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Abstract: The automatic monitoring of activities in construction sites through the proper use of
acoustic signals is a recent field of research that is currently in continuous evolution. In particular, the
use of techniques based on Convolutional Neural Networks (CNNs) working on the spectrogram
of the signal or its mel-scale variants was demonstrated to be quite successful. Nevertheless, the
spectrogram has some limitations, which are due to the intrinsic trade-off between temporal and
spectral resolutions. In order to overcome these limitations, in this paper, we propose employing the
scalogramas a proper time–frequency representation of the audio signal. The scalogram is defined as
the square modulus of the Continuous Wavelet Transform (CWT) and is known as a powerful tool
for analyzing real-world signals. Experimental results, obtained on real-world sounds recorded in
construction sites, have demonstrated the effectiveness of the proposed approach, which is able to
clearly outperform most state-of-the-art solutions.

Keywords: automatic construction site monitoring (ACSM); environmental sound classification
(ESC); deep learning; convolutional neural network (CNN); continuous wavelet transform (CWT);
scalogram; audio processing

1. Introduction

In recent years significant research efforts have been made in the field of Environmental
Sound Classification (ESC) [1], allowing significant results to be obtained in practical sound
classification applications. This initiative has been enabled by the use of Convolutional
Neural Networks (CNNs), which allowed a superior performance in image processing
problems [2] to be obtained. In order to extend the use of CNNs to the field of audio
processing, the audio input signal is usually transformed into suitable bi-dimensional
image-like representations, such as spectrograms, mel-scale spectrograms, and other similar
methods [3,4].

Recently, the approaches employed in ESC have been transferred to advancing the con-
struction domain by converting vision-based work monitoring and management systems
into audio-based ones [5–7]. In fact, audio-based systems not only are more cost-effective
than video-based ones, but they also work more effectively in a construction field when
sources are far from the light of sight of sensors, making these systems very flexible and
appropriate for combining other sensor-based applications or Artificial Intelligence (AI)-
based technologies [7]. Furthermore, the amount of memory and data flow needed to
handle audio data is much smaller than the one needed for video data. In addition, audio-
based systems outperform accelerometer-based ones since there is no need to place sensors
onboard, thus promoting 360-degree-based activity detection and surveillance without
having an illumination issue [8].

Such audio-based systems can be successfully used as Automatic Construction Site
Monitoring (ACSM) tools [7,9–11], which can represent an invaluable instrument for project
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managers to promptly identify severe and urgent problems in fieldwork and quickly react
to unexpected safety and hazard issues [12–16].

ACSM systems are usually implemented by exploiting both machine learning (ML)
and deep learning (DL) techniques [17]. Specifically, several ML approaches, including
Support Vector Machines (SVMs), the k-Nearest Neighbors (k-NN) algorithm, the Mul-
tilayer Perceptron (MLP), random forests, Echo State Networks (ESN), and others, have
already demonstrated their effectiveness in properly performing activity identification
and detection in a construction site [5,16]. However, DL approaches generally outperform
ML-based solutions providing much improved results [6]. We expect that DL techniques
including CNNs, Deep Recurrent Neural Networks (DRNNs) implemented with the Long
Short-Term Memory (LSTM) cell, Deep Belief Networks (DBNs), Deep ESNs, and others
can produce more suitable and qualified performances than ML ones for robustly managing
construction work and safety issues.

Approaches based on CNNs have demonstrated good flexibility and considerably
convincing performance in these applications. In fact, CNNs exhibit advanced accuracy
in image classification [18]. In order to meet the bi-dimensional format of images, the
audio waveform can be transformed into a bi-dimensional representation by a proper
time–frequency transformation. The main time–frequency representation used in audio
applications is the spectrogram, i.e., the squared magnitude of the Short Time Fourier
Transform (STFT) [19,20]. The spectrogram is very rich in peculiar information that can
be successfully exploited by CNNs. Instead of using the STFT spectrogram, in audio
processing, it is very common to use some well-known variants, such as the constant-Q
spectrogram, which uses a log-frequency mapping, and the mel-scale spectrogram, which
uses the mel-scale of frequency to better capture the intrinsic characteristic of the human
ear. Similarly, the Bark and/or ERB scales can be used, producing other variants of the
spectrogram [21].

