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ABSTRACT
In this paper we deal with some open problems concerned with
Gamma subordinators. In particular, we first provide a representation
for the moments of the inverse gamma subordinator. Then, we focus
on k-potentials and we study the governing equations associated
with Gamma subordinators and inverse processes. Such representa-
tions are given in terms of higher transcendental functions, also
known as Volterra functions.
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1. Introduction

Gamma subordinator is a well-known subordinator which has been considered in many fields
of Applied Sciences. In Mathematical Finance for instance, a well-known process is the
Variance Gamma Process (or Laplace motion) which can be obtained by considering a
Brownian motion with a random time given by a Gamma subordinator ([1–4]). We recall that
a subordinator is a L�evy process with non-negative and non-decreasing paths. The Gamma
subordinator is a special case in which the associated L�evy measure on ð0,1Þ is infinite, then
the paths are increasing ([5]).
In the connection between non-local analysis and Probability the Gamma subordina-

tor plays a relevant role, many authors have investigated such a connection and the
related properties, we list only a few references throughout the work. Recently, in [6]
some new operators associated with Gamma subordinators appear whereas, in [7] the
connection between parabolic and elliptic problems in case of Gamma (and inverse
Gamma) time change is considered. We also recall an interesting connection between
Gamma subordinator and (fractional) negative binomial processes, see for example [8].
Despite the fact that Gamma subordinators are well-known processes, deeply investi-

gated in the past years, there is a lack in the theory concerned with inverse Gamma
subordinators. At the current stage there are some results on the moments of the
inverse gamma subordinators only concerned with their asymptotic behavior ([7, 9])
and their Laplace transforms ([9–11]).
Our main contributions, in order to close such a gap, are stated in Section 4. We

obtain a new representation for the moments of every real (positive) order. Moreover,
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we obtain explicitly, in a closed form, the potentials and the Sonine kernels concerned
with our case study, that is for Gamma subordinators and their inverses. We also pro-
vide a detailed discussion on densities and governing equations in order to have a clear
picture about the processes we deal with. Indeed, the Gamma subordinator belongs to a
special class of time-dependent continuous functions.
In our analysis a central role has been played by the functions � and l, two higher

transcendental functions (see for example the book [12]), also known as Volterra func-
tions ([13, 14]). The function � has been introduced by Volterra (1916) in his theory of
convolution-logarithms ([15]), hence the name. The importance of these functions does
not surprise, indeed they seem to be the analogue of the Mittag-Leffler function in case
of stable subordinators and the corresponding inverses. The interested readers can con-
sult the book [16] for the Mittag-Leffler function.

2. Preliminaries

2.1. Gamma subordinators

We introduce the Bernstein function U : ð0,1Þ 7! ð0,1Þ which is uniquely defined by
the so-called Bernstein representation

UðkÞ ¼
ð1
0
ð1� e�kzÞPðdzÞ, k � 0

where P on ð0,1Þ with
Ð1
0 ð1� zÞPðdzÞ < 1 is the associated L�evy measure. We also

recall that

UðkÞ
k

¼
ð1
0
e�kzPðzÞdz, (1)

where PðzÞ ¼ Pððz,1ÞÞ is termed tail of the L�evy measure (see [17] Section 1.2
for details).
From now on we consider the Laplace symbol

UðkÞ ¼ a ln 1þ k
b

� �
¼ a

ð1
0

1� e�kyð Þ e�by

y
dy, k � 0, a > 0, b > 0 (2)

and the associated gamma subordinator H ¼ fHtgt�0 for which

E0 e
�kHt½ � ¼ e�tUðkÞ, k � 0: (3)

Since Pð0,1Þ ¼ 1, then from Theorem 21.3 of [5], we have that H has increasing
sample path with jumps. The inverse process

Lt :¼ inffs > 0 : Hs > tg ¼ inffs > 0 : Hs 62 ð0, tÞg, t > 0

can be regarded as an exit time for H. In particular, the process L ¼ fLtgt�0 turns out to

be non-decreasing with continuous paths and it can be associated, in general, with some
delaying or rushing effects (see [7]). By definition of inverse process, we can also write

P0ðHt < sÞ ¼ P0ðLs > tÞ, s, t > 0 (4)

where Px denote the probability measure for a process started from x at time t¼ 0 and
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Ex the mean value with respect to Px: Here we have that L0 ¼ 0 and H0 ¼ 0: We also
use the notation

P0ðHt 2 dxÞ ¼ hðt, xÞ dx, and P0ðLt 2 dxÞ ¼ lðt, xÞ dx:

It is well known that, 8 t > 0,

hðt, xÞ ¼
bat

CðatÞ x
at�1e�bx, x > 0

0, x � 0

8><
>: (5)

verifies

P0ðHt < 0Þ ¼ 0 and P0ðHt � 0Þ ¼ 1 8t � 0

and ð1
0
e�kxhðt, xÞ dx ¼ bat

ðkþ bÞat ¼ e�ta ln 1þk
bð Þ, k > 0, t > 0 (6)

which agrees with formula (3). However, we immediately see that

hðt, xÞ ! 0 as x # 0 only if at > 1:

The property for a L�evy process to be continuous and derivable with respect to the time
variable is known as time dependent property (see [5, Chapter 23]). Such a property turns
out to be quite demanding from the analytical point of view. We conclude the discussion
about H by recalling that, from the representation (5), we are able to evaluate the moments

E0 ðHtÞq
� � ¼ 1

bq
Cðat þ qÞ
CðatÞ , q > �at, t > 0: (7)

Then, the following series expansion for (3) holds true

b
kþ b

� �at

¼
X1
k¼0

ð�kÞk
k!

1
bk

Cðat þ kÞ
CðatÞ ¼ 1

CðatÞ
X1
k¼0

� k
b

� �k
Cðat þ kÞ
Cð1þ kÞ (8)

In [9, formula (17)], the authors provide the following representation for the density
of L,

lðt, xÞ ¼ ae�t

p

ð1
0

y�axe�yt

1þ y
p cosðapxÞ � ln ðyÞ sinðapxÞ� �

dy, ax 62 N

which is written in their work for b¼ 1 (our notation).
Concerning formulas (6) and (7), the analogue explicit representation for the process

L is an open problem. We approach this problem in Section 4.

