
The weighted distance from a set of formulae was first used for merging by Revesz

(1997), and investigated by Lin (1996). Lin and Mendelzon (1999) and Konieczny
and Pino Pèrez (1998) used the unweighted sum. These articles assume either equal
or fixed weights, not varying weights like this one.

Benferhat et al. (2014) consider the related problem of commensurability: when
the sources themselves assess the reliability of the formulae they provide, they may
not use the same scale; this is related to a similar issue in social choice theory. Their
study and the present one differ in formalism (ranked bases instead of formulae with
distance functions), but they share the principle of considering a set of alternative
reliability assessments. There is however an early point of departure: Benferhat et al.
2014 distill a single preorder and then select the models that are minimal according to
it; Theorem 4 shows that the same cannot be done in the settings of the present article.
A point of contact is the case of the drastic distance: Theorem 1 could be alternatively
proved from a result by Benferhat et al. (2014, Propositions 1,2,8).

That reliability information may be partially absent is mentioned by Konieczny
(2004) as the starting assumption of his model of belief merging as a game: “The
hypothesis for those operators is that all the sources are a priori reliable, or that we
know that some sources are less reliable than the others, but without knowing which
ones.” The approach taken is however very different, as it proceeds by iteratively
assessing the reliability of the sources based on the others.

A related question is what changes between the synthetic and epistemic view of
belief merging (Everaere et al. 2010b). When attempting to establish the truth (the
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epistemic view of belief merging), a single opinion from an expert may take over
many other ones. When forming a unified opinion of a group (the synthetic view),
deciding by majority may look the only way to proceed. As a matter of facts, majority
influence research (Gardikiotis 2011) shows otherwise. A minority view may end up
prevailing. An example are trial juries, where the opinion of few jurors sometimes
forms the final judgment.

Accepting what is true according to all possible relative reliabilities is analogous
to drawing the consequences that hold in all probability measures in a set (Halpern
and Tuttle 1993), and can be seen as the formal logic version of the “worst scenario”
in economics: “the firm may not be certain about the “relative plausibility” of these
boom probabilities. [...] if the firm acts in accordance with certain sensible axioms,
then its behavior can be characterized as being uncertainty-averse: when the firm
evaluates its position, it will use a probability corresponding to the “worst” scenario”
(Nishimura and Ozaki 2007). Belief revision and merging aim at the most knowledge
that can be justifiably and consistently obtained; therefore, minimal knowledge takes
the place of the least profit, and the worst scenario for a formula is one where it is
false.
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Proofs

Lemma 1 For every distance d, vector of weights W ∈ W∃ and model I of μ, if
I ∈ Δd,W

μ (F1, . . . , Fm) then d(J , F1, . . . , Fm) < d(I , F1, . . . , Fm) holds for no
model J of μ.

Proof The claim is proved in the opposite direction: d(J , F1, . . . , Fm) < d(I , F1,
. . . , Fm) entails I /∈ Δd,W

μ (F1, . . . , Fm).
Since weights are all strictly positive, d(J , F1, . . . , Fm) ≤ d(I , F1, . . . , Fm)

entails W · d(J , F1, . . . , Fm) ≤ W · d(I , F1, . . . , Fm) and d(I , F1, . . . , Fm) �
d(J , F1, . . . , Fm) entails W · d(I , F1, . . . , Fm) � W · d(J , F1, . . . , Fm). These two
consequences together are W · d(J , F1, . . . , Fm) < W · d(I , F1, . . . , Fm), which
proves that I is not a model of minimal distance weighted by W , and is not therefore
in Δd,W

μ (F1, . . . , Fm). ��
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Lemma 2 If the codomain of the distance function d is a subset of cardinality two ofN,
I is a model ofμ, d(I , F1, . . . , Fm) is not strictly dominated by the vector of distances
of any other model of μ, then there exists W such that I ∈ Δd,W

μ (F1, . . . , Fm).

Proof Since d is a distance function, it holds d(I , I ) = 0 for everymodel I . Therefore,
one of the two values of its codomain is 0. Since this codomain is a subset of N, the
other value b is greater than zero.

The weight vector W is [w1, . . . , wm], where wi = m + 1 if d(I , Fi ) = 0, and
wi = 1 otherwise.

For every other model J of μ, the weighted distance of J is proved to be greater
than or equal to that of I . Two cases are possible: either d(J , Fi ) = 0 for every Fi
such that d(I , Fi ) = 0, or this is not the case for at least one formula Fi .

The first case is that d(J , Fi ) ≤ d(I , Fi ) holds for every Fi , which implies
d(J , F1, . . . , Fm) ≤ d(I , F1, . . . , Fm). Since J does not dominate I by assumption,
d(I , F1, . . . , Fm) � d(J , F1, . . . , Fm) is false,whichmeans that d(I , F1, . . . , Fm) ≤
d(J , F1, . . . , Fm) is true. The distance vectors of I and J are the same. Therefore,
multiplying both by W produces the same result. This proves that I is minimal.

The second case is that d(I , Fi ) = 0 and d(J , Fi ) = b holds for some Fi . If k > 0
is the number of formulae Fi such that d(I , Fi ) = 0, the weighted distance of I is:

W · d(I , F1, . . . , Fm) = (m + 1)k0 + 1(m − k)b = (m − k)b < mb

Only d(J , Fi ) = b is known, the distance of J from the other formulae may be
either 0 or b. Assuming it is 0 for all of them leads to the minimal possible weighted
distance, which is:

– one formula has distance b; since d(I , Fi ) = 0, the weight is m + 1;
– the other formulae have all distance 0.

The weighted distance of J is therefore:

W · d(J , F1, . . . , Fm) ≥ (m + 1)1b = mb + b > mb

The weighted distance of I is proved above to be less than mb. ��
Theorem 1 If the codomain of the distance d is a subset of cardinality two of N, then
Δ

d,W∃
μ (F1, . . . , Fm) is the set of all models of μ of minimal distance vector according

to the dominance ordering.

Proof Lemma 1 proves that models of minimal weighted distance are never strictly
dominated by any other model ofμ. By Lemma 2, if the codomain of d is binary, every
model that is not strictly dominated has a weight vector W that makes its weighted
distance minimal. Since W∃ contains all weight vectors, the claim is proved. ��
Lemma 3 If μ has three models of distance [3, 0], [2, 2] and [0, 3] from F1 and F2,
then Δ

d,W∃
μ (F1, F2) does not contain the model at distance [2, 2].
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Proof If themodel at distance [2, 2]were in the result ofmerging, it would beminimal.
This implies the following set of linear inequalities for some W = [w1, w2].

w12 + w22 ≤ w13 + w20

w12 + w22 ≤ w10 + w23

The first implies w22 ≤ w1, the second w12 ≤ w2: each weight is at least twice
the other. No positive values may satisfy this condition. ��
Theorem 2 For some distance d with codomain of size three, there exists I , μ and
F1, . . . , Fm such that I |� μ and I /∈ Δ

d,W∃
μ (F1, . . . , Fm), but d(J , F1, . . . , Fm) <

d(I , F1, . . . , Fm) does not hold for any J |� μ.