Although the spectrogram representation and its variants provide an effective way to
extract features from audio signals, they entail some limitations due to the unavoidable
trade-off between the time and frequency resolutions. Unfortunately, it is hard to provide
an adequate resolution in both domains: a shorter time window provides a better time
resolution, but it reduces the frequency resolution, while using longer time windows
improves the frequency resolution but obtains a worse time resolution. Even if some
solutions have been proposed to mitigate such an unwanted effect (such as the time–
frequency reassignment and synchrosqueezing approach [22]), the problem can still affect
the performance of deep learning methods. Moreover, the issue is also complicated by
the fact that sound information is usually available at different time scales that cannot be
captured by the STFT.

Motivated by these considerations, in this paper, we propose a new approach for the
automatic monitoring of construction sites based on CNNs and scalograms. The scalogram
was defined as the squared magnitude of the Continuous Wavelet Transform (CWT) [23].
By overcoming the intrinsic time–frequency trade-off, the scalogram is expected to offer
an advanced and robust tool to improve the overall accuracy and performance of ACSM
systems. In addition, the wavelet transform allows to it work at different time scales, which
is a useful characteristic for the processing of audio data. Hence, the main idea of the
paper is to use the scalogram instead of the spectrogram as the input to a CNN-based
deep learning model. Although the methodology is not new, the proposed idea has been
extensively tested on real data acquired in construction sites and, compared to most popular
state-of-the-art methodologies, shows clear and significant improvements.

The rest of this paper is organized as follows. Section 2 shows the related work.
Section 3 introduces the CWT, while Section 4 describes the proposed approach. Then,
Section 5 explains the adopted experimental setup. Section 6 describes some implemen-
tation aspects, while Section 7 shows the obtained numerical results and confirms the
effectiveness of the proposed idea. Finally, Section 8 concludes the work and outlines some
hints for future research.
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2. Related Work

In the digital era, great and increasing attention has been devoted to research on
automated methods for real-time monitoring of activities in construction sites [15,24,25].
These modern approaches are able to offer better performance with respect to the most
traditional techniques, which are typically based on manual collection of on-site work data
and human-based construction project monitoring. In fact, these activities are typically
time-consuming, inaccurate, costly, and labor-intensive [13]. In the last years, the literature
related to applications of deep learning techniques to the construction industry has been
continuously increasing [26,27]. In particular, many works have been published describing
proper exploitation of audio data [5,16].

The work of Cao et al. in [28] was one of the first attempts in this direction. They
introduced an algorithm based on the processing of acoustic data for the classification of
four representative excavators. This approach is based on some acoustic statistical features.
Namely, for the first time the short frame energy ratio, concentration of spectrum amplitude
ratio, truncated energy range, and interval of pulse (i.e., the time interval between two
consecutive peaks) were developed in order to characterize acoustic signals. The obtained
results were quite effective for this kind of source; however, no other types of equipment
were considered.

Paper [29] proposed the construction of a dataset of four classes of equipment and
tested several ML classifiers. The results obtained in this work were aligned to those shown
in [5], which compared and assessed the accuracy of 17 classifiers on nine classes of
equipment. These two papers work on both temporal and spectral features extracted from
audio signals. Similarly, [30] compared some ML approaches on five input classes by using
a single in-pocket smartphone, obtaining similar numerical results.

Akbal et al. [14] proposed an SVM classifier. After an iterative neighborhood compo-
nent analysis selector chooses the most significant features extracted from audio signals,
this classifier produces an effective accuracy on two experimental scenarios. Moreover,
Kim et al. [7] proposed a sound localization framework for construction site monitoring
able to work in both indoor and outdoor scenarios.

Maccagno et al. [31] proposed a deep CNN-based approach for the classification of
five pieces of construction site machinery and equipment. This customized CNN is fed by
the STFT spectrograms extracted from different-sized audio chunks. Similarly, Sherafat et
al. [32] proposed an approach for multiple-equipment activity recognition using CNNs,
tested on both synthetic and real-world equipment sound mixtures. Different from [31], this
work implements a data augmentation method to enlarge the used dataset. Moreover, this
model uses a moving mode function to find the most frequent labels in a period ranging
from 0.5 to 2 s, which generates an acceptable output accuracy. The idea to join different
output labels inside a short time period was also exploited in [33,34], which implement a
Deep Belief Network (DBN) classifier and an Echo State Network (ESN), respectively.

Kim et al. in [35] applied CNNs and RNNs to spectrograms for monitoring concrete
pouring work in construction sites, while Xiong et al. in [6] used a convolutional RNN
(CRNN) for activity monitoring. Moreover, Peng et al. in [36] used a similar DL approach
for a denoising application in construction sites. On the other hand, Akbal et al. [37]
proposed an approach, called DesPatNet25, which extracts 25 feature vectors from audio
signals by using the data encryption standard cipher and adopts a k-NN and an SVM
classifier to identify seven classes.