2.2. Special functions

The well-known gamma function CðzÞ has been considered in the previous section.
Here we recall the incomplete gamma function

cða, zÞ ¼
ðz
0
e�yya�1dy, a > 0, z � 0 (9)
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and the digamma function (Figure 1)

w0ðzÞ ¼
1

CðzÞ
ð1
0
yz�1 ln y e�ydy, z � 0: (10)

Together with cða, zÞ, let us define the incomplete digamma function w0ða, zÞ through
the integral representation

W0ða, zÞ :¼ 1
cða, zÞ

ðz
0
ya�1e�y ln y dy a > 0, z � 0:

Observe that

lim
z!1W0ða, zÞ ¼ w0ðaÞ:

We also notice that the incomplete gamma function cða, zÞ is a Bernstein function and
therefore we can use (9) in order to define a new symbol for a subordinator (see [18]).
We now present some special functions which have been introduced in [12, Section
18.3] and which will be useful further on. Let a 2 ð�1, þ1Þ, b 2 ð�1, þ1Þ, we
define

lðx, b, aÞ :¼
ð1
0

xaþyyb

Cðbþ 1ÞCðaþ yþ 1Þ dy, x > 0: (11)

The integral in (11), focusing on complex variables, defines an analytical function in x,
with branch-points in x¼ 0 and x ¼ 1: It is an entire function of a. For our

Figure 1. The function w0ðxÞ defined in (10).
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convenience we also introduce the function

�ðx, aÞ :¼ lðx, 0, aÞ: (12)

A further useful representation of (12) can be given as follows ([13, formula (33.3)])

�ðx, aÞ ¼ ex
ðaþ1

a

cðy, xÞ
CðyÞ dy: (13)

The Laplace transforms of these special functions can be easily obtained, in particularð1
0
e�kx�ðx, aÞdx ¼ 1

kaþ1 ln k
(14)

ð1
0
e�kxlðx, b, aÞdx ¼ 1

kaþ1ð ln kÞbþ1 , (15)

with k > 1: The functions l and � belongs to the class of higher transcendental func-
tions as well as the famous Mittag-Leffler function. Such functions have been intro-
duced in [12] together with a detailed discussion. However, in our view there is a
misprint in [12, page 221, formula (14)]. Thus, for the reader’s convenience, we provide
the following revised result concerning that formula.

Lemma 1. Let a 2 R. The following holds true

e�a#�ðxe#, aÞ ¼
X1
k¼0

#klðx, k, aÞ, x > 0, # 2 R: (16)

Proof. Since

�ðxe#, aÞ ¼
ð1
0

xaþtðe#Þaþt

Cðaþ t þ 1Þ dt ¼
ð1
0

xaþte#ae#t

Cðaþ t þ 1Þ dt

¼ ea#
ð1
0

xaþtP1
k¼0

ð#tÞk
Cðkþ1Þ

Cðaþ t þ 1Þ dt

¼ ea#
X1
k¼0

#k
ð1
0

xaþttk

Cðkþ 1ÞCðaþ t þ 1Þ dt

¼ ea#
X1
k¼0

#k lðx, k, aÞ

we get the claimed result. A further check can be given by considering the Laplace
transforms (14) and (15) in order to achieve the equality (16). w

3. Governing equations

Let us consider a continuous function u on R extended with zero on the negative part
of the real line, that is uðxÞ ¼ 0 if x � 0: From the Bochner subordination rule or in
general, from the Phillips’ representation ([19]), we are able to obtain new operators
through subordination. By following the same spirit we obtain a Marchaud (type) oper-
ator given by
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�Uð�@xÞuðxÞ ¼ a
ð1
0
ðuðxÞ � uðx � yÞÞ e

�by

y
dy, (17)

where @x introduces a translation semigroup. Indeed, by taking into account (2), we can
immediately check thatð1

0
e�nxUð�@xÞuðxÞ dx ¼ �UðnÞ~uðnÞ, n > 0

where ~u denote the Laplace transform of u: We notice that, if u is a�H€older, that is
juðxÞ � uðx� yÞj � M jyja with a > 0 for some M> 0, then

jUð�@xÞuðxÞj � a M
CðaÞ
ba

:

See that the Marchaud operator (of order a) is well defined for (essentially) bounded
and c-H€older functions with c > a: The readers can consult the interesting work [20]
for further details. The operator (17) can be also written as follows

DU
x uðxÞ ¼

d
dx

ðx
0
uðx � yÞ PðyÞ dy (18)

which can be regarded as a Riemann-Liouville (type) definition. From (1) and the fact
that uð0Þ ¼ 0, we still getð1

0
e�nxDU

x uðxÞ dx ¼ n~uðnÞUðnÞ
n

¼ UðnÞ~uðnÞ, n > 0:

Since uð0Þ ¼ 0, the Riemann-Liouville (type) representation (18) is also equivalent to
the Caputo-Dzherbashian (type) non-local operator

DU
x uðxÞ ¼

ðx
0
u0ðx� yÞ PðyÞ dy (19)

where u0 ¼ du=dx: In the literature, the Caputo-Dzherbashian fractional derivative is well-
known. The operator (19) is similarly defined except for the convolution kernel. Caputo
introduced his derivative in [21, 22] whereas, the second author actively investigated this
operator starting from the papers [23, 24]. The operator (19) is well-defined for

u 2 L1ð0,1Þ such that u0ðx� yÞPðyÞ 2 L1ð0, xÞ, 8x:
From the regularity of P, it turns out that (19) is well-defined as u 2 ACð0,1Þ, that
is the set of continuous functions on ð0,1Þ with u0 2 L1ð0,1Þ: Moreover, this is con-
firmed from the Young’s inequality for convolution from which

kDU
x uk1 � ku0k1 lim

k#0
UðkÞ
k

(20)

where, as a quick check shows,

1
k
a ln 1þ k

b

� �
! a

b
as k ! 0: (21)

As usual we denote by k � k1 the L1-norm. Sometimes, for the sake of clarity, we write
L1ðdxÞ or L1ðdtÞ in place of L1ð0,1Þ if some confusion may arise.
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In view of (20) we now introduce the spaces