Proof This is shown on the codomain {0, 2, 3} and a formula μ with three models
of distance vectors [0, 3], [2, 2] e [3, 0] from F1 and F2. That such formulae exist is
later proved by Lemma 6 for the Hamming distance. To obtain the right codomain
{0, 2, 3} the distance ismodified by setting dh′(I , Fi ) = 3 for everymodel K such that
dh(K , Fi ) /∈ {0, 2, 3}. This change does not affect the distance of the three considered
models.

None of the three distance vectors is strictly dominated by another. However, the
previous lemma shows that [2, 2] is not minimal for any weight vector. ��
Lemma 4 For every pair of models I and J and every formulae F1, . . . , Fm, the
following two conditions are equivalent:

dd(I , F1, . . . , Fm) ≤ dd(J , F1, . . . , Fm)

subsat(J , F1, . . . , Fm) ⊆ subsat(I , F1, . . . , Fm)

Proof The inequality dd(I , F1, . . . , Fm) ≤ dd(J , F1, . . . , Fm) is the same as
dd(I , Fi ) ≤ dd(J , Fi ) for each index i . The only possible values for dd(I , Fi )
are 0 when I |� Fi and 1 when I �|� Fi . The same holds for dd(J , Fi ). As
a result, dd(I , Fi ) ≤ dd(J , Fi ) holds if and only J |� Fi implies I |� Fi .
Since this is the case for every index i , all formulae satisfied by J are also satis-
fied by I . Since subsat(J , F1, . . . , Fm) is the set of formulae satisfied by J and
subsat(I , F1, . . . , Fm) is the set of formulae satisfied by I , the claim follows. ��
Lemma 5 Amodel I ofμ satisfies some element ofmaxconμ(F1, . . . , Fm) if and only
if subsat(I , F1, . . . , Fm) ⊂ subsat(J , F1, . . . , Fm) holds for no model J of μ.

Proof Let I be a model of μ such that subsat(I , F1, . . . , Fm) ⊂ subsat(J , F1, . . . ,
Fm) holds for no model J of μ. The set subsat(I , F1, . . . , Fm) is proved to
be a maxcon. This set is consistent with μ because I satisfies both. It is also
maximally so. Otherwise, subsat(I , F1, . . . , Fm) ∪ {μ, Fi } would be consistent
for some Fi /∈ subsat(I , F1, . . . , Fm). Consistency implies the existence of a
model J |� subsat(I , F1, . . . , Fm) ∪ {μ, Fi }. Since J satisfies all these formu-
lae, subsat(J , F1, . . . , Fm) contains all of them: subsat(I , F1, . . . , Fm) ∪ {Fi } ⊆
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subsat(J , F1, . . . , Fm). This implies subsat(I , F1, . . . , Fm) ⊂ subsat(J , F1, . . . ,
Fm) for a model J that also satisfies μ, contrary to assumption.

Let J be a model ofμ such that subsat(I , F1, . . . , Fm) ⊂ subsat(J , F1, . . . , Fm).
The claim is that I is not in any maxcon. By contradiction, let M be such a maxcon.
Since all its formulae satisfy I , it holds M ⊆ subsat(I , F1, . . . , Fm). By assumption,
this set is strictly contained in subsat(J , F1, . . . , Fm) for some J |� μ. Since J
satisfies both subsat(J , F1, . . . , Fm) and μ, this other set subsat(J , F1, . . . , Fm) is
consistent with μ, contradicting the assumption that M is maximally consistent with
μ. ��
Theorem 3 For every consistent formulae μ, F1, . . . , Fm, the following equality
holds:

Δdd,W∃
μ (F1, . . . , Fm) =

⋃

S∈maxconμ(F1,...,Fm )

mod (∧S)

Proof All elements S ofmaxconμ(F1, . . . , Fm) containμ by definition. Therefore, all
conjunctions∧S satisfyμ. All their models I satisfyμ. By Lemma 5, these are exactly
the models such that subsat(I , F1, . . . , Fm) ⊂ subsat(J , F1, . . . , Fm) holds for no
othermodel J ofμ. This is equivalent to dd(J , F1, . . . , Fm) < dd(I , F1, . . . , Fm) by
Lemma 4. Therefore, thesemodels I are themodels ofμ that are not strictly dominated
by other models of μ. Since the codomain of dd is binary, these are the models of
Δ

dd,W∃
μ (F1, . . . , Fm) by Lemma 1. ��

Lemma 6 Given an arbitrary set of distance vectors of m elements each, all bounded
by an integer n, for some formulae μ and F1, . . . , Fm over nm variables the vectors
of Hamming distances from the models of μ to F1, . . . , Fm are exactly the given set
of distance vectors.

Proof Formulae μ and F1, . . . , Fm are built over the set of variables {xij | 1 ≤ j ≤
n, 1 ≤ i ≤ m}. Each formula Fi is a conjunction of some of them.

Fi = xi1 ∧ · · · ∧ xin

Given a model I , its closest model of Fi has all variables xi1, . . . , x
i
n positive and

the same evaluation of I on the other variables. Therefore, dh(I , Fi ) is the number of
variables xi1, . . . , x

i
n assigned false by I .

For each distance vector [d1, . . . , dm] among the given ones, μ has the following
model:

⋃

1≤i≤m

{¬xij | 1 ≤ j ≤ di } ∪ {xij | di < j ≤ n}

For each i , this model has di negative variables among xi1, . . . , x
i
n ; therefore,

dh(I , Fi ) = di . As a result, dh(I , F1, . . . , Fm) = [d1, . . . , dm]. Since μ has one
such model for each of the given distance vectors, the claim is proved. ��
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Lemma 7 There exist three formulae μ, F, F ′ on an alphabet of six variables such
that every Wr such that Δ

dh,Wr
μ (F, F ′) = Δ

dh,W∃
μ (F, F ′) contains at least two weight

vectors.

Proof By Lemma 6, given distances [3, 0], [1, 1] and [0, 3], there exist formulae
μ, F1, F2 over six variables such that the threemodels ofμ have these distance vectors.

All three distance vectors are minimal for some W ∈ W∃. In particular, the first
two are minimal for W = [2, 4], the third is minimal for W = [4, 1]. This proves that
Δ

dh,W∃
μ (F1, . . . , Fm) contains all three models of μ.
Contrary to the claim, a single weight vector is assumed to produce the same result.

Since the model at distance [3, 0] is minimal, its weighted distance is less than or
equal to that of the model at distance [1, 1], and the same for [0, 3]:

[w1, w2] · [3, 0] ≤ [w1, w2] · [1, 1]
[w1, w2] · [0, 3] ≤ [w1, w2] · [1, 1]

Expressing the two vector products explicitly:

w13 ≤ w1 + w2

w23 ≤ w1 + w2

Since allweights are positive, the left-hand and right-hand sides of these inequalities
can be added, leading to w13 + w23 ≤ w12 + w22, which is impossible for strictly
positive integers. This proves that no single weight vector produces the same merging
of W∃. ��
Lemma 8 There exists μ, F1, . . . , Fm such that the size of every Wr for which
Δ

dh,Wr
μ (F, F ′) = Δ

dh,W∃
μ (F, F ′) is exponential in the size of the formulae.