Additionally, some other approaches also fused information from two different modal-
ities. For example, the work in [38] used an SVM classifier by combining both auditory
and kinematics features, showing an improvement of about 5% when compared to the use
of only individual sources of data. Similarly, [39] exploited visual and kinematic features,
while [40] utilized location data from a GPS and a vision-based model to detect construction
equipment. Finally, a multimodal audio–video approach was presented in [41], based on
the use of different correlations of visual and auditory features, which has shown an overall
improvement in detection performance.



Appl. Sci. 2024, 14, 90 4 of 17

In addition, Elelu et al. in [42] exploited CNN architectures to automatically detect
collision hazards between construction equipment. Similarly, the work in [43] presented a
critical review of recent DL approaches for fully embracing construction workers’ awareness
of hazardous situations in construction sites by the employment of auditory systems.

Most of the DL approaches described in this section work on the spectrogram extracted
from audio signals or some variants, such as the mel-scaled spectrogram. However, the
idea of exploiting different time scales (which is an intrinsic property of audio signals)
can be used to improve the overall accuracy of such methodologies. For this purpose,
the use of scalograms can be recommended. In fact, while spectrograms are suitable for
the analysis of stationary signals providing a uniform resolution, the scalogram is able to
localize transients in non-stationary signals. Recently, in fact, [44] introduced a wavelet
filter bank for the audio scene modeling task. A deep CNN fed by the scalogram of data
outperformed the results provided by the mel spectrogram. However, differently from
our approach, the work in [44] considers a scalogram of smaller size and a simpler CNN
architecture. The work in [45] adopted scalograms for removing background noise in the
fault diagnosis of rotating machinery, obtaining excellent experimental results. However,
differently from our approach, given the specific nature of the considered sounds, the
authors used a low sampling frequency and frame size, resulting in a very small scalogram
size (64 × 64 pixels). Interestingly enough, [45] considers three different methods to obtain
the scalograms, including the CWT. No significant statistical differences have been observed
between such methods. In addition, a couple of papers used scalograms also for audio
scene classification purposes [46,47]. Both of these works showed very good results when
compared to previous solutions. As a matter of fact, the use of the scalogram results in a
general improvement in performance as highlighted in all these works. Specifically, the
work in [46] exploits a pre-trained CNN to extract, at a specific architecture-dependent
layer, useful features to be used by a subsequent linear SVM classifier for the identification
of ten environmental categories. This work also uses AlexNet but, differently from our
approach, it does not train the CNN layers and does not adopt fully connected layers as a
classifier. The work in [47] again uses a pre-trained AlexNet or VGG16/19 nets to extract
meaningful features, but, differently, it exploits a Bidirectional Gated Recurrent Neural
Network followed by a highway layer to classify fifteen classes. Differently from our
approach, the authors of [47] adopt an early data fusion technique by feeding the proposed
model with a three-channel image composed of a spectrogram, a scalogram extracted with
the Bump wavelet, and a scalogram obtained with the Morse wavelet. However, the high
computational cost of this approach, compared with the proposed one, makes it not very
suitable for working with the construction site sounds, where only a small number of
classes are present.

3. The Continuous Wavelet Transform (CWT) and the Scalogram

In order to overcome the trade-off between the time and frequency resolution in
STFT, the Continuous Wavelet Transform (CWT) was introduced [23]. The CWT acts as a
“mathematical” microscope in the sense that different parts of the signal may be examined
by adjusting the focus.

Given a stationary signal x(t), the CWT is defined as the product of x(t) with the
following basis function family:

Ψτ,a(t) = |a|−1/2 Ψ
(

t − τ

a

)
, (1)

where a ̸= 0 is a scaling factor (also known as dilation parameter) and τ is the time delay,
i.e., Ψτ,a(t) is a scaled and translated version of the mother wavelet function Ψ(t). Hence,
the CWT of signal x(t) is formulated as:

Wx(τ, a) = |a|−1/2
∫ ∞

−∞
x(t)Ψ∗

(
t − τ

a

)
dt, (2)
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where ∗ represents the complex conjugation operator. The delay parameter τ provides the
time position of the wavelet Ψτ,a(t), while the scaling factor a rules its frequency content.
For |a| << 1, the wavelet Ψτ,a(t) is a very concentrated and narrow version of the mother
wavelet Ψ(t), with a frequency content mainly condensed at high frequencies. On the other
hand, for |a| >> 1, the wavelet Ψτ,a(t) is much more broadened and concentrated towards
low frequencies.

