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Abstract: In recent years, thanks to their numerous nutritional benefits, legumes have been rediscov-
ered and have attracted interest from many consumers. However, these products, the most valuable
ones traditionally produced in smaller communities in particular, can be objects of fraud; this is the
case of Italian lentils, which, being a dry product, have a fairly long shelf life, but, due to the minimal
visual changes that can affect them, it is possible that expired lentils may be sold alongside edible ones.
The present work aims at creating a non-destructive method for classifying Italian lentils according
to their harvest year and origin, and for discriminating between expired and edible ones. In order to
achieve this goal, Red-Green-Blue (RGB) imaging, which could be considered as a sort of e-eye and
represents a cutting-edge, rapid, and effective analytical method, was used in combination with a
discriminant classifier (Sequential Preprocessing through ORThogonalization-Linear Discriminant
Analysis, SPORT-LDA) to create novel testing models. The SPORT-LDA models built to discriminate
the different geographical origins provided an average correct classification rate on the test set of
about 88%, whereas an overall 90% accuracy was obtained (on the test samples) by the SPORT-LDA
model built to recognize whether a sample was still within its expiry date or not.

Keywords: e-eye; lentils; ANOVA simultaneous component analysis (ASCA); sequential preprocessing
through orthogonalization-linear discriminant analysis (SPORT-LDA); classification; traceability;
harvesting year; image analysis

1. Introduction

Lentils (Lens culinaris Medik.) are a traditional and ancient staple food of the Mediter-
ranean basin, representing an inexpensive and important source of plant-based pro-
tein [1–3]. The annual production is around 4.5 million tons, and they are majorly produced
in Canada, the United States, Turkey, Australia, and India [3]. This pulse is a source of
biologically active proteins such as lectins and protease inhibitors [3]. Additionally, lentils
present a remarkable protein nitrogen content, despite their main components being car-
bohydrates. Interestingly, Johnson et al. have demonstrated that this legume is a relevant
source of prebiotic carbohydrates [4]. Furthermore, lentils contain fibers, oligosaccha-
rides, and mineral ingredients [3]. The high and valuable nutritional properties of this
legume have been [2], and are still being, widely declaimed and promoted by the Food and
Agriculture Organization of the United Nations (FAO) [5] and the scientific community.
These qualities make lentils a sustainable and resilient crop that could also help address
diet-related diseases, from malnutrition to obesity [6]. The great interest in this legume is
demonstrated by the large amount of literature on it [4,7–11] and is resulting in an increase
in consumption and production worldwide.

In Italy, numerous different cultivars of pulses are commonly cultivated. Zaccardelli
et al. investigated several types of lentils grown in various Italian areas and demonstrated
that these legumes present a large genetic variation [12]. This leads to the fact the differ-
ent ecotypes (grown relatively close to one another) have very dissimilar chemical (and,
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consequently, organoleptic) characteristics. Despite this richness in lentil cultivars, and
although production has almost doubled in the last ten years, their cultivation has suffered
a considerable decline and is now based on a multitude of traditional ecotypes well adapted
to the severe conditions of marginal mountainous rural areas [12]. This circumstance makes
Italian lentil production inefficient in meeting the internal demand, turning Italian lan-
draces into niche products, valuable in terms of cost, quality, and uniqueness. In addition to
this scenario, there are the effects that climate change could have on these typical varieties;
although this research area is still unexplored, two different studies have confirmed the
adverse effects that climate change (increased temperatures and reduced water availability)
can have on the quantitative yield (size and number of seeds) and nutritional quality of
different lentil varieties [13,14].

Therefore, this context, combined with reduced yields, could dramatically affect
the economy of small producers and the entire production of high-value lentils, leading
producers to commit illegal practices such as adulteration and counterfeiting. Accordingly,
several studies in the literature have aimed at the control and authentication of Italian
lentils against imported varieties by employing chemometrics and different analytical
techniques such as Isotope Ratio Mass Spectrometry (IRMS) [15], Proton nuclear magnetic
resonance (1H-NMR) [16], Inductively Coupled Plasma-Optical Emissions Spectrometry
(ICP-OES) [17], or Infrared Spectroscopy [18].