Proof By Lemma 7, there exists formulae μ, F, F ′ on six variables X such that W∃
is only equivalent to sets of weight vectors of cardinality greater than or equal to two.
Since the variables are six, these three formulae are equivalent to formulae of size at
most 26, a constant.

This construction is replicated onm disjoint alphabets X1, . . . , Xm of six variables
each, givingm triplesμi , Fi , F ′

i of formulae with no shared variables among different
triples and size bounded by a constant each. These formulae are conjoined: μ =
μ1 ∧ · · · ∧ μm , F = F1 ∧ · · · ∧ Fm and F ′ = F ′

1 ∧ · · · ∧ F ′
m .

Since the triples are on different variables, the models of μ are combinations of
models of eachμi , the distance between a model and F is the sum of the distance from
every Fi , and the same for F ′. As a result, themodels ofμ atminimalweighted distance
from F and F ′ are combinations of themodels of eachμi atminimalweighted distance
from Fi and F ′

i . For each triple, all sets of weight vectorsWr thatmake Δ
dh,Wr
μ (Fi , F ′

i )

equal to Δ
dh,W∃
μi (Fi , F ′

i ) contain at least two weight vectors by Lemma 7. The weight

vectors that make Δ
dh,Wr
μ (F, F ′) equal to Δ

dh,W∃
μ (F, F ′) are their combinations,

and are therefore exponentially many in m. ��
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Theorem 4 No partial preorder ≤ depending on F1 and F2 only is such that
Δ

dh,W∃
μ (F1, F2) = min(mod(μ),≤).

Proof ByLemma 6, for every set of distance vectors there existsμ, F1 and F2 such that
the models of μ have these Hamming distance vectors from F1 and F2. The distance
vectors that prove the claim are [3, 0], [2, 2] and [0, 3]. Their corresponding models
of μ are denoted I , J and K .

Let μ′ be the formula satisfied only by the models I and J , the ones at distance
[3, 0] and [2, 2] from F1 and F2. They are both minimal with weightsW = [2, 1]. As a
result, I �< J . By symmetry, K �< J . The ordering ≤ is the same since by assumption
it does not depend on μ but only on F1 and F2, which are the same. A consequence of
I �< J and K �< J is that J is a minimal model of μ. However, it is not in the result
of merging with constraints μ as proved by Lemma 3. ��
Lemma 9 For every model-formula distance d and non-empty set of weight vectors
W ., the merging operator Δd,W . satisfies postulates IC0, IC1, IC2 and IC7.

Proof The claim is proved one postulate at time.

IC0 Δd,W .
μ (E) ⊆ mod(μ)

by definition, Δd,W .
μ (E) is a subset of the models of μ;

IC1 if μ is consistent, then Δd,W .
μ (E) is not empty

by assumption, W . contains at least a vector of weights W ; for this vec-
tor, Δd,W .

μ (E) is the set of models of μ at minimal weighted distance from
F1, . . . , Fm ; if μ is consistent, it has at least a minimal model;

IC2 if ∧E is consistent with μ, then Δd,W .
μ (E) = mod(μ) ∩ mod(∧E)

since d(I , Fi ) = 0 when I |� Fi , the distance vectors of the models of ∧E are
[0, . . . , 0]; regardless of the weights, the weighted distance is zero, and therefore
minimal; all other models have a strictly positive distance; since weights are
strictly positive, their weighted distance is greater than zero;

IC7 mod(μ′) ∩ Δd,W .
μ (E) ⊆ Δ

d,W .
μ∧μ′(E)

the models in mod(μ′) ∩ Δd,W .
μ (E), if any, are the models that satisfy μ′, and

also satisfy μ and no other model of μ has a lower distance from E weighted by
some W ∈ W .; each such model satisfies μ ∧ μ′, and no other model of μ ∧ μ′
has lower distance weighted by W , since the models of μ ∧ μ′ are a subset of
those of μ. ��

Lemma 10 If W . contains every permutation of every vector it contains, then IC3
holds. For some set of weight vectors that does not include a permutation of one of its
elements, IC3 does not hold.

Proof Postulate IC3 is: if E1 ≡ E2 and μ1 ≡ μ2, then Δd,W .
μ1

(E1) = Δd,W .
μ2

(E2),
where profiles are equivalent if there exists a bijection such that the associated formulae
are equivalent.

Since the definition of merging only involves the set of models of μ1 and not its
syntax, the result is the same when switching to an equivalent formula μ2.

The same holds for the formulae: the result of merging does not change if a formula
Fi is replaced by an equivalent one. This proves the claim when the bijection links
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each formula of the first profile to the one of the same index of the second. This
is generalized to arbitrary bijections by showing that the result of merging does not
change when swapping the position of two arbitrary formulae.

Let F1, . . . , Fi , . . . , Fj , . . . , Fm and F1, . . . , Fj , . . . , Fi , . . . , Fm be the two pro-
files.

A model I is in the result of merging the first profile if there exists a weight vector
W = [w1, . . . , wi , . . . , w j , . . . , wm] in W . such that W · d(F1, . . . , Fi , . . . , Fj , . . . ,

Fm) is minimal.
The weight vector W ′ = [w1, . . . , w j , . . . , wi , . . . , wm] is obtained by swapping

the weights of index i and j inW . SinceW . contains the permutation of every weight
vector it contains, and it contains W , it also contains W ′.

The distance from every model I to the first profile according to W and to the
second according to W ′ are the same:

W · d(I , F1, . . . , Fi , . . . , Fj , . . . , Fm)

= [w1, . . . , wi , . . . , w j , . . . , wm] · d(I , F1, . . . , Fi , . . . , Fj , . . . , Fm)

= w1d(I , F1) + · · · + wi d(I , Fi ) + · · · + w j d(I , Fj ) + · · ·
+wmd(I , Fm)

W ′ · d(I , F1, . . . , Fj , . . . , Fi , . . . , Fm)

= [w1, . . . , w j , . . . , wi , . . . , wm] · d(I , F1, . . . , Fj , . . . , Fi , . . . , Fm)

= w1d(I , F1) + · · · + w j d( j, Fj ) + · · · + wi d(I , Fi ) + · · ·
+wmd(I , Fm)

As a result, the minimal models are also the same; therefore, the results of merging
are also the same.

An example of a set of weight vectors that does not include the permutation of
every vector it contains is {[1, 2]}. Merging the profile made of x and ¬x produces
¬x while merging the profile made of ¬x and x produces x , using μ = true in both
cases. ��

Lemma 11 If W . contains every permutation of every vector it contains and d satisfies
the triangle inequality ∀I , J , K .d(I , K ) + d(K , J ) ≥ d(I , J ), then IC4 holds. For
some set of weight vectors that does not include a permutation of one of its elements
IC4 does not hold. The same for some distance not satisfying the triangle inequality.

Proof Postulate IC4 is: if F1 |� μ and F2 |� μ then Δd,W .
μ (F1, F2) ∩mod(F1) is not

empty if and only if Δd,W .
μ (F1, F2) ∩ mod(F2) is not empty.

This postulate does not hold in general. For example, the single weight vector [2, 1]
with the drastic or Hamming distance and μ = true, F1 = x and F2 = ¬x would
select the model of F1 only. Both distances satisfy the triangle inequality.