In the wavelet analysis, the similarity between the signal x(t) and the wavelet Ψτ,a(t)
is measured as τ and a vary. Dilation by a factor 1/a results in different enlargements of the
signal with distinct resolutions. Specifically, the properties of the time–frequency resolution
of the CWT are summarized as follows:

1. The temporal resolution ∆τ varies inversely to the carrier frequency ω0 of the wavelet
Ψτ,a(t); therefore, it can be made arbitrarily small at high frequencies.

2. The frequency resolution ∆ω varies linearly with the carrier frequency ω0 of the
wavelet Ψτ,a(t); therefore, it can be made arbitrarily small at low frequencies.

Hence, the CWT is well suited for the analysis of non-stationary signals containing high-
frequency transients superimposed on long-lasting low-frequency components [23].

The CWT implements the signal analysis at various time scales. For this reason, the
squared absolute value of the CWT is called a scalogram, and it is defined as:

S(τ, a) ≜ |Wx(τ, a)|2 =
1
a

∣∣∣∣∫ ∞

−∞
x(t)Ψ∗

(
t − τ

a

)
dt
∣∣∣∣2. (3)

The scalogram S(τ, a) provides a bi-dimensional graphical representation of the signal
energy at the specific scale parameter a and time location τ.

In general, the mother wavelet Ψ(t) can be any band-pass function [23]. The Haar
wavelet is the simplest example of a wavelet, while the Daubechies one is a more sophisti-
cated example. Both of these wavelets have a finite (and compact) support in time. The
Daubechies wavelet has a longer length than the Haar wavelet and is therefore less localized
than the latter. However, the Daubechies wavelet is continuous and has a better frequency
resolution than the Haar one [23]. Other famous wavelet families are the Mexican Hat
wavelet (which is proportional to the second derivative function of the Gaussian probability
density function), the Bump wavelet, the generalized Morse wavelet, and the Morlet one,
also known as the Gabor wavelet. This last wavelet is composed of a complex exponential
multiplied by a Gaussian window, and it is very suitable for audio and vision applications
since it is closely related to human perception. For this purpose, we remark that it is
strongly related to the short-time analysis performed by the peripheral auditory system
and to the mechanical spectral analysis performed by the basilar membrane in the human
ear [48]. As a matter of fact, the Morlet wavelet is the most widely used wavelet for audio
applications [49], and its effectiveness has been shown in analyzing machine sounds [50].
Motivated by these considerations, in the rest of the paper, we use the Morlet wavelet,
which is defined as:

Ψ(t) = Cψ e−
t2

2σ2 ejω0t, (4)

where Cψ is a normalization factor used to meet the admissibility condition, ω0 is the
central frequency of the mother wavelet (the carrier), and σ2 is the variance of the Gaussian
window equal to: σ = n/ω0. The parameter n, called the number of wavelet cycles and set
in this paper to n = 6, defines the time–frequency precision trade-off.

4. Proposed Approach

Scalograms obtained from CWT are very rich in information and can improve the
results obtained by other approaches, such as the spectrogram or its mel-scale version. The
proposed idea consists in extracting the scalograms from the recorded signals after splitting
them into chunks of a suitable length (usually 30–50 ms). The extracted scalograms, saved
as image files, are fed as input to a CNN architecture. In fact, it is well known that CNNs
are very effective for image classification. The literature is rich in state-of-the-art CNNs
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that perform very well in image classification. Since the number of classes considered
in a construction site is limited, and given the richness of the input representation (the
scalogram), in this work, we propose the use of a simple CNN, i.e., the AlexNet one (see
Section 5.3). A picture of the proposed idea is shown in Figure 1. A step-by-step flowchart
of the proposed methodology is shown in Figure 2.

conv1

conv2

conv3-5

fc6 fc7 fc8

55 x 55 x 96

27 x 27 x 256

6 x 6 x 256

1 x 1 x 4096 1 x 1 x 5

convolutional + ReLU + BN

max pooling

fully connected + ReLU

softmax

Rescaling

227 x 227 x 1

Audio chunk

Scalogram

Class label

13 x 13 x 384

Figure 1. A picture of the proposed idea.

Recorded
sound Preprocessing CWT

CNNClass LabelMetric
evaluation

Scalogram

Figure 2. A step-by-step flowchart of the proposed methodology.