On the other hand, numerous studies have focused on the genetic wealth of Italian
varieties by developing a method helpful in safeguarding the on-farming-survival landraces
that are easily exposed to genetic erosion [19–21]. For example, Biancolillo et al. developed a
non-destructive fingerprint approach, coupled with chemometrics, to verify autochthonous
materials and prevent genetic contamination [22]. Torricelli and colleagues extensively
characterized several Italian landraces, paying particular attention to the Abruzzo varieties
traditionally selected by growers around Santo Stefano di Sessanio (a locality in the province
of L’Aquila) [23]. These studies confirmed the existence of a genetic metapopulation of
the Abruzzo landraces, which will be named in this study as the L’Aquila class, that is
differentiated from the most known Italian lentil variety, i.e., the PGI lentil of Castelluccio di
Norcia. These studies are of enormous importance in monitoring the diversity or similarity
of autochthonous varieties, and, over time, they can provide information about crop
resilience against climate change. Focusing on this last reported study, it is interesting to
note the agreement of the image analysis performed by the authors with the experimental
evidence of the morphological and genetic characterization, demonstrating the power of
this tool as a preliminary approach for the authentication and characterization of local
varieties belonging to the same species. To date, image analysis has been widely used to
study and characterize lentils [24]. This has been accomplished using different methods,
depending on the end purpose. Shahin et al. employed image analysis to obtain lentil
seed size and shape, demonstrating that seed diameter, thickness, plumpness, and degree
of edge roundness, coupled with multivariate linear regression can predict dehulling
efficiency [25]. A flatbed scanner and an image processing program were used to obtain
seed morphological characteristics. The method was also combined with the mean color
information and a Linear Discriminant Analysis to identify five Sicilian landraces and three
common Canadian accessions [26]. However, a mere colorimetric analysis has been shown
to be efficient for quality control [27], allowing for distinguishing between the Abruzzo and
Castelluccio di Norcia ecotypes [23], recognizing deteriorated lentils [28], and identifying
adulterated lentil flour [29].

Thus, based on the evidence reported in the literature, Multivariate Image Analysis
(MIA), which is a rapid non-destructive, and objective method, was applied as a preliminary
stage of landraces authentication. In detail, we have applied MIA to distinguish the
typical genetic traits of the studied ecotypes, namely L’Aquila, Castelluccio di Norcia,
and Colfiorito. Due to the way the dataset was constructed (more details will be given in
Section 2.1), the possibility of distinguishing expired lentils from those that are edible was
also considered. The most advanced chemometric methods were applied to the colorgrams
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obtained from MIA. In addition, ANOVA-Simultaneous Component Analysis (ASCA)
was employed as an exploratory analysis to evaluate the significant factors that actually
characterize the dataset. Sequential Preprocessing through ORThogonalization (SPORT)
was the supervised pattern recognition method employed to discriminate between the
Italian landraces and among expired and edible samples. Therefore, although several image
analysis methods have been applied to lentil characterization, no examples are reported in
the literature regarding the use of MIA coupled with such chemometric approaches.

2. Materials and Methods
2.1. Samples

Different lots of lentils were collected by local retailers or growers farming in three
different areas of Central Italy: L’Aquila (Abruzzo), Colfiorito (Umbria), and Castelluccio di
Norcia (Umbria). Samples were harvested at different time points, in particular, every year
in July, from 2016 to 2021. Samples were stored in sealed plastic bags at room temperature
in dark and dry conditions. Details on harvesting years and retailers are reported in Table 1.

Table 1. Origin, harvesting year, and the number of retailers of the investigated lentil samples.

Harvesting Year and Number of Retailers

Origin 2021 2020 2019 2018 2017 2016

L’Aquila (AQ) 0 0 0 2 3 0
Colfiorito (COL) 0 0 0 2 3 0

Castelluccio di Norcia (CDN) 2 6 3 4 4 1

2.2. E-Eye Analysis

Images were collected by arranging the lentils on a black plate, ensuring that their
quantity allowed a homogeneous covering of the support. Pictures were taken by means
of the RS Pro Wi-Fi USB Microscope (1280 × 1024 pixel resolution, magnification power
from 10× to 160×, 36 mm diameter, 142 mm length, and light-emitting diode lighting) kept
at the same constant distance from the sample plate. A total of 560 images, organized as
described in Table 2, were collected.

Table 2. The number of investigated samples divided according to the origin and the harvesting year.