W1, 1ð0,1Þ ¼ fw 2 L1ð0,1Þ : w0 2 L1ð0,1Þg
and

W1, 1
0 ð0,1Þ ¼ fw 2 W1, 1ð0,1Þ : wð0Þ ¼ 0g:

Observe that AC(I) coincides with W1, 1ðIÞ only if I is bounded.
Before proceeding, let us remember that the Laplace transform is well defined for piece-

wise continuous functions of exponential order. In particular, let us consider u1,u2 on
ð0,1Þ with Laplace transforms ~u1, ~u2: We also recall that (Lerch’s theorem) if ~u1 ¼ ~u2,
then u1 ¼ u2 up to isolated points where at least one of the two functions is not continuous.
Let Mg be the set of piecewise continuous functions of order g � 0, that is juðzÞj � C egz

with ~u defined on ðg,1Þ: Further on we focus on the set of functions M0 \ Cð0,1Þ:
We introduce the next result by first noticing that, from the representation (5), h = 62

W1, 1
0 ð0,1Þ: This is because of the time dependent property introduced above in

Section 2.1. Thus, the problem to address the right PDE for h must be taken with some
care. We now present the following result which extends [25, Theorem 4.1 (1)]. We first
recall that C1, 1 denotes the set of functions which are C1 in both time and space.

Theorem 2. Let vðt, xÞ 2 C1, 1ðð0,1Þ,W1, 1
0 ð0,1Þ; ½0,1ÞÞ be the solution to

@

@t
vðt, xÞ ¼ �DU

x vðt, xÞ, t > 0, x 2 ð0,1Þ,
vð0, xÞ ¼ f ðxÞ, f 2 W1, 1

0 ð0,1Þ,
vðt, xÞ ¼ 0, t > 0, x 2 �1, 0ð �:

8>>><
>>>:

(22)

Then,

vðt, xÞ ¼
ðx
0
f ðx� yÞ hðt, yÞ dy ¼ E0 f ðx �HtÞ, t < Lx

� �
: (23)

Proof. Since vðt, �Þ 2 W1, 1
0 ð0,1Þ for every t> 0,ð1
0
e�nxDU

x vðt, xÞ dx ¼ UðnÞ ~vðt, nÞ, n > 0

where ~vðt, nÞ ¼ Ð10 e�nxvðt, xÞ dx, n > 0: Let us write ~vðk, xÞ ¼ Ð10 e�ktvðt, xÞ dt, k > 0
and denote by ~vðk, nÞ the double Laplace transform. The problem (22) takes the form

k~vðk, nÞ � ~f ðnÞ ¼ �UðnÞ~vðk, nÞ
where ~f ðnÞ is the Laplace transform of f. Thus,

~vðk, nÞ ¼ ~f ðnÞ 1
kþ UðnÞ ¼

~f ðnÞ
ð1
0
e�kte�tUðnÞdt

¼ ~f ðnÞE0

ð1
0
e�kte�nHtdt

� 	

where in the last step we have used (3). From this,
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~vðt, nÞ ¼ ~f ðnÞ E0 e
�nHt½ �

and

vðt, xÞ ¼
ðx
0
f ðx� yÞ hðt, yÞ dy:

Uniqueness follows from the Laplace transform technique (Lerch’s theorem). Indeed, we
are looking for a continuous solution, in particular v 2 C1, 1: Thus, wtðnÞ ¼ ~vðt, nÞ, t> 0
and wxðkÞ ¼ ~vðk, xÞ, x> 0 are two Laplace transforms with unique inverses. We observe
that

kvðt, �Þk1 � kf k1khðt, �Þk1
for every t> 0, thus e�nxvðt, xÞ is obviously an element of L1ðdxÞ: Furthermore, we have
that kvðt, �Þk1 � kf k1khðt, �Þk1 for every t> 0, thus vðt, �Þ 2 M0 \ Cð0,1Þ as required.
Indeed, W1, 1

0 ð0,1Þ embeds into L1ð0,1Þ and f is essentially bounded. This holds only
in the one dimensional case (for more details see section 11.2 of [26]). Similar argu-

ments apply with respect to the time variable by considering ~hðk, xÞ: In particular,

kvð�, xÞk1 �
ðx
0
jf ðx� yÞjjðyÞ dy ¼ ðJjf jÞðxÞ

where J is a non-local (sometimes termed fractional) integral. This integral can be com-
pared with the solution of (40) below. Here, the function t 7! vðt, xÞ is continuous and
integrable for every x and this allows us to proceed with the Laplace technique with
respect to the time variable. We can also observe that t ! hðt, xÞ is continuous and,
since CðatÞ is asymptotically faster than batxat�1, then

lim
t!0

hðt, xÞ ¼ 0 and lim
t!1 hðt, xÞ ¼ 0,

from which we conclude that hð�, xÞ is bounded for every x> 0. Proceeding as before,
we obtain kvð�, xÞk1 � kf k1khð�, xÞk1, thus vð�, xÞ 2 M0 \ Cð0,1Þ as required.
We obtain the probabilistic representation from the fact that

vðt, xÞ ¼
ðx
0
f ðx� yÞ hðt, yÞ dy ¼

ð1
0
f ðx� yÞ hðt, yÞ 1ðy<xÞdy,

that is

vðt, xÞ ¼ E0 f ðx� HtÞ1ðHt<xÞ
� �

:

From (4), we have that 1ðHt<xÞ is equivalent to 1ðt<LxÞ under E0:

We want to provide that the solution v is C1, 1, then we start checking that vðt, �Þ 2
C1ð0,1Þ for every fixed t> 0. First we observe that vðt, �Þ 2 Cð0,1Þ for every t> 0.
Moreover, 8 t > 0,
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d
dx

vðt, xÞ ¼ d
dx

ðx
0
f ðx� yÞhðt, yÞdy

¼ f ð0Þhðt, xÞ þ
ðx
0
f 0ðx� yÞhðt, yÞdy

¼
ðx
0
f 0ðx � yÞhðt, yÞdy:

(24)

Since f 2 W1, 1
0 ð0,1Þ and hðt, �Þ 2 L1ðdxÞ 8 t > 0, we conclude that d

dx vðt, �Þ 2 Cð0,1Þ
for every t> 0. From the Young’s inequality, we notice that the convolution in (24) is
in L1ðdxÞ and therefore vðt, �Þ 2 W1, 1