5. Experimental Setup
5.1. Dataset

The used dataset consists of a set of recordings related to five machines working in a
real-world construction site. Sounds have been recorded with a Zoom H1 digital recorder
with a sampling frequency of 44,100 Hz and saved as wave files. The five classes considered
in this work are related to three excavators (two compact excavators and a large one), a
compactor, and a concrete mixer. For each class, 15 min of recordings are available. The
recording of each piece of machinery has been made by placing the recorder about 5–6 m in
front of the activities of interest, without any obstacle in the middle. The recorded sounds
are related to normal construction site activities (i.e., excavation and concrete mixing work)
performed in outdoor scenarios. The subset of sounds considered in this work is related to
a single source at a time; segments where more than one piece of equipment is active at
the same time have been preventively removed from the dataset. Additional details on the
operating scenario can be found in [5].

Each file has been split into chunks of 30 ms each. The entire dataset has been split
into a training and a test set, with proportions of 75% and 25%, respectively. In addition,
10% of the training set has been devoted as the validation set to check the convergence
performance during the training phase. Details of the used dataset, along with the number
of chunks and related training/test splits, are reported in Table 1.
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Table 1. Details of the used dataset.

N. Class Equipment Data Chunks Split

1 JD50D Compact excavator John Deere 50D 15:00 30,000 22,500/7500
2 IRCOM Ingersoll Rand Compactor 15:00 30,003 22,502/7501
3 Mixer Concrete mixer Mercedes-Benz Actros 14:59 29,999 22,499/7500
4 CAT320E Hydraulic excavator Caterpillar 320E 15:00 30,001 22,500/7501
5 Hitachi50U Compact excavator Hitachi ZX50U 14:59 29,999 22,499/7500

Total 01:14:58 150,002 112,500/37,502

5.2. Preprocessing

After the audio signals have been split into chunks of 30 ms, they have been resampled
to 22,050 Hz for memory-saving purposes. This resampling procedure does not affect the
quality of the classification, since the energy of audio signals related to construction sites is
vanishing at frequencies higher than 10 kHz.

For each resampled chunk, the CWT has been extracted (we used the Python ssqueezepy
package, available at: https://github.com/OverLordGoldDragon/ssqueezepy, accessed
on 10 November 2023). The Morlet wavelet [23] has been used in this work. The obtained
matrix has been then resized to 227 × 227 in order to be compliant with the input layer
of the used AlexNet (see Section 5.3). For simplicity and memory-saving purposes, the
obtained resized matrix has been rescaled to the interval [0, 255], converted to integer
numbers, and saved as images.

Some random images related to the extracted CWT from Classes 1, 3, and 4, respec-
tively, are shown in Figure 3. These scalograms clearly capture salient localized events in
sound frames, as shown by the horizontal lines or cloud-like points in Figure 3. Spectro-
grams of the same signals are generally unable to capture salient time/scale characteristics.

(a) (b) (c)

Figure 3. Examples of some scalogram images: (a) Class 1, (b) Class 3, and (c) Class 4.

5.3. Model

The literature is rich in well-performing and famous CNN architectures, as well as
customized models for specific applications. Since the problem has been converted into a
standard image classification task and the number of classes is limited, in this paper, we
consider the well-known AlexNet [51] architecture. Specifically, AlexNet is composed of a
cascade of five convolutional layers and three (dense) fully connected ones.

With respect to the original version, we introduce three modifications:

1. The number of channels of the input layer is reduced to only one since the network is
fed by the scalogram, which is a single-channel image;

2. We add, after the input layer, a Rescaling layer in order to transform the integer input
into floating-point numbers inside the interval [0, 1];

3. The number of output classes has been reduced to five (the original AlexNet works
with 1000 classes).

https://github.com/OverLordGoldDragon/ssqueezepy
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The details of the network organization, layers’ shape, and number of parameters of
the customized version of AlexNet are summarized in Table 2. Refer also to Figure 1 for a
graphical representation.

AlexNet has been trained by minimizing the categorical cross-entropy defined as:

L(y, ŷ, θ) ≜ − 1
B

B

∑
n=1

NC

∑
i=1

y(i)n log ŷ (i)
n , (5)

where θ is the vector collecting all of the network parameters, NC = 5 is the number of
classes, B is the mini-batch size, y(i)n is the actual label of the n-th sample and i-th class, and
ŷ (i)

n is the corresponding predicted label. The minimization is performed by the gradient
descent algorithm:

θk = θk−1 − η∇θkL(y, ŷ, θk−1), (6)

where η is the learning rate and k is the iteration index; the gradient ∇θL(·) is computed
over a mini-batch. In this work, the Adam optimizer, a variant of the gradient descent, has
been used [52]. Specifically, the Adam algorithm incorporates an estimate of the first- and
second-order moments of the gradient with a bias correction to speed up the convergence
process. Details of the Adam algorithm can be found in [52]. The learning rate is set to
η = 10−4 (parameters β1, β2, and ε are left at their default values), and a batch size of
B = 32 is used. The training is run for 10 epochs.