Harvesting Year and Number of Samples

Origin 2021 2020 2019 2018 2017 2016

L’Aquila (AQ) 0 0 0 42 84 0
Colfiorito (COL) 0 0 0 40 60 0

Castelluccio di Norcia (CDN) 40 85 55 55 79 20

2.3. ASCA

ANOVA-simultaneous component analysis (ASCA) was employed as an exploratory
method to perform an ANalysis Of Variance (ANOVA), which is generally used to confirm
the significance of factors on a single variable in a complex multivariate system [30]. The
ASCA can be schematically explained by two steps [31]:

1. The mean-centered experimental data matrix X (N × V), where N is the number of
analyzed samples and V is that of measured variables, is decomposed, following the
ANOVA approach, into individual matrices accounting for the effects of each design
term. For instance, if two factors are controlled in the design, here labeled as α and β,
the ANOVA decomposition can be expressed as:

X = Xα + Xβ + Xαβ + XE (1)
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where Xα and Xβ are the arrays accounting for the main effect of the factors, while Xαβ

describes the binary interaction among them, and XE contains the residual variability, i.e.,
the portion of the experimental variance not approximated by the ANOVA model. Although
for balanced designs this decomposition can be obtained from the simple “differences of
means” procedure, a more general approach relies on expressing the ANOVA model as a
linear regression problem, according to the following relation:

X = Dθ+ XE (2)

where D (N × P) is the design matrix that encodes the levels of the factors and their
interaction (s) and consists of P columns, while θ (P × V) is the matrix of regression
coefficients. The peculiarity of both matrices D and θ is that they are block-partitioned so
that an individual linear equation can be written for each design term as follows [32]:

Xi = Di θi = Di

(
DT

i Di

)−1
DT

i X with i = α, β, αβ (3)

where it is apparent that each effect matrix is obtained by projecting the experimental data
matrix onto the suitably coded design sub-matrix corresponding to the specific term.

(2) The second step consists of the Principal Component Analysis, performed separately
on each effect matrix, thus:

Xi = Ti PT
i with i = α, β, αβ (4)

where Ti and Pi are the scores and loadings matrices for each factor. The significance of
the effects and related loadings was performed by using a permutation test and bootstrap
procedure, respectively.

2.4. Sequential Preprocessing through ORThogonalization (SPORT)

Sequential Preprocessing through ORThogonalization (SPORT) is a regression ap-
proach conceived for ensemble preprocessing [33]. This method originates from an-
other multi-block regression approach, called Sequential and Orthogonalized Partial Least
Squares (SO-PLS) [34]. SPORT exploits the SO-PLS algorithm to extract information from
the blocks subjected to the various pre-treatments, but, at the same time, avoids redundan-
cies among them [35].

In the present case, due to the nature of the analyzed data, two pre-treatments were
tested: mean-centering and autoscaling. This corresponds to building a SPORT model
handling two different data blocks, one given by the colorgram matrix preprocessed by
mean-centering (X1) and one obtained by autoscaling the original data matrix (X2). Given
these circumstances, the SPORT algorithm can be summarized by the following steps:

(1) Y is fitted to X1 by PLS.
(2) X2 is orthogonalized with respect to the X1-scores estimated at step (1), resulting

in X2,Orth.
(3) A second PLS regression model is calculated between X2,orth and the Y-residuals from

step 1.
(4) The predicted Y (Ŷ) is given by the combination of regressions at steps (1) and (3):

Ŷ = X1B + X2C (5)

where B and C are the regression coefficients matrices.
In the case where SPORT is used as a classification strategy (as in the present work), the

response Y referred to in step (1) is the so-called dummy Y [36], which binarily encodes the
class-membership of the samples. However, Ŷ is not binary-coded as its target values as its
elements are all real-valued [37]. Classification can then be achieved by different strategies;
in the present study, it was accomplished by applying linear discriminant analysis on
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the predicted responses Ŷ [38]. Once the model is calibrated on training individuals and
the regression coefficient matrices are estimated, new objects can be classified by solving
Equation (6):

Ŷnew = X1,newB + X2newC (6)

where X1,new and X2new are the data matrices associated with new observations.

3. Results and Discussion
3.1. ASCA for Exploring the Significance of the Harvesting Year and the Origin

Once all the images were collected, colorgrams were obtained using in-house MATLAB
(R2015b; The Mathworks, Natick, MA, USA) functions; examples of the collected images
and colorgrams are reported in Appendix A (Figures A1 and A2, respectively).