0 ð0,1Þ, t > 0:
Now we check that vð�, xÞ 2 C1ð0,1Þ for every fixed x> 0. The derivative

d
dt

vðt, xÞ ¼ d
dt

ðx
0
f ðx � yÞhðt, yÞdy

can be written in terms of

d
dt

hðt, xÞ ¼ d
dt

batxat�1

CðatÞ e�bx

" #
¼ abatxat�1

CðatÞ ln x þ ln b� w0ðatÞ
� �

e�bx

¼ ahðt, xÞ ln x þ ln b� w0ðatÞ
� �

:

(25)

The idea is to proof that d
dt hðt, xÞ is continuous and bounded in t for each x> 0, then it

is integrable. First we show that

hðt, xÞw0ðatÞ ¼ � e�bx

x
as t ! 0, hðt, xÞw0ðatÞ ¼ 0 as t ! 1: (26)

Let us recall the limit ([27, formula (13.1.5.1)])

CðzÞ ¼ lim
n!1

n!nz

zðz þ 1Þ � � � ðz þ nÞ : (27)

Since w0ðzÞ ¼ C0ðzÞ
CðzÞ , then

w0ðzÞ ¼ lim
n!1 log n� 1

z
þ 1
z þ 1

þ � � � þ 1
z þ n

� �
: (28)

From (27) and (28) we write

w0ðzÞ
CðzÞ ¼ lim

n!1

log n� 1
z þ 1

zþ1 þ � � � þ 1
zþn


 �
n!nz

zðzþ1Þ���ðzþnÞ

¼ lim
n!1

z log n� 1þ z
zþ1 þ � � � þ z

zþn

� �
n!nz

ðzþ1Þ���ðzþnÞ
:

As z ! 0, we obtain that

w0ð0Þ
Cð0Þ ¼ lim

n!1
0� 1þ 0þ � � � þ 0ð Þ

n!
n!

¼ �1 (29)

whereas, due to the asymptotic contribution of nz,
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lim
z!1

w0ðzÞ
CðzÞ ¼ 0: (30)

From (29) and (30) we respectively obtain

lim
t!0

hðt, xÞw0ðatÞ ¼ lim
t!0

batxat�1e�bx w0ðatÞ
CðatÞ ¼ � e�bx

x
,

and

lim
t!1 hðt, xÞw0ðatÞ ¼ lim

t!1 batxat�1e�bx w0ðatÞ
CðatÞ ¼ 0,

which proves (26). Summing up, for each fixed x> 0, from (25), hðt, xÞð ln x þ ln bÞ is
continuous in t and, from (26), we have that hðt, xÞw0ðatÞ is continuous 8x 6¼ 0, hence
d
dt hðt, xÞ is continuous and bounded with respect to time, so it is in L1ðdtÞ: This guaran-
tees that d

dt vð�, xÞ is Cð0,1Þ for every x> 0 and concludes the proof. w

Notice that Lx in (23) can be regarded as the stopping time depending on the thresh-
old x> 0. Indeed, L is an exit time for H.
Let us consider once again the representation (5) of h(t, x). The profile of (5) is given

in Figure 2. As we can see, h does not seem to be in the domain of (17). Indeed, for
at< 1, h is not continuous at x¼ 0 (so it can not be of the H€older class). In general, for
a positive integer n, if n < at � nþ 1, then h(t, x) is of class Cn�1½0,1Þ \ Cnð0,1Þ,
thus, h 62 Cn½0,1Þ: Such a property is well described in Figure 2.
For completeness we present a result analogous to that of Theorem 2, based on [25,

Theorem 4.1 (2)]. The following result is concerned with the non-local operator in time
and therefore, the probabilistic representation of the solution involves the inverse
Gamma subordinator.

Theorem 3. Let rðt, xÞ 2 C1, 1ðACð0,1Þ, ð0,1Þ; ½0,1ÞÞ be the solution to

DU
t rðt, xÞ ¼ � @

@x
rðt, xÞ, t > 0, x 2 ð0,1Þ,

rð0, xÞ ¼ f ðxÞ, f 2 Cbð0,1Þ,
rðt, xÞ ¼ 0, t > 0, x 2 ð�1, 0�:

8>>>><
>>>>:

Then

rðt, xÞ ¼ E0 f ðx� LtÞ, t < Hx
� �

:

Proof. The proof follows after some adaptation of the proof of the previous theorem.

We have only to add the fact that DU
t is a convolution operator on the set ACð0,1Þ

and therefore ð1
0
e�ktDU

t rðt, xÞ dt ¼
ð1
0
e�ktr0ðt, xÞ dt

� � ð1
0
e�ktPðtÞ dt

� �

¼ k~rðk, xÞ � rð0, xÞð ÞUðkÞ
k
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where we used (1). Then, by using Laplace transforms techniques, we have the claim.
Concerning the Laplace machinery, we remark that krðt, �Þk1 � kf k1 for every t> 0.
Moreover, for every x 2 ð0,1Þ,

krð�, xÞk1 � klð�, xÞk1
ðx
0
jf ðyÞjdy

where klð�, xÞk1 ¼ limk!0þ UðkÞ given in (21). w

Remark 4. We recall that, in Theorem 2, DU
x v ¼ DU

x ðv� v0Þ where DU
x has been defined

in (18). Thus, the result can be written in terms of the Caputo (type) derivative in place
of the Riemann-Liouville (type) derivative.

Remark 5. We remark that the class of the initial datum in Theorem 2 is larger than
W1, 1

0 ð0,1Þ, which is embedded in L1ð0,1Þ as we noticed before. Let us consider
vð0, xÞ ¼ 1ð0,1ÞðxÞ for instance. Then, we still have a solution. In particular,

vðt, xÞ ¼
ðx
0
hðt, yÞdy ¼ P0ðHt < xÞ:

This comes out also from the probabilistic representation (23). Indeed,

vðt, xÞ ¼ P0ðt < LxÞ ¼ P0ðHt < xÞ
where the last identity follows from the relation (4).

4. Main results

4.1. Densities and kernels

We first provide the following representation result.