Table 2. Layers and number of parameters of the customized AlexNet.

Layer (Type) Output Shape Number of Parameters

Rescaling (None, 227, 227, 1) 0
Conv2D (None, 55, 55, 96) 11,712
BatchNormalization (None, 55, 55, 96) 384
MaxPooling2D (None, 27, 27, 96) 0
Conv2D (None, 27, 27, 256) 614,656
BatchNormalization (None, 27, 27, 256) 1024
MaxPooling2D (None, 13, 13, 256) 0
Conv2D (None, 13, 13, 384) 885,120
BatchNormalization (None, 13, 13, 384) 1536
Conv2D (None, 13, 13, 384) 1,327,488
BatchNormalization (None, 13, 13, 384) 1536
Conv2D (None, 13, 13, 256) 884,992
BatchNormalization (None, 13, 13, 256) 1024
MaxPooling2D (None, 6, 6, 256) 0
Flatten (None, 9216) 0
Dense (None, 4096) 37,752,832
Dropout (None, 4096) 0
Dense (None, 4096) 16,781,312
Dropout (None, 4096) 0
Dense (None, 5) 20485

Total parameters: 58,284,101
Trainable parameters: 58,281,349
Non-trainable parameters: 2752

6. Implementation Aspects

In this section, we provide some important remarks about the implementation aspects
of the proposed idea.

The computation of the CWT can be memory and computationally demanding. For
this reason, we recommend not exceeding the chunk size; 30 ms or 50 ms represents a good
compromise between the efficiency and tracking performance of the classifier due to the
intrinsic non-stationarity of audio signals.
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The CWT applied to a 30 ms chunk returns a matrix of the size 230 × 662. In view of
using such data as the input to a state-of-the-art CNN, it is convenient to resize the matrix
to a commonly used size. Generally, 227 × 227 (for AlexNet) or 224 × 224 (for GoogLeNet,
ResNet, and similar architectures) are adequate choices.

However, saving more than 150,000 (see Table 1) floating-point matrices of 227 × 227
entries requires a large amount of disk space and a consistent quantity of RAM memory to
load and process the dataset. For this purpose, after the resize, these matrices have been
scaled to the interval [0, 255], converted to integer numbers, and saved as images. In this
way, it is possible to work with this dataset on a normal office PC while avoiding memory
explosion.

Finally, to deal with such data, an additional Rescaling layer has been used in the
customized version of AlexNet. This layer converts the integer input data back into the
float interval [0, 1].

7. Experimental Results

The proposed model has been trained on the considered dataset for 10 epochs by using
10% of the training set as the validation set (Python 3.10 source code can be downloaded
from: https://github.com/mscarpiniti/CS-scalogram, accessed on November 20). The
training and validation losses obtained during the training phase are shown in Figure 4a,
while Figure 4b shows the corresponding training and validation accuracy. These figures
demonstrate the effectiveness of the training, showing that the training procedure is quite
stable after about seven epochs. Figure 4b also shows that, at convergence, the training
accuracy is about 99.5%, while the validation one is about 99%.

2 4 6 8 10
Epoch

0.05

0.10

0.15

0.20

0.25

Lo
ss

Training and validation loss
Training loss
Validation loss

(a) Loss.

2 4 6 8 10
Epoch

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Training and validation accuracy
Training accuracy
Validation accuracy

(b) Accuracy.
Figure 4. Training and validation loss (a) and accuracy (b) of the proposed approach.

To evaluate the proposed approach, we have also used the overall accuracy, the per-
class precision, the per-class recall, and the per-class F1-score, as well as their weighted
averages [53], computed on the test set. Moreover, the confusion matrix is shown in Figure 5.
The confusion matrix clearly shows that the proposed approach is able to provide very
good results for the classification of real-world signals recorded in construction sites. In
fact, most of the instances are in the main diagonal of the matrix. There is a little confusion
between the compactor (IRCOM), which has been confused with the JD50D excavator and
the concrete mixer, and the CAT320E excavator, which is, again, mainly confused with the
JD50D excavator and the concrete mixer. This behavior is due to the fact that all of these
pieces of equipment have similar engines.