The ASCA was used to inspect the significance of two factors: the origin and harvesting
year. To perform the ASCA, we decided to work on the fraction of the dataset that could
provide a crossed-factor design with all the cells populated; therefore, only the samples
of the three varieties produced in the years 2017 and 2018 were considered. Moreover,
in order to have a balanced design, 40 samples per each combination of year and origin
were selected out of the available number reported in Table 2, using the Kennard–Stone
algorithm [39] on the colorgram data. This decision stems from the fact that the ASCA does
not allow the independent interpretation of effect matrices for unbalanced experimental
designs, as in our case [40]. The significance has been evaluated by the permutation test
(104 permutations), and both effects and their interaction appeared to be significant.

The inspection of samples projected onto the space spanned by the first SCs associated
with the model of the original effect (Figure 1) reveals a clear grouping trend of individuals
according to their harvesting area (L’Aquila-AQ, Colfiorito-COL, Castelluccio di Norcia-
CDN). In fact, CDN samples (blue diamonds) fall at negative values of SC1 whereas
COL (green squares) and AQ objects (red dots) present positive values of this component.
Samples harvested in AQ seem divided into two subgroups: one falling at negative SC2
scores and one at slightly negative values of this component, overlapping with CDN
samples. This similarity can certainly be attributed to the proximity among the diverse
areas and to similar pedoclimatic conditions. However, it must be stressed that the class
AQ consists of different ecotypes cultivated in the vast province of L’Aquila. This condition
results in a class with a higher variance than the others considered.
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Inspection of the loadings for the SC model, reported in Appendix B (Figure A3),
indicated that the CDN samples are characterized, in general, by a higher amount of pixels
with higher intensity of the red channel and a lower intensity of the green and blue channels,
and lightness. At the same time, the CDN samples have a higher amount of pixels with
higher hue, saturation, and intensity values than the lentils from the other two origins.

On the other hand, by looking at the loadings on SC2, along which COL and AQ
are differentiated, it is possible to affirm that the images from COL samples are mostly
characterized by a lower intensity of the red channel and intermediate intensity of the blue
one, the lightness also being lower. With respect to AQ, they are also characterized by
slightly higher hue, intermediate saturation, and lower intensity.

The inspection of the SC1 associated with the year effect factor unveils a clear trend
related to annuality (Figure 2). Indeed, the 2018 production year is characterized by
predominantly positive scores, whereas 2017 is mostly described by negative values. The
corresponding loadings (Appendix B, Figure A4), which were found to be statistically
different from zero only for a few variables, indicate that the 2018 samples are characterized
by a higher amount of pixels with an intermediate intensity of the red, green, and, to a
lower extent, blue channels.
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Accordingly, in order to assess the trends due to the production year in more detail, a
principal component analysis considering the samples of Castelluccio di Norcia, the only
class having six years available, was performed (Table 1).

From the scores plot in Figure 3, it can be appreciated that the three most aged groups
of samples (2016, 2017, and, to a lesser extent, 2018) appear superimposed. On the other
hand, lentils harvested in 2019 and 2020 overlap (samples not yet expired). It is obvious that
the most recent samples (2021) present a behavior different from all the other individuals.
In fact, they show a quite narrow distribution. This trend may be associated with the dry
climatic conditions of this year. This high drought very likely influenced the average color
of lentil samples and their distribution. Inspection of the loadings (Appendix C, Figure A5)
shows how, with aging, samples are characterized by a decrease in the intensity of the
green and blue channels and a corresponding increase in the red channel. At the same time,
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the lightness also decreases, i.e., aged samples are characterized by a higher saturation and
lower hue.
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However, it should be noted that, since the analyses were conducted in 2022, the
aging process has certainly produced a variation in the color of the samples, introducing
a variability that may affect the one related to the year of production. Accordingly, seed
deterioration is related to progressive seed coat browning due to the production of brown
polymeric compounds that result from lipidic peroxidation and the formation of free
radicals. The effect occurred even though the samples were carefully stored in dry and
dark conditions.

Therefore, in conclusion, the inspection of the year effect factor essentially interconnects
with the samples’ aging, not allowing a clear and independent interpretation. Nevertheless,
this extensive exploratory analysis allowed us to direct the subsequent classification phase.