This counterexample suggests that the postulate holds if the set W . has some sort
of symmetry: if it contains a weight vector, it also contains all its permutations. This
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is however not sufficient, as shown by the following counterexample:

ds(I , J ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if dh(I , J ) = 0
1 if dh(I , J ) = 1
2 if 2 ≤ dh(I , J ) ≤ 4
5 if 5 ≤ dh(I , J )

W . = {[5, 2], [2, 5]}
F1 = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5
F2 = ¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5
μ = F1 ∨ F2 ∨ (x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5)

The distance ds may look unnatural, but has a rationale: instead of measuring
the distance between models by the exact number of differing variables, it roughly
approximates it by aggregating certain groups of consecutive values into one, so that
only finitely many different distances exist.

The models of μ have distance vectors [0, 5], [2, 1] and [5, 0]. The first and the
third are the models of F1 and F2, respectively. The weight vector [5, 2] turns these
distance vectors into the weighted distances [5, 2] · [0, 5] = 10, [5, 2] · [2, 1] = 12,
[5, 2] · [5, 0] = 25; only the model of F1 is minimal. For the weight vector [2, 5]:
[2, 5] · [0, 5] = 25, [2, 5] · [2, 1] = 9, [2, 5] · [5, 0] = 10; the only minimal model is
the second, which is not a model of F2. This is a case in which both F1 and F2 imply
μ and Δds,W .

μ (F1, F2) contains some models of F1 but none of F2.
Note that Lemma 6 does not apply to this case. It tells how to obtain certain distance

vectors with formulae μ, F1, F2, but these do not necessarily obey F1 |� μ and
F2 |� μ. To the contrary, the proof of the lemma involves formulae F1 and F2 that
have models that falsify μ.

Postulate IC4 requires not onlyW . to be symmetric, but also d to satisfy the triangle
inequality: for every three models I , J and K , it holds d(I , K )+ d(K , J ) ≥ d(I , J ).

Since Δd,W .
μ (F1, F2) ∩ mod(F1) is not empty, there exists a weight vector [a, b]

and a model I of F1 with distance vector [0, c] such that [a, b] · [0, c] is minimal (the
zero is because I |� F1).

By definition, d(I , F2) = c implies d(I , J ) = c for some J ∈ mod(F2). This
implies d(J , F1) ≤ d(J , I ) = c; if d(J , F1) < c then d(J , K ) < c for some K ∈
mod(F1), which implies d(K , F2) < c = d(I , F2), contradicting the assumption that
I is minimal; therefore, d(J , F1) = c.

Since J satisfies F2, it also satisfies μ. It is therefore a candidate for being in
the result of merging. If a < b, then the weighted distance of J is [a, b] · [c, 0] =
ac < bc = [a, b] · [0, c]. Since [0, c] is the distance vector of I , this contradicts the
assumption that I is minimal for weights [a, b]. This proves a ≥ b.

Model J is now proved to have minimal distance weighted by [b, a]. The weighted
distance of J is [b, a] · [c, 0] = bc. Contrary to the claim, let K be a model with
distance vector [e, f ] such that [b, a] · [e, f ] < bc.

The triangular property implies e + f ≥ c. In details: e + f < c implies the
existence of two models I ′ and J ′ of respectively F1 and F2 such that d(K , I ′) = e,
d(K , J ′) = f and d(I ′, J ′) ≤ e + f < c. This contradicts the assumption of
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minimality of I . This property e + f ≥ c, together with a ≥ b, makes the following
inequalities valid:

[b, a] · [e, f ] = be + a f

= be + b f + (a − b) f

= b(e + f ) + (a − b) f

≥ bc + (a − b) f

≥ bc

Contrary to what assumed, [b, a] · [e, f ] ≥ bc. This proves that no such model K
may exist, and that J has minimal distance weighted by [b, a]. Since J |� F2, the
intersection Δd,W .

μ (F1, F2) ∩ mod(F2) is proved not empty as required. ��

Lemma 12 If Δd,W .′
μ (F1, . . . , Fk) ∩ Δd,W .′′

μ (Fk+1, . . . , Fm) is not empty, it coincides

with Δd,W .
μ (F1, . . . , Fm), where W . is the Cartesian product of W .′ and W .′′ (postu-

lates IC5 and IC6).

Proof Let I be a model of both Δd,W .′
μ (F1, . . . , Fk) and Δd,W .′′

μ (Fk+1, . . . , Fm).
By assumption, there exist W ′ ∈ W .′ and W ′′ ∈ W .′′ such that the distance vector
d(I , F1, . . . , Fk)weighted byW ′ is minimal among the models ofμ, and the distance
vector d(I , Fk+1, . . . , Fm) weighted by W ′′ is minimal among the models of μ. This
is equivalent to d(I , F1, . . . , Fk, Fk+1, . . . , Fm) being minimal when weighted by
W ′W ′′; this is the vector obtained by concatenating W ′ and W ′′, and is therefore in
W ..

In the other way around, a model that is not minimal on its weighted dis-
tance to F1, . . . , Fk or to Fk+1, . . . , Fm is not minimal on its weighted distance to
F1, . . . , Fk, Fk+1, . . . , Fm . ��

Theorem 5 There exist μ, μ′, F1 and F2 such that mod(μ′) ∩ Δ
dh,W∃
μ (F1, F2) is not

empty but Δ
dh,W∃
μ∧μ′ (F1, F2) � Δ

dh,W∃
μ (F1, F2).

Proof Let μ, F1 and F2 be such that μ has three models with distance vectors
d(I , F1, F2) = [1, 0], d(J , F1, F2) = [0, 1] and d(K , F1, F2) = [0, 2]. Such
formulae exist thanks to Lemma 6.

The models of Δ
dh,W∃
μ (F1, F2) are I and J , since these two models have minimal

distance weighted by [1, 1]. Since J dominates K , by Lemma 1 K is not in the result
of merging for any weights.

Let μ′ be the formula with models I and K . Since I is also in Δ
dh,W∃
μ (F1, F2),

this set contains a model of μ′, as required. When merging under constraints μ ∧ μ′,
model K is minimal with weights [2, 1], since it and the other model I of μ∧μ′ have
both weighted distance 2. ��

Theorem 6 There exists F1, F2 such that Δ
d,W∃
true (F1, F2, . . . , F2) � mod(F2), where

F2 is repeated an arbitrary number of times.
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Proof The formulae are F1 = a and F2 = ¬a. For every number of repetitions n,
there exists W such that Δd,{W }

μ (F1, F2, . . . , F2) contains the model {a}, which does
not satisfy F2. In particular, the weight vector is W = [n, 1, . . . , 1]. The weighted
distance of {a} from the formulae is n, the same as the weighted distance of the only
other model {¬a}. As a result, {a} is minimal. ��
Theorem 7 If all weights in the vectors in W . are lower than a constant and d is an
arbitrary distance, for everyμ and F1, . . . , Fo, Fo+1, . . . , Fm, there exists n such that
Δd,W .

μ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) ⊆ Δd,W .
μ (Fo+1, . . . , Fm),

where the formulae from Fo+1 to Fm are repeated n times.