Figure 2. The profile of h(t, x) with a ¼ b ¼ 1 : Above the case t¼ 0.5 with discontinuity at x¼ 0; In
the middle the case t¼ 1.5 with a non-differentiable point in x¼ 0; Below the case t¼ 11.
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Theorem 6. For a, b > 0 the following holds true

lðt, xÞ ¼ a cðax, btÞ
CðaxÞ w0ðaxÞ �W0ðax, btÞ

� �
t > 0, x > 0: (31)

Proof. According to [9], for positive x we have

P0ðLt > xÞ ¼ P0ðHx < tÞ

¼
ðt
0

bax

CðaxÞ y
ax�1e�bydy

¼
ðbt
0

bax

CðaxÞ
z
b

� �ax�1

e�z dz
b

¼
ðbt
0

1
CðaxÞ z

ax�1e�zdz

¼ cðax, btÞ
CðaxÞ

(32)

where the incomplete gamma function (9) is involved. Thus, from the relations

d
dx

cðax, btÞ ¼ d
dx

ðbt
0
yax�1e�ydy ¼

ðbt
0
yax�1e�y ln ðyÞ dy,

and from [28, formula 6.3.1]

d
dx

CðxÞ ¼ w0ðxÞCðxÞ, (33)

we get

lðt, xÞ ¼ � d
dx

P0ðLt > xÞ ¼ � d
dx

cðax, btÞ
CðaxÞ

¼ a cðax, btÞ CðaxÞ w0ðaxÞ � CðaxÞ d
dx

Ð bt
0 yax�1e�ydy

CðaxÞ2

¼ a cðax, btÞ w0ðaxÞ � a
Ð bt
0 yax�1e�y ln ðyÞ dy

CðaxÞ :

From (33) and (10), we writeðbt
0
yax�1e�y ln ðyÞ dy ¼ W0ðax, btÞcðax, btÞ

and therefore, the claim follows.
We now proceed by considering the Laplace transform technique. We observe that

([29, formula (3.13)]) ð1
0
e�ktlðt, xÞdt ¼ UðkÞ

k
e�xUðkÞ, k > 0 (34)

is verified by the representation (31) as expected. Since
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ð1
0
e�ktcðax, btÞdt ¼

ð1
0
e�kt

ðbt
0
yax�1e�ydy dt

¼ 1
k

ð1
0
e�kybe�yyax�1dy

¼ 1
k
CðaxÞ 1þ k

b

� ��ax

¼ CðaxÞ
k

e�xUðkÞ

we write ð1
0
e�kta

cðax, btÞ
CðaxÞ w0ðaxÞdt ¼ aw0ðaxÞ

1
k
e�xUðkÞ:

Moreover,ð1
0
e�kt

ðbt
0
yax�1e�y ln y dy dt ¼ 1

k

ð1
0
e�

k
byyax�1e�y ln y dy

¼ 1
k

1

1þ k
b


 �ax CðaxÞ w0ðaxÞ � ln 1þ k
b

� �� 	

¼ 1
k
CðaxÞ w0ðaxÞ � ln 1þ k

b

� �� 	
e�xUðkÞ,

where the second-last equality comes from ([30, formula 4.352])ð1
0
xc�1e�dx ln x dx ¼ 1

dc
CðcÞ w0ðcÞ � ln d

� �
c, d > 0,

and thereforeð1
0
e�kt a

CðaxÞ
ðbt
0
yax�1e�y ln y dy dt ¼ a

k
w0ðaxÞ � ln 1þ k

b

� �� 	
e�xUðkÞ

¼ 1
k

aw0ðaxÞ � UðkÞ� �
e�xUðkÞ:

By collecting all the previous Laplace transforms together, we obtainð1
0
e�kt lðt, xÞdt ¼ aw0ðaxÞ

1
k
e�xUðkÞ � 1

k
aw0ðaxÞ � UðkÞ� �

e�xUðkÞ

¼ UðkÞ
k

e�xUðkÞ, k > 0:

This concludes the proof. w

From the k-potential

E0

ð1
0
e�kHt dt

� 	
¼ 1

a ln 1þ k
b


 � ¼
ð1
0
e�kxjðxÞ dx, k > 0

we can write the potential density
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jðxÞ ¼
ð1
0
hðt, xÞ dt:

On the other hand

lim
x#0

ð1
0
e�ktlðt, xÞ dt ¼ 1

k
a ln 1þ k

b

� �

that is, lðt, 0Þ ¼ PðtÞ as introduced in (1). Let us write ‘ðtÞ ¼ lðt, 0Þ: Then, we have
that ð1

0
jðzÞ ‘ð1� zÞ dz ¼ 1 (35)

and therefore, j and ‘ are associated Sonine kernels (see [31, 32]). Next we rewrite j
and ‘ using some information on the Gamma subordinator.
Let us introduce the exponential integral

E1ðxÞ :¼
ð1
x

e�z

z
dz, x > 0:

We now present the following result.

Theorem 7. For the Gamma subordinator, the associated Sonine kernels j and ‘ are
given by

jðxÞ ¼ b
a
e�bx�ðbx, � 1Þ, ‘ðxÞ ¼ aE1ðbxÞ, x > 0: (36)

Proof. Observe that

PðtÞ ¼ a
ð1
t

e�by

y
dy ¼ a

ð1
bt

e�z

z
dz ¼ aE1ðbtÞ: (37)

For t> 0, x> 0,

lðt, xÞ ¼
ðt
0
hðx, t � sÞPðsÞds (38)

¼
ðt
0

bax

CðaxÞ ðt � sÞax�1e�bðt�sÞaE1ðbsÞ ds (39)

where the formula (39) can be easily obtained from the definition (37) of E1. Then we
focus on (38). From (3) we have thatð1

0
e�ks bax

CðaxÞ s
ax�1e�bsds ¼ e�ax ln 1þk

bð Þ, k > 0:

From this, by taking into account (1) we get the Laplace transformð1
0
e�kt

ðt
0
hðx, t � sÞPðsÞds dt ¼ UðkÞ

k
e�xUðkÞ, k > 0

which coincides with (34). This proves that (38) holds true.
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Now we prove (36). Since ð1
0
lðt, xÞdx ¼ 1,

from the previous result we have that

1 ¼
ð1
0

ðt
0
hðx, t � sÞPðsÞds

 !
dx

¼
ðt
0
PðsÞe�bðt�sÞ

ð1
0

bax

CðaxÞ ðt � sÞax�1dx
� �

ds

¼
ðt
0
PðsÞe�bðt�sÞ b

a

ð1
0

bðt � sÞ½ �y�1

CðyÞ dy

 !
ds:

From (12) we get that

1 ¼
ðt
0
aE1ðbsÞe�bðt�sÞ b

a
�ðbðt � sÞ, � 1Þds:

This concludes the proof. w

We now move to the elliptic problem associated with an Abel (type) equation. Let
f 2 Cbð0,1Þ be such that

f ðyÞjðx � yÞ 2 L1ð0, xÞ, 8x:
The unique continuous solution w to

f ðxÞ ¼ DU
x wðxÞ x 2 ð0,1Þ,

wðxÞ ¼ 0 x 2 ð�1, 0�:

(
(40)

is given by

wðxÞ ¼
ðx
0
f ðx� yÞjðyÞ dy ¼ E0

ðLx
0
f ðx �HtÞ dt

" #

We immediately see that

wðxÞ ¼
ð1
0
vðt, xÞ dt

where v is the solution to (22). Since limt!1 vðt, xÞ ¼ 0 and vð0, xÞ ¼ f ðxÞ, the problem
(22) takes the form (40) just integrating with respect to the time variable. Concerning
the solution w we have that, by definition, jðxÞ ¼ Ð10 hðt, xÞdt: The probabilistic repre-
sentation can be directly obtained from (23).

4.2. Real moments

We provide here a formula for the real q-th moment of the inverse process L. In the lit-
erature only the first two moments are known. The problem arises on the computation
of the inverse Laplace transform
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ð1
0
e�ktE0 ðLtÞq

� �
dt ¼ UðkÞ

k

ð1
0
xqe�xUðkÞdx

¼ Cðqþ 1Þ
k ðUðkÞÞq , k > 0, q > 0,

(41)

which can be obtained by taking into account (34). As we can immediately see the for-
mulas (41) and (15) are evidently related. This inspires the forthcoming discussion.
Further on the following notation f � g stands for f ðzÞ=gðzÞ ! c as z ! 1 where c

is a positive constant.

Theorem 8. Let q 2 ½1,1Þ, t> 0. The moments of the inverse process L are given by

E0 Lqt
� � ¼ Cðqþ 1Þ

aq
X1
n¼0

e�btlðbt, q� 1, nÞ (42)

¼ b Cðqþ 1Þ
aq

ðt
0
e�bslðbs, q� 1, � 1Þ ds (43)

where l is defined in (11).

Proof. If H is a subordinator with symbol UðkÞ and L is an inverse to the subordinator
H, then by proceeding as in [11], the time-Laplace transform of the moments E0½Lqt �
can be easily given as follows

E0

ð1
0
e�ktðLtÞq dt

� 	
¼
ð1
0
e�kt

ð1
0
xqlðt, xÞdx dt

¼
ð1
0
xq

UðkÞ
k

e�xUðkÞdx

¼ UðkÞ
k

Cðqþ 1Þ
UðkÞqþ1

¼ Cðqþ 1Þ
kUðkÞq ¼ Cðqþ 1Þ

aqk ln ð1þ k
bÞ

h iq , k > 0:

On the other hand, we have that

ð1
0
e�kt Cðqþ 1Þ

aq
X1
n¼0

e�btlðbt, q� 1, nÞ
" #

dt

¼ Cðqþ 1Þ
aq

X1
n¼0

ð1
0
e�ðkþbÞtlðbt, q� 1, nÞdt

¼ Cðqþ 1Þ
aq

X1
n¼0

1
b

ð1
0
e�

kþb
b tlðt, q� 1, nÞdt k > 0:

Now, from (15), we write
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Cðqþ 1Þ
aq

X1
n¼0

1
b

ð1
0
e�

kþb
b tlðt, q� 1, nÞdt

¼ Cðqþ 1Þ
aq

X1
n¼0

1
b

1

1þ k
b


 �nþ1

1

ln 1þ k
b


 �h iq
¼ Cðqþ 1Þ

aq
1

ln 1þ k
b


 �h iq 1b bk
¼ Cðqþ 1Þ

aqk ln ð1þ k
bÞ

h iq
and this proves the identity.
We now prove (43). From ([12, formula (13) in section 18.3]) we know that

dn

dxn
lðx, b, aÞ ¼ lðx, b, a� nÞ: (44)

Then, from an integration by parts, we obtainðt
0
e�bslðbs, q� 1, � 1Þ ds

¼
ðt
0
e�bs d

ds
1
b
lðbs, q� 1, 0Þ ds

¼ e�bs

b
lðbs, q� 1, 0Þjt0 þ

ðt
0
e�bslðbs, q� 1, 0Þ ds

¼ e�bt

b
lðbt, q� 1, 0Þ þ e�bs

b
lðbs, q� 1, 1Þjt0 þ

ðt
0
e�bslðbs, q� 1, 1Þ ds

¼ � � � ¼
X1
n¼0

e�bt lðbt, k� 1, nÞ
b

:

From this we get

E0 Lqt
� � ¼ Cðqþ 1Þ

aq
X1
n¼0

e�btlðbt, q� 1, nÞ (45)

¼ b Cðqþ 1Þ
aq

ðt
0
e�bslðbs, q� 1, � 1Þ ds: (46)

As t ! 0, both �ðt, � 1Þ and lðt, b, � 1Þ diverge (Figure 3). However, we observe that
for every e > 0 and q 2 ½1,1Þ,ðt

e
e�bslðbs, q� 1, � 1Þds < 1:

Then, we consider the integral in (46) near the origin together with the asymptotics
([13], pages 178-179),
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�ðt, � 1Þ � 1

tð ln tÞ2 , t ! 0, (47)

lðt, b, � 1Þ � ð1� nÞbt�n

Cðbþ 1ÞCð1� nÞ , 0 < n < 1, t ! 0: (48)