3.2. SPORT Classification According to the Harvesting Year, the Origin, and the Edibility

Since the purposes of the present study were manifold, three different classification
models were built and validated, one aimed at discriminating samples according to their
origin (model I), one designed for the classification of lentils according to their harvesting
year (model II), and one tailored to discern edible (i.e., photographed prior to their expiration
date) and expired (i.e., photographed after to their expiration date) samples. All models
were built testing two different data pre-treatments: mean-centering and autoscaling; from
now on, the mean-centered block is referred to as X1, whereas the autoscaled one will be
called X2. Accordingly, all three models were built using the SPORT approach, where the
differently preprocessed data matrices were simultaneously analyzed by SO-PLS-LDA,
as described in Section 2.4. In all cases, the optimal model complexity, i.e., the number
of latent variables to be extracted from each block, was chosen as the one leading to the
lowest mean classification error (the average of the classification error for the different
categories) in a seven-fold cross-validation procedure. The choice of the mean classification
error instead of the total classification error is recommended when the number of samples
in the different categories is unbalanced, as in the present case. In the remainder of the
section, the different models will be individually discussed.
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3.2.1. Classification of the Samples According to Their Geographical Origin

At first, a model to discriminate among the three geographical origins of the lentil
samples was built and validated. To this purpose, the 560 samples were split into a training
and a test set by means of the Duplex algorithm [41] applied category-wise with a 70:30
splitting ratio. Accordingly, 392 samples (88 AQ, 70 COL, and 234 CDN) were included in
the training set, while the remaining 168 (38 AQ, 30 COL, and 100 CDN) were left out to
constitute the external test set. The training samples were then used to build the SPORT
classification model, whose optimal complexity, estimated in cross-validation, resulted to
be 11 and 3, for the mean-centered and autoscaled colorgram, respectively. The results are
summarized in Table 3.

Table 3. Results of the SPORT-LDA modeling for the discrimination of samples according to their
geographical origin (Model I).

LVs Sensitivity (%) Specificity (%)

MC AS Accuracy% Mean CCR% AQ COL CDN AQ COL CDN

Calibration
11 3

96.7 96.3 94.3 97.1 97.4 99.3 97.5 98.1
CV 90.1 89.5 84.1 92.9 91.5 98.0 92.9 93.7

Prediction 87.5 88.0 86.8 90.0 87.0 93.8 94.2 92.6

Legend: MC—Mean-centered data; AS—Autoscaled data; CCR—Correct classification rate; CV—Cross-validation.

The results reported in Table 3 show how the SPORT classification model led to very
good results not only in the calibration stage but also when it was applied to the external
validation samples. Indeed, an average correct classification rate of 88.0% was achieved,
corresponding to the correct prediction of 87% of the AQ samples, 90% of the COL images,
and 87% of the CDN lentils. The model results were also very specific, with values always
higher than 92%. When looking at the directions of the misclassifications, it could be
observed how the wrongly predicted COL samples were all assigned to the CDN category,
whereas for the other two classes, misclassifications were equally distributed among the
other categories.

It might be useful to emphasize that, in contrast to previous works [23,26] aimed at
discriminating among Italian landraces by image analysis, the present study demonstrates
the method’s versatility by correctly distinguishing between typical varieties from relatively
close areas that also span several production years.

3.2.2. Classification of the Samples According to Their Harvesting Year

A model to discriminate the samples according to their harvesting year was built and
validated. In this case, the 560 samples were split into a training and a test set by means
of the Duplex algorithm applied category-wise with a 70:30 splitting ratio. Accordingly,
383 samples (13 from 2016, 153 from 2017, 97 from 2018, 35 from 2019, 60 from 2020, and 25
from 2021) were included in the training set, while the remaining 177 (7 from 2016, 70 from
2017, 40 from 2018, 20 from 2019, 25 from 2020, and 15 from 2021) were left out to constitute
the external test set. The training samples were then used to build the SPORT classification
model, whose optimal complexity, estimated in cross-validation, resulted to be 11 and 3,
for the mean-centered and autoscaled colorgram, respectively. The results are summarized
in Table 4.