Proof By definition, Δd,W .
μ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) is the

union of Δd,W
μ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) for all weight vectors

W ∈ W .. The same holds for Δd,W .
μ (Fo+1, . . . , Fm). The claim is proved by showing

a number n that makes Δd,W
μ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) con-

tained in Δd,W
μ (Fo+1, . . . , Fm) for every W ∈ W ..

The set Δd,W
μ (Fo+1, . . . , Fm) comprises all models of μ at minimal weighted

distance from Fo+1, . . . , Fm . This minimal weighted distance is denoted by b. The
minimalweighted distance from thesemodels to F1, . . . , Fo is denoted by a; this is the
minimal weighted distance to F1, . . . , Fo from the models of Δd,W

μ (Fo+1, . . . , Fm)

only, not from all models of μ.
By definition, the weighted distance from a model to F1, . . . , Fo, Fo+1, . . . ,

Fo+1, . . . , Fm, . . . , Fm is the same as its weighted distance to F1, . . . , Fo plus its
weighted distance to Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm , which is n times its weighted
distance from Fo+1, . . . , Fm . As a result, some models of Δd,W

μ (Fo+1, . . . , Fm) are
at weighted distance a + nb from F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm .

The set Δd,W
μ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) comprises all mod-

els ofμ atminimalweighteddistance from F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . ,

Fm , which is equal to the weighted distance from F1, . . . , Fo plus n times the weighted
distance from Fo+1, . . . , Fm .

If one of these models is not in Δd,W
μ (Fo+1, . . . , Fm), its weighted distance

from Fo+1, . . . , Fm is at least b + 1, since b is the minimal weighted distance
from the models of μ to Fo+1, . . . , Fm . Therefore, its weighted distance from
F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm is at least n(b + 1).

Since thismodel is atminimalweighteddistance from F1, . . . , Fo, Fo+1, . . . , Fo+1,

. . . , Fm, . . . , Fm , all other models of μ are at least at the same weighted dis-
tance from these formulae. This includes the models that are the closest to
Fo+1, . . . , Fm , which have been proved to be at weighed distance a + nb from
F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm . The inequality n(b + 1) ≤ a + nb
follows.

This is the same as nb+n ≤ a+nb. Removing the commonaddends fromboth sides
results in n ≤ a. In summary, if a model of μ at minimal weighted distance from
F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm is not at minimal weighted distance
from Fo+1, . . . , Fm then n ≤ a. In the other way around, if n > a then all models of
μ at minimal weighted distance from F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm
are also at minimal weighted distance from Fo+1, . . . , Fm .
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The conclusion is that Δd,W
μ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) is a

subset of Δd,W
μ (Fo+1, . . . , Fm) if n > a, where a is the minimal weighted distance

of a model of Δd,W
μ (Fo+1, . . . , Fm) from F1, . . . , Fo. Since the weights in W . are

bounded by a constant, only a finite number of weight vectors are in W .. Therefore,
the maximal value of a across all W ∈ W . is finite. Every n larger than it satisfies the
claim. ��
Lemma 13 For every μ, F1, . . . , Fm it holds:

Δd,W∃
μ (F1, . . . , Fm) = Δd,W∃

μ (F1, . . . , Fm, Fm)

Proof By definition, Δ
d,W∃
μ (F1, . . . , Fm) is the union of Δd,W

μ (F1, . . . , Fm) for every
W ∈ W∃, and the same when Fm is duplicated. The claim is proved by showing that
for each W = [w1, . . . , wm−1, wm] there exists W ′ = [w′

1, . . . , w
′
m−1, w

′
m, w′′

m]
such that Δd,W

μ (F1, . . . , Fm) is equal to Δd,W ′
μ (F1, . . . , Fm, Fm), and vice versa.

The distance of a model from F1, . . . , Fm weighted by W = [w1, . . . , wm−1, wm]
is exactly half of the distance of the same model from F1, . . . , Fm, Fm weighted
by W ′ = [2w1, . . . , 2wm−1, wm, wm], since each distance is multiplied by two.
Therefore, the minimal models are the same.

Vice versa, the distance of a model from F1, . . . , Fm, Fm weighted by W ′ =
[w1, . . . , wm−1, wm, w′

m] is exactly the same as the distance of the same model from
F1, . . . , Fm weighted by W = [w1, . . . , wm−1, wm +w′

m]. In this case, the weighted
distances are exactly the same, and the minimal models coincide. ��
Theorem 8 For every pair of satisfiable formulae F1 and F2 over an alphabet of n
variables, it holds F1ΔDF2 = Δ

dh,Wn+1
true (F1, F2).

Proof By definition, I ∈ F1ΔDF2 if and only I |� F1 and there exists J |� F2 such
that 〈I , J 〉 is minimal according to ≤dh , or the same with F1 and F2 swapped. What
is now proved is that the first condition is equivalent to I ∈ Δ

dh,[n+1,1]
true (F1, F2).

By symmetry, the condition with the two formulae swapped is equivalent to I ∈
Δ

dh,[1,n+1]
true (F1, F2).
The relevant cases are: I |� F1 and 〈I , J 〉 is minimal for some J |� F2, I |�

F1 and 〈I , J 〉 is minimal for no J |� F2, and I �|� F1. The claim holds if I ∈
Δ

dh,Wn+1
true (F1, F2) holds exactly in the first case.

1. I |� F1 and 〈I , J 〉 is minimal for some J |� F2; since I |� F1, the distance
from I to F1 is zero: dh(I , F1) = 0; therefore, the weighted distance from I to the
formulae is [n+1, 1] · [0, dh(I , F2)] = dh(I , F2), which is at most n; the negation
of the claim is that the weighted distance (n+1)dh(K , F1)+1dh(K , F2) of some
other model K is less than that; for it being less than n implies dh(K , F1) = 0; as
a result, the weighted distance of K is dh(K , F2); if it were less than the weighted
distance of I then dh(K , F2) < dh(I , F2); by definition, this means that there
exists K ′ such that dh(K , K ′) is less than dh(I , I ′) for every I ′ |� F2, including
I ′ = J ; this implies dh(K , K ′) < dh(I , J ), contrary to the assumption that 〈I , J 〉
is minimal;
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2. I |� F1 and 〈I , J 〉 is minimal for no J |� F2; by assumption, there exists K , K ′
such that K |� F1, K ′ |� F2 and dh(K , K ′) < dh(I , J ) for every J |� F2;
this implies dh(K , F2) < dh(I , F2); since both I and K satisfy F1, it also holds
dh(I , F1) = dh(K , F1) = 0; as a result, theweighted distances of thesemodels are
[n+1, 1]·[0, dh(I , F2)] = dh(I , F2) and [n+1, 1]·[0, dh(K , F2)] = dh(K , F2);
since dh(K , F2) < dh(I , F2), the model I is not at a minimal weighted distance;

3. I �|� F1; since F1 is by assumption satisfiable, it has amodel K ; since dh(K , F1) =
0, the weighted distance for this model is [n + 1, 1] · [dh(K , F1), dh(K , F2)] =
dh(K , F2), which is at most n; the weighted distance of I is instead [n + 1, 1] ·
[dh(I , F1), dh(K , F2)] = (n + 1)dh(I , F1) + dh(I , F2), which is greater than n
since dh(I , F1) > 0.