For e > 0 small enough (in particular e < 1
b), from (47), we haveðe

0
e�bs�ðbs, � 1Þ ds �

ðe
0

e�bs

bsð ln bsÞ2 ds < 1,

from which we deduce the convergence.
Furthermore, from the mean value theorem for integrals we know that 9ce 2 ð0, eÞ

such that ðe
0
e�bs�ðbs, � 1Þ ds ¼ ee�bce�ðbce, � 1Þ,

from which, by taking into account the formula (47), we get

lim
e!0

ðe
0
e�bs�ðbs, � 1Þ ds ¼ lim

e!0

e�be

ð ln eÞ2 ¼ 0:

In conclusion, we have loss mass near zero and this confirms thatðe
0
e�bs�ðbs, � 1Þ ds < 1:

Thus, also by the previous argument we obtain convergence of the integral in (43)
with q¼ 1.
We can use the same argument for q> 1 through (48). w

Remark 9. We remark that, as t ! 1,

E0 Lqt
� � � b t

a

� �q

: (49)

Figure 3. �ðx, � 1Þ near x¼ 0. The picture shows that �ðx, � 1Þ goes to infinity as x goes to zero.
The asymptotic behavior of �ðx, aÞ near the origin depends on the sign of a.

1016 F. COLANTONI AND M. D’OVIDIO



Indeed, we have that

E0 Lqt
� � ¼ b Cðqþ 1Þ

aq

ðt
0
e�bslðbs, q� 1, � 1Þ ds

¼ b Cðqþ 1Þ
aq

ð1
0

ðt
0
e�bs ðbsÞy�1yq�1

CðqÞCðyÞ dy ds

¼ q
aq

ð1
0

ðbt
0
e�z z

y�1yq�1

CðyÞ dy dz

¼ q
aq

ð1
0
yq�1 cðy, btÞ

CðyÞ dy

¼ qbq

aq

ð1
0
yq�1 cðby, btÞ

CðbyÞ dy:

(50)

Since

cðby, btÞ
CðbyÞ ! 1, t ! 1,

and ð1
0
yq�1dy ¼ lim

t!1

ðt
0
yq�1dy � tq

q
,

then from (50) we obtain

E0 Lqt
� � � bt

a

� �q

:

This result has been introduced in [9] for b¼ 1. The authors provided such result by using
Tauberian theorems (see e.g. [33]).

Remark 10. (Convergence) In the last theorem we have proved thatðt
0
e�bslðbs, q� 1, � 1Þ ds < 1

for every finite t> 0. Since (42) and (43) are equivalent, then we gain the absolute con-
vergence on ð0,1Þ of the series (42).

Remark 11. By exploiting the fact that lðx, 0, aÞ ¼ �ðx, aÞ we provide here a simple
manipulation concerned with the first moment of L. From (32) we know that

P0ðLt > xÞ ¼ cðax, btÞ
CðaxÞ :

Then we can calculate the mean as
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E0 Lt½ � ¼
ð1
0
P0ðLt > xÞdx

¼
ð1
0

cðax, btÞ
CðaxÞ dx

¼ 1
a

ð1
0

cðy, btÞ
CðyÞ dy

¼ 1
a

ð1
0

cðy, btÞ
CðyÞ dyþ 1

a

ð2
1

cðy, btÞ
CðyÞ dyþ � � � :

By using (13) and (12) we obtain

E0 Lt½ � ¼ e�bt

a

X1
n¼0

�ðbt, nÞ,

which coincides with the result given in (42) for q¼ 1.

Let us focus on the convolution-type operator

DU
t uðtÞ ¼

ðt
0
u0ðsÞPðt � sÞds, u 2 ACð0,1Þ

which has been introduced in (19). We notice that

ð1
0
e�ktDU

t uðtÞ dt ¼ ðk~uðkÞ � uð0ÞÞUðkÞ
k

¼ UðkÞ~uðkÞ � UðkÞ
k

uð0Þ

and here we assume that uð0Þ 6¼ 0: The last steps are justified by the formula (1) and
the rule for the Laplace transform of a convolution.
A quick application of our result can be given by considering the Brownian motion

Bt time-changed respectively with a Gamma subordinator H and its inverse L. We
respectively write BHt and BLt : The governing equations are well-known. The first case
leads to a Markov process with generator ðA,DðAÞÞ where A ¼ �Uð�DÞ in the sense of
Phillips. The second time change can be considered in order to solve the non-local

equation DU
t u ¼ Du: Since H and L are independent from B, we can write

Ex ðBHtÞq
� � ¼ E0 Ex ðBHtÞqjHt

� �� � ¼ Ex ðB1Þq
� �

E0 ðHtÞq=2
h i

(51)

and

Ex ðBLtÞq
� � ¼ E0 Ex ðBLtÞqjLt

� �� � ¼ Ex ðB1Þq
� �

E0 ðLtÞq=2
h i

: (52)

Formula (51) can be obviously written by considering (7) above. From Theorem 8 we

are now able to write (52) by replacing E0½ðLtÞ
q
2� with (42) or (43).
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4.3. Potentials

To the best of our knowledge, for the Laplace transformsð1
0
e�cxlðt, xÞdx and

ð1
0
e�kthðt, xÞdt (53)

with c, k > 0, there are no explicit representations. On the other hand, the relation
between potentials ([34, formula 5.5])

Ex

ð1
0
e�ktf ðLtÞdt

� 	
¼ UðkÞ

k
Ex

ð1
0
e�kHt f ðtÞdt

� 	

can be explicitly verified for every symbol U: For a general subordinator and the associ-
ated inverse process, the problem to obtain the representations (53) is still open. The
only case in which we have a closed form for such objects is the case of a-stable subor-
dinator and its inverse process. That is, we respectively have

Eað�ctaÞ and xa�1Ea, að�kxaÞ,

where

Ea,bð�zÞ ¼
X1
k¼0

ð�zÞk
Cðakþ bÞ

is the Mittag-Leffler function for which EaðzÞ ¼ Ea, 1ðzÞ:
In this section we direct our efforts in order to obtain explicit representations for the

formulas in (53). In the next theorem v is an exponential random variable with param-
eter c> 0, that is P0ðv > xÞ ¼ e�cx:

Theorem 12. Let u be the unique continuous solution on ½0, þ1Þ to

DU
t uðtÞ ¼ �c uðtÞ, uð0Þ ¼ 1, c > 0: (54)