While the results in the calibration phase (i.e., when the model is applied to the same
samples used for calculating its parameters) were very good, with an overall accuracy
higher than 96%, those in cross-validation and prediction (i.e., on the external test set) were
significantly lower, though comparable with one another. Indeed, the overall accuracy on
the test set was about 69% and the mean correct classification rate was slightly less than
71%. This was mainly due to the inaccuracy associated with samples harvested in 2018,
2020, and, to a lesser extent, 2016, whose correct classification rates were 40.0%, 48.0%, and
57.1%, respectively. On the other hand, the odd harvesting years were accurately predicted;
in fact, the model properly classified 100% of samples grown in 2021 and 2019, and 78%
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of those from 2017. Inspection of the confusion matrix for the test set evidenced how the
wrongly predicted 2016 samples were mostly classified as being from 2018 and only to
a lesser extent as from 2017. On the other hand, the 2017 and 2018 samples were mostly
confused with one another: 17.1% of the 2017 samples were predicted as 2018, while 42.5%
of the 2018 samples were classified as 2017. Finally, the misclassified sample from 2020
was mostly predicted as 2018 and, to a lesser extent, as 2017. When trying to rationalize
these results, it was found that, taking into account the climatological variables of the area,
no direct and straightforward interpretation was possible for the area. Indeed, climatic
information can only suggest that there was no actual heat stress. On the other hand, except
for the year 2016, which was the wettest year, the crops were affected by water stress for all
the sampled production years, with a peak in 2021 [42]; additionally, this phenomenon is
known to affect plant composition [43]. One could then think that the less than completely
satisfactory results observed on the test set may be related to the uneven distribution of
samples among the geographical origins and years (with lentils of different origins being
available only for two years, 2017 and 2018), or to the natural aging of the specimens, which
could play a significant role in the data variability.

Table 4. Results of the SPORT-LDA modeling for the discrimination of samples according to their
harvesting year (Model II).

Calibration CV Prediction

LV
s MC 14

AS 11

Accuracy (%) 96.9 64.2 68.9

Mean CCR (%) 96.2 68.4 70.6

Se
ns

it
iv

it
y

(%
) 2016 92.3 53.9 57.1

2017 96.7 69.3 78.6
2018 99.0 48.5 40.0
2019 100.0 94.3 100.0
2020 93.3 48.3 48.0
2021 96.0 96.0 100.0

Sp
ec

ifi
ci

ty
(%

) 2016 98.1 95.1 97.7
2017 99.1 77.0 80.4
2018 100.0 85.0 84.7
2019 99.7 99.1 97.5
2020 99.4 94.4 96.7
2021 100.0 99.4 100.0

Legend: MC—Mean-centered data; AS—Autoscaled data; CCR—Correct classification rate; CV—Cross-validation.

3.2.3. Classification of the Samples According to Their Edibility

Finally, a model to discriminate the samples according to whether they could still
be considered edible at the time of analysis or not was built and validated. The Duplex
algorithm was applied category-wise with a 70:30 splitting used to split the 560 samples
into a training set of 383 samples (85 edible and 295 expired) and a test set of 177 samples
(40 edible and 137 expired). The optimal model was found to be the one including 15 and
5 latent variables for the mean-centered and autoscaled colorgram, respectively. The results
are summarized in Table 5.

The results summarized in Table 5 indicate that the model possesses a very good
predictive ability both in the calibration and the validation phase. In particular, when
looking at the results of the test set, an overall accuracy of about 90% is obtained. This value
corresponds to the correct prediction of 75% of the edible lentils and 94% of the expired
samples. The results can also be graphically visualized in Figure 4, where the values of the
predicted response for the training and the test samples are displayed together with the
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classification threshold (which, as described in Section 2.4, is calculated by applying LDA
to the predicted Y values of the training set).

Table 5. Results of the SPORT-LDA modeling for the discrimination of samples according to their
edibility (Model III).

LVs Sensitivity (%) Specificity (%)

MC AS Accuracy% Mean CCR% Edible Expired Edible Expired

Calibration
15 5

100.0 100.0 100.0 100.0 100.0 100.0
CV 87.0 78.1 62.1 94.1 94.1 62.1

Prediction 89.8 84.6 75.0 94.6 94.6 75.0

Legend: MC—Mean-centered data; AS—Autoscaled data; CCR—Correct classification rate; CV—Cross-validation.
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Figure 4. SPORT model for the discrimination of edible vs. expired lentils. Bar plot of the predicted
response for the training (upper panel) and the test (lower panel) samples. The purple line represents
the classification threshold, while the star symbols (*) indicate the misclassified samples. Legend:
Bordeaux—Edible; Mustard yellow—Expired.