Since I has minimal weighted distance from F1 and F2 in the first case but not in
the second and in the third, the claim is proved. ��
Theorem 9 For every distance d bounded by k, if F1, . . . , Fm are satisfiable then
Δ

d,Wkm
true (F1, . . . , Fm) is a disjunctive merging operator.

Proof Let I be a model satisfying no formula Fi . The disjunctive property holds if I
is not in Δ

d,Wkm
true (F1, . . . , Fm). This holds if I is not in Δ

d,W
true(F1, . . . , Fm) for any

W ∈ Wkm .
By assumption, I does not satisfy any of the formulae. Therefore, its distance

vector is greater than or equal to [1, . . . , 1]. Multiplying [1, . . . , 1] by W results in
km + (m − 1).

Since W is in Wkm , one of its elements is km. Let i be its index. Since Fi is
satisfiable, it has a model J . The distance vector of J is at most [k, . . . , k, 0, k, . . . , k]
where 0 is at index i . The result of multiplying it by W is (m − 1)k.

The upper bound for the weighted distance of J is (m − 1)k, which is less than
km + (m − 1), the lower bound of the weighted distance of minimal I . This proves
that I is not minimal. ��
Theorem 10 For some distance d with codomain of size three, there exists I , μ

and F1, . . . , Fm such that I |� μ and I /∈ Δ
d,W∃,Σ2

μ (F1, . . . , Fm) hold, but
d(J , F1, . . . , Fm) < d(I , F1, . . . , Fm) does not hold for any J |� μ.

Proof The proof is based on three models of distance vectors [4, 0], [3, 3] and [0, 4].
Let w = [w1, w2] be an arbitrary weight vector. The squared distance vectors are
[16, 0], [9, 9] and [0, 16]. Multiplying them by theweight vector [w1, w2] gives 16w1,
9w1 + 9w2 and 16w2.

In order for the second model to be generated by merging, the second number has
to be lower than or equal to both the first and the third.

9w1 + 9w2 ≤ 16w1

9w1 + 9w2 ≤ 16w2

These inequalities are the same as 9w2 ≤ 7w1 and 9w1 ≤ 7w2, or w2 ≤ 7
9w1 and

w1 ≤ 7
9w2. These imply w2 < w1 and w1 < w2, which are impossible together. ��
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Lemma 14 If v = [v1, . . . , vm] and u = [u1, . . . , um] are two vectors of integers such
that vi ≤ ui holds for every index i , the same holds for the result of sorting v and u
in descending order.

Proof Two vectors can be sorted by Bubblesort, which compares and possibly swaps
pairs of consecutive elements (Astrachan 2003). Running the algorithm in parallel on
the two vectors iterates over the same basic step: if vi is less than vi+1, these two
elements are swapped; the same for ui and ui+1.

If none of the two pairs is swapped, the vectors do not change; therefore, each
element of v is still less than or equal to the corresponding element of u. If both pairs
are swapped, the condition still holds because the element corresponding to vi is still
ui and that corresponding to vi+1 is still ui+1.

The same is provedwhen only one of the two pairs is swapped. The swap is assumed
done on v and not on u; the converse case is symmetric. The result of swapping is the
following.

[v1, . . . , vi+1, vi , . . . , vm]
[u1, . . . , ui , ui+1, . . . , um]

Since the two elements of v are swapped, they were not in the requested order:
vi < vi+1 holds. Since the two elements of u are not swapped, they are already in the
requested order: ui ≥ ui+1. Before the swap, each element of v was less than or equal
to the corresponding elements of u before the swap: vi ≤ ui and vi+1 ≤ ui+1.

The claim is the same after the swap: vi+1 ≤ ui and vi ≤ ui+1. The first is a
consequence of vi+1 ≤ ui+1 and ui+1 ≤ ui . The second is a consequence of vi < vi+1
and vi+1 ≤ ui+1.

The conclusion is that the basic step of Bubblesort keeps each element of v less
than or equal to the corresponding elements of u. This condition holds for the two
ordered vectors since they result from iterating this step. ��
Lemma 15 If v = [v1, . . . , vm] and u = [u1, . . . , um] are two vectors of integers such
that vi ≤ ui holds for every index i and vi < ui for some index i , the same holds for
the result of sorting v and u in descending order.

Proof Lemma 14 proves that each element of the first sorted vector is less than or
equal to the corresponding one of the second. The claim requires the comparison to
be strict for at least one element.

Proof is by contradiction. If the ordering is not strict, the two sorted vectors are the
same. This implies that their sum is the same. Since sorting only changes the order
among the elements of the vectors, this is also the case for the two unsorted vectors.
Their sum cannot be the same since vi ≤ ui holds for all elements and vi < ui for at
least one. ��
Lemma 16 For every distance d, vector of weights W ∈ W∃ and model I , if I ∈
Δd,W ,leximax

μ (F1, . . . , Fm) then d(J , F1, . . . , Fm) < d(I , F1, . . . , Fm) holds for no
model J of μ.
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Proof The claim is proved by showing that d(J , F1, . . . , Fm) < d(I , F1, . . . , Fm)

forbids I from being in Δd,W ,leximax
μ (F1, . . . , Fm) for any W ∈ W∃.

LetW = [w1, . . . , wm] be an arbitrary element ofW∃. Since all weights are greater
than zero, d(J , Fi ) ≤ d(I , Fi ) is the same as wi d(J , Fi ) ≤ wi d(I , Fi ). As a
result, multiplying the elements of d(J , F1, . . . , Fm) and d(I , F1, . . . , Fm) by their
respective weights in [w1, . . . , wm] results in two vectors V and U such that V < U .

Let V ′ be the result of sorting V in descending order and U ′ the result of sorting
U . Lemma 15 proves that V < U implies V ′ < U ′. Every element of V ′ is less than
or equal to the corresponding element of U ′, and one is strictly so. As a result, V ′ is
less than U ′ in the lexicographic order. As a result, I is not minimal, and is therefore
not in Δd,W ,leximax

μ (F1, . . . , Fm). This holds for every set of weights W ∈ W∃. ��

Lemma 17 If I is a model of μ and d(I , F1, . . . , Fm) is not strictly dominated by
the vector of distances of any other model of μ, then there exists W such that
I ∈ Δd,W ,leximax

μ (F1, . . . , Fm).

Proof Since I is not strictly dominated by any other model ofμ, for every other model
J of μ two cases are possible: either I ≤ J or there exists i such that d(I , Fi ) <

d(J , Fi ). In the first case, I is always less than or equal to J according to the leximax
ordering regardless of the weights thanks to Lemma 14. For themodels J of the second
kind, a vector of weights W making I less than all of them is shown.

Each distance d(I , Fi ) such that d(I , Fi ) < d(J , Fi ) for at least one such model
J may be zero or greater than zero. Let the ones greater than zero be x , y and z. The
other distances are not important, except that their maximum value plus one is denoted
v.