Let L be the inverse to a gamma subordinator. Then, we have that:

(i) uðtÞ ¼ Ð10 e�cxlðt, xÞdx ¼ E0½e�cLt �;
(ii) uðtÞ ¼ 1� P0ðLt > vÞ ¼ 1� P0ðHv < tÞ;
(iii) u(t) has the following representations

uðtÞ ¼ 1� c
a
e�bt

X1
n¼0

e
c
an� bte�

c
a, n

� �
(55)

¼ 1� b
c
a
e�

c
a

ðt
0
e�bs� bse�

c
a, � 1

� �
ds (56)

Proof.
(i) By applying the k�Laplace transform with respect to t in (54) and by using

uð0Þ ¼ 1 we obtain ~uðkÞUðkÞ þ c ~uðkÞ ¼ UðkÞ
k : Then,
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~uðkÞ ¼ UðkÞ
k

1
UðkÞ þ c

¼ UðkÞ
k

ð1
0
e�cwe�UðkÞwdw

¼
ð1
0
e�cw

ð1
0
e�kt lðt,wÞdt

� �
dw

¼
ð1
0
e�kt

ð1
0
e�cwlðt,wÞdw

� �
dt ¼

ð1
0
e�kt E0 e

�cLt½ �� �
dt

(57)

From Laplace machinery we have uniqueness. Indeed u 2 M0 \ C½0,1Þ:
(ii) We have

uðtÞ ¼
ð1
0
e�cxlðt, xÞdx

¼
ð1
0
e�cxP0ðLt 2 dxÞ

¼ �
ð1
0
e�cx d

dx
P0ðLt > xÞdx

¼ �e�cxP0ðLt > xÞj10 � c
ð1
0
e�cxP0ðLt > xÞdx

¼ 1� c
ð1
0
e�cxP0ðLt > xÞdx

¼ 1� P0ðLt > vÞ
Then, from (4), we conclude the proof.

(iii) Now we prove (55). Since L � 0, for c> 0 the mean E0½e�cLt � is well-defined.
From the Taylor expansion of the exponential we can write

E0 e
�cLt½ � ¼ 1þ

X1
k¼1

ð�cÞk
k!

E0 Lkt

h i

¼ from ð42Þ½ �

¼ 1þ
X1
k¼1

ð�cÞk
ak

X1
n¼0

e�btlðbt, k� 1, nÞ

¼ 1� c
a
e�bt
X1
n¼0

X1
k¼0

� c
a

� �k

lðbt, k, nÞ

¼ by using ð16Þ� �
¼ 1� c

a
e�bt
X1
n¼0

e
c
an� bte�

c
a, n

� �
which is (55). Similarly, we have
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E0 e
�cLt½ � ¼ 1þ

X1
k¼1

ð�cÞk
k!

E0 Lkt

h i
¼ from ð43Þ½ �

¼ 1þ
X1
k¼1

b
ak

ð�cÞk
ðt
0
e�bslðbs, k� 1, � 1Þds,

¼ by using ð16Þ� �
¼ 1� b

c
a

ðt
0
e�bse�

c
a� bse�

c
a, � 1

� �
ds

¼ 1� b
c
a
e�

c
a

ðt
0
e�bs� bse�

c
a, � 1

� �
ds,

which proves (56). Using the same argument for the convergence of (43), we
have that for every finite t> 0 also the integral in (56) converges. w

Remark 13. We observe thatð1
0
e�kt 1� c

a
e�bt

X1
n¼0

e
c
an� bte�

c
a, n

� �" #
dt

¼ 1
k
� c
a

X1
n¼0

e
c
an
ð1
0
e�ðkþbÞt� bte�

c
a, n

� �
dt

¼ 1
k
� c
a

X1
n¼0

e
c
an
e
c
a

b

ð1
0
e�

kþb
b e

c
at�ðt, nÞdt,

¼ by taking into account the formula ð14Þ, we get that
� �

¼ 1
k
� c
a

X1
n¼0

1
b
e
c
aðnþ1Þ e�

c
aðnþ1Þ

1þ k
b


 �nþ1

1

ln 1þ k
b


 �
þ c

a

¼ 1
k
� c
a

a

a ln 1þ k
b


 �
þ c

1
k

¼ UðkÞ
k

1
UðkÞ þ c

,

coincides with (57). This is an alternative proof of (55).

Remark 14. The series (55) gives the analogous representation of (8) for the inverse process L.

Remark 15. (Convergence) From the convergence of (56), and from the equivalence
between (55) and (56) we have also that the series in (55) converges absolutely on ð0,1Þ:
Now we move to the last result.
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Theorem 16. For x 2 ð0,1Þ, we have thatð1
0
e�kthðt, xÞdt ¼ e�bx b

a
e�

k
a � b x e�

k
a, � 1

� �
, k > 0: (58)

Proof. Let us write ~hðk, xÞ :¼ Ð10 e�kthðt, xÞdt, for positive x. Then,

~hðk, xÞ ¼
ð1
0
e�kt bat

CðatÞ x
at�1e�bxdt ¼ e�bx

x

ð1
0

e�tðk�a ln b�a ln xÞ

CðatÞ dt

¼ e�bx

ax

ð1
0

e�
z
aðk�a ln b�a ln xÞ

CðzÞ dz:

By using ([30, formula 6.423])ð1
0
e�ax dx

Cðxþ bþ 1Þ ¼ eba�ðe�a, bÞ,

we have

e�bx

ax

ð1
0

e�
z
aðk�a ln b�a ln xÞ

CðzÞ dz ¼ e�bx

ax
e�

1
aðk�a ln b�a ln xÞ � e�

1
aðk�a ln b�a ln xÞ, � 1

� �
¼ e�bx b

a
e�

k
a � b x e�

k
a, � 1

� �
:

(59)

This concludes the proof. w

Alternative proof concerning Theorem 7. From Theorem 16 we are able to write

jðxÞ ¼
ð1
0
hðt, xÞdt ¼ lim

k!0

ð1
0
e�kthðt, xÞdt

¼ lim
k!0

e�bx b
a

e�
k
a � b x e�

k
a, � 1

� �
¼ e�bx b

a
�ðbx, � 1Þ

which gives an alternative proof of the result. w
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