The results in terms of the precision, recall, and F1-score of the proposed approach
are summarized in Table 3. In addition, this table confirms the conclusion drawn from the
confusion matrix in Figure 5: the JD50D and Concrete Mixer classes have lower precision,
while the compactor (IRCOM) and CAT320E excavator show lower recall. However, the
F1-score is quite stable among all classes. The Hitachi 50U excavator performs the best

https://github.com/mscarpiniti/CS-scalogram
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in between the five considered classes. Despite this slight variability in performance, the
weighted averages of the considered metrics are very good and settled at 0.989.
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Figure 5. Confusion matrix obtained by the proposed approach.

Table 3. Per-class performance of the proposed approach.

Class Precision Recall F1-Score

JD50D 0.976 0.995 0.986
IRCOM 0.996 0.977 0.987
Mixer 0.979 0.998 0.988
CAT320E 0.997 0.983 0.989
Hitachi50U 0.997 0.994 0.996

All classes 0.989 0.989 0.989

The proposed approach was compared with similar state-of-the-art solutions. Specifi-
cally, we compared our approach to the one proposed by Piczak in [4], based on a CNN fed
by the spectrograms with corresponding deltas (i.e., the difference of the feature among
two consecutive time instants); the approach proposed by Maccagno et al. in [31], based
on a custom deep CNN (DCNN) fed by the spectrograms; and the approach proposed
by Scarpiniti et al. in [34], based on an ESN working on several spectral features and a
majority voting between adjacent chunks. The results obtained by these state-of-the-art
approaches in terms of precision, recall, F1-score, and their weighted averages are shown
in Tables 4, 5, and 6, respectively. The results presented in these tables confirm that the
approach proposed in this paper (see Table 3) performs better than the state of the art for
all of the considered metrics. Figure 6 summarizes all of the considered metrics for these
compared approaches.
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Table 4. Per-class performance of the Piczak approach in [4].

Class Precision Recall F1-Score

JD50D 0.981 0.965 0.973
IRCOM 0.959 0.982 0.970
Mixer 0.942 0.945 0.943
CAT320E 0.894 0.973 0.932
Hitachi50U 0.944 0.795 0.863

All classes 0.944 0.932 0.936

Table 5. Per-class performance of the DCNN-based approach in [31].

Class Precision Recall F1-Score

JD50D 0.955 0.972 0.963
IRCOM 0.957 0.979 0.968
Mixer 0.975 0.985 0.980
CAT320E 0.986 0.973 0.979
Hitachi50U 0.972 0.978 0.975

All classes 0.973 0.973 0.973

Table 6. Per-class performance of the ESN-based approach in [34].

Class Precision Recall F1-Score

JD50D 0.901 0.937 0.919
IRCOM 0.899 0.974 0.935
Mixer 0.837 0.819 0.828
CAT320E 0.769 0.629 0.692
Hitachi50U 0.763 0.823 0.792

All classes 0.834 0.837 0.833

In addition, Tables 7 and 8 show the results of the works proposed by [44,46], which use
scalogram-based approaches for acoustic scene classification. We adapt these approaches
to work with the scalograms extracted from the construction site sounds. These tables
show that, although the works proposed in [44,46] provide good results, the performance
is slightly lower than the proposed approach reported in Table 3.

Table 7. Per-class performance of the approach proposed by Chen et al., 2018, in [44].

Class Precision Recall F1-Score

JD50D 0.974 0.975 0.974
IRCOM 0.982 0.979 0.980
Mixer 0.981 0.984 0.982
CAT320E 0.988 0.979 0.984
Hitachi50U 0.975 0.983 0.979

All classes 0.980 0.980 0.980
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Table 8. Per-class performance of the approach proposed by Copiaco et al., 2019, in [46].

Class Precision Recall F1-Score

JD50D 0.972 0.973 0.972
IRCOM 0.981 0.977 0.979
Mixer 0.979 0.982 0.981
CAT320E 0.986 0.977 0.982
Hitachi50U 0.972 0.981 0.977

All classes 0.978 0.978 0.978
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Figure 6. A visual comparison of all the compared approaches for the precision (top), recall (middle),
and F1-score (bottom).

Although the Morlet wavelet in (4) is the most used and effective wavelet family in
nonstationary audio analysis, we have also tested two other well-known and well-used
wavelet families: the generalized Morse and the Bump wavelets [47], respectively. The
results in terms of per-class precision, recall, and F1-score, and their related weighted
averages, are shown in Table 9. From this table, we can argue that results of the generalized
Morse wavelet are quite similar to those obtained by using the Morlet one (see Table 3).
On the other hand, the results related to the Bump wavelet are slightly worse, even if
they are quite good. The overall accuracies of these two approaches were 98.50% and
97.45%, respectively. These considerations confirm the effectiveness of the Morlet wavelet
for analyzing audio signals in general and engine sounds in particular.