The distance vector of I therefore comprises three kinds of elements: the ones such
that d(I , Fi ) < d(J , Fi ) is not the case for any J , the ones such that d(I , Fi ) = 0
and d(I , Fi ) < d(J , Fi ) holds for some model J , and the ones such that d(I , Fi ) <

d(J , Fi ) holds for some J and d(I , Fi ) is either x , y, or z.
Regarding the distance vectors of the models J , all that is known is that d(J , Fi ) is

strictly greater than d(I , Fi ) for some index i . The remaining elements are unknown,
but they are not necessary anyway.

The distance vectors can be rearranged as follows.

I [ < v . . . < v 0 . . . 0 x y z ]
J [ ≥ 1 ]
J ′ [ ≥ 1 ]
J ′′ [ > x ]
. . . [ > y ]
. . . [ > z ]
W [ 1 . . . 1 2vxyz . . . 2vxyz vyz vxz vxy ]

The last line of the table is a weight vector. Multiplying the distances each by its
weight produces the following table, where u = vxyz.
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I [ < v . . . < v 0 . . . 0 u u u ]
J [ ≥ 2u ]
J ′ [ ≥ 2u ]
J ′′ [ > u ]
. . . [ > u ]
. . . [ > u ]

Since v is one plus the maximum of some nonnegative numbers, it is larger than
zero. Since x , y and z are also larger than zero, u = vxyz is larger than v. As a result,
the maximum element of the vector of I is u.

Every other vector contains at least an element strictly greater than u. Its maximum
element is therefore strictly greater than u. It is therefore strictly greater than the vector
of I according to the leximax ordering. ��
Theorem 11 For every consistent formulae μ, F1, . . . , Fm, the following equality
holds:

Δd,W∃,leximax
μ (F1, . . . , Fm) =

⋃

S∈maxconμ(F1,...,Fm )

mod (∧S)

Proof Lemma 16 proves that leximax merging does not select models of μ dominated
by others. Lemma 17 proves that leximax merging selects all models of μ that are not
dominated by others. Overall, leximax merging selects exactly the models of μ that
are not dominated by others.

This is the same selection made by merging with the drastic distance and the
sum as the aggregation function. As a result, Δ

d,W∃,leximax
μ (F1, . . . , Fm) is the

same as Δ
dd,W∃
μ (F1, . . . , Fm). Theorem 3 proves that the latter is the same as⋃

S∈maxconμ(F1,...,Fm ) mod (∧S). ��
Theorem 12 For every consistent formulae μ, F1, . . . , Fm, the following equality
holds

Δdd,W∃,lexmin
μ (F1, . . . , Fm) =

⋃

S∈cardconsμ(F1,...,Fm )

mod (∧S)

where

cardconsμ(F1, . . . , Fm)

= {S ∈ maxconμ(F1, . . . , Fm) | �S′ ∈ maxconμ(F1, . . . , Fm) . |S| < |S′|}

Proof If amodel ofμ is dominated by another, the same orderingweathersmultiplying
their weight distances by the weight vector, sorting them in descending order and
inverting the order of their elements. As a result, the dominated model is not minimal
according to leximin. Leximin merging only produces undominated models. Not all
of them, however.

123



286 Page 40 of 42 Synthese (2022) 200 :286

The drastic distance dd(I , Fi ) is 0 if I |� Fi and 1 if I �|� Fi . Multiplying a
distance vector dd(I , F1, . . . , Fm) by the weights and sorting the result in ascending
order produces [0, . . . , 0, w,w′, . . .], where the number of zeros is the number of
formulae satisfied by I . All following weights are strictly greater than zero because
they are weights.

If another model J of μ satisfies more formulae F1, . . . , Fm than I , its weighted
and sorted distance vector is [0, . . . , 0, w′′, w′′′, . . .], where the number of zeros is
larger than that of the vector of I . As a result, it contains a zero where the vector of
I contains w. It is strictly smaller than that according to the leximin ordering. This
implies that leximin merging does not generate I .

Leximin merging instead generates I if no other model μ satisfies more formu-
lae than I . This is proved by the weight vector [1, . . . , 1]. The weighted and sorted
distance vector of I is [0, . . . , 0, 1, . . . , 1]. That of any other model of μ is a vector
[0, . . . , 0, 1, . . . , 1] with a larger or equal number of zeros. As a result, I is minimal
according to the leximin ordering. Leximin merging generates it. ��

References

Ammoura, M., Raddaoui, B., Salhi, Y., & Oukacha, B. (2015). On measuring inconsistency using maxi-
mal consistent sets. In S. Destercke & T. Denoeux (Eds.), Symbolic and quantitative approaches to
reasoning with uncertainty (pp. 267–276). Springer.

Astrachan, O. (2003). Bubble sort: an archaeological algorithmic analysis. In Proceedings of the 34th
SIGCSE technical symposium on computer science education, SIGCSE 2003, (pp. 1–5). ACM.

Baral, C., Kraus, S., Minker, J., & Subrahmanian, V. (1992). Combining knowledge bases consisting of
first-order theories. Computational Intelligence, 8(1), 45–71.

Benferhat, S., Dubois, D., & Prade, H. (1997). Some syntactic approaches to the handling of inconsistent
knowledge bases: A comparative study part 1: The flat case. Studia Logica, 58(1), 17–45.

Benferhat, S., Lagrue, S., & Rossit, J. (2014). Sum-based weighted belief base merging: From commensu-
rable to incommensurable framework. Journal of Automated Reasoning, 55(9), 2083–2108.

Bertrand, J. (1889). Calcul des probabilités. Gauthier-Villars.
Booth, R., & Hunter, A. (2018). Trust as a precursor to belief revision. Journal of Artificial Intelligence

Research, 61, 699–722.
Brewka, G. (1989). Preferred subtheories: an extended logical framework for default reasoning. In Pro-

ceedings of the eleventh international joint conference on artificial intelligence (IJCAI’89) (pp.
1043–1048).

Chacón, J., & Pino Pérez, R. (2006). Merging operators: Beyond the finite case. Information Fusion, 7(1),
41–60.

Cholvy, L. (1998). Reasoning about data provided by federated deductive databases. Journal of Intelligent
Information Systems, 10(1), 49–80.

Chopra, S., Ghose, A., & Meyer, T. (2006). Social choice theory, belief merging, and strategy-proofness.
Information Fusion, 7(1), 61–79.

Clavin, T. (2013). There never was such a thing as a red phone in the White House. Smithsonian Magazine.
Cojan, J., & Lieber, J. (2012). Belief revision-based case-based reasoning. In Proceedings of the ECAI-2012

workshop SAMAI: Similarity and analogy-based methods in AI (pp. 33–39).
Dalal,M. (1988). Investigations into a theory of knowledge base revision: Preliminary report. InProceedings

of the seventh national conference on artificial intelligence (AAAI’88) (pp. 475–479).
Darwiche,A.,&Marquis, P. (2004). Compiling propositionalweighted bases.Artificial Intelligence, 157(1),

81–113.
Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision. Artificial Intelligence Journal,

89(1–2), 1–29.

123



Synthese (2022) 200 :286 Page 41 of 42 286

Dubois, D., Liu, W., Ma, J., & Prade, H. (2016). The basic principles of uncertain information fusion. An
organised review of merging rules in different representation frameworks. Information Fusion, 32,
12–39.