In the figure, all the samples with a predicted response value above the threshold are
predicted as being edible, while those below the threshold are classified as expired. The
misclassified samples are highlighted in the plot by a black star. It is then evident that all
the training samples are perfectly classified since the predicted values of the response all
fall on the right side of the threshold. On the other hand, when looking at the test set, ten
compliant samples (Bordeaux bars) have predicted Y values lower than the threshold and
are therefore predicted by the model as expired; analogously, eight images of expired lentils
(mustard yellow bars) present response values higher than the classification limit and so
are wrongly predicted as edible.
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Nevertheless, it has to be pointed out that the predictions obtained by this model
are particularly satisfactory. In fact, although not 100% accurate, the model misclassifies
a lower percentage of expired samples, which is preferred, as it ensures that only a few
expired samples are wrongly recognized as still edible.

It should be noted that Dell’Aquila [28] proved that a medium RGB index could be
used to predict seed deterioration; nevertheless, through MIA, the classification of expired
and edible lentil seeds was generalized, testing the applicability of this method on samples
of different origin and production years.

4. Conclusions

In this study, the feasibility of using RGB imaging, which can be considered as a
sort of e-eye, together with a chemometric discriminant classifier for the characterization
of Italian lentils was demonstrated. In particular, after recording the images, MIA was
applied to obtain the characteristic colorgrams of the samples, which were then processed
by different state-of-the-art multivariate statistical tools. In particular, an initial ANOVA-
simultaneous component analysis applied to a subset of the original data suggested that
both the geographical origin and the harvesting year significantly affect the recorded
experimental profiles. Successively, SPORT-LDA was applied to the dataset to build models
able to discriminate the samples according to different categorizations (geographical origin,
harvesting year, and compliance with respect to the expiry date). The approach showed
good classification efficiency despite the complexity of the problem and the multiple
sources of variability. Indeed, the model built to discriminate the different geographical
origins resulted in an average correct classification rate on the test set of about 88%, with
comparable sensitivity for all the three investigated categories. A lower classification
accuracy (close to 70% on the test set) was instead obtained for the model discriminating
the samples according to their harvesting year. Lastly, an overall 90% accuracy was obtained
on the test samples by the model built to recognize whether a sample was still within its
expiry date or not.

Thus, through this work, it was verified that MIA, coupled with the latest pattern
recognition methods, is a suitable, fast, inexpensive, and non-destructive approach for the
quality control of typical Italian varieties of lentils, useful for monitoring and authenticating
the local populations over the years as well as ensuring their edibility.
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Appendix A

Examples of the collected images are shown below (Figure A1); in detail, images of
lentil samples produced, in the same year in the three considered production areas are
reported, as well as those collected from the Castelluccio di Norcia grown over several
years (from 2016 to 2018).
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Figure A1. Some photos of lentil samples taken according to the indications reported in Section 2.2
and divided based on the area (AQ 2018, CDN 2018, and COL 2018) and the year of production (CDN
2016, CND 2018, and CDN 2021).

Figure A2 shows the average colorgrams for the classes involved in the main cate-
gorizations considered for the present study. In particular, in the left panel, the average
profiles for the three geographical origins (AQ, COL, and CDN) are shown, whereas, in the
right panels, the mean colorgrams calculated from samples from the different harvesting
years (from 2016 to 2021) are displayed.
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Figure A2. Mean colorgrams calculated for the different categories considered in the study. Left
panel: average colorgrams corresponding to the three geographical origins; right panel: average
colorgrams corresponding to the six harvesting years.

The colorgrams were obtained by globally considering the pixels of the acquired
images and by concatenating 19 frequency distribution vectors of 256 elements related
to the following ordered parameters: red channel (1–256 variable index), green channel
(257–512), blue channel (513–768), lightness (769–1024), relative red (1025–1280), relative
green (1281–1536), relative blue (1537–1792), hue (1793–2048), saturation (2049–2304), in-
tensity (2305–2560), distribution curve of the first, second, and third score vectors from
the PCA on the raw unfolded RGB matrix (2561-3328), distribution curve of the first, sec-
ond, and third score vectors from the PCA on the mean-centered unfolded RGB matrix
(3329–4096), distribution curve of the first, second, and third score vectors from the PCA
on the autoscaled unfolded RGB matrix (4097–4864), and normalized loading vectors and
eigenvalues of the three PCA models (4865–4900) [44].
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Appendix B

Appendix B reports the loading plots obtained by the ASCA and differentiated into
significant and not significant according to the bootstrap procedure.
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confidence interval estimated by bootstrapping. The variables results highlighted in red were
significantly different than zero.
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Appendix C

Appendix C reports the loading plots obtained by PCA for the analysis of Castelluccio
di Norcia samples.
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