Finally, in Table 10, we summarize the previous results of the proposed approach (last
row) and the compared ones by considering some additional machine learning and deep
learning approaches. Specifically, Figure 7 shows the accuracy of the compared approaches
as a bar plot. Among the machine learning techniques, we considered the results obtained
by using a Support Vector Machine (SVM), the k-Nearest Neighbors (k-NN), the Multilayer
Perceptron (MLP), and a random forest. All of these approaches provided reasonable
results [5], though the results were worse than those provided by deep learning techniques.
Among these last methods, we also considered an approach based on a Deep Recurrent
Neural Network (DRNN) that exploits different spectral features [54] and one based on
a Deep Belief Network (DBN) that works on a statistical ensemble of different spectral
features [33]. For the implementation details, we refer to the related references. The results
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reported in Table 10 and Figure 7 clearly show once again the effectiveness of the proposed
idea, which can be considered an effective and reliable approach for classifying real-world
signals recorded in construction sites.

Table 9. Per-class performance of the proposed approach by using the generalized Morse wavelet
and the Bump wavelet. Overall accuracy is 98.50% and 97.45%, respectively.

Class
Generalized Morse Wavelet Bump Wavelet

Precision Recall F1-Score Precision Recall F1-Score

JD50D 0.985 0.977 0.981 0.964 0.983 0.974
IRCOM 0.986 0.983 0.985 0.990 0.967 0.978
Mixer 0.975 0.994 0.984 0.989 0.960 0.974
CAT320E 0.985 0.986 0.986 0.995 0.966 0.980
Hitachi50U 0.995 0.985 0.990 0.938 0.996 0.966

All classes 0.985 0.985 0.985 0.975 0.974 0.975

Table 10. Results of the compared approaches.

Approach Accuracy Precision Recall F1-Score

SVM [5] 83.66 0.846 0.838 0.842
k-NN [5] 85.28 0.860 0.853 0.857
MLP [5] 91.06 0.913 0.932 0.923
Random Forest [5] 93.16 0.934 0.932 0.933
Piczak [4] 90.03 0.944 0.932 0.936
DRNN [54] 95.32 0.955 0.953 0.954
DCNN [31] 97.08 0.973 0.973 0.973
DBN [33] 97.79 0.978 0.978 0.978
L-ESN+MV [34] 95.26 0.957 0.953 0.952
CNN [44] 97.99 0.980 0.980 0.980
CNN+SVM [46] 97.79 0.978 0.978 0.978
Proposed 98.93 0.989 0.989 0.989

Results of the compared approaches

SVM kNN
MLP RF
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Figure 7. Accuracy of the compared approaches.

As a discussion, we can observe that scalograms generally capture salient localized
events in sound frames, as shown by the horizontal lines or cloud-like points in Figure 3.
In addition, the convolutional layers of the CNN are able to learn discriminative features,
as shown in Figure 8, which, for example, shows the 256 feature maps of the fifth and last
convolutional layer of the used architecture. Although single plots in the figure are quite
small, it is clear that feature maps in the final layer are more specialized in detecting specific
time scales. In fact, the scalogram in Figure 8 shows clear horizontal lines localized at a
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specific scale. This kind of scale localization is typical of engines, a fundamental part of the
machines considered in our dataset. This behavior justifies the better performance of the
proposed approach for the classification of equipment sounds in construction sites.

Figure 8. The 256 feature maps of the fifth and last convolutional layer of the trained architecture.
Maps have been normalized in [0, 1] for visualization: lighter colors are close to 1, while darker colors
are close to 0.

8. Conclusions

In this paper, we have investigated the effectiveness of a Convolutional Neural Net-
work (CNN) fed by scalograms in the classification of audio signals acquired in real-world
construction sites. Specifically, after splitting the recorded signals into smaller chunks,
the scalogram (i.e., the squared magnitude of the Continuous Wavelet Transform) has
been computed and used as input to a customized version of the well-known AlexNet.
The customization takes into account the single channel of the scalogram input and the
reduced number of output classes. Some experimental results and comparisons with other
state-of-the-art approaches confirm the effectiveness of the proposed idea, showing an
overall accuracy of 98.9%.

In future work, we will investigate the effect of choosing different types of wavelet
functions and the idea of early data fusion, i.e., by joining the scalograms with other bi-
dimensional representations, such as the spectrogram or similar ones, and providing this
augmented representation as the input to a CNN.
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