Dunan, M. (1963). La taille de Napoléon. Revue de l’Institut Napoléon (pp. 178–179).
Epstein, E. (1982). Have you ever tried to sell a diamond? The Atlantic.
Everaere, P., Konieczny, S., &Marquis, P. (2010). Disjunctivemerging: Quota andGminmerging operators.

Artificial Intelligence Journal, 174(12–13), 824–849.
Everaere, P., Konieczny, S., &Marquis, P. (2010b). The epistemic view of belief merging: Can we track the

truth? In Proceedings of the nineteenth European conference on artificial intelligence (ECAI 2010)
(pp. 621–626). IOS Press.

Everaere, P., Konieczny, S., & Marquis, P. (2020). Belief merging operators as maximum likelihood esti-
mators. In Proceedings of the twenty-ninth international joint conference on artificial intelligence
(IJCAI 2020).

Fagin, R., Ullman, J. D., & Vardi, M. Y. (1983). On the semantics of updates in databases. In Proceedings
of the second ACM SIGACT SIGMOD symposium on principles of database systems (PODS’83) (pp.
352–365).

Gärdenfors, P., & Sahlin, N.-E. (1982). Unreliable probabilities, risk-taking, and decisionmaking. Synthese,
53, 361–386.

Gardikiotis, A. (2011). Minority influence. Social and personality psychology compass, 5(9), 679–693.
Giagkiozis, I.,&Fleming, P. (2014). Pareto front estimation for decisionmaking.EvolutionaryComputation,

22(4), 651–678.
Ginsberg, M. L. (1986). Conterfactuals. Artificial Intelligence, 30, 35–79.
Grant, J., & Hunter, A. (2011). Measuring the good and the bad in inconsistent information. In Proceedings

of the twenty-second international joint conference on artificial intelligence (IJCAI 2011) (p. 2632).
Hájek, A. (2012). Interpretations of probability. In E. Zalta (Ed.), The Stanford encyclopedia of philosophy.

Metaphysics Research Lab, Stanford University.
Halpern, J., & Tuttle, M. (1993). Knowledge, probability, and adversaries. Journal of the ACM, 40(4),

917–960.
Haret, A., Lackner, M. P. A., & Wallner, J. (2020). Proportional belief merging. In Proceedings of the

thirdy-fourth AAAI conference on artificial intelligence (AAAI 2020) (pp. 2822–2829).
Katsuno, H., & Mendelzon, A. O. (1991). Propositional knowledge base revision and minimal change.

Artificial Intelligence, 52, 263–294.
Keynes, J. (1921). A treatise on probability. Macmillan and Company.
Konieczny, S. (2000).On the difference betweenmerging knowledge bases and combining them. InProceed-

ings of the seventh international conference on principles of knowledge representation and reasoning
(KR 2000) (pp. 135–144).

Konieczny, S. (2004). Belief base merging as a game. Journal of Applied Non-Classical Logics, 14(3),
275–294.

Konieczny, S., Lang, J., & Marquis, P. (2004). DA2 merging operators. Artificial Intelligence, 157(1–2),
49–79.

Konieczny, S., & Pino Pèrez, R. (1998). On the logic of merging. In Proceedings of the sixth international
conference on principles of knowledge representation and reasoning (KR’98) (pp. 488–498).

Konieczny, S., & Pino Pérez, R. (2002). Merging information under constraints: A logical framework.
Journal of Logic and Computation, 12(5), 773.

Konieczny, S., & Pino Pérez, R. (2002b). On the frontier between arbitration andmajority. InProceedings of
the eighth international conferenceonprinciples of knowledge representationand reasoning (KR2002)
(pp. 109–120). Morgan Kaufmann.

Konieczny, S., & Pino Pérez, R. (2011). Logic based merging. Journal of Philosophical Logic, 40(2),
239–270.

Lang, J. (2004). Logical preference representation and combinatorial vote. Annals of Mathematics and
Artificial Intelligence, 42(1), 37–71.

Liberatore, P. (2015). Belief merging by examples. ACM Transactions on Computational Logic, 17(2):9:1–
9:38.

Liberatore, P., & Schaerf, M. (1998). Arbitration (or how to merge knowledge bases). IEEE Transactions
on Knowledge and Data Engineering, 10(1), 76–90.

Lin, J. (1996). Integration of weighted knowledge bases. Artificial Intelligence, 83(2), 363–378.
Lin, J., & Mendelzon, A. (1999). Knowledge base merging by majority (pp. 195–218). Springer.

123



286 Page 42 of 42 Synthese (2022) 200 :286

List, C. (2013). Social choice theory. InE.Zalta (Ed.),The Stanford encyclopedia of philosophy.Metaphysics
Research Lab, Stanford University.

Mata Díaz, A., & Pino Pérez, R. (2017). Impossibility in belief merging. Artificial Intelligence, 251, 1–34.
Mazzoni, G. (2003). Si può credere a un testimone? Il Mulino.
Meyer, T. (2001). On the semantics of combination operations. Journal of Applied Non-Classical Logics,

11(1–2), 59–84.
Nishimura, K., &Ozaki, H. (2007). Irreversible investment and Knightian uncertainty. Journal of Economic

Theory, 136(1), 668–694.
Popper, K. (1959). The logic of scientific discovery. Routledge.
Rescher, N., & Manor, R. (1970). On inference from inconsistent premisses. Theory and Decision, 1(2),

179–217.
Revesz, P. (1997). On the semantics of arbitration. International Journal of Algebra and Computation, 7,

133–160.
Revesz, P. Z. (1993). On the semantics of theory change: Arbitration between old and new information.

In Proceedings of the twelfth ACM SIGACT SIGMOD SIGART symposium on principles of database
systems (PODS’93) (pp. 71–82).

Rott, H. (2006). Shifting priorities: Simple representations for twenty-seven iterated theory change oper-
ators. Modality matters: Twenty-five essays in honour of Krister Segerberg, number 53 in uppsala
philosophical studies (pp. 359–384). Department of Philosophy.

Shackel, N. (2007). Bertrand’s paradox and the principle of indifference. Philosophy of Science, 74(2),
150–175.

Wikipedia. (2017a). Adam ruins everything. https://en.wikipedia.org/w/index.php?title=Adam+
Ruins+Everything.

Wikipedia. (2017b). List of common misconceptions. https://en.wikipedia.org/w/index.php?title=
List+of+common+misconceptions.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://en.wikipedia.org/w/index.php?title=Adam+Ruins+Everything
https://en.wikipedia.org/w/index.php?title=Adam+Ruins+Everything
https://en.wikipedia.org/w/index.php?title=List+of+common+misconceptions
https://en.wikipedia.org/w/index.php?title=List+of+common+misconceptions

	Belief merging in absence of reliability information
	Abstract
	1 Introduction
	2 Preliminaries
	3 Merge by weights
	4 Dominance
	5 Drastic distance
	6 Hamming distance
	7 Postulates
	8 One reliable source
	9 Other aggregator functions
	9.1 Merging by sum of powers
	9.2 Leximax merging
	9.3 Leximin merging

	10 Sources providing multiple formulae
	11 Conclusions
	Acknowledgements
	Proofs
